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We analyze one-loop vacuum stability, perturbativity, and phenomenological constraints on a
complex singlet extension of the Standard Model (SM) scalar sector containing a scalar dark matter
candidate. We study vacuum stability considerations using a gauge-invariant approach and com-
pare with the conventional gauge-dependent procedure. We show that, if new physics exists at the
TeV scale, the vacuum stability analysis and experimental constraints from the dark matter sector,
electroweak precision data, and LEP allow both a Higgs-like scalar in the mass range allowed by the
latest results from CMS and ATLAS and a lighter singlet-like scalar with weak couplings to SM par-
ticles. If instead no new physics appears until higher energy scales, there may be significant tension
between the vacuum stability analysis and phenomenological constraints (in particular electroweak
precision data) to the extent that the complex singlet extension with light Higgs and singlet masses
would be ruled out. We comment on the possible implications of a scalar with ∼ 125 GeV mass and
future ATLAS invisible decay searches.

I. INTRODUCTION

The Standard Model (SM) of particle physics is
known to be an incomplete theory in part because of
its inability to explain phenomena such as dark matter
and the baryon asymmetry of the universe. Among the
many models vying to supplant the SM, scalar exten-
sions of the SM are among the simplest. A gauge sin-
glet real scalar extension has been studied as a potential
dark matter candidate (see [1–10]), for its impact on the
electroweak phase transition (EWPT) [11–13], and for
its role in Higgs collider phenomenology [14, 15]. The
collider phenomenology and dark matter prospects of a
complex scalar gauge singlet [16, 17] and a real scalar
SU(2)L triplet [18–21] have been studied as well. Exten-
sions involving four or more new degrees of freedom, such
as the 2 Higgs doublet model, have been widely analyzed
over the years. Indeed, such scalar extensions of the SM
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have resulted in a prolific field of study.

Important assessments of the theoretical self-
consistency of scalar extensions are the vacuum stabil-
ity of the renormalization group (RG) improved one-loop
effective potential and perturbativity of the scalar cou-
plings. Within the SM, vacuum stability and perturba-
tivity have resulted in theoretical bounds on the Higgs
mass (see [22] for a comprehensive review; also, see [23–
28]). In the real singlet extension of the SM, vacuum
stability and perturbativity again place bounds on the
Higgs mass but also constrain the singlet in dark matter
and inflation scenarios [29–31]. All of these results are
dependent upon the cutoff scale of the theory, Λ. This
is the scale of new physics, the scale above which new
massive degrees of freedom can no longer be integrated
out of the theory and become relevant for interactions
and the effective potential. It is widely anticipated that
new physics, in particular supersymmetry (SUSY), will
appear at the TeV scale. The requirement of vacuum
stability and perturbativity up to Λ = 1 TeV is thus a
minimal requirement of the scalar extensions of the SM
and result in the weakest theoretical constraints on the
models. However, given the lack of signatures of SUSY
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or other new physics in early LHC data (see for exam-
ple [32–35]), it is possible the scale at which new physics
and new massive degrees of freedom become relevant lies
beyond the TeV scale. As the cutoff scale increases, vac-
uum stability and perturbativity can impose increasingly
significant constraints on the scalar extensions.

In this work, we study this issue of vacuum stability
and perturbativity — particularly for higher cutoff scales
— for the complex scalar singlet extension of the SM, re-
ferred to as “the CxSM”. With an appropriate set of
symmetries, this model yields both a viable dark matter
candidate (A) as well as two real neutral scalars h′ and
S′ that are mixtures of the SM Higgs boson and the real
part of the complex singlet. We discuss in detail the re-
quirement of vacuum stability of the effective potential,
i.e., that the electroweak minimum of Veff be deeper than
any other minimum. Generally, however, there exists at
least one deeper minimum at large values of the scalar
field ϕ due to top quark loop contributions. The con-
ventional stability requirement, then, is to restrict the
effective theory to energy scales below the value of ϕ
for which Veff(ϕ) falls below the electroweak minimum1.
One then identifies the maximum stability scale Λ with
this maximum value of ϕ. This criterion, however, is
gauge-dependent since only the value of the potential at
its extrema is gauge-invariant[36], whereas the field itself
remains gauge-dependent. Consequently, identifying the
cutoff Λ with a value of ϕ is not physically meaningful.
As an alternative, we will use an analysis of the RG evo-
lution of the quartic couplings of the CxSM since the
effective potential is dominated by terms quartic in the
fields. By restricting the running of these parameters to
energy scales below an appropriately chosen value of Λ,
we guarantee in a gauge-invariant way that the effective
potential is bounded below and that the EW minimum
is stable.

In addition to stability and perturbativity considera-
tions, we will also apply various phenomenological con-
straints in our analysis of the CxSM: results for elec-
troweak precision observables (EWPO), dark matter relic
density and direct detection measurements, and limits
from LEP. We also study scenarios that may lead to a
strong, first order electroweak phase transition (EWPT)
as is needed for electroweak baryogenesis that may lead
to relic gravity waves. We find that, should new physics
exist at the TeV scale, the CxSM has regions of param-
eter space which satisfy all constraints and favor a rela-
tively light and weakly coupled singlet-like scalar in ad-
dition to a Higgs-like scalar in the current mass range
allowed by searches at ATLAS [37] and CMS [38]. Con-
versely, if new physics does not appear until higher en-
ergy scales well above a TeV, the vacuum stability con-

1 Alternately, if the electroweak minimum is metastable with a
lifetime longer than the age of the Universe, then the stability
radius in field space can be increased.

siderations are in significant tension with experimental
constraints, particularly EWPO data. Rather generally,
the CxSM can be ruled out should new physics fail to
appear just below the grand unification (GUT) scale,
MGUT ' 1016 GeV. These conclusions hold for both a
relatively light dark matter mass (as indicated by the Co-
GeNT [39–41], DAMA/LIBRA [42–44], and CRESST-II
[45] collaborations) and a heavier dark matter mass. Fur-
thermore, it is possible for the scalars h′ and S′ to decay
to dark matter; in fact, in scenarios where both the dark
matter and one of the scalar eigenstates are light and the
scale of new physics is roughly a TeV, the branching frac-
tion to dark matter is sufficiently large that the ATLAS
detector could be sensitive to these invisible decays.

Our discussion of these issues is organized as follows.
We begin with an introduction to the CxSM in section II.
In section III, we describe the requirements of vacuum
stability and perturbativity in detail, and discuss in de-
tail the impact of gauge dependence on the traditional
vacuum stability analysis. We then present our analysis
of the RG evolution as a gauge-independent substitute.
Section IV introduces phenomenological constraints on
the CxSM from the EWPT, EWPO, dark matter relic
density and direct detection measurements, and collider
physics at LEP and the LHC. We present our results in
section V. Section VI contains our conclusions.

II. COMPLEX SINGLET MODEL

II.1. Tree Level Potential

In the CxSM, the SM is supplemented by the addi-
tion of a single complex scalar degree of freedom that
transforms trivially under the SM gauge groups. Thus,
the only renormalizable tree-level interactions between
the complex singlet, S, and the SM occur in the scalar
potential of eqn. (1) — the singlet couples to the SM
fermions and gauge bosons only through the Higgs, H
(sometimes referred to as the “Higgs portal” [46]).

V (H,S) =
1

2
m2H†H +

λ

4

(
H†H

)2
+
δ2
2
H†H |S|2 +

b2
2
|S|2 +

d2

4
|S|4

+

(
1

4
|b1| eiφb1S2 + |a1| eiφa1S+ c.c.

