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ABSTRACT

We study black hole solutions in extended gravities with higher-order curvature terms,

including conformal and Einstein-Weyl gravities. In addition to the usual AdS vacuum, the

theories admit Lifshitz and Schrödinger vacua. The AdS black hole in conformal gravity

contains an additional parameter over and above the mass, which may be interpreted as

a massive spin-2 hair. By considering the first law of thermodynamics, we find that it is

necessary to introduce an associated additional intensive/extensive pair of thermodynamic

quantities. We also obtain new Liftshitz black holes in conformal gravity and study their

thermodynamics. We use a numerical approach to demonstrate that AdS black holes beyond

the Schwarzschild-AdS solution exist in Einstein-Weyl gravity. We also demonstrate the

existence of asymptotically Lifshitz black holes in Einstein-Weyl gravity. The Lifshitz black

holes arise at the boundary of the parameter ranges for the AdS black holes. Outside the

range, the solutions develop naked singularities. The asymptotically AdS and Lifshitz black

holes provide an interesting phase transition, in the corresponding boundary field theory,

from a relativistic Lorentzian system to a non-relativistic Lifshitz system.

1



1 Introduction

Theories of gravity extended by the addition of higher-order curvature terms are of inter-

est for a number of reasons. One motivation is to investigate whether suitably extended

four-dimensional gravity can be quantized in its own right. It has been shown that Einstein

gravity extended by the inclusion of quadratic curvature terms is perturbatively renormaliz-

able [1]. However, the price to be paid for achieving renormalizability is that the theory then

contains massive spin-2 modes as well as the massless graviton and, furthermore, that the

massive modes are ghostlike (i.e. their kinetic term has the wrong sign). Three-dimensional

models of gravity, for which the UV divergence problems are inherently less severe, have

also been studied extensively. While Einstein gravity itself is essentially trivial in three di-

mensions, extensions to include higher-order derivative terms lead to interesting toy models

with dynamical content and the possibility of well-controlled UV behaviour. Such exten-

sions in three dimensions include topologically massive gravity [2], and more recently, “New

Massive Gravity” [3]. The theory can be rendered ghost free, and equivalent to a the-

ory with a standard Einstein-Hilbert action, after truncating out modes with logarithmic

fall-off by imposing an appropriate boundary condition of AdS3. (See, for example, [4].)

Supersymmetric extensions were considered in [5]-[9].

The situation is rather more subtle in four dimensions. An analogous “critical gravity”

in four dimensions was considered in [10]. The Lagrangian consists of the Einstein-Hilbert

term with a cosmological constant Λ and an additional higher-order term proportional to the

square of the Weyl tensor, with a coupling constant α. It was shown that there is a critical

relation between α and Λ for which the generically-present massive spin-2 modes disappear,

and are instead replaced by modes with a logarithmic fall-off [11] (see also [12, 13]). These

log modes are ghostlike in nature [14, 15], but since they fall off more slowly than do the

massless spin-2 modes, they can be truncated out by imposing an appropriate AdS boundary

condition. The resulting theory is then somewhat trivial, in the sense that the remaining

massless graviton has zero on-shell energy. Furthermore, the mass and the entropy of

standard Schwarzschild-AdS black holes are both zero in the critical theory. Analogous

critical theories exist also in higher-dimensional extended gravities with curvature-squared

terms [16].

In fact, it was observed in [17] that one can generalise critical gravity to a wider class

of Weyl-squared extensions to cosmological Einstein gravity, where α does not take the

critical value. For a certain range of values for α, the mass-squared of the massive spin-2

mode in the AdS4 background is negative, but not sufficiently negative to imply tachyonic
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behaviour. However, this mode, which is again ghostlike, has a slower fall-off than the mass-

less graviton and so it can be truncated by imposing appropriate AdS boundary conditions.

This extended class of models has been investigated further in [18]-[34].

One possible approach would be to begin with the conformally-invariant theory described

by a pure Weyl-squared action. Being the local gauge theory of the conformal group, this

theory of “conformal gravity” has the virtue of yielding a convergent Euclidean functional

integral, and also of renormalizability and asymptotic freedom [35]. One might then argue

[36, 37] that quantum fluctuations would break the scale invariance, and thereby generate an

Einstein-Hilbert term in the low-energy effective action. Thus, the Einstein-Weyl extensions

of critical gravity described above effectively describe the emergence [38] of Einstein gravity

from conformal gravity. It then becomes of interest to investigate the classical solutions

of conformal gravity and Einstein-Weyl gravity. Any solution of Einstein gravity with

a cosmological constant is also a solution of Einstein-Weyl gravity. However, the Weyl-

squared term gives rise to fourth-order equations of motion, which are highly non-linear,

and so it is in general rather difficult to find the further new solutions that exist over and

above the pure Einstein solutions. One of the main purposes of the present paper is to

search for such new solutions under the simplifying assumption of spherical symmetry (and

certain generalisations of this).

The investigation of solutions in higher-derivative extensions of Einstein gravity is also of

interest from the AdS/CFT viewpoint, not least because it is known that such higher-order

terms arise in string theory. Furthermore, although originally the AdS/CFT correspondence

was conceived as a duality between a conformal field theory and a string theory, the idea

of holography has been generalized to broader classes of gauge/gravity duality outside the

string theoretical context.

Recently, holographic techniques have been used to study non-relativistic systems, such

as atomic gases at ultra-low temperature. This entails two types of gravitational back-

grounds: those which correspond to Lifshitz-like fixed points [39] and Schrödinger-like fixed

points [40, 41]. In the context of condensed matter theory, various systems exhibit a dy-

namical scaling near fixed points:

t→ λzt, xi → λxi, z 6= 1 . (1.1)

In other words, rather than obeying the conformal scale invariance t → λt, xi → λxi, the

temporal and the spatial coordinates scale anisotropically.

Requiring also time and space translation invariance, spatial rotational symmetry, spa-

tial parity and time reversal invariance, the authors of [39] were led to consider D dimen-
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sional geometries of the form

ds2 = ℓ2
(
−r2zdt2 + r2dxidx

i +
dr2

r2

)
. (1.2)

This metric obeys the scaling relation (1.1) if one also scales r → λ−1r. If z = 1, the metric

reduces to the usual AdS metric in Poincaré coordinates with AdS radius ℓ. Metrics of the

form (1.2) can be obtained as solutions in general relativity with a negative cosmological

constant if appropriate matter is included. For example, solutions were found by introducing

1-form and 2-form gauge fields [39]; a massive vector field [42]; in an abelian Higgs model

[43]; and with a charged perfect fluid [44]. A class of Lifshitz black hole solutions with

non-planar horizons was found in [45, 46]. String theory and supergravity embeddings have

been found in [47]-[55].

In a similar vein, D-dimensional geometries which exhibit Schrödinger symmetry are

described by a metric of the form [40, 41]

ds2 = ℓ2
(
−r2zdt2 + r2(−dtdξ + dxidx

i) +
dr2

r2

)
, (1.3)

which is conformally related to a pp-wave spacetime. This metric obeys the scaling relation

t→ λzt, xi → λxi, r → λr, ξ → λ2−zξ, z 6= 1 . (1.4)

If momentum along the ξ direction is interpreted as rest mass, then this metric describes a

system which exhibits time and space translation invariance, spatial rotational symmetry,

and invariance under the combined operations of time reversal and charge conjugation.

These geometries have been embedded in string theory [56, 57].

The organization of this paper is as follows. Section 2 contains a brief description

of four-dimensional Einstein-Weyl gravity, including the equations of motion. In section

3, we summarise some salient features of the AdS4 solution of Einstein-Weyl gravity and

the nature of the linearised fluctuations around the AdS4 background. We also discuss

the Lifshitz solutions of Einstein-Weyl gravity, deriving the relation between the coupling

strength α of the Weyl-squared term and the value of the Lifshitz anisotropy parameter z.

We also find Schrödinger-type solutions. In section 4, we consider a black hole type ansatz

for spherically-symmetric solutions of Einstein-Weyl gravity, and generalisations where the

spatial sections are flat or hyperbolic instead of spherical. We show that the fourth-order

equations of motion can be reduced to second-order equations for the metric functions. In

the special case of flat spatial sections, we also derive a conserved Noether charge, which

for the standard black hole solution is related to the mass.
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In section 5, we consider spherically-symmetric black holes in the specific case of pure

conformal gravity. They can have either AdS or Lifshitz asymptotic behaviour. The AdS

black holes in conformal gravity have an additional parameter over and above the mass,

and this leads to interesting consequences when one considers their thermodynamics. We

discuss how one may generalise the first law of thermodynamics to include the additional

parameter. We also consider the asymptotically-Lifshitz black holes in conformal gravity,

which can have either z = 4 or z = 0. In section 6, we extend this discussion to Einstein-

Weyl gravities. Now, it appears that the equations governing the metric functions for the

spherically-symmetric ansatz are too complicated to be solvable in general, and so we have

to resort to numerical methods in order to go beyond the known Schwarzschild-AdS metrics.

To do this, we first give a discussion of the forms of the solutions in the near-horizon and the

asymptotic regions. Then upon performing numerical integrations outwards from the near-

horizon region, we find indications that more general black hole solutions do indeed exist,

at least when the α coupling parameter for the Weyl-squared term lies in an appropriate

range. Section 7 contains our conclusions. We present further solutions of conformal gravity

and general extended gravities with quadratic curvature-squared terms in appendices A and

B, respectively. We summarise some results on the calculation of the mass for black holes

in the critical theory and in conformal gravity in Appendices C and D, respectively.

2 Extended and Critical Gravity

We begin by considering the action

I =
1

2κ2

∫ √−g d4x(R− 2Λ + αRµνRµν + βR2 + γEGB) , (2.1)

where κ2 = 8πG and EGB is the Gauss-Bonnet term

EGB = R2 − 4RµνRµν +RµνρσRµνρσ . (2.2)

Although this term does not contribute to the equations of motion in four dimensions, it

can have non-trivial consequences for thermodynamics in the higher-derivative theory, and

so we shall include it in our discussion.

The equations of motion that follow from the action (2.1) are

Gµν + Eµν = 0 , (2.3)

5



where

Gµν = Rµν − 1
2Rµν + Λ gµν , (2.4)

Eµν = 2α(Rµρ Rν
ρ − 1

4R
ρσRρσ gµν) + 2βR (Rµν − 1

4Rgµν)

+α (�Rµν +∇ρ∇σR
ρσ gµν − 2∇ρ∇(µRν)

ρ) + 2β (gµν �R−∇µ∇νR) . (2.5)

When β = −1
3α and γ = 1

2α, the theory describes what we shall call Einstein-Weyl

gravity, with the action

I =
1

2κ2

∫ √−g d4x(R − 2Λ + 1
2α|Weyl|2) , (2.6)

where

|Weyl|2 = RµνρσRµνρσ − 2RµνRµν +
1
3R

2 . (2.7)

Note that the equations of motion following from this action can be written as1

Rµν − 1
2Rgµν + Λgµν − 2α(2∇ρ∇σ +Rρσ)Cµρσν = 0 . (2.8)

We shall also sometimes consider the limit of conformal gravity, where only the Weyl-

squared term in the action is retained. This can be described as the α −→ ∞ limit of the

Einstein-Weyl action (2.6). The action of conformal gravity is conformally invariant, which

implies that the equations of motion determine the metric only up to an arbitrary conformal

factor.