)
(1)

In the absence of the b1 and a1 terms, V (H,S) obeys
a global U(1) symmetry: S → eiαS. By breaking this
symmetry both spontaneously and softly (through the
last two terms), we obtain a cold dark matter can-
didate. When the singlet gets a vacuum expectation
value (vev), 〈S〉 ≡ x/

√
2 (the Higgs has its usual vev,

〈H〉 =
(
0, v/
√

2
)T

where v ≡ 246 GeV), the global U(1)
symmetry is spontaneously broken, the real part of the
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singlet mixes with the SM Higgs, and the imaginary part
of the singlet becomes a massless Goldstone boson. To
give mass to the imaginary part of the singlet so that it
can potentially fill the role of a stable cold dark matter
candidate, we include the explicit U(1)-breaking terms
proportional to b1 and a1.

Note that for a1 = 0 the potential retains a Z2 sym-
metry associated with the components of S. Since spon-
taneously broken discrete symmetries create issues with
cosmological domain walls [47–49] we also introduce an
explicit Z2-breaking term proportional to a1. These ad-
ditional terms are chosen so that the potential retains
a Z2 symmetry for Im(S), thereby ensuring stability of
the dark matter particle. Moreover, these operators close
under renormalization. The phase φa1 can be absorbed
in a redefinition of S and φb1, and we choose φb1 = π
to avoid mixing between the real and complex compo-
nents of S [17]. Then, expanding S = (S + iA) /

√
2 and2

H = h/
√

2 gives the tree level potential

V0 (h, S,A) =
m2

4
h2 +

λ

16
h4 +

δ2
8
h2
(
S2 +A2

)
+

1

4
(b2 − b1)S2 +

1

4
(b2 + b1)A2 −

√
2a1S

+
d2

8
S2A2 +

d2

16

(
S4 +A4

)
. (2)

Requiring that the potential in eqn. (2) have a mini-

mum at 〈H〉 = h/
√

2 = v/
√

2 and 〈S〉 = S+ iA = x+ i ·0
gives the following set of minimization conditions:

∂V0

∂h
= 0,

∂V0

∂S
= 0,

∂V0

∂A
= 0 (3)

where all derivatives are evaluated at (h, S,A) = (v, x, 0).
(Note that other solutions to the minimization equations
may exist; however, our vacuum stability analysis de-
scribed in section III verifies none of these other critical
points is a global minimum given values for all of the
parameters.) These minimization conditions allow the
Higgs vev v and the singlet vev x to replace m2 and b2
as parameters in the CxSM according to eqn. (4).

m2 ≡ −1

2
λv2 − 1

2
δ2x

2

b2 ≡ b1 + 2
√

2
a1

x
− 1

2
d2x

2 − 1

2
δ2v

2
(4)

At the minimum, the mass (second derivative) matrix is

2 We always choose the minimum of the potential so that the neu-
tral real component of the Higgs doublet has a non-zero vev and
the other components, the would-be Goldstone bosons, have zero
vev.

then given by eqn. (5).


m2
h m2

hS m2
hA

m2
hS m2

S m2
SA

m2
hA m2

SA m2
A

 =


1
2λv

2 1
2δ2xv 0

1
2δ2xv

1
2d2x

2 +
√

2a1/x 0

0 0 b1 +
√

2a1/x

 (5)

We choose the U(1) and Z2 symmetry breaking parame-
ter a1 such that a1 � x — i.e., we take a1 = 10−3 GeV3

and x ≥ 10 GeV. This choice serves two purposes: first,
it simplifies the model by reducing by one the number
of unknown parameters that must be varied; second, it
ensures that the minimum at (h, S,A) = (v, x, 0) is the
global minimum of the potential, as we will discuss in sec-
tion III. With this choice for a1, the dark matter mass
is given by mA '

√
b1. Meanwhile, the non-zero entry

for m2
hS induces mixing between the SM Higgs and the

real component of the singlet. The resulting mass eigen-
states, which we denote h′ and S′, have masses given by
the eigenvalues of M, the 2 × 2 upper left quadrant of
eqn. (5). These eigenvalues are

m2
± =

1

2

[
Tr (M)±

√
(Tr (M))

2 − 4Det (M)

]
(6)

with m+ > m−. In order for these masses to be positive
real numbers, the condition Det (M) > 0 must hold. In
the limit of small a1, this condition simplifies to δ2

2 < λd2.
The eigenstates h′, S′ are written in terms of h and S
according to eqn. (7). h′

S′

 =

 cosφ sinφ

− sinφ cosφ

 h

S

 (7)

The eigenstates h′, S′ couple to the fermions and gauge
bosons via SM Higgs couplings reduced by a factor of
cosφ,− sinφ, respectively. The mixing angle φ is given
at tree level by

tan 2φ =
2m2

hS

m2
h −m2

S

. (8)

We take the mixing angle to be −π/4 ≤ φ ≤ π/4 so that
h′ is always the “Higgs-like” eigenstate and S′ is always
“singlet-like”3. Which eigenstate is heavier will depend
on our choice of parameters. When choosing δ2 < 0

3 In the literature, the mass eigenstates are often denoted as h1
and h2. We use a different notation to emphasize that one state
is always “Higgs-like” and the other is always “singlet-like”.
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(which allows for a strongly first order EWPT while be-
ing consistent with LEP bounds, as discussed later in sec-
tion IV.1), eqns. (5)-(8) imply that h′ will be the heavier
eigenstate with φ < 0 for relatively large λ and relatively
small d2, x whereas S′ will be the heavier eigenstate with
φ > 0 for relatively small λ and relatively large d2, x.

II.2. One-Loop Potential

For our vacuum stability analysis, we use the full
Coleman-Weinberg one-loop effective potential at zero
temperature with one-loop renormalization group (RG)
running parameters.

Veff (h, S,A) = V0 (h, S,A) + V1 (h, S,A) (9)

V0 (h, S,A) is given in eqn. (2), where all fields, couplings,
and masses are replaced by their RG running counter-
parts. The one-loop contribution, calculated in the Lan-
dau gauge and renormalized in the MS scheme, is given
by

V1 (h, S,A) =

1

64π2

∑
i

niTr

{
M4
i

(
log

M2
i

µ2
− ci

)}
. (10)

The sum i runs over scalars, fermions, and gauge bosons.
The field-dependent mass matrices M2

i , the number of
associated degrees of freedom ni, and the numerical con-
stants ci are given in appendix A. µ is the ’t Hooft renor-
malization scale. As discussed in the next paragraph,
the effective potential is renormalization scale indepen-
dent to one-loop order; any residual scale dependence
is higher order. To remove this residual scale depen-
dence, we would like to choose µ to minimize the logs in
eqn. (10). However, no single choice for µ will simultane-
ously minimize all of the logs, and so we make the simple
choice µ2 = h2 + S2 +A2.

The RG equations for the fields, couplings, and
masses are determined by requiring scale invariance of
the effective potential to one-loop order: the scale de-
pendence implicit in the parameters of V0 cancels the
explicit scale dependence in V1, i.e.,

µ
dVeff

dµ
= µ

dV0

dµ
+ µ

∂V1

∂µ
= 0 . (11)

Applying this condition to the CxSM effective potential
gives a series of equations to be solved for the β and
γ (anomalous dimension) functions that determine the
running of the fields, couplings, and masses. The β and
γ functions are given in appendix A. For convenience,
we take µ = MZ as the input scale for all our running
parameters.

In analogy with the tree level potential, we apply the
minimization conditions to the one-loop effective poten-

tial: requiring that the minimum of the effective po-
tential occur at (h, S,A) = (v, x, 0) fixes the bound-
ary conditions for the running mass parameters m2 (MZ)
and b2 (MZ). Furthermore, we obtain the masses of the
scalars by diagonalizing the matrix of second derivatives
of the effective potential evaluated at the minimum. The
dark matter A is protected by a Z2 symmetry so that it is
stable and does not mix with h and S at the minimum of
the potential even upon inclusion of the one-loop correc-
tions. (The necessity of the Z2 symmetry to ensure the
dark matter cannot decay is a generic feature of these
simple scalar extensions of the SM. The real scalar sin-
glet dark matter extension of the SM is referred to as
the Z2xSM for this reason.) The mass eigenstates h′, S′

are defined in terms of h and S as in eqn. (7) using the
one-loop value of the mixing angle φ.

III. VACUUM STABILITY ANALYSIS

III.1. The Vacuum Stability Analysis

The requirement of absolute vacuum stability is
equivalent to requiring that the electroweak (EW) zero-
temperature minimum of the effective potential be a
global minimum over the energy range for which the SM
is valid. The common practice for vacuum stability anal-
yses in the literature begins, as described above, with
the RG improved effective potential (generically Veff (ϕi))
and choice of the renormalization scale µ2 = ~ϕ2 ≡ ϕiϕi
to minimize logarithms in the one-loop potential. Then,
the maximum radius in field space, ϕmax, is found ac-
cording to the requirement of absolute vacuum stability:

Veff (ϕi) > Veff (~ϕEW ) ∀ ~ϕ2 < ϕ2
max (12)

where ~ϕEW gives the values of the fields at the elec-
troweak minimum — (h, S,A) = (v, x, 0) in the CxSM.
This maximum radius in field space is identified with the
cutoff scale of the effective theory, Λ. It’s presumed that
Λ = ϕmax is the scale at which new physics is required to
alter the shape of the potential so the electroweak mini-
mum remains a global minimum.

The requirement of absolute vacuum stability can be
relaxed to the case of metastability for which the EW
minimum may not be a global minimum, but the tunnel-
ing probability from the EW minimum to the true global
minimum is sufficiently small (the lifetime of the elec-
troweak vacuum is greater than the present age of the
universe). In the real scalar singlet extension of the SM,
the authors of [50] showed that the vacuum metastability
requirement is indeed less restrictive of the model param-
eter space than the absolute vacuum stability analysis in
[29]. To obtain more conservative bounds, and for sim-
plicity, we focus on the absolute stability scenario.



5

III.2. Vacuum Stability for Scalar Extensions of
the SM

There are two primary considerations for vacuum sta-
bility in the CxSM. The first is the possibility of a Z2

symmetry breaking minimum at tree level; the second is
the set of constraints on the quartic couplings and their
RG evolution.

III.2.1. Z2 Symmetry Breaking Minimum

In the Z2xSM, the singlet mass depends on its
quadratic mass parameter and its coupling to the Higgs.
In [29], it was shown that for dark matter masses in the
range 10-100 GeV there is a tension between having a suf-
ficiently large (positive) Higgs-singlet coupling to avoid
oversaturating the dark matter relic density and main-
taining a stable EW minimum of the potential. Obtain-
ing light scalar singlet dark matter that saturates the
relic density can require a negative mass-squared param-
eter in the potential, leading to a minimum along the sin-
glet axis of the potential for which 〈S〉 6= 0 and 〈H〉 = 0;
thus the Z2 symmetry is broken and the dark matter
is not a stable particle. In the present analysis of the
CxSM, the dark matter mass depends on the linear pa-
rameter a1 and the quadratic parameter b1 (plus small
loop corrections). We have chosen a1 to be small, and so
to obtain a positive dark matter mass we unambiguously
choose b1 to be positive. Thus there is no dangerous Z2

symmetry-breaking minimum along the Im [S]-axis and
we do not have a tension between the dark matter mass
and vacuum stability as in the real scalar singlet model.

III.2.2. Limits on the Quartic Couplings

In the CxSM, the stability of the tree level potential
minimum is guaranteed simply by requiring that4

δ2
2 < λd2 ,

λ > 0 ,

d2 > 0 .

(13)

The first condition is necessary for obtaining positive
mass-squared eigenvalues for the mixing between the
Higgs and real component of the singlet at the minimum
of the potential, (h, S,A) = (v, x, 0). This is of course
equivalent to the second derivative test to ensure that
the critical point (h, S,A) = (v, x, 0) is actually a min-
imum. The second two conditions are required for the
potential to be bounded below in all scenarios; the first

4 See [17] for further discussion.

condition is also required for the potential to be bounded
below when δ2 < 0.

Going beyond tree level with the one-loop potential
and the one-loop RGEs affects the stability of the poten-
tial in two ways.

1. As in the SM and Z2xSM, a global minimum for
h � v can arise due to the running of the Higgs
quartic coupling λ. The large top Yukawa coupling,
yt, causes λ to evolve to negative values for large µ
when λ (MZ) is sufficiently small, as seen from the
β-function in eqn. (14).

βλ = µ
dλ

dµ
=

1

16π2

(
6λ2 − 36y4

t + · · ·
)

(14)

Along the h-axis of the potential, the Higgs self-
coupling dominates, viz.:

V
(SM)
eff ∼ λh4 , h� v . (15)

Setting µ = h to minimize large logs in the effec-
tive potential thus combines these two effects: the
potential can develop a very deep global minimum
(h� v, S = 0, A = 0), high above the EW scale.5

In the Z2xSM, the Higgs-singlet coupling δ2 has a
positive contribution to the β-function of λ irre-
spective of the sign of δ2. As was shown in [29], the
contribution of δ2 to the running of λ decreases the
theoretical lower bounds on the Higgs mass from
vacuum stability. In the CxSM, the running of λ is
again tempered by the Higgs-singlet coupling δ2, so
a larger value of δ2 may push this deep minimum
above the cutoff scale Λ.

2. The second effect is one specific to the choice δ2 < 0
when one-loop corrections are included. At tree
level, the requirement δ2

2 < λd2 is sufficient to pre-
vent a runaway direction in the potential between
the h-, S-, and A-axes when δ2 < 0. However, as
the β-function for δ2 shows (eqn. (A16)), a negative
δ2 (MZ) will decrease as the scale µ increases. This
could in principle lead to a runaway direction in
the potential for some region of field space between
the axes.

III.3. Gauge Dependence

It has been pointed out that the SM one-loop effective
potential depends on the choice of gauge-fixing condition;
equivalently, in the Rξ gauges, the potential depends

5 This is a minimum and not simply an unbounded direction be-
cause λ does become positive again at higher scales.
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FIG. 1. A plot of δ22 (MZ) vs. λ (MZ) d2 (MZ). For all points,
MA = 10 GeV, x = 100 GeV, and d2 (MZ) = 0.2. The tree
level vacuum stability requirement, δ22 < λd2, is indicated
with the solid line. All points satisfy the effective potential
vacuum stability requirement of eqn. (12) with Λ = 1 TeV
for some choice of gauge parameter ξ. For gray points, ξ = 0
(Landau gauge); for blue points, ξ = 1, and for red points
ξ = 50. (In this and subsequent figures, the point (0,0) is
included for reference only.)

on the gauge parameter ξ (see [51, 52] and references
therein). Hence, the field expectation values at a mini-
mum, ~ϕmin, do not correspond to a physical observable.
It was shown in [51] that the value of the effective poten-
tial at its extrema can be calculated in a gauge-invariant
way through a consistent expansion in ~, provided that
the extrema have classical (tree level) analogs. The va-
lidity of this procedure is a consequence of the Nielsen
identity [36].

The gauge dependence of the effective potential
presents complications for the vacuum stability analysis
despite the existence of the Nielsen identity. As described
above, the vacuum stability analysis generally performed
in the literature is interested in a particular radius in
field space, ϕmax, obtained from eqn. (12). Because the
potential is gauge dependent, it is possible that for one
choice of gauge the potential may satisfy the stability re-
quirement below ϕmax, but for another choice of gauge
the potential may become unstable:

Veff (ϕi; ξ1) > Veff (~ϕEW ; ξ1) ∀ ~ϕ2 < ϕ2
max ,

Veff (ϕi; ξ2) ≯ Veff (~ϕEW ; ξ2) ∀ ~ϕ2 < ϕ2
max .