A special feature of four-dimensional Einstein gravity with curvature-squared terms is

that any solution of the pure Einstein theory continues to be a solution of the theory with

the quadratic modifications. Thus, in particular, the Schwarzschild-AdS black hole solution

ds2 = −
(
k − 2m

r
− 1

3Λr
2
)
dt2 +

(
k − 2m

r
− 1

3Λr
2
)−1

dr2 + r2dΩ2
2,k (2.9)

of Einstein gravity is also a solution in the higher-derivative theory. Here dΩ2
2,k denotes the

metric on a unit 2-sphere (k = 1), unit hyperbolic plane (k = −1) or 2-torus (k = 0), and

may be written as

dΩ2
2,k =

dx2

1− k x2
+ (1− k x2)dy2 . (2.10)

1In deriving this result it is helpful to note that, in four dimensions, the Weyl tensor satisfies the identity

CµρσλCν
ρσλ = 1

4
CρσλτC

ρσλτ gµν . This can be seen easily by employing 2-component spinor notation.
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3 AdS, Lifshitz and Schrödinger Vacua

Unlike the D = 3 or D ≥ 5 cases, for D = 4 the cosmological constant of the (A)dS

vacuum is not modified by the quadratic curvature terms, and hence we have only one such

vacuum with cosmological constant Λ. In this paper we shall consider only negative Λ, and

furthermore, without loss of generality, we shall from now on set Λ = −3.

The linearised fluctuations around the AdS4 vacuum in Einstein-Weyl gravity were an-

alyzed in [10]. It turns out that the scalar trace mode decouples from the spectrum, which

then contains just massless and massive spin-2 modes, satisfying

α(� + 2)(� + 2−m2)hµν = 0 , (3.1)

where hµν is transverse traceless and

m2 = −2− 1

α
. (3.2)

The characteristics of the linearised theory depend upon the value of the parameter α,

and are summarised in the table below.

−∞ < α < −1
2 α = −1

2 −1
2 < α < 0 α = 0 0 < α < 4 4 ≤ α <∞

−9
4 ≤ m2 < 0 m2 = 0 m2 > 0 – m2 < −9

4 −9
4 ≤ m2 < 0

Massive: Ghost Ghost – Ghost Ghost

Log – Tachyon

Trunc. Trunc. Non-trunc. – Trunc.

Massless: Ghost Null

Table 1: The characteristics of the massive and massless spin-2 modes in Einstein-Weyl

gravity for finite values of the parameter α. When not indicated to the contrary, the modes

are non-ghostlike.

Owing to the fact that the background is AdS rather than Minkowski spacetime, there is

an allowed range of negative mass-squared values for the massive mode, −9
4 ≤ m2 < 0,

for which it is still non-tachyonic. In this range, the massive mode actually falls off less

rapidly at infinity than the massless mode, and so it can be truncated from the theory

by imposing a suitable boundary condition at infinity. In the critical theory, which occurs

when α = −1
2 , the massive mode becomes massless and in fact a new type of mode with

logarithmic fall off arises. The usual massless mode has zero norm in the critical theory, and

the logarithmic mode is ghostlike. The logarithmic mode could be truncated by imposing
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appropriate boundary conditions, but this would leave only the zero-norm massless graviton

[14, 15]. The case α = 0 corresponds to ordinary Einstein gravity, in which case there is of

course no massive mode. Not depicted in the table is the case α = ±∞, which corresponds

to the pure Weyl-squared conformal theory. In the conformal theory the massive mode has

m2 = −2, and so although negative, it is not tachyonic.

In addition to the AdS vacuum, the theory (2.1) also admits Lifshitz solutions, for which

the metric is given by

ds2 =
dr2

σ r2
− r2zdt2 + r2(dx2 + dy2) , (3.3)

where

(z2 + 2)α + 2(z2 + 2z + 3)β = 1
12 (z

2 + 2z + 3) , σ =
6

z2 + 2z + 3
. (3.4)

For the special case of Einstein-Weyl gravity, where β = −α/3, we have

α =
z2 + 2z + 3

4z(z − 4)
. (3.5)

For conformal gravity, corresponding to α = ∞, equation (3.5) implies that the Lifshitz

scaling parameter z can take the values z = 4 or z = 0. At the critical point, on the other

hand, where α = −1
2 , both roots of (3.5) give z = 1. For general values of α we have

z =
8α+ 1±

√
2(1 + 2α)(16α − 1)

4α− 1
. (3.6)

Thus, the reality of z requires that α ≥ 1
16 or α ≤ 1

2 .

For conformal gravity, we find that there are also Lifshitz-like solutions with S2 or H2

spatial topologies as well as T 2. The metrics for all three cases can be written as

ds2 = −r2z(1 + k

r2
)dt2 +

4dr2

r2(1 + k
r2 )

+ r2dΩ2
2,k , (3.7)

with z = 0 and 4.

Finally, we consider Schrödinger vacua, whose metric takes the form

ds2 = −r2zdt2 + dr2

r2
+ r2(−2dtdx+ dy2) . (3.8)

For z = 1 and z = −1
2 , the metrics are Einstein with Λ = −3, and hence they are solutions

for all α and β. In particular, the z = 1 case is simply the AdS metric, whilst if z = −1
2 it

is the Kaigorodov metric describing a pp-wave propagating in AdS [58, 59]. In general, z

satisfies [12]

1− 24β + α(4z2 − 2z − 8) = 0 . (3.9)
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In Einstein-Weyl gravity, we have

α =
1

2z(1− 2z)
. (3.10)

In conformal gravity, z can take values 1, 1
2 , 0 or −1

2 . Some asymptotic Schrödinger solutions

are presented in appendix A.1.

4 Black Hole Ansatz and Equations of Motion

4.1 General equations for k = 1, 0 or −1

In this paper, we focus on the construction of static, spherically-symmetric (or H2 or T 2

symmetric) black hole solutions that are asymptotic to either the AdS or the Lifshitz vacua

discussed in the previous section. We may therefore, without loss of generality, consider the

ansatz

ds2 = −a(r) dt2 + dr2

f(r)
+ r2dΩ2

2,k . (4.1)

The equations of motion for a and f may be derived from the Lagrangian obtained by

substituting this ansatz into the action (2.1). Since we are interested specifically in the case

of Einstein-Weyl gravity, where β = −1
3α, and since the equations of motion are greatly

simplified in this case,2 we shall present the results under this specialisation. We then find

that the equations can be reduced to the second-order system

a′′ =
r2fa′2 + 4a2(k + 6r2 − f − rf ′)− raa′(4f + rf ′)

2r2af
, (4.2)

and

f ′′ =
1

2r2a2f(ra′ − 2a)

(4r2a2
α

(a(k + 3r2 − f)− rfa′) + r3f2a′3 + 2r2a2fa′(8r − f ′)

−r2afa′2(3f + rf ′)− a3(48r4 − 16r2f + 8f2 − 24r3f ′ + 4rff ′ + 3r2f ′2)

−4ka3(4r2 − 2f − rf ′)
)
. (4.3)

4.2 Conserved Noether charge for k = 0 case

In the case of a toroidal spatial geometry (i.e. k = 0), the system of equations has an

additional global symmetry, and hence there is an associated conserved Noether charge.

In order to discuss this, it is helpful temporarily to choose a different parameterisation of

2The reason for the simplification is that the trace of the Weyl-squared contribution to the equations of

motion vanishes (see equation (2.8)), and so this projection is identical in Einstein gravity and Einstein-Weyl

gravity.
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the metric ansatz (4.1), using a new radial coordinate ρ such that r2 = b(ρ) and dr2/f =

ab2hdρ2, so that the metric is now written as

ds2 = −a(ρ)dt2 + a(ρ)b(ρ)2 h(ρ)dρ2 + b(ρ) dxidxi . (4.4)

Since the additional global symmetry arises regardless of whether or not we choose the Weyl-

squared combination β = −1
3α, we shall keep these two parameters arbitrary in the following

discussion. Substituting into the action (2.1) yields an effective Lagrangian for a, b and h.

The function h(ρ) can be viewed as parameterising general coordinate transformations of

the radial variable, and its equation of motion yields the Hamiltonian constraint H = 0.

Having obtained this equation, we can impose h(ρ) = 1 as a coordinate gauge condition. In

this case H, which must vanish, is given by

H =
a′b′

ab
+
b′2

2b2
− 6ab2 − 2kab

− α

4a5b6

(
10a4a′4 + 20ab3a′3b′ + 22a2b2a′2b′2 + 36a3ba′b′3 + 47a4b′4

)

+
α

a4b5

(
b(ba′ + ab′)(3ba′ + 2ab)a′′ + a(ba′ + 3ab′)(ba′ + 4ab′)b′′

)

+
α

a3b4

(
b2a′′2 + 2aba′′b′′ + 3a2b′′2

)
− 2αk(kab3 + b′2)

b3

− β

4a5b6

(
20b4a′4 + 64ab3a′3b′ + 72a2b2a′2b′2 + 124a3ba′b′3 + 125a4b′4

)

+
2β

a4b5

(
3b(b2a′2 + 3aba′b′ + a2b′2)a′′ + a(b2a′2 + 13aba′b′ + 16a2b′2)b′′

)

+
β(ba′′ + 2ab′′)2

a3b4
− 2β(ba′ + 2ab′)(ba′′′ + 2ab′′′)

a3b4
− 2βk(2kab3 + 3b′2)

b3
, (4.5)

where a prime here denotes a derivative with respect to ρ. We may then also set h = 1 in

the effective Lagrangian, so that the remaining equations, for a and b, can be obtained from

L =
a′b′

ab
+
b′2

2b2
+ 6ab2 + 2kab

+
α

4a5b6

(
2b4a′4 + 5ab3a′3b′ + 10a2b2a′2b′2 + 12ab3a′b′3 + 11a4b′4

−2ab(2b3a′2a′′ + 2ab2a′b′a′′ + 3a2bb′2a′′ + 2ab2a′2b′′ + 4a2ba′b′b′′ + 8a3b′2b′′)

+2a2b2(b2a′′2 + 2aba′′b′′ + 3a2b′′2)
)
+

2k α

b3
(kab3 + b′2 − bb′′)

+
β

4a5b6

(
4ka3b3 + 2b2a′2 + 2aba′b′ + 5a2b′2 − 2ab(ba′′ + 2ab′′)

)2
. (4.6)

For the k = 0 case, corresponding to a black brane solution, the Lagrangian (4.6) and

Hamiltonian (4.5) have a global scaling symmetry with

a→ ξ2 a , b→ ξ−1 b . (4.7)

This enables us to derive a conserved Noether charge, λ. Having done this, it is more

convenient now to revert to the original radial coordinate r and the metric functions a and
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f in (4.1). The Noether charge is then given by

λ =

√
f

ra5/2

[
2r2a2(ra′ − 2a)− α

(
8a3f − 2ra2fa′ − 4r2afa′2 + 3r3fa′3 + 6ra3f ′

−3r3aa′2f ′ + 3r2a(2af − 2rfa′ + raf ′)a′′ + r2a2(ra′ − 2a) + 2r3a2ff ′′′
)

+2β(ra′ − 2a)(4a2f + 4rafa′ − r2fa′2 + 4ra2f ′ + r2aa′f ′ + 2r2afa′′)
]
. (4.8)

It should be emphasized that this quantity is conserved only for the case k = 0. The

analogous Noether charge was studied in [60] for Lifshitz black holes (with T 2 horizon

topology) in Einstein gravity coupled to a massive vector field. It was shown [61] that it is

related to the energy of the black branes:

E = − λω2

16π (z + 2)
=

2

(z + 2)
T S , (4.9)

where T and S are the temperature and the entropy of the black brane, and ω2 is its area.