(16)

This ambiguity is dramatically demonstrated in fig. 1 for
one particular choice of the CxSM parameters. The plot-
ted points are those allowed by the vacuum stability re-
quirement of eqn. (12) (with a 1 TeV cutoff) for three
different gauge parameters: ξ = 0 (gray), ξ = 1 (blue),
and ξ = 50 (red). Thus, identifying the cutoff scale of the
effective theory — a physical, gauge-independent number

— with ϕmax is problematic.6

There exist in the literature two methods for perform-
ing a gauge-independent analysis of the vacuum stabil-
ity and corresponding Higgs mass bounds: the “physical
effective potential” in [53], and the Vilkovisky-DeWitt
formalism in [54]. These methods have been applied to
toy models and have derived gauge-independent results
that reproduce to within a few percent the results of a
traditional vacuum stability analysis done in the Landau
gauge [53, 55]. To our knowledge, however, no gauge-
independent method for analyzing the vacuum stability
of the effective potential in the full SM, much less the
CxSM, has been presented.

Rather than generalizing either of the above meth-
ods, in the current analysis we choose to make vacuum
stability arguments based on the running of the quartic
couplings that dominate the potential, i.e.,

Veff (h, S,A) ∼ λ (µ)h4

+ δ2 (µ)h2
(
S2 +A2

)
+ d2 (µ)

(
S4 +A4

)
(17)

for µ2 � v2.7 In the CxSM, vacuum stability requires
that the tree level couplings obey eqn. (13). We ex-
tend these requirements to the one-loop RG running cou-
plings, as in eqn. (18).

δ2
2 (µ) < λ (µ) d2 (µ)

λ (µ) > 0

d2 (µ) > 0

 ∀ µ < Λ (18)

After evolving all the parameters of the theory in the
effective potential up to the cutoff scale of the theory, if
any of these conditions is violated then the potential may
become unstable for larger scales8:

• If λ (µ) ≯ 0 there will be a deep second minimum
along the h-axis of the potential.

• If d2 (µ) ≯ 0 there will be a “runaway direction”
of the potential along the S- and A-axis, i.e., the
potential is unbounded from below.

6 Furthermore, in the SM and its extensions such as the CxSM,
the appearance of a global minimum for h � v occurs due to
the RG running of the Higgs self-coupling λ at one-loop. There
is no classical minimum corresponding to this new global mini-
mum appearing at one-loop, and so the perturbative ~ expansion
described in [51] yields trivial equations when evaluating the po-
tential at this minimum in a gauge-independent way.

7 A full gauge-invariant vacuum stability analysis of the effective
potential in the SM and its scalar extensions is relegated to future
work.

8 Minimizing logarithms in the one-loop potential requires the
choice µ2 = ~ϕ2

min when evaluating the potential in a gauge-
independent fashion at the minimum ~ϕmin, as discussed in
III.2.2.
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• If δ2
2 (µ) ≮ λ (µ) d2 (µ) and δ2 < 0 there will be

a runaway direction somewhere between the field
axes.

• If δ2 > 0, the requirement δ2
2 (µ) < λ (µ) d2 (µ) may

be overly restrictive. Though δ2
2 < λd2 is necessary

to ensure that (h, S,A) = (v, x, 0) is a minimum,
the running of δ2 at large scales will not affect the
shape of the potential at the electroweak minimum.
Thus the EW minimum will remain the global min-
imum and the potential will be bounded below for
large values of the field.

The values of the fields where these instabilities occur is
immaterial to our analysis; the mere fact that they occur
because the conditions of eqn. (18) are violated implies
that the vacuum stability requirement is not satisfied.
Since the RG evolution of all the mass and coupling pa-
rameters in the CxSM is gauge-independent, the scale at
which any one of the requirements of eqn. (18) is violated
— which we identify with the cutoff scale of the effective
theory, Λ — is also gauge-independent. We emphasize
that the constraints placed on the couplings (and hence
the masses of the scalar fields) from eqn. (18) are moti-
vated by the requirement of vacuum stability. Since we
have not calculated gauge-independent tunneling proba-
bilities for transitions to a non-EW global minimum of
the potential, our analysis may give more conservative
bounds than those determined by allowing the EW min-
imum to be metastable.

III.4. Perturbativity

We also require that the couplings in the scalar poten-
tial remain perturbative for all values of the scale µ. The
definition of “perturbative” is somewhat subjective. At
one-loop order in perturbation theory, the quartic scalar
couplings all have Landau poles as µ approaches ΛLP ;
minimally, the location of the Landau pole could be taken
as the cutoff scale of the theory, Λ = ΛLP . However, the
couplings reach unreasonably large values well before the
Landau pole. Two-loop analysis of the SM RGEs shows
that Higgs quartic self-coupling λ has a fixed point at
large scales where βλ → 0 and λ (µ) → λFP [56]. Fur-
thermore, it has been shown in [57] that the SM remains
perturbative for values of the Higgs quartic self-coupling
λ (Λ) in the range λFP /4 to λFP /2. A full two-loop anal-
ysis of the CxSM is beyond the scope of our current
work, so we impose the an approximate perturbativity
constraint on the couplings in eqn. (19).

δ2 (µ) . λFP /3

λ (µ) . λFP /3

d2 (µ) . λFP /3

 ∀ MZ ≤ µ ≤ Λ (19)

III.5. Analysis Procedure

In practice, we take as inputs the boundary condi-
tions for the running Lagrangian parameters (with the
boundary conditions for m2 and b2 fixed by the other in-
puts, the scalar vevs v = 246 GeV and x). We then solve
the RGEs up to the Planck scale (O

(
1019

)
GeV) and

determine the scalar masses and mixing angle by diag-
onalizing the matrix of second derivatives (all evaluated
at (h, S,A) = (v, x, 0)):


∂2
hVeff ∂h∂SVeff ∂h∂AVeff

∂h∂SVeff ∂2
SVeff ∂S∂AVeff

∂h∂AVeff ∂S∂AVeff ∂2
AVeff

 =

P ·Diag
(
M2
h′ ,M2

S′ ,M2
A

)
· P−1 (20)

where the matrix P is the orthogonal matrix containing
the mixing parameterized by the angle φ between the SM
Higgs and the real part of the singlet. We take the cutoff
scale Λ as an output, obtained by finding the minimum
value of µ for which either eqn. (18) is violated or one
or more of the couplings becomes non-perturbative ac-
cording to eqn. (19). We also scan over field space for
the minimum radius (if such a point exists) at which the
value of the potential is equal to its value at the elec-
troweak minimum — Veff (h, S,A) = Veff (v, x, 0) — to
compare the gauge-independent results from the running
couplings with the gauge-dependent results of the effec-
tive potential in the Landau gauge. The cutoff scale is
required to be at least one TeV.

IV. IMPLEMENTATION OF OTHER
CONSTRAINTS

IV.1. Electroweak Phase Transition

The electroweak phase transition in a real scalar sin-
glet extension of the SM has been studied extensively
[11–13]. If the potential possesses a Z2 symmetry, as
in the Z2xSM, which is spontaneously broken by a non-
zero singlet vev, the Higgs and singlet mix and the sin-
glet cannot act as a stable dark matter candidate. Under
these circumstances, a negative value of the Higgs-singlet
coupling parameter, δ2, is most suitable for obtaining a
strong first-order phase transition and satisfying the LEP
constraints on the Higgs mass and mixing angles. We
therefore consider δ2 < 0 for our analysis. As mentioned
in section III, this choice has the most interesting impli-
cations for vacuum stability of the full one-loop potential
with running parameters [58].
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IV.2. Electroweak Precision Observables

In the SM, measurements of electroweak precision ob-
servables (EWPO), such as Z0 pole measurements, pro-
vide sensitivity to the Higgs mass via loop-level effects.
In the CxSM, mixing between the SM Higgs and the real
component of the complex singlet alters these loop-level
effects. To determine which values of the CxSM param-
eters best match EWPO data, we follow the procedure
described in [12], which we summarize here.