We can test this formula with the k = 0 Schwarzschild-AdS black holes, corresponding

to a = f = r2 − r3+/r in the metric ansatz (4.1). This solution exists for all values of the α

and β parameters. The temperature and the entropy are given by

T =
3r+
4π

, S = 1
4ω2r

2
+[1− 6(α + 4β)] . (4.10)

Note that the Gauss-Bonnet term does not contribute to the entropy in this case. The

energy is given by

E =
1

8π
[1− 6(α + 4β)]r3+ = 2

3TS . (4.11)

The Noether charge λ in this case is given by

λ = −6[1− 6(α+ 4β)]r3+ . (4.12)

Thus, we find that the relation (4.9) holds for this z = 1 case. In general we find that the

second equality in (4.9) always holds, whilst the definition of energy in terms of the Noether

charge does not apply for solutions of higher-derivative gravity when massive spin-2 modes

are excited.

For the case of Einstein-Weyl gravity, i.e. when β = −1
3α, the Noether charge (4.8)

simplifies considerably, and becomes

λ =
1√

a3f (ra′ − 2a)

(
2ra(18ra2 − 10a2f − 2rafa′ − r2fa′2)

−α(4ra− fa′ − af ′)(36r2a2 − 8a2f − rafa′ − 2r2fa′2 − 9ra2f ′)
)
. (4.13)
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5 AdS and Lifshitz Black Holes in Conformal Gravity

In this section, we focus on the special case of conformal gravity, i.e. the limiting case of

Einstein-Weyl gravity when α goes to infinity. The equations of motion are given by

(2∇ρ∇σ +Rρσ)Cµρσν = 0 . (5.1)

Note that for the metric ansatz (4.1), the α-independent trace equation (4.2) does not apply

in conformal gravity. Thus, the equation of motion is not simply (4.3) with α sent to ∞.

5.1 AdS black holes

The most general spherically-symmetric solution in conformal gravity was found in [62,

63, 64]. (See also, [65, 31].) The solution can easily be generalized to the other horizon

topologies T 2 and H2. The solution for all three cases is given by

ds2 = −fdt2 + dr2

f
+ r2dΩ2

2,k , f = br2 +
c2 − k2

3d
r + c+

d

r
, (5.2)

where b, c and d are arbitrary constants. The coefficients of r2 and 1/r are related to the

excitations of the massless graviton, while the coefficient of r and the constant c are related

to the massive spin-2 mode. If c is chosen so that c = k, the solution reduces to the usual

AdS black hole for each of the cases k = 1, k = −1 and k = 0. Of course, since the equations

of motion for conformal gravity leave an overall conformal factor undetermined, it follows

that ds̃2 = Ω2 ds2 is also a spherically-symmetric static solution, where ds2 is given by (5.2)

and Ω is an arbitrary function of r.

In fact, the solution (5.2) can easily be derived by starting from the Schwarzschild-AdS

solution

ds̃2 = −
(
k − 1

3Λρ
2 − 2M

ρ

)
dt2 +

(
k − 1

3Λρ
2 − 2M

ρ

)−1
dρ2 + ρ2 dΩ2

2,k , (5.3)

noting that not only this, but also ds2 = Ω(ρ)−2 ds̃2, is therefore a solution of conformal

gravity, and then defining a new radial coordinate via r = ρΩ(ρ)−1. Requiring that the

resulting metric have the form ds2 = −hdt2 + h−1dr2 + r2dΩ2
2,k implies that Ω = 1 + qρ

where q is an arbitrary constant, and hence r = ρ/(1 + qρ). The function h is therefore

given by

h = (2Mq3 + kq2 − 1
3Λ)r

2 − 2q(k + 3Mq)r + (k + 6Mq)− 2M

r
, (5.4)

which precisely reproduces the function f in (5.2) with

b = 2Mq3 + kq2 − 1
3Λ , c = k + 6Mq , d = −2M . (5.5)

12



The fact that the solution (5.2) is related to the usual Schwarzschild-AdS black hole does

not imply that these solutions are completely equivalent. The scaling of the Schwarzschild-

AdS metric leaves the thermodynamic properties of the black hole unchanged only if the

conformal factor is finite and non-vanishing in the regions between the horizon and asymp-

totic infinity. However, the conformal factor Ω = 1 + qρ that relates (5.2) to the usual

Schwarzschild-AdS black hole metric is in fact singular at ρ = ∞, and so it alters the global

structure. In turn, this affects the thermodynamic properties, as we shall discuss below.

5.1.1 Thermodynamics of AdS black holes in conformal gravity

We begin by reviewing the thermodynamic properties of the standard Schwarzschild-AdS

black hole (5.3) in the context of conformal gravity. Letting ρ+ denote the radius of the

outer horizon, we can solve for M to get

M = 1
6ρ+(3k − Λρ2+) . (5.6)

The Hawking temperature can be obtained from a calculation of the surface gravity in the

standard way. The entropy can be derived from the Wald formula [66], giving

S = −α
8

∫
CµνρσǫµνǫρσdΣ . (5.7)

Thus we have

T =
k − Λρ2+
4πρ+

, S = 1
6α(3k − Λρ2+)ω2 , (5.8)

where ω2 denotes the volume of dΩ2
2,k.

It is worth remarking that at first sight the entropy of the black hole in conformal gravity

is not simply proportional to the area of the horizon, but now it is given by

S = 1
2α
(
k ω2 +

1
3(−Λ)A

)
, (5.9)

where A = ρ2+ω
2
2 is the area of the horizon. However the first term in the above is a pure

constant, independent of the parameters in the solution, and can be removed by introducing

a Gauss-Bonnet term in the Lagrangian. In fact if we use the action (2.1) with β = −1
3α

and γ = 0, the first term in (5.9) vanishes and hence the entropy is then proportional to

the area of the horizon.

The free energy F can be obtained from the Euclidean action IE of conformal gravity,

using the relation F = IE T . The action converges for the black hole solution, leading to

F = −αω2

32π

∫ ∞

r+

r2dr |Weyl|2 = −α(3k − Λρ2+)
2ω2

72πρ+
. (5.10)
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The energy can be determined by integrating the first law, dE = TdS, assuming that Λ

is held fixed, giving

E =
αΛρ+(−3k + Λρ2+)ω2

36π
=
α(−Λ)ω2

6π
M . (5.11)

This expression for the energy can also be confirmed independently by using either the

Deser-Tekin [67] or the AMD method [68, 69, 70, 71].

In conformal gravity the cosmological constant Λ is a parameter of the solution, rather

than of the theory, and hence we may treat Λ as a further thermodynamic variable, leading

to the more general thermodynamic relations

dE = TdS +Θ dΛ , F = E − TS , Θ = −αρ+(3k − Λρ2+)ω2

72π
. (5.12)

Thus, treating the cosmological constant as a thermodynamic variable does not affect the

relationship between F and E. We can simply start by assuming that Λ is constant and

obtain the first law of thermodynamics. The first law can then be straightforwardly modi-

fied by treating Λ as a variable, thus determining the corresponding conjugate variable Θ,

whilst the other thermodynamic quantities remain unchanged. Treating the cosmological

constant as a thermodynamic variable has been considered previously. See, for example,

[72, 73, 74]. In Einstein gravity, where the entropy is simply one quarter of the horizon

area, without explicit dependence on the cosmological constant Λ, the quantity Θ ∼ ρ3+

is proportional to the volume conjugate to the cosmological constant, which can then be

interpreted as a pressure [74]. In conformal gravity, on the other hand, the entropy has a

manifest dependence on Λ, and hence the quantity Θ given in (5.12) is not simply propor-

tional to the volume, but has a linear ρ+ dependence as well, for non-vanishing k. It is

also worth remarking that the Smarr formula E = 2TS − 2ΘΛ in Einstein gravity [74] now

becomes E = 2ΘΛ in conformal gravity. We shall discuss this further in section 5.1.5.

We are now in a position to discuss the more general AdS black holes in conformal

gravity. We shall begin by taking the cosmological constant to be fixed,3 by setting b = 1

in (5.2), corresponding to setting the cosmological constant of the asymptotic AdS space to

be Λ = −3. Letting r+ be the radius of the outer horizon and writing d = −r+d̃, we find

that

r2+ = −c+ c2 − k2

3d̃
+ d̃ > 0 . (5.13)

3When we refer to the “cosmological constant” in the context of conformal gravity, where of course there

is no cosmological term in the action, we always mean the cosmological constant of the asymptotic AdS

space.
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The temperature and entropy can then be straightforwardly calculated; they are given by

T =
(3d̃ − c)2 − k2

12πr+d̃
, S = 1

6α(k + 3d̃− c)ω2 . (5.14)

The free energy F can also be obtained from the Euclidean action, giving

F = −
αω2

(
(c− k)2 − 3(c− k)d̃+ 3d̃2

)

24πr+
. (5.15)

When c = k, the system reduces to the previous Schwarzschild-AdS black hole with cos-

mological constant fixed at Λ = −3. Thus, the general solution with c 6= k contains an

additional independent parameter.

As we have remarked in the previous subsection, the general solution can be obtained

by performing a conformal transformation of the Schwarzschild-AdS black hole, whose cos-

mological constant Λ can be promoted to being a parameter of the solution. In the new

solution, we have chosen to set b = 1. Thus as a local solution, our new variables (c, d)

are related to the (M,Λ) variables in the Schwarzschild-AdS solution (5.3). It is natural

to ask whether the thermodynamics of the new solution are simply the same as (5.12),

but expressed in terms of new variables. In order to address this issue, we note that the

transformation described in subsection 5.1 amounts to

q =
c− k

6M
, M = 1

6ρ+(3k − Λρ2+) , (5.16)

with

ρ+ =
3r+d̃

k − c+ 3d̃
, Λ =

(2k + c)r+ − 3kρ+
(r+ − ρ+)ρ2+

=
(c− k − 3d̃)2(c+ 2k − 3d̃)

9r2+d̃
2

. (5.17)

It is easy to see that when c = k, we have ρ+ = r+ and Λ = −3, as we should have expected.