The EWPO data are parameterized in terms of the
oblique parameters S, T , and U . Experimental values of
the oblique parameters are determined by performing a
best fit analysis using all electroweak precision data, as
in [12]. Alternatively, the oblique parameters can be cal-
culated analytically as they are defined in terms of the
self-energy corrections to the gauge boson propagators:
ΠZZ

(
p2
)
,ΠWW

(
p2
)
,Πγγ

(
p2
)
,ΠZγ

(
p2
)
. Given the di-

rect search limit from LEP on the Higgs mass, a SM ref-
erence value, O0 ≡ O

(
MSM
h = 114.4 GeV

)
, can be com-

puted for each of these oblique parameters (O = S, T, U).
The best-fit value determined from electroweak precision
data for the difference between O and the SM reference
value is defined as

∆O0 ≡ O −O0 . (21)

Since the real component of the scalar singlet S mixes
with the Higgs, the propagator corrections ΠWW and
ΠZZ in the CxSM, and hence the oblique parameters,
are different from the SM results (however, Πγγ and ΠZγ

are unchanged because the scalars are neutral). The dif-
ference can be written as

∆O ≡ cos2 φ ·O
(
MSM
h →Mh′

)
+ sin2 φ ·O

(
MSM
h →MS′

)
−O0 . (22)

Thus, given values for the masses of the scalar eigenstates
h′ and S′ and the mixing angle φ, all extracted from the
effective potential, the quantity ∆O can be computed.
The masses and mixing angle of the CxSM are consistent
with EWPO data if the oblique parameter differences ∆O
fall within the 95% C.L. region of the experimental values
∆O0. This is equivalent to ∆χ2 < 7.815, where ∆χ2 is
defined in eqn. (23) using the correlation matrix ρ and
errors σ from [12].

∆χ2 ≡
∑
i,j

(
∆Oi −∆O0

i

)
(σρσ)

−1
ij

(
∆Oj −∆O0

j

)
(23)

The analytic forms of the oblique parameters are given
in appendix B.

IV.3. Dark Matter Relic Density

As described in section II, we choose parameters for
the CxSM such that the imaginary component of the

FIG. 2. Feynman diagrams showing processes contributing to
the annihilation cross section of the dark matter particles, A.

complex singlet is a stable dark matter candidate. The
thermal relic density of the scalar A, ΩAh

2, is controlled
in part by the annihilation cross section of the dark
matter particles, σann (AA→ XX): roughly, ΩAh

2 ∼
1/〈σannvrel〉 where 〈σannvrel〉 is the thermal average of
the annihilation cross section times the relative velocity
of the dark matter particles in the center-of-mass frame.
Processes that contribute to σann are shown in fig. IV.3.
The kinematical/mass-dependent factors associated with
the cross sections for these diagrams can be of particu-
lar importance in determining the relic density. In the
limit of non-relativistic dark matter where

√
s ' 2mA

and vrel ' 2 |~pA| /mA,(
d

dΩ
σann (AA→ XX)

)
vrel ∝

1

M2
A

√
1−

(
MX

MA

)2 ∣∣M2
∣∣ . (24)

In the case of the four-point vertex in fig. IV.3, the am-
plitude |M|2 is independent of masses and momenta, so
the annihilation channels AA → h′h′ or AA → S′S′,
when kinematically allowed, are largest forMh′ orMS′ �
MA. For the s-channel resonances AA → h′ → XX

and AA → S′ → XX, |M|2 ∝
(
4M2

A −M2
h′

)−2
or(

4M2
A −M2

S′

)−2
; thus the annihilation cross section of

course becomes large for Mh′ or MS′ ' 2MA. When
the annihilation cross section becomes large, the complex
singlet undersaturates the total dark matter relic density,
ΩDMh

2, for which we use the WMAP 1σ measurement
ΩDMh

2 = 0.92 − 0.118 [59]. We use the computational
tool micrOMEGAs [60] to numerically calculate the relic
density. Though we allow the CxSM to undersaturate
the relic density, oversaturation is forbidden.

IV.4. Dark Matter Direct Detection

A number of experiments have performed searches for
dark matter scattering off atomic nuclei and have pub-
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lished limits on the spin-independent scattering cross sec-
tion as a function of the dark matter mass. The most
restrictive limits at present come from the XENON100
[61, 62] and CDMS [63, 64] experiments. In apparent
conflict with these limits are results from the CoGeNT
[39–41], DAMA/LIBRA [42–44], and CRESST-II [45] ex-
periments which have observed signal events correspond-
ing to dark matter particles with MA ∼ 10 GeV[65]. For
our analysis, we remain impartial in the debate over these
experimental results. In the CxSM, the scattering cross
section of the dark matter candidate with a proton is
calculated (see [16, 66]) according to eqn. (25).

σdd =
m4
p

2πv2 (mp +MA)
2

×
(
gAAh′ cosφ

M2
h′

− gAAS′ sinφ

M2
S′

)2

×
(
fpu + fpd + fps +

2

27
(3fG)

)2

(25)

where

gAAh′ = (δ2v cosφ+ d2x sinφ) /2 (26)

gAAS′ = (d2x cosφ− δ2v sinφ) /2 (27)

The proton matrix elements f ,

mpf
(p)
Tq ≡ 〈p |mq q̄q| p〉 , f

(p)
TG = 1−

∑
q=u,d,s

f
(p)
Tq , (28)

are calculated in [67]; we take the central values

f
(p)
Tu = 0.020 f

(p)
Td = 0.026 f

(p)
Ts = 0.118 (29)

We consider masses and cross sections that satisfy ex-
actly one of the direct detection experiments: either the
upper bound from XENON100 or the signal regions from
CoGeNT, or DAMA/LIBRA, or CRESST-II. We utilize
micrOMEGAs [68] for numerical calculation of the di-
rect detection cross section. In comparing this calcu-
lated scattering cross section to the limits from the cited
experiments, in eqn. (30) we scale the cross section by
the fraction of the total relic density constituted by the
CxSM dark matter candidate to account for the reduced
flux of dark matter particles in the detectors when the
relic density is undersaturated.

σscaled = σdd ·
ΩAh

2

ΩDMh2
(30)

IV.5. LEP Mixing Angle Constraints

Application of the LEP limits (this section) and the
ATLAS invisibly decaying Higgs search conditions (sec-

tion IV.6) requires calculation of the scalar mass eigen-
states’ widths. These are given by eqn. (31).

Γtot (h′) = cos2 φ · ΓSM (H∗) [+ Γ (h′ → AA)]

[+ Γ (h′ → S′S′)] [+ Γ (h′ → AAAA)]

Γtot (S′) = sin2 φ · ΓSM (H∗) [+ Γ (S′ → AA)]

[+ Γ (S′ → h′h′)] [+ Γ (S′ → AAAA)]

(31)

In eqn. (31), ΓSM (H∗) is the rate of decays of the SM
Higgs to SM final states where the Higgs is assumed to
have a mass equivalent to that of the h′ or S′ eigenstate
appropriately. We calculate the SM Higgs width as a
function of the Higgs mass using the program HDECAY
[69]. The decay rates in square brackets in eqn. (31) are
only included when the indicated decay is kinematically
allowed. The decay rate of the h′, S′ eigenstates to pairs
of dark matter particles is given in eqn. (32).

Γ (h′, S′ → AA) =
|gAAh′,AAS′ |2

32πmh′,S′

√
1− 4

m2
DM

m2
h′,S′

(32)

The parameters gAAh′ and gAAS′ are defined in sec-
tion IV.4. Decays to four dark matter particles have
intermediate states of two (possibly off-shell) scalars.

The LEP Working Group for Higgs Boson Searches
has made use of the combined data from the four LEP
experiments to constrain the mass and ZZH coupling of
BSM Higgs-like scalars [70]. An upper bound is set on
the quantity

ξ2 ≡
(
gBSM
ZZH

gSM
ZZH

)2

×Br (H → SM) (33)

as a function of the Higgs mass. If the scalar particle
H has only SM decays, then Br (H → SM) = 1 and the
limits are on the BSM-to-SM ratio of the Higgs-Z-Z cou-
pling. In the CxSM, the ratio of the couplings is cos2 φ
for h′ and sin2 φ for S′. If additional scalar decays are
kinematically allowed, then the widths in eqns. (31)-(32)
are used to calculate Br (H → SM). We apply the LEP
limits to both scalar mass eigenstates h′ and S′.

IV.6. ATLAS Sensitivity to an Invisibly Decaying
Higgs

The mixing between the SM Higgs and the real com-
ponent of the complex singlet, as well as the potential
for one or both eigenstates to decay to an even num-
ber of dark matter particles when kinematically allowed,
also has implications for Higgs searches at the LHC. The
study in [71] found that the ATLAS experiment at the
LHC would be sensitive, via the vector boson fusion chan-
nel, to a Higgs with a mass between 114-200 GeV and an
invisible decay mode so long as the condition

ξ2 ≡ Br (H → invis)× σBSM

σSM
& 60% (34)
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is satisfied (for masses greater than 200 GeV, the re-
quirement increases to ξ2 & 70%). In eqn. (34), σBSM

and σSM are the Beyond-the-Standard-Model and SM
production cross sections, respectively. In the CxSM,
σBSM ∝ σSM where the proportionality factor is either
cos2 φ for the “Higgs-like” eigenstate or sin2 φ for the
“singlet-like” eigenstate. The invisible decay branching
fraction, Br (H → invis), includes the kinematically al-
lowed decays of the h′ or S′ to two or four dark matter
particles:

Br (h′, S′ → invis) =

[Γ (h′, S′ → AA)] [+ Γ (h′, S′ → AAAA)]

Γtot (h′, S′)
(35)

We calculate ξ2 for each choice of the CxSM parameters
to determine if the ATLAS experiment is sensitive to
decays of the h′ or S′ eigenstates to dark matter.

V. RESULTS

In addition to fixing the Z2 breaking parameter a1 =
10−3, we also choose fixed representative values of some
of the CxSM parameters for simplicity. We make the
following choices for the parameters:

• the dark matter mass is 10 or 100 GeV;

• d2 (MZ) is fixed to 0.2, 0.5, or 0.9;

• the singlet vev, x = 10, 100, or 1000 GeV.

The values for the dark matter mass and the coupling
d2 were motivated by the study of the Z2xSM in [29]
which found a dark matter self-coupling of order 0.1-
1.0 to be most interesting for satisfying vacuum stability
while avoiding problems with non-perturbativity when
the dark matter mass is between 10 and 100 GeV. The
chosen order-of-magnitude values for the singlet vev re-
sult in masses for the S′ state which span a sufficiently
large range that allows us to draw conclusions about the
parameter space of the CxSM. We summarize in table V
the values of the CxSM parameters chosen for our analy-
sis. We will first present our results in detail for a single
choice of parameters, and then present our general results
for all those values in table V.

V.1. A Light Dark Matter Example

We will use as our example the parameter set MA =
10 GeV, x = 100 GeV, and d2 (MZ) = 0.2. The restric-
tions on the CxSM parameters from the vacuum stability
and RG analysis vary greatly with the choice of the cutoff
scale Λ (described in section III). This is demonstrated

MA = 10 GeV MA = 100 GeV

x = 10 GeV d2 = 0.2, 0.5, 0.9 d2 = 0.2, 0.5, 0.9

x = 100 GeV d2 = 0.2, 0.5, 0.9 d2 = 0.2, 0.5, 0.9

x = 1000 GeV d2 = 0.2, 0.5, 0.9

TABLE I. A list of parameter scans performed. a1 is chosen
to be 10−3 GeV3 so b1 ' M2

A. The only free parameters are
λ and δ2. A number between 0 and 1.5 is randomly chosen
for λ; then, a number between 0 and −

√
λd2 is chosen for δ2.

in the plots of δ2
2 vs. λd2 in fig. 3. In the left column,

δ2 > 0, and on the right δ2 < 0. The latter choice may
accommodate a first order EWPT, as indicated by the
work of [12].

In each plot, the solid line indicates the tree level
vacuum stability requirement δ2

2 < λd2. The plotted
points correspond to values of the parameters that satisfy
the RG running coupling constraints in eqn. (18) (gray
points) or the traditional Landau gauge one-loop effec-
tive potential vacuum stability requirement in eqn. (12)
(black points). Values of the cutoff scale Λ are taken
to be 1 TeV (top row), 1000 TeV (middle row), or
1015 GeV 'MGUT (bottom row).

Fig. 3 evinces all of the generic features of the vacuum
stability analysis discussed in section III. Even with the
most generous cutoff scale, Λ = 1 TeV, the allowed values
of δ2 for a given λ and d2 do not extend up to the tree level
bound because the RG evolution of the couplings breaks
the condition of eqn. (18) that δ2 (µ)

2
< λ (µ) d2 (µ) at

some µ < Λ. When δ2 < 0 (right column), this leads
to a runaway direction in the Landau gauge effective po-
tential: hence, the effective potential limits (black points)
closely match the RG coupling limits (gray points). How-
ever, if δ2 > 0 (left column), the potential still appears
stable (in the Landau gauge) even if the condition on the
RG evolution of δ2 is not satisfied and so the effective po-
tential bound closely matches the tree level requirement.

Furthermore, as the cutoff scale increases, small val-
ues of λ are forbidden because of the appearance of
deep minima along the h-axis of the potential (or, al-
ternatively, λ (µ) < 0), as in the SM. Large values of λ
are also forbidden because RG evolution results in non-
perturbative values for the quartic couplings in violation
of eq. 19.

In the discussion that follows, we consider the more
conservative but gauge-independent bounds on the pa-
rameter space from the RG evolution of the quartic cou-
plings in eqn. (18), rather than the gauge-dependent lim-
its from the effective potential stability requirement in
eqn. (12). The plots for δ2 > 0 have similar features so
we do not show them here; instead we focus on the δ2 < 0
scenario because of the impact on the electroweak phase
transition, discussed in section IV.1.

The allowed masses of the h′, S′ eigenstates are shown
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FIG. 3. Plots of δ22 (MZ) vs. λ (MZ) d2 (MZ). For all plots, MA = 10 GeV, x = 100 GeV, and d2 (MZ) = 0.2. The tree level
vacuum stability requirement, δ22 < λd2, is indicated with the solid line. Gray points satisfy the constraints on the running
couplings, eqn. (18), while black points satisfy the effective potential vacuum stability requirement, eqn. (12), in the Landau
gauge. In the left column we take δ2 > 0 while in the right column δ2 < 0. The cutoff scale Λ is 1 TeV (top row), 1000 TeV
(middle row), or 1015 GeV (bottom row).

in fig. 4 for the same set of parameters in fig. 3: MA =
10 GeV, x = 100 GeV, d2 (MZ) = 0.2, and also Λ =
1 TeV and δ2 < 0. Fig. 4 shows the constraints on the
masses from LEP searches, EWPO measurements, and
the RG evolution of the quartic couplings in eqn. (18).
Darker colored points result in a singlet relic density
that is above the 1σ WMAP bound, i.e., ΩAh

2 > 0.118.
Lighter colored points correspond to saturation or under-
saturation of the relic density, ΩAh

2 ≤ 0.118. We note

that the relic density is (under)saturated when there are
s-channel resonances in the annihilation cross section (for
2MA = MS′) or the 4-point interaction dominates (for
MA > MS′).