It is straightforward to verify that the temperature and entropy in (5.8) are indeed

mapped into those in (5.14). However, the free energy in (5.10) becomes

F → F̃ = −α(3d̃− c+ k)3ω2

216πr+d̃
, (5.18)

which is different from the free energy given in (5.15). The reason for this can be easily

understood as follows. The r and ρ coordinates are related to each other by

r =
ρ

1 + qρ
, ρ =

r

1− qr
. (5.19)

The temperature and entropy are, in a sense, “local” properties, evaluated on the horizon

r = r+ or ρ = ρ+, and related by the above equation. Since the theory is conformal, the
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temperature and entropy are not modified by the conformal transformation. On the other

hand, the free energy, and hence the energy, are evaluated by an integration over the regions

[r+,∞) of the general black hole or [ρ+,∞) of the Schwarzschild-AdS black hole. From the

relationship (5.19), we find

r+ ≤ r <∞ −→ (−∞ < ρ ≤ −1

q
) ∪ (ρ+ ≤ ρ <∞) ,

ρ+ ≤ ρ <∞ −→ r+ ≤ r <
1

q
. (5.20)

Thus, we see that the outer region ρ ≥ ρ+ of the Schwarzschild-AdS black hole covers

only part of the outer region r ≥ r+ of the general black hole (5.15). The exterior of

the general black hole maps into disconnected regions of the Schwarzschild-AdS solution.

Thus, we see that although the conformal transformation does not affect the location of

the horizon or the expression for
√−g|Weyl|2, the structure of the asymptotic region is

altered by the transformation. Therefore, the Euclidean actions are different for the two

solutions. Analogously, the energy of the two solutions, which are typically evaluated at

asymptotic infinity, are also different. The upshot is that the two solutions cannot be viewed

as equivalent.

Having established that the new solutions are globally inequivalent to the Schwarzschild-

AdS black hole with (M,Λ) parameters, we shall now proceed to investigate the thermo-

dynamics of the general black holes in conformal gravity. We should not expect the usual

first law dE = TdS still to be satisfied, since the general solutions are now described by two

independent parameters, c and d, rather than just one. As we shall see, it is necessary now

to introduce an additional pair of intensive and extensive thermodynamic variables, which

we shall call Ψ and Ξ, and the first law will be modified to dE = TdS + ΨdΞ. Once the

additional parameter of the AdS black holes in conformal gravity is turned on, by taking

c 6= k, we find that neither the Deser-Tekin nor the AMD methods gives a finite result for

the mass. In appendix D, we describe a new procedure for calculating the mass in conformal

gravity.

It is instructive first to look at the solution where the parameter d is set to zero. In the

parameterisation in (5.2), this can be done by first writing c2− k2 = 3Ξd, and then sending

d to zero, giving

f = r2 + Ξ r + k . (5.21)

This solution has a curvature singularity at r = 0, which can be shielded by an horizon at

r = r0 provided that Ξ is chosen so that Ξ2 ≥ 4k. The temperature is given by

T0 =
r20 − k

4πr0
. (5.22)
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However, we find that the entropy and free energy both vanish, suggesting that the energy

should vanish also. Thus the solution can be viewed as a “thermalized vacuum.” (This

is analogous to the Schwarzschild black hole in critical gravity, where all thermodynamic

quantities except for temperature vanish [10].) In a Deser-Tekin or AMD calculation, this

thermalized vacuum will generate a divergence in the evaluation of the mass, and it should

be subtracted.

In fact it is easy to verify that this thermalized vacuum is locally conformal to a de

Sitter background. To see this, we define dŝ2 = Ω2ds2, with

Ω =
1

Ξr + 2k
, (5.23)

and introduce the new radial coordinate ρ = rΩ. We then have

dŝ2 = − f̂

4k
dt2 +

dρ2

k f̂
+ ρ2dΩ2

2,k , (5.24)

where

f̂ = 1− 1
3Λρ

2 , Λ = 3(Ξ2 − 4k) . (5.25)

The condition for the solution (5.21) to have real roots defining the horizons is Ξ2−4k ≥ 0,

and so this means the conformally-related metric dŝ2 in (5.24) is de Sitter spacetime, with

positive cosmological constant. The horizon in the metric with f given by (5.21) maps into

the de Sitter horizon in (5.24).

From appendix D, if we take the conserved quantity Q to furnish a definition of energy,

we have

E =
αω2

4π
(−d+m) , (5.26)

where

m ≡ (c− k)(c2 − k2)

18d
. (5.27)

Note that when c = k, it reproduces the energy for the Schwarzschild-AdS black hole. When

d = 0, it is necessary that c → k with Ξ = (c2 − k2)/(3d) held fixed. In this limit, the

quantity m vanishes, and hence we see that the thermalized vacuum indeed has zero energy.

It turns out that with this definition of energy for the general AdS black holes in con-

formal gravity we have

F = E − TS . (5.28)

We find that, as mentioned earlier, the standard first law dE = TdS is not satisfied for

the general AdS black holes, since the solutions are characterised by two independent pa-

rameters. If we first consider the situation where the quantity Ξ = (c2 − k2)/(3d) is held

17



fixed, then the first law dE = TdS does hold. This corresponds to allowing only variations

that keep the thermalized vacuum fixed. If instead we allow general variations of the two

parameters in the solution, by allowing Ξ to vary also, then we find that we should add

another term in the first law, which now becomes

dE = TdS +ΨdΞ , Ψ =
αω2(c− k)

24π
. (5.29)

The quantity Ψ here is a new thermodynamic variable conjugate to Ξ, which is determined

from the requirement of integrability of the generalized first law.

5.1.2 The Noether charge of the k = 0 solution

As discussed in section 4.2, for k = 0, the system has an additional conserved Noether

charge. For conformal gravity, the Noether charge for the ansatz (4.1) is given by

λ =
α

12ra2
√
af(ra′ − 2a)

(4a2f − 10rafa′ + 7r2fa′2 + 6ra2f ′ − 3r2aa′f ′ − 6r2afa′′)

×(4a2f − 2afra′ − fr2a′2 − 2a2rf ′ + ar2a′f ′ + 2afr2a′′) . (5.30)

Thus for the black hole (5.2) with k = 0, we have

λ =
4α(27d2 − c3)

9d
. (5.31)

For the Schwarzschild-AdS black hole (5.3), we have

λ = 8ΛαM . (5.32)

Note that in both cases we have λω2 = −32πTS. In other words, the second equality of (4.9)

always holds. Indeed, these two Noether charges for the general and the Schwarzschild-AdS

solutions can map to each other by the conformal transformation discussed in the previous

subsection. Let us define Ẽ as

Ẽ = −λω2

48π
. (5.33)

For the Schwarzschild-AdS black brane, Ẽ is precisely the mass of the solution. It follows

from the argument presented in the previous subsection that Ẽ cannot be the energy of the

more general solution that has an additional parameter c. Thus now we have two conserved

quantities; one is the true energy E given in (5.26) and the other is Ẽ. The difference is

E − Ẽ =
c3

216πd
=

m

12π
, (5.34)

where m is given in (5.27).
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5.1.3 Conformal boundary term

It is possible to write a conformally-invariant boundary term in four dimensions. Thus for

completeness, this boundary term should be included in conformal gravity. The conformal

boundary term is given by

Ic = ηα

∫
d3x
√

−g̃Cµνρσnµnρ∇νnσ , (5.35)

where nµ is the unit outward normal to the boundary, and η is an arbitrary pure numerical

constant. This boundary term does not contribute to the equations of motion, and so it has

no effect on the local solutions, but it can contribute to the thermodynamics. For example,

it yields a non-trivial contribution to the Euclidean action, implying that the free energy is

now modified, and is given by

F = −αω2[(c− k)2 − 3(c− k)d̃+ 3d̃2]

24πr+
− ηαω2m

16π
, (5.36)

where m is given by (5.27). It is of interest to note that the contribution of the conformal

boundary term to the free energy is of the same form as the m term appearing in the

expression (5.26) for the energy in conformal gravity without the boundary term.

5.1.4 Extremal limit

Since the general AdS black hole (5.2) has the parameter c − k in addition to the usual d

parameter of the Schwarzschild-AdS black hole, it is possible to find an extremal limit for

which the temperature vanishes and the near-horizon geometry has an AdS2 factor. For

both k = ±1, the extremal solution takes the same form, given by

f =
(r − r+)

2(rr+ − r2+ + 1)

rr+
. (5.37)

For k = 1, the near horizon geometry is AdS2×S2, with vanishing temperature and entropy.

The energy, free energy and Ψ are given by

E = F = −α(r
2
+ − 1)2ω2

8πr+
, Ψ =

αω2(r
2
+ − 1)

8π
, (5.38)

which all vanish for r+ = 1. Thus the r+ = 1 solution may also be stable vacuum of the

theory. For k = 0, it turns out that there is no extremal limit, since f(r) has either a single

root or a triple root.
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5.1.5 Thermodynamics with varying Λ

Finally we consider the thermodynamics of the general AdS black holes in conformal grav-

ity when Λ, the cosmological constant of the asymptotically AdS region, is treated as a

thermodynamic variable also. This is natural in conformal gravity since the cosmological

constant arises as a parameter of the solution rather than as a fixed parameter of the theory.

The solution is given by

f = −1
3Λr

2 + Ξ r + c+
d

r
, with 3Ξ d = c2 − k2 . (5.39)

Letting r+ be the radius of the outer horizon, and defining d = −r+d̃, we have

T =
(3d̃− c)2 − k2

12πr+d̃
, S = 1

6αω2(k + 3d̃− c) ,

Ψ =
αω2(c− k)

24π
, Θ =

αω2d

24π
,

F = −
αω2

(
(c− k)2 − 3(c− k)d̃+ 3d̃2

)

24πr+
, E = 2ΘΛ +ΨΞ . (5.40)

These thermodynamic quantities satisfy the relations

dE = TdS +Θ dΛ +Ψ dΞ , F = E − T S . (5.41)

Note that the last equation in (5.40) is the Smarr formula for the general black holes in

conformal gravity. Its rather unusual form can be understood by considering the following

scaling argument. Since the parameter α has dimensions of length-squared, L2, and it is

treated as a fixed parameter of the theory (which may be set, without loss of generality, to

α = 1), it follows that the effective scaling dimensions for the thermodynamic quantities

are given by

[E] =
1

L
, [T ] =

1

L
, [S] = 1 , [Θ] = L , [Λ] =

1

L2
, [Ψ] = 1 , [Ξ] =

1

L
. (5.42)

Thus if E is viewed as a function of S, Λ and Ξ, namely E = h(S,Λ,Ξ), then under scaling

we shall have E = µh(S, µ−2Λ, µ−1Ξ). Differentiating with respect to µ, setting µ = 1,

and using the first law in (5.41) then gives the Smarr relation E = 2ΘΛ+ΨΞ we found in

(5.40).4

4A Smarr formula with more conventional coefficients would arise if we were to view the coupling constant

α as another thermodynamic variable, so that the thermodynamic quantities would all have their standard

“engineering” scaling dimensions. We would then have a generalised first law dE = TdS+ΘdΛ+ΨdΞ+σdα,

where σ is a new thermodynamic variable conjugate to α. The Smarr formula would then be E = 2TS −
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The entropy of the general black hole can be decomposed as

S = 1
2αw2 k +

1
6α (−Λ)A+ 8πΨ+ 1

2αω2Ξr+ , (5.43)

where A = r2+ω2 is the area of the horizon, and the first pure numerical term is the contri-

bution from the Gauss-Bonnet term in the action (2.1) with β = −1
3α and γ = 1

2α.