One important feature of note is that increasing the
Higgs-singlet coupling δ2 decreases the mass of the lighter
eigenstate — the singlet-like MS′ here — according to
eqn. (6) and increases the mixing angle (see eqn. (8))
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FIG. 4. Results of the scan for MA = 10 GeV, x = 100 GeV, d2 (MZ) = 0.2, and Λ = 1 TeV with δ2 < 0 shown in the MS′

vs. Mh′ plane. Dark colored points oversaturate the relic density, while light colored points (under)saturate. The top left plot
imposes only the RG coupling limits, eqn. (18). RG coupling limits plus either the LEP constraints (top right) or the EWPO
constraints (bottom left), and finally all three (bottom right), are also shown.

when the other parameters (λ, d2, x) are fixed. This effect
is responsible for three features observed in fig. 4:

1. The EWPO constraints (imposed in fig. 4, bottom
left) favor a light scalar with SM-like couplings. As
indicated by the slight slope on the right edge of the
allowed region, larger h′ masses are allowed as MS′

decreases due to the increased mixing that allows
S′ to offset the heavier h′.

2. It is possible for the heavier Higgs-like eigenstate
to avoid the 114 GeV bound from LEP (see fig. 4,
top right) as MS′ decreases from a maximum of
MS′ > 30 GeV due to an increased mixing angle
and reduced h′ coupling strength to SM particles.

3. Also regarding the LEP constraints, a signifi-
cant number of points corresponding to MS′ <
20 GeV = 2MA are eliminated because the decay
S′ → AA is no longer allowed, resulting in a light
scalar S′ with SM-like branching fractions in viola-
tion of the LEP constraints. Increasing the h′ mass
above 200 GeV decreases the mixing angle, so the

lighter MS′ masses are once again allowed by the
LEP constraint despite the SM-like branching frac-
tions of the S′.

Fig. 5 and fig. 6 are the same as fig. 4 but with
Λ = 106 GeV and 1015 GeV, respectively. Increasing
the cutoff scale forces δ2 smaller — as was shown in fig. 3
— and results in relatively larger masses for both the
scalar eigenstates. As these plots show, for a 1 TeV cut-
off scale the effects of the LEP and EWPO limits are
roughly equivalent. However, as Λ increases, the vacuum
stability and perturbativity requirements reduce the al-
lowed regions of parameters and masses; of the points
that remain at these higher cutoff scales, a smaller num-
ber satisfy the EWPO constraint than the LEP bounds.
Thus the EWPO constraint is more significant than the
LEP bounds at higher cutoff scales. Indeed, fig. 6 shows
that there are scalar masses that satisfy the RG evolu-
tion requirement in eqn. (18) up to the GUT scale, and
the LEP bounds, but not the EWPO constraints.

We now show the impact of the dark matter direct
detection limits and the condition for invisibly decaying
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FIG. 5. Same as fig. 4 but with Λ = 106 GeV.

Higgs searches at ATLAS. Fig. 7 displays those values of
the Higgs-like and singlet-like scalar masses that satisfy
eqn. (18) (top left — the same as the top left plot in
fig. 4), plus the XENON100 direct detection cross section
bound (top right) or the requirement for ATLAS invisible
Higgs decay searches (bottom left), and all three together
(bottom right). Fig. 8 and fig. 9 are similar to fig. 7 but
with Λ = 106 and 1015 GeV respectively.

The choice of parameters here is such that nearly all
the points satisfy the XENON100 bound on the direct
detection cross section. Consequently, very few points
satisfy the CRESST-II or DAMA regions (and a 10 GeV
dark matter particle is incompatible with the result from
CoGeNT presented in [39]). Therefore, here and in
what follows in later sections, we impose the XENON100
bound as a more conservative upper bound on the direct
detection cross section.

More restrictive is the requirement for sensitivity to
an invisibly decaying Higgs at ATLAS: this condition
prefers a lighter Higgs-like eigenstate for which the total
decay rate is smaller and hence the h′ → AA decay has
a larger branching fraction. Though the light S′ eigen-
state has a large branching fraction to dark matter, the
mixing angle is too small to give a ξ2 greater than the

requisite 60%. The RG evolution bounds and the ATLAS
sensitivity become mutually exclusive at higher Λ.

V.2. All Results for Light and Heavy Dark Matter

We now consider all values of the couplings, singlet
vev, and dark matter mass (light being 10 GeV, heavy
being 100 GeV) listed in table V. Fig. 10 shows the
effect of varying the model parameters on the scalar mass
eigenstates when MA = 10 GeV; only the RG evolution
constraints of eqn. (18) have been imposed with a 1 TeV
cutoff. The top center plot in fig. 10 is identical to the
top left plots in fig. 4 through fig. 9.

Varying the singlet vev x between 10 and 1000 GeV
clearly has a greater effect on the singlet-like eigenstate
mass than varying the singlet quartic self-coupling d2 be-
tween 0.2 and 0.9, as is expected from eqn. (5). Further-
more, the S′ eigenstate, when it is the lighter state (as
in the left and middle columns), has a maximum allowed
mass: the smaller eigenvalue of the mass matrix has, for
fixed d2, x, a maximum value of d2x

2/2 (plus loop cor-
rections) even as λ increases. The Higgs-like eigenstate
has a maximum value because we have limited our scan
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FIG. 6. Same as fig. 4 but with Λ = 1015 GeV.

of λ. Finally, the general trend for the relic density is
oversaturation when Mh′ ,MS′ > 2MA — due to an off-
resonance s-channel scalar exchange in the dark matter
annihilation cross section — and undersaturation when
2MS′ 'MA or MS′ .MA.

Fig. 11 and fig. 12 show the inclusion of LEP and
EWPO constraints (right columns), direct detection and
invisible search constraints (left columns), and higher
cutoff scales of the effective theory for MA = 10 GeV
and 100 GeV respectively. Most of the discussion in sec-
tion V.1 generalizes to the other choices of the param-
eters. We summarize the main results from these two
figures as follows:

• Avoiding oversaturation of the relic density requires
at least one scalar eigenstate to be lighter than the
dark matter except in the vicinity of a resonance in
the annihilation cross section. Thus, if any of the
dark matter direct detection experiments — in par-
ticular, DAMA/LIBRA, CoGeNT, or CRESST-II
— unambiguously detects lighter (MA ' 10 GeV)
or heavier (MA ' 100 GeV) dark matter, it would
be natural to consider the possibility of other light
scalars weakly coupled to the SM.

• The RG evolution and vacuum stability analysis
requires heavier Higgs- and singlet-like eigenstates,
i.e., less mixing, at larger cutoff scales (central
columns). This is primarily to avoid the runaway
direction in the potential corresponding to δ2 < 0
and δ2 (µ)

2
> λ (µ) d2 (µ).

• the CxSM requires the existence of additional new
physics below the GUT scale, regardless of whether
the dark matter is lighter or heavier. If the S′ eigen-
state is lighter than the h′ state, the RG evolution
constraints and the LEP and EWPO limits (right
columns) become mutually exclusive at high cutoff
scales. If the S′ eigenstate is heavier than the h′, it
is possible to satisfy LEP and EWPO constraints
with a lighter Higgs, but having a heavier S′ results
in oversaturation of the relic density.

• The regions of parameter space most favorable for
the invisible decay channel in the ATLAS detec-
tor correspond to light (10 GeV) dark matter, a
light singlet-like eigenstate, and a low (1 TeV) new
physics scale.
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FIG. 7. Results of the scan for MA = 10 GeV, x = 100 GeV, d2 (MZ) = 0.2, and Λ = 1 TeV with δ2 < 0 shown in the MS′

vs. Mh′ plane. Dark colored points oversaturate the relic density, while light colored points (under)saturate. The top left plot
imposes only the RG coupling limits, eqn. (18). RG coupling limits plus either the XENON100 bound (top right) or satisfaction
of the requirement for ATLAS invisible Higgs decay searches (bottom left), and finally all three (bottom right), are also shown.