We see from the constraint (5.39) on the parameters that in the limit c → k, we can

either set d = 0 with Ξ fixed, or set Ξ = 0 with d fixed. The former leads to the thermalized

vacuum (5.21) and the latter leads to the Schwarzschild-AdS black hole.

5.2 z = 4 Lifshitz black holes

We find that conformal gravity admits static asymptotically-Lifshitz black hole solutions

also, both for z = 4 and z = 0. We shall first discuss the case with z = 4. The solution is

given by

ds2 = −r8fdt2 + 4dr2

r2f
+ r2dΩ2

2,k , f = 1 +
c

r2
+
c2 − k2

3r4
+
d

r6
. (5.44)

This solution for Lifshitz black holes is locally equivalent to the AdS black hole solution (5.2)

up to an overall conformal factor. Specifically, it can be seen that the metric dŝ2 = Ω2ds2

with

Ω =
q

r(c+ 3r2 − k)
, (5.45)

becomes, after transforming to the new radial coordinate ρ = rΩ,

dŝ2 = −1
9q

2 f̂dt2 + f̂−1 dρ2 + ρ2 dΩ2
2,k , (5.46)

where

f̂ = k +
q

3ρ
− 1

3Λ ρ
2 , Λ =

(c3 − 27d− 3ck2 + 2k3)

q2
. (5.47)

The conformal factor (5.45) is non-singular on the horizon r = r+ of the Lifshitz black hole

(except, as we shall see below, in the case of the k = 1 extremal limit), and the horizon

is mapped to that of the conformally-related (A)dS black hole (5.46). However, since the

conformal factor becomes singular at r = ∞, the asymptotic regions, and hence the global

structure, are very different for the two metrics.

2ΘΛ−ΨΞ+2σ α. However, since α is an overall parameter in conformal gravity, including it as an additional

variable represents an over-parameterisation of the system. This is reflected in the fact that there is then a

1-parameter family of possible Smarr relations, with E = λTS + 2(1 − λ)ΘΛ + (1 − λ)ΨΞ + λσα, where λ

is an arbitrary constant.
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The equation f(r) = 0 determines the locations of the horizons. This yields a cubic

equation for r2, which will have either three real roots or one real root, according to whether

the discriminant

∆ = − 1

27
(c3 − 27d− 3ck2 − 2k3)(c3 − 27d− 3ck2 + 2k3) , (5.48)

is positive or negative. In particular, in the case that ∆ > 0, the cosmological constant

of the conformally-related metric (5.46) will be positive, and it describes a de Sitter black

hole.

Using r+ as usual to denote the radius of the outer horizon of the Lifshitz black hole,

we have

d = −1
3r

2
+(c

2 − k2 + 3cr2+ + 3r4+) . (5.49)

We find that the temperature and the entropy are given by

T =
(c+ 3r2+ − k)(c + 3r2+ + k)

12π
, S = −1

6αω2(c+ 3r2+ − k) . (5.50)

The above expressions suggest that the constant c might be spurious, since it always arises

in the combination c+3r2+. Indeed we can, locally, remove it by first making the coordinate

transformation r2 = r̃2 − c/3, and then scaling the metric by the factor r̃2/r2. However, if

c is negative, this transformation can be singular, if c+ 3r2+ < 0, and so we cannot simply

use the above transformation to set c = 0. Indeed, one can see from (5.50) that if c = 0

then T and S cannot both be positive (if α > 0). On the other hand, if c is sufficiently

negative then we can arrange the parameters so that T and S are both positive.

There is no obvious way to calculate the energy of an asymptotically-Lifshitz black hole

directly (for example, the conserved charge given by (D.8) diverges). We can, however,

integrate the first law, dE = TdS, to obtain a thermodynamic definition of the energy, up

to an undetermined additive constant. From (5.50) we find

E = −αω2(c+ 3r2+ − k)2(c+ 3r2+ + 2k)

216π
, (5.51)

where we have made a choice for the additive constant that is convenient for the cases k = 1

or k = 0. The energy definition for k = −1 will be given presently. The Euclidean action

for the z = 4 Lifshitz black hole diverges for large r. We can instead define the free energy

from the thermodynamic relation F = E − TS, yielding

F =
αω2(c+ 3r2+ − k)2(2c+ 6r2+ + k)

216π
. (5.52)
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We now examine the three cases k = 0, 1 or −1 in more detail. For k = 0, there exists

the Noether charge (5.30), giving

λ = 4
9α(c

3 − 27d) . (5.53)

Therefore, we see that (4.9) holds for this solution. In particular, we have

E = 1
3TS . (5.54)

The k = 0 solution has no extremal limit, since then if the function f has a double real

root then it necessarily has a triple real root. For c + 3r2+ > 0 we can set c = 0 without

loss of generality, since the conformal factor r̃2/r2 is non-singular, as discussed earlier. In

this case, the positivity of both the entropy and energy would require that α < 0. On the

other hand, when we have c + 3r2+ < 0, the constant c cannot be set to zero, since now

the conformal factor r̃2/r2 runs from a negative value to 1 when r goes from the horizon

to infinity. The positivity of both the entropy and energy now requires that α > 0. When

c + 3r2+ = 0, which would be the extremal limit for the k = 0 black holes, the solution

instead has a naked singularity at r = r+. Thus for a given α, only one of the two branches

(c + 3r2+ > 0 or c+ 3r2+ < 0) is well defined, since the entropy of one branch is positive at

the price that in the other branch it is negative.

For k = 1, then again if c + 3r2+ > 0 we can set the parameter c = 0 without loss of

generality. In this case, the solution has an extremal limit with r2+ = 1/3, for which both the

entropy and energy vanish. For this branch of solutions, r2+ ≥ 1/3 and the non-negativeness

of the entropy and the energy defined by (5.51) is guaranteed as long as α is negative. If

c+3r2+ < 0, then the parameter c becomes non-trivial. The range where −2 < c+3r2+ < 0

in fact cannot arise, since then the function f actually has a third positive root that is larger

than the putative largest root r+, and so r = r+ is not the outer horizon. If c+ 3r2+ < −2,

the entropy and energy are non-negative provided that α > 0. There is an extremal limit

at c+ 3r2+ = 1, but, since c+ 3r2+ > 0 we can reduce this to the c = 0, r2+ = 1/3 extremal

case discussed previously. Although the function f also has a double root, at r = r0 if

c + 3r20 = −1, there is a larger positive root at r =
√
r20 + 1, so this does not describe an

extremal black hole. Note that for a given sign of α, only one of the above two branches of

solutions is well defined, and only the branch with c+ 3r2+ > 0 has an extremal limit. The

near-horizon geometry of the extremal limit is AdS2 × S2.

The behavior of the metric functions is the same for the k = −1 solution as for the

k = 1 solution. Thus for the c + 3r2+ ≥ 0 branch we can again set c = 0, and extremality
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occurs at r2+ = 1/3. The near horizon limit of the extremal black hole is AdS2 ×H2. For

solutions to have positive energy, we shift the previous energy (5.51) by a different additive

constant, and define

Ẽ = −αω2(c+ 3r2+ − 1)2(c+ 3r2+ + 2)

216π
= E − αω2

54π
. (5.55)

The solution has non-negative energy and entropy provided that α < 0. For the c+3r2+ < −2

branch, the energy and entropy are non-negative provided that α > 0. The solution is

extremal at c + 3r2+ = 1, but this reduces to the c = 0, r2+ = 1/3 extremal case discussed

above. For a given α, only one of the two branches of solutions can be well defined.

5.3 z = 0 Lifshitz black holes

We now turn our attention to the z = 0 Lifshitz black hole, for which the solution is given

by

ds2 = −fdt2 + 4dr2

r2f
+ r2dΩ2

2,k , f = 1 +
c

r2
+
c2 − k2

3r4
. (5.56)

The solution has a power-law curvature singularity at r = 0. For k = 0, the singularity is

naked. The Noether charge is given by λ = −4αc/3. Since the k = 0 solution is not a black

hole, we cannot use this example to test the validity of (4.9).

For k = ±1, there is an horizon at the largest root of f , given by

r2+ = 1
6(
√

3(4 − c2)− 3c) . (5.57)

The requirement that r2+ > 0 implies that −2 ≤ c < 1. It follows that the temperature and

entropy are given by

T =
1

π(2− 2
√
3 c√

4−c2
)
, S = 1

12αω2(c+ 2k +
√

3(4− c2)) . (5.58)

As in the case of the z = 4 Lifshitz black hole, here too we can define the energy, up to an

undetermined additive constant, by integrating the first law dE = TdS. Here, we find

E =
1

24π
αω2 (c+ 2) , (5.59)

where we have chosen the (parameter-independent) additive constant so that the energy is

positive for c > −2. Note that when c = −2, the solution becomes extremal, with f given

by

f =
(r2 − 1)2

r4
, (5.60)

24



and the energy defined in (5.59) vanishes. The solution has a double root at r = 1, with

the near-horizon geometry being AdS2×S2 or AdS2×H2. For k = 1, the entropy vanishes

in the extremal limit.

The metric (5.56) is conformal to (A)dS. Defining dŝ2 = Ω2ds2 with

Ω =
qr

c+ k + r2
, (5.61)

we find after defining a new radial coordinate ρ = rΩ that

dŝ2 = − q2

(c+ k)2
f̂dt2 + f̂−1 dρ2 + ρ2 dΩ2

2,k , (5.62)

where

f̂ = k +
(c− k)q

3ρ
− 1

3Λρ
2 , Λ =

c+ 2k

q2
. (5.63)

Thus the conformally-related metric describes an AdS black hole if c + 2k < 0 and a dS

black hole if c + 2k > 0. The condition for having real roots for r2 in the z = 0 Lifshitz

black hole is that 4k2− c2 ≥ 0. In particular, if k = +1 then the conformally-related metric

will describe a de Sitter black hole.

As with the z = 4 Lifshitz black hole discussed previously, here too the conformal factor

is non-singular on the horizon (except in the extremal limit), and so the horizon of the non-

extremal z = 0 Lifshitz black hole maps to the horizon of the (A)dS black hole. Once again,

however, the conformal factor becomes singular at infinity, and the asymptotic regions of

the two conformally-related metrics are very different.

6 AdS and Lifshitz Black Holes in Einstein-Weyl Gravity

The existence of asymptotically AdS black holes in conformal gravity over and above the

standard Schwarzschild-AdS black holes suggests that analogous more general solutions

should exist also in Einstein-Weyl gravity, possibly including at the critical point. Further-

more, the existence of Lifshitz vacua in these theories and their generalisations to Lifshitz

black holes in conformal gravity suggests that such Lifshitz black holes may also exist in

Einstein-Weyl gravity. However, no exact solutions with either type of asymptotic be-

haviour have been found, beyond the usual Schwarzschild-AdS black hole5. In this section,

we establish their existence by using a numerical approach.

5There exists a degenerate case with α = 0 and 8βΛ + 1 = 0, in which the Lagrangian is simply
√

−g(R−R0)
2. This degenerate case allows any metric with constant scalar curvature R0 to be a solution,

including some Lifshitz black holes [75, 76]. Since the equations of motion in this case are reduced to a

scalar rather than a tensor equation, the system has no linear massive spin-2 excitations.
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For k = 0 AdS and Lifshitz black holes, by studying the horizon expansion, we find the

following general relation between the Noether charge and the temperature and entropy:

λω2 = −32πTS . (6.1)

By examining the asymptotic behaviour at infinity, we find examples for which the energy

is given by E = −λω2/(16π(z + 2)), and hence the relation (4.9) appears to hold in these

cases. However, as we have seen in conformal gravity discussed in the previous section, the

first equality of (4.9) obtained in [60] does not hold in general in higher-derivative gravity,

when massive spin-2 hair is involved.

6.1 Horizon expansion

The equations of motion for Einstein-Weyl gravity which follow from (2.8) or from (2.5)

with β = −α/3, appear not to be explicitly solvable for the most general static, spherically-

symmetric solutions. We shall again consider the ansatz (5.2), and so the equations of

motion for the metric functions a(r) and f(r) are again given by (4.2) and (4.3). As

remarked previously, the Schwarzschild-AdS metrics (2.9) are solutions of these equations,

but now we shall have to resort to numerical methods in order to investigate the most

general static, spherically-symmetric solutions.

In order to do this, we first construct Taylor expansions for the metric functions a(r)

and f(r) in the vicinity of a black hole horizon. These will then be used to set the initial

conditions for a, a′, f and f ′ just outside the horizon, so that the equations (4.2) and (4.3)

for a′′ and f ′′ can be numerically integrated out to large distances. It is instructive first to

look at the near-horizon expansions of a and f for the Schwarzschild-AdS black hole (2.9).

If we set Λ = −3 as usual, and define the horizon radius r0 by k− 2m/r0 + r20 = 0, then we

have

a = f = r2 + k − r0(k + r20)

r
, (6.2)

and so the expansions are of the form

a(r) = f(r) =
(
3r0 +

k

r0

)
(r − r0)−

k

r20
(r − r0)

2 +
( k
r30

+
1

r0

)
(r − r0)

3 + · · · . (6.3)

Since an overall constant factor in a(r) can be absorbed into a rescaling of the time

coordinate, for the general solutions we can consider a near-horizon expansion of the form

a(r) = (r − r0) + a2 (r − r0)
2 + a3 (r − r0)

3 + a4 (r − r0)
4 + · · · , (6.4)

f(r) = f1(r − r0) + f2 (r − r0)
2 + f3 (r − r0)

3 + f4 (r − r0)
4 + · · · . (6.5)
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(Note that these expansions are for non-extremal black holes. The discussion for extremal

black holes will be given presently.) Substituting these expansions into (4.2) and (4.3), we

may then solve order by order in powers of (r − r0), thus obtaining expressions for an and

fn with n ≥ 2 in terms of f1, r0, k and α. For example, we find

a2 =
3r30 + 5f1 r

2
0 − 2f21 r0 + k r0 + k f1

f21 r
2
0

− (3r20 − f1 r0 + k)

4α f21 r0
,

f2 =
(f1 − 3r0)(3r

2
0 − 2f1 r0 + k)

f1 r20
+

3(3r20 − f1 r0 + k)

4α f1 r0
. (6.6)

The expressions for the coefficients with higher n become rapidly quite complicated, and we

shall not present them here. They are easily found, up to any desired order, using algebraic

computing methods.

Since we have fixed the cosmological constant, by setting Λ = −3, we see that r0 and

f1 are non-trivial parameters characterising the solutions for each choice of k = 0, 1 or −1.

The case f1 = 3r0 + k/r0 corresponds to the Schwarzschild-AdS solution, for which the

series expansions can be found from (6.3).

The temperature and the entropy are given by

T =

√
a1f1
4π

, S = 1
4ω2r0

(
r0 + 2α(f1 − 2r0)

)
. (6.7)

The entropy is calculated with respect to the action of Einstein-Weyl gravity. When k = 0,

the Noether charge is given by

λ = −2
√
a1f1r0

(
r0 − 2α(2r0 − f0)

)
. (6.8)

It follows that the relation (6.1) indeed holds in general. In the above entropy calculation,

we used the action (2.1) with the Gauss-Bonnet term set to zero (γ = 0). The Gauss-

Bonnet term contributes SGB = γ k, which is a purely numerical constant, independent of

the metric modulus parameters.

In the above consideration, the functions a and f have the same single root r = r0,

giving rise to non-extremal black holes. In the extremal limit, these functions have a double

root, so that the near-horizon geometry has an AdS2 factor. The Taylor expansion is given

by

a(r) = (r − r0)
2 + a3 (r − r0)

3 + a4 (r − r0)
4 + · · · ,

f(r) = f2 (r − r0)
2 + f3 (r − r0)

3 + f4 (r − r0)
4 + · · · . (6.9)

We find that the leading-order expansion of the equations of motion when r → r0 implies

that

(4α− 1)(3r20 + k) = 0 . (6.10)
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Thus we see that for k = 0, 1, extremal black holes do not exist except for α = 1
4 , on which

we shall focus. Taking this α value, we find that

a3 = −2(4k + 15r20)

3r0(k + 6r20)
, a4 =

41k2 + 358kr20 + 759r40
9r20(k + 6r20)

2
,

f2 =
k + 6r20
r20

, f3 = −2(2k + 9r20)

3r30
, f4 =

15k2 + 148kr20 + 363r40
9r40(k + 6r20)

. (6.11)

As one would have expected, the Noether charge of the k = 0 solution vanishes in the

extremal limit. Note that in the extremal limit, there is only one non-trivial parameter

r0 > 0. As we shall discuss presently, these near-horizon geometries can extend smoothly

to the asymptotic AdS or Lifshitz infinities. When k = −1, the constraint (6.10) can

be solved with r20 = 1/3 for arbitrary α. However, the resulting solution is simply the

Schwarzschild-AdS solution whose f can have a double zero for k = −1.

6.2 Asymptotic expansion

6.2.1 Asymptotically AdS solutions

For asymptotically AdS solutions, the asymptotic regions behave roughly as follows:

a ∼ r2(1 + c0) + k − 2M

r
+ c1r

n+1 +
c2
rn
,

f ∼ r2(1 + c0) + k − 2M

r
− 1

3c1(n− 1)rn+1 +
c2(n+ 2)

3rn
, (6.12)

where we have parameterized α by

α = − 1

n(n+ 1)
=⇒ n = −1

2 ± 1
2

√
1− 4

α
. (6.13)

Note that there are a total of four parameters in (6.12), corresponding to four excitations.

The coefficients (c0,M) correspond to the massless spin-2 modes, whilst the (c1, c2) corre-

spond to the massive spin-2 modes. For 0 < α < 4, the constant n is complex, implying

that the excitation takes the form

√
r
(
c1 cos(12

√
4/α− 1 log r) + c2 sin(12

√
4/α− 1 log r)

)
. (6.14)

Let us present some explicit examples. The first is n = −1/2, corresponding to α = 4.

The functions a and f at asymptotic infinity are given by

a = r2 +m
√
r + k − 2M

r
+

5km

16r3/2
− m(m2 + 48M)

96r5/2
+ · · · ,

f = r2 + 1
2m

√
r + k − 32M + 7m2

r
− 15km

32r3/2
− 5m(16M +m2)

64r5/2
+ · · · . (6.15)
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When k = 0, we have the Noether charge λ = −27(8M +m2)/2. In this case, the usual

Deser-Tekin and AMD methods of energy calculation lead to divergent results, and hence

we do not have an independent method of calculating E to verify whether the first equality

of (4.9) holds.

The second example is n = 1/2, corresponding to α = −4/3. We have

a = r2 + k +
m

r
1

2

− 2M

r
+

11km

96r
5

2

+
m2

12r3
− Mm

6r
7

2

+ · · · ,

f = r2 + k +
5m

6r
1

2

− 2M

r
+

65km

192r
5

2

+
25m2

144r3
− Mm

4r
7

2

+ · · · . (6.16)

For k = 0, the Noether charge is λ = 20M , which is independent of m. In principle, the

asymptotic behavior could have the r3/2 series as well, but it does not appear to be the

case.

The third example is n = 2, corresponding to α = −1/6, for which we find

a = r2 + k − 2M

r
+
m

r2
− 5km

21r4
+
Mm

3r5
+ · · · ,

f = r2 + k − 2M

r
+

4m

3r2
− 10km

21r4
+

5Mm

9r5
+ · · · . (6.17)

For k = 0, the Noether charge is λ = −8M . The energy density can be calculated using the

Deser-Tekin or AMD methods, giving E = M/(6π). Thus for this case, the first equality

in (4.9) holds. However, the numerical results indicate that only the m = 0 case, i.e. the

Schwarzschild-AdS solution, describes a black hole with an horizon.

The final example is the critical point, namely α = −1/2, corresponding to n = 1. We

find that

a = r2 + k − 2M̃

r
− 7km

15r3
+

2mM̃

3r4
+ · · · ,

f = r2 + k − 2M̃ − 2m/3

r
− km

r3
+

9(18M̃ + 7m)

18r4
+ · · · , (6.18)

where

M̃ = m log r +M . (6.19)

For k = 0, the Noether charge is λ = −18m. In appendix C, we derive the mass formula

for this case, and we find the energy density is E = 3m/(8π). Thus, in this case, the first

equality of (4.9) holds.

6.2.2 Asymptotic Lifshitz behavior

In this case, we are primarily concerned with the k = 0 case. We find that the large r

expansion is given by

a ∼ r2z
(
1 +

(z2 + 2)m

z(z + 2)rz+2
+ c̃+r

−1− 1

2
z+ 1

2
∆ + c̃−r

−1− 1

2
z− 1

2
∆
)
,
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f ∼ σr2
(
1 +

m

rz+2
+ c+r

−1− 1

2
z+ 1

2
∆ + c−r

−1− 1

2
z− 1

2
∆
)
,

c̃+ =
4− 11z + z2 − 3z3 + (1− 3z − z2)∆

2(z − 1)2(3z − 1)
c+ , ∆ =

√
3(4 − 4z + 3z2) ,

c̃− =
4− 11z + z2 − 3z3 − (1− 3z − z2)∆

2(z − 1)2(3z − 1)
c− . (6.20)

The Noether charge is given by

λ = − 6
√
6(2− 3z + z3)m

z2(z − 4)
√
z2 + 2z + 3

. (6.21)

Our numerical results suggest that there are Lifshitz-like black holes with S2 and H2 topol-

ogy that have the same leading-order behavior as the above.

6.3 Numerical analysis

We have carried out a numerical analysis for a variety of choices for the coefficient α that

multiplies the Weyl-squared term in the action. The choice of the horizon radius r0 is a

non-trivial parameter, given that we have fixed the cosmological constant (Λ = −3). The

value of the expansion coefficient f1 is also a non-trivial parameter in the solutions. The

deviation of f1 from the value 3r0 + k/r0 determines the deviation of the black hole from

the usual Schwarzschild-AdS solution.

The Schwarzschild-AdS black hole can be thought of as a solution where only the mass-

less spin-2 modes are excited. Deviating from f1 = 3r0 + k/r0 corresponds to setting initial

conditions near the horizon that cause the massive spin-2 modes to be excited also. Our

numerical investigations suggest that solutions of this type exist, in the sense that the

numerical routines give a reasonably stable result with the metric functions showing no

sign of runaway behaviour, provided that the linearised spin-2 massive mode falls off less

rapidly than the spin-2 massless mode. This fall-off rate is governed by the mass m of the

linearised fluctuation, and in turn, this is related to the value of the parameter α in the

Lagrangian. Specifically, the condition of less rapid fall-off is achieved if the massive mode

has negative mass-squared. Solutions with stable behaviour appear to exist regardless of

whether the negative m2 lies in the non-tachyonic region −9
4 ≤ m2 < 0 or the tachyonic

region m2 < −9
4 . Of course in the latter case one would expect the solutions to exhibit

time-dependent runaway behaviour, but this will not show up with the static metric ansatz

that we are considering here.

In terms of the constant α that characterises the coefficient of Weyl-squared in the

action, the condition that the massive linearised mode have m2 < 0 corresponds to α < −1
2

or α > 0.
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We find that if α lies in the region −∞ < α < −1
2 , then defining

f1 = 3r0 + k/r0 + δ , (6.22)

there is a range for δ, with δ− < δ < δ+, for which the numerical solutions indicate the

occurrence of asymptotically AdS black holes. The lower limit δ− is negative, while the

upper limit δ+ is positive. If the value of δ is fine-tuned to be equal to δ− or δ+, then the

asymptotic behaviour of the black hole changes from AdS to Lifshitz. The value of z in

the asymptotically Lifshitz case is given by the larger root in (3.6). If the parameter δ is

chosen to lie outside the range δ− ≤ δ ≤ δ+, then the numerical analysis indicates that the

solution becomes singular.

As an example, let us consider α = −11
16 , which from (3.6) implies that there should

exist asymptotically Lifshitz solutions with z = 2. Taking k = 0 and choosing r0 = 10, we

find that the limiting values for δ in (6.22) are

δ− ≈ −11.596956988 , δ+ ≈ 62.826397763 . (6.23)

In our numerical routine, we set initial conditions just outside the horizon at r = r0+0.0001,

and run out to r = 100000. For the asymptotically Lifshitz black hole with δ = δ−, we

obtained plots of a(r), f(r), given in Figure 1, and a(r)/r4 and f(r)/r2, given in Figure

2. Note that although we integrated out to r = 100000, we only plot the functions out to

r = 100 in order to be able to generate more illustrative displays. The asymptotic value

of the ratio f(r)/r2 reaches about 0.545454545452 as r approaches 100000, which is indeed

close to the expected ratio 6/11 (see equation (3.4)).
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Figure 1: The metric functions a(r) and f(r) for the asymptotically Lifshitz black hole.

The solution with δ = δ+ exhibits very similar Lifshitz behaviour. If we choose a value

of δ that lies in between the two Lifshitz extremes, we obtain an asymptotically AdS black

hole. Figures 3 and 4 below illustrate this, again for α = −11
16 , k = 0 and r0 = 10, in the

case that δ = 20. Figure 3 shows the functions a and f , while Figure 4 shows the functions

a/r2 and f/r2.
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Figure 2: The asymptotic forms for a(r)/r4 and f(r)/r2, illustrating the z = 2 Lifshitz

behaviour.
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Figure 3: The metric functions a(r) and f(r) for the asymptotically AdS black hole.
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Figure 4: The asymptotic forms for a(r)/r2 and f(r)/r2, illustrating the AdS behaviour.
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The story is very similar for solutions with k = 1 or −1. For example, if we consider

k = 1 solutions, again with α = −11
16 and r0 = 10, we find that the upper and lower limits

on the range of δ in (6.22) is now

δ− ≈ −11.596956988 , δ+ ≈ 62.826397763 . (6.24)

We find solutions exhibiting asymptotically Lifshitz type of behaviour, again with z = 2, if

δ is taken to be either of the extreme values. If, on the other hand, δ lies in between the

limiting values δ− and δ+, then we find solutions with asymptotically AdS behaviour. The

forms of the metric functions a and f are qualitatively similar to those illustrated in the

k = 0 examples above.

When α = −1
2 , corresponding to the case of critical gravity, numerical analysis indicates

that asymptotically AdS black hole solutions again exist, within some range of values for the

δ parameter in (6.22). However, α = −1
2 is on the borderline for stability of the solutions,

with −1
2 < α < 0 seemingly being unstable, and so it is not easy to extract meaningful

quantitative results in the critical case.

We also perform the numerical analysis for the extremal case with the parameter r0,

whose horizon behavior is given by (6.9). For S2 or T 2 topology, such a solution exists

only for α = 1/4. For k = 1, the numerical results indicate that the horizon can smoothly

extend to the asymptotic AdS4 infinity for all parameters r0 > 0.251976578. When r0 =

0.251976578, the asymptotic behavior becomes Lifshitz-like with exponent z = −1/2. For

r0 < 0.251976578, the solution becomes singular. For k = 0, the horizon can extend

smoothly to AdS in the asymptotic region for any r0 > 0. For k = −1, we must have

r0 > 1/
√
6. When r0 = 1/

√
3, the usual Schwarzschild-AdS solution emerges. There is no

indication of Lifshitz behavior for k = −1.

7 Conclusions

In this paper, we have considered four-dimensional Einstein gravity extended by the addition

of general quadratic-curvature terms. In addition to the usual AdS vacuum, the theory

contains Lifshitz and Schrödinger vacuum solutions. Our primary purpose was to construct

black holes obeying asymptotically AdS or Lifshitz boundary conditions, with spherical,

2-torus or hyperbolic H2 spatial symmetry. We focused on conformal gravity, with a purely

Weyl-squared action, as well as Einstein-Weyl gravity, for which the standard Einstein

action with cosmological constant is augmented with a Weyl-squared term. The general

spherically-symmetric local solution in conformal gravity was known previously. It involves

33



two nontrivial parameters, one of which is associated with the mass of the black hole while

the other, which we call Ξ, may be thought of as characterising massive spin-2 hair.

Owing to the presence of the second non-trivial parameter in the general AdS black

hole solutions, one can expect that the usual first law of thermodynamics, dE = TdS,

will need to be augmented by an additional term involving a new pair of intensive and

extensive thermodynamic variables. We studied this in detail in the case of AdS black

holes in conformal gravity, showing how the first law becomes dE = TdS + ΨdΞ, where

the variable Ψ, conjugate to Ξ, is determined by requiring the integrability of the equation.

We also needed to find a satisfactory definition of energy for the black holes in conformal

gravity. Its derivation, as a conserved charge evaluated at infinity, is described in appendix

D.

In conformal gravity, the cosmological constant Λ of the AdS black holes is a parameter

of the solution rather than a parameter in the action; it characterises the “AdS radius”

of the asymptotically AdS region. It is therefore natural to promote Λ to being another

thermodynamic quantity that can be varied in the first law. We showed that this indeed

gives a consistent extension of the thermodynamic phase space.

We then constructed Lifshitz black holes in conformal gravity, with a temporal/spatial

anisotropic scaling parameter z = 4. These solutions involve only a single non-trivial

parameter, and hence the thermodynamic quantities can be easily evaluated. We showed

that, since the Lifshitz black hole has T 2 spatial sections, there exists a conserved Noether

charge λ. Moreover, λ is related to the energy of the black hole, and to the product of

temperature and entropy (4.9), in the same way as has previously been observed in [60] for

certain two-derivative theories. However, for the more general AdS black holes (with T 2

spatial sections) involving massive spin-2 hair, characterised by Ξ, the Noether charge no

longer seems to provide a natural definition for the energy, although the second equality

of (4.9) always holds. By contrast, in the case of Schwarzschild-AdS black holes with T 2

spatial sections, the relation (4.9) always holds. We also obtained Lifshitz-like black holes

with S2 and H2 spatial sections, with Lifshitz exponent z = 4 and 0, and we found that

the thermodynamic relations are obeyed in these cases.

The existence of well-defined AdS and Lifshitz black holes in conformal gravity with

additional massive spin-2 hair prompted us to seek similar solutions in Einstein-Weyl grav-

ities. It does not appear to be possible to obtain closed-form expressions for such solutions,

and so we resorted to numerical integration of the equations of motion. The procedure is

to first obtain both the horizon and asymptotic expansions, and then use the horizon ex-
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pansion as the initial boundary conditions for numerical analysis and compare the resulting

solution for large radial values with the asymptotic expansions. We find that the horizon

geometry involves an extra parameter over and above that of the usual Schwarzschild-AdS

solution which is an Einstein metric. The numerical analysis suggests that asymptotically

AdS black holes exist within a continuous range of values for the additional parameter. At

the boundary of this parameter region, the asymptotic behavior changes to that of Lifshitz

solutions, giving rise to corresponding asymptotically Lifshitz black holes. Beyond these pa-

rameter boundaries, the solutions develop naked curvature singularities. For a black brane

with k = 0, for which there is an additional Noether charge, we find that the second equal-

ity in (4.9) always holds, whereas the first equality does not. These solutions provide an

interesting phase transition of the corresponding boundary field theory from a relativistic

Lorentzian system to a non-relativistic Lifshitz system. We further examine the existence

of extremal solutions whose near-horizon geometry has an AdS2 factor. It turns out that

non-trivial AdS extremal solutions arise only for α = 1
4 . In the case of k = 1, there exists

an extremal Lifshitz-like black hole with exponent z = −1
2 .

It would be interesting to explore the possibility of embedding extended gravity within

string theory, given that string theory contains higher derivative corrections due to stringy

or quantum effects. In fact, other than some special cases for which there is maximal su-

persymmetry, not much is known regarding the forms of these higher derivative corrections.

In light of the vast string landscape, one expects that there are generic corrections, which

include the higher-order curvature terms discussed in this paper. One might then invoke

holographic techniques, in which case the black hole solutions discussed in this paper could

be used to describe three-dimensional field theories or condensed matter systems. For the

AdS black holes, the extra parameter of the AdS black hole solution would be mapped to

a parameter in the dual field theory associated with finite coupling corrections. The addi-

tional global symmetry exhibited by the AdS black brane solutions would then be associated

with a particular scaling symmetry in which space and time are rescaled differently, which

is present at the conformal fixed point as well as away from it.
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A Further Solutions in Conformal Gravity

A.1 Asymptotically Schrödinger solutions

Here we construct solutions that are asymptotic to the Schrödinger solutions discussed in

[41]. We consider the metric ansatz

ds2 = −r2zfdt2 + dr2

r2f
+ r2(−2dtdx+ dy2) , (A.1)

for z = (1, 12 , 0,−1
2 ). We find that the equations are reduced to the fourth-order differential

equation

0 = f ′′′′ +
(6f + 18zf + 7rf ′)f ′′′

2rf
+

f ′′

2r2f2

(
4r2ff ′′ + 2r2f ′2 + (53z + 5)rff ′

+4(16z2 + 3z − 1)f2
)
+

f ′

2r3f2

(
2(3z − 1)r2f ′2 + (78z2 − 11z − 9)rff ′

+4(28z2 − 10z2 − 7z + 1)f2
)
+

4z(z − 1)(2z − 1)(2z + 1)f

r4
. (A.2)

For z = 1, we find a solution f = 1−M/r, giving

ds2 = −r2fdt2 + dr2

r2f
+ r2(−2dtdx+ dy2) , f = 1− M

r
. (A.3)

A.2 Generalized Plebanski metric

Using the Plebanski metric ansatz [77], we find solutions in conformal gravity given by

ds2 = − ∆x

x2 + y2
(dt+ y2dψ)2 +

∆y

x2 + y2
(dt− x2dψ)2 +

x2 + y2

∆x
dx2 +

x2 + y2

∆y
dy2 , (A.4)

where

∆x = c0 + c1x+ c2x
2 + c3x

3 + c4x
4 ,

∆y = c0 + d1y − c2y
2 +

c1c3
d1

y3 + c4y
4 . (A.5)

This metric is conformal to the Plebanski-Demianski [78] metric. Namely, the metric dŝ2 =

Ω2ds2 with Ω = (1 + c3x y/d1)
−1 is Einstein and satisfies R̂µν = Λĝµν with

Λ = −3(c0c
2
3 + c4d

2
1)

d21
. (A.6)
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B Further Solutions in Extended Gravity

B.1 Time-dependent metrics

For the general quadratic action (2.1) with arbitrary α and β, we will consider time-

dependent and spatially flat isotropic solutions described by the metric

ds2 = −dt2 + f(t)2
3∑

i=1

dx2i . (B.1)

Applying the trace condition reduces the equations to the single third-order equation

3f2f ′2 − Λf4 − 6(α+ 3β)
(
3f ′4 − 2ff ′2f ′′ + f2f ′′2 − 2f2f ′f ′′′

)
= 0 . (B.2)

For Einstein-Weyl gravity, α + 3β = 0 and, for a positive cosmological constant, the only

solution is de Sitter spacetime.

We will now consider non-isotropic time-dependent solutions for extended gravity with

zero cosmological constant, described by the Kasner metric

ds2 = −dt2 +
3∑

i=1

t2pidx2i . (B.3)

It can be shown that a metric of this form must satisfy the conditions

3∑

i=1

pi =

3∑

i=1

p2i = 1 . (B.4)

In other words, the quadratic terms in the action (2.1) do not modify the Kasner conditions

that arise in Einstein gravity. This disallows isotropic expansion and, in particular, one

exponent must be negative. However, in conformal gravity the exponents need only satisfy

the condition

2
3∑

i=1

pi + 2
3∑

i=1

p2i −
(

3∑

i=1

pi

)2

= 3 . (B.5)

This solution includes the Kasner metric for which both conditions in (B.4) are obeyed.

B.2 pp-wave metrics

A general class of pp-wave solutions for the general quadratic action (2.1) with arbitrary α

and β has the metric

ds2 = Hdx2 +
dr2

r2
+ r2(−2dtdx+ dy2) , (B.6)
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where

H = f1r
2 +

f2
r

+ f3r
2z+ + f4r

2z− + g1(1 + y2r2) , (B.7)

the fi and gi are functions of x only and z = z± satisfy the equation

1− 24β + α(4z2± − 2z± − 8) = 0 . (B.8)

For conformal gravity and critical gravity, the H function can have additional terms.

Namely, for conformal gravity H has the form

H = f1r
2 +

f2
r

+ f3r + f4 + g1y
2r2 + g2y

3r2 , (B.9)

while for critical gravity it is given by

H = f1r
2 +

f2
r

+ f3r
2 log r + f4

log r

r
+ g1(1 + y2r2) . (B.10)

For gi = 0 these metrics all reduce to ones presented in [12, 13], for which H is a function

only of x and r. Metrics for which the H function involves sinusoidal dependence on the y

coordinate are also discussed in [13]. For f1 = f3 = f4 = gi = 0 all of these metrics reduce

to the Kaigorodov [58] metric.

C Energy of Logarithmic Black Hole in Critical Gravity

In this appendix, we derive the mass of the logarithmic black hole using the Abbott-Deser-

Tekin (ADT) and the Ashtekar-Magnon-Das (AMD) procedures.

The main idea of the ADT method is to write the asymptotic AdS black hole metric in

the form gµν = ḡµν +hµν , where ḡµν is the metric on AdS, and then interpret the linearised

variation of the field equation, given in our case by (2.3), as an effective gravitational

energy-momentum tensor Tµν for the black hole field. One then writes the conserved current

Jµ = T µν ξµ, where ξ
µ is a Killing vector that is timelike at infinity, as the divergence of a

2-form Fµν ; i.e. J
µ = ∇νFµν . From this, one obtains the ADT mass for the Lagrangian

corresponding to (2.1):

8πGE = (1 + 8Λβ + 2Λα)

∫

S∞

dSiF0i
(0) + (2β + α)

∫

S∞

dSiF0i
(1) + α

∫

S∞

dSµν F0i
(2) , (C.1)

where dSi is the area of the sphere at infinity. The definition of Fµν associated with the

various terms in the equations of motion have been calculated in [67]. One may verify that
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upon defining

Fµν
(0) = ξα∇[µhν]α + ξ[µ∇ν] h+ hα[µ∇ν]ξα − ξ[µ∇αh

ν]α + 1
2h∇

µξν ,

Fµν
(1) = 2ξ[µ∇ν]RL +RL∇µξν ,

Fµν
(2) = −2ξα ∇[µ Gν]α

L − 2Gα[µ
L ∇ν] ξα , (C.2)

it follows that

∇ν Fµν
(0) = Gµν

L ξν ,

∇ν Fµν
(1) =

[
(−∇µ∇ν + gµν�+ Λ gµν)RL

]
ξν ,

∇ν Fµν
(2) =

[
(�− 2Λ

3
)Gµν

L − 2Λ

3
RL gµν

]
ξν . (C.3)

At the critical point Λα = −3Λβ = 3
2 , the first term in (C.1) vanishes, and the contributions

to the mass of the logarithmic black hole from the two remaining terms is

EADT
log =

3m

8πG
. (C.4)

Since the logarithmic black hole is asymptotically AdS, one can also try to apply the

AMD method to this case. The derivation of AMD conserved quantities relies on a detailed

analysis of the fall-off rate of the curvature near the boundary, which is weighted by a smooth

function Ω (the conformal boundary is defined at Ω = 0). For details on the requirement

for Ω, the reader is referred to [68, 69]. For n-dimensional asymptotic AdS spacetime, for

generic cases in which the leading fall off of the Weyl tensor goes as Ωn−5, the AMD formula

for conserved quantities in quadratic curvature theories were explored in [70, 71]. However,

in the case of AdS logarithmic black holes, the leading fall off of the Weyl tensor near the

boundary is modified to be

Cabcd → Ωn−5Kabcd +Ωn−5 log(Ω)Labcd . (C.5)

Here a and b are indices related to a new coordinate system which adopts Ω as the radial

coordinate. It is found that, at critical points where a logarithmic term can appear, the

fall-off behavior of the energy-momentum tensor is still at the order of Ωn−3. Thus, the

flux across the boundary is finite. This implies that the AMD conserved quantities for

the logarithmic black hole may be well defined. In [71], the AMD conserved quantities

corresponding to the logarithmic black hole are found to be given by

Qξ[C] =
αR0

8πG(n)n(n− 3)

∫

C
dxn−2

√
σ̂L̂abξ

aN̂ b , (C.6)
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with

R0 = −n(n− 1) , (C.7)

where the AdS radius has been set to 1 and L̂ab ≡ ℓ2Leafbn̂
en̂f . Specifically for the four-

dimensional AdS-logarithmic black hole solutions with the asymptotic expansion given by

(6.18), one finds that

EAMD
log =

3m

8πG
. (C.8)

D Energy of AdS Black Holes in Conformal Gravity

In this appendix, we present details of the proposal for calculating the mass of AdS black

holes in conformal gravity that we discussed in section 5.1. The Lagrangian for conformal

gravity is given by

e−1L =
α

2
CµνρλCµνρλ . (D.1)

The solutions of conformal gravity discussed in section 5 can be written as

ds2 = −fdt2 + dr2

f
+ r2dΩ2

2,k , f = r2 + br + c+
d

r
, 3bd− c2 + k2 = 0 , (D.2)

To apply the ADT method to this solution, a background subtraction is necessary. It

turns out that if we simply choose the static AdS metric as the background, the energy

calculated is divergent. On the other hand, the background-independent AMD method will

also give a infinite result since the leading fall-off of the Weyl tensor of the solution (D.2)

is slower than that of the usual AdS black hole.

Motivated by finding a proper definition of energy for black hole solutions (D.2) in

conformal gravity, we adapt the standard Noether method to the Lagrangian of conformal

gravity. In the following, we briefly review the Noether procedure for deriving a conserved

current associated with symmetry generated by the Killing vector ξ.

The first variation of the Lagrangian 4-form generated by the vector ξ can always be

expressed as

LξL = ELξφ+ dΘ(φ,Lξφ), (D.3)

where φ represents a collection of tensorial fields, E denotes their equations of motion, and

Lξ denotes the Lie derivative. Using the identity

Lξ = diξ + iξd, (D.4)

for the Lie derivative of a differential form, we find a conserved current defined by

J = Θ− iξL. (D.5)
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On shell, we have

dJ = 0 ⇒ J = dQ, (D.6)

where Q is the conserved charge density associated with the symmetry generated by ξ.

Applying this procedure to conformal gravity, we find that

Q =
1

4
ǫµνρσQ

ρσdxµ ∧ dxν , (D.7)

with

Qρσ = − α

8πG
(Cρσµν∇µξν − 2ξν∇µC

ρσµν). (D.8)

It is well known that the conserved charge Q derived from the Einstein-Hilbert action only

accounts for one half of the true ADM mass. (The other half can be understood as coming

from a total derivative term added to the Einstein-Hilbert action [79].) The validity of the

proposal to take (D.8) as the definition of energy for black holes in conformal gravity can be

tested by applying it to the known examples of the Schwarzschild-AdS and Kerr-AdS black

holes. We find that the results using (D.8) coincide with those obtained from the AMD

method and in particular, by setting α = 1
2 , we recover the result presented in [72] and [80],

thus confirming the tree level equivalence between Einstein gravity and Weyl gravity that

was proposed in [38].

Finally, we calculate the conserved charge for the metric (D.2) associated with the

timelike Killing vector ∂/∂t. It is given by

∫
Q = − αω2

16πG
[4d− 2

3b(c− k)] . (D.9)

As we discuss in section 5, we can use this conserved quantity to provide a definition of

energy, which turns out to be consistent with the first law of thermodynamics for the general

AdS black holes in conformal gravity.
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