V.3. Discussion

Putting together the trends from all of the plots in
fig. 4 through fig. 12, we conclude that in order for the
CxSM to be natural, the singlet vev cannot be very large
(1000 GeV) and the scale of new physics has to be at most
1012 GeV. Moreover, if ATLAS observes the invisible de-
cay mode of the Higgs, the new physics scale has to be
in fact much smaller, at most 10 TeV, and the singlet
self-coupling d2 cannot be too large. To illustrate, for
x = 10 GeV, the maximum value of Λ for points that
satisfy all constraints (LEP, EWPO, relic density, and
direct detection) is 1012 GeV. However, as fig. 11 shows,
none of these points satisfy the requirements for the AT-
LAS Higgs search via invisible decays. For x = 100 GeV,
the maximum Λ for points that satisfy all constraints is
about 100 TeV for d2 = 0.2, 10 TeV for d2 = 0.5, and
slightly greater than 1 TeV for d2 = 0.9. When we con-
sider those points that also satisfy the requirements for
the ATLAS Higgs search via invisible decays, the maxi-
mum Λ is 10 TeV for d2 = 0.2, approximately 5 TeV for
d2 = 0.5, and no points for d2 = 0.9. For x = 1000 GeV,

there are no points that satisfy all constraints at any cut-
off scale.

It is interesting, then, to consider the additional im-
pact of specifying the mass of the Higgs-like scalar to the
range suggested by the recent ATLAS and CMS results9.
If the mass of the Higgs-like scalar is 125 GeV and AT-
LAS does not detect the invisible decay mode, then the
region near x = 10 GeV is favored (the singlet-like state
is very light) and the maximum Λ is ∼ 100 TeV.10 On
the other hand, if the Higgs-like scalar mass is 125 GeV
and ATLAS does detect the invisible decay mode, this
seems to be compatible only with a singlet vev near

9 We note that the significance of the reported excess will vary with
the singlet-doublet mixing angle that affects the production cross
section and the value of the dark matter mass that could allow
additional decay channels to open.

10 In these scenarios for which ATLAS is not sensitive to the in-
visible decay mode, the Higgs branching fraction to dark matter
may nonetheless be large and the branching fractions to visible
final states reduced. This may be in conflict with the results
from ATLAS and CMS, as pointed out in [9] for the Z2xSM.
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FIG. 8. Same as fig. 7 but with Λ = 106 GeV.

x = 100 GeV and d2 = 0.2. In this case, the singlet
is again very light, with mass of order 20-25 GeV, and
the CxSM requires new physics at 5 TeV, well within
reach of the LHC.

VI. CONCLUSIONS

Two of the significant outstanding questions in par-
ticle physics are the nature of dark matter and the en-
ergy scale associated with physics beyond the Standard
Model. Both of these topics are relevant for general sim-
ple scalar extensions of the SM including the model we
have studied, a complex scalar singlet extension. In the
CxSM, through spontaneous and soft breaking of a global
U(1) symmetry, we obtain a massive stable dark matter
candidate and two scalars which mix at the minimum
of the potential, one Higgs-like and the other singlet-
like. Rather than a traditional gauge-dependent vacuum
stability analysis of the one-loop effective potential, we
have chosen to place constraints on the parameters of the
CxSM using a gauge-independent analysis of the renor-
malization group evolution of the quartic couplings, mo-
tivated by requiring the potential to be bounded below

for the vacuum to be absolutely stable (metastable vacua
may also be allowed, but we have not considered this
possibility in our analysis). Our analysis shows that con-
straints on the RG running of the couplings gives results
quite similar to the traditional vacuum stability analysis
of the Landau gauge effective potential when the Higgs-
dark matter coupling, δ2, is negative as can be favorable
to an EWPT; for δ2 > 0, the RG running constraints
may be more conservative than is strictly necessary for
vacuum stability.

We have also considered constraints from relic density
measurements, the electroweak phase transition, LEP,
EWPO data, and dark matter direct detection experi-
ments. Additionally, we have considered the sensitivity
of the ATLAS experiment to a scalar which decays invisi-
bly to dark matter. We have found that if the scale of new
physics (the effective theory cutoff of the RG evolution
of the CxSM parameters) is a TeV, then it is possible to
satisfy all phenomenological constraints with a Higgs-like
scalar mass in the region allowed by recent results from
ATLAS and CMS and a light singlet-like scalar with a
mass roughly twice the dark matter mass or less. Un-
der these conditions, the mixing between the Higgs and
the complex scalar singlet is very small, so the singlet-
like scalar couples very weakly to SM particles. If the
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FIG. 9. Same as fig. 7 but with Λ = 1015 GeV.

dark matter is light (10 GeV), the ATLAS detector may
have sufficient sensitivity to a Higgs that decays to dark
matter with a large branching fraction.

If new physics does not appear at the TeV scale but
instead arises at higher scales (106 GeV or the GUT scale,
1015 GeV), the CxSM is severely restricted by the com-
bined vacuum stability and phenomenological bounds. In
particular, limits from EWPO data are most in conflict
with vacuum stability constraints (when the singlet-like
eigenstate is lighter than the Higgs-like state) since the
former generally favors a lighter Higgs while the latter
requires a heavier Higgs at higher cutoff scales.

With the continued operation of the LHC, a definitive
statement on the existence of a SM-like Higgs and TeV
scale new physics is expected. Determining whether or
not the Higgs exists and whether or not it has SM pro-
duction cross sections and branching fractions will shed
light on the scalar sector of fundamental particle physics.
Conclusive and consistent results from dark matter direct
detection experiments will also provide information cru-
cial for determining whether or not dark matter is a scalar
particle and how dark matter couples to the SM. Until
such results become available, our vacuum stability and
phenomenology analysis has shown that further study of

simple scalar extensions of the SM — in particular the
CxSM with a light singlet-like scalar — is worthwhile.
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Appendix A: One-Loop Potential & RGEs

The one-loop potential is given by

V1 (h, S,A) =
1

64π2

∑
i

niTr

{
M4
i

(
log

M2
i

µ2
− ci

)}
.

(A1)
The sum i runs over the scalar, fermion, and vector bo-
son contributions. The field-dependent mass matrices
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FIG. 10. Here are shown the effects on the mass eigenvalues and the relic density of changing d2 and x (with δ2 < 0). Only the
RG running constraints (Λ = 1 TeV) have been imposed. Left column (red): x = 10 GeV; middle column (blue): x = 100 GeV;
right column (green): x = 1000 GeV. Top row: d2 = 0.2; middle row: d2 = 0.5; bottom row: d2 = 0.9. Dark colored points
oversaturate the relic density, while light colored points (under)saturate.

are given in eqns. (A2)-(A11). The number of degrees of
freedom associated with each contribution, ni, are given
in eqn. (A12), and the numerical factors are given in
eqn. (A13). In the scalar sector, we include the contribu-
tions from the would-be Goldstone bosons. We use the

notation g and g′ for the SU(2)L and U(1)Y gauge cou-
plings, respectively, and yt is the top quark Yukawa cou-
pling. Due to the smallness of the other fermion Yukawa
couplings, we exclude them from the one-loop effective
potential.

M2
scalar = Diag

M2
φ (h, S,A) ,


m2
hh (h, S,A) m2

hS (h, S,A) m2
hA (h, S,A)

m2
hS (h, S,A) m2

SS (h, S,A) m2
SA (h, S,A)

m2
hA (h, S,A) m2

SA (h, S,A) m2
AA (h, S,A)


 (A2)
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FIG. 11. Here are shown the allowed mass eigenvalues (MA = 10 GeV) after imposing the RG evolution requirement in
eqn. (18) (central column) plus the LEP and EWPO constraints (right column) or, alternately, the direct detection bound from
XENON100 and the invisible decay requirements (left column). The effect of increasing the cutoff scale is also seen: Λ = 1 TeV
(top row), 106 GeV (middle row), and 1015 GeV (bottom row). Note that the top central plot corresponds to overlaying all
plots in fig. 10. The three colors indicate the value of x as in fig. 10. The appearance of discrete bands for a given x is the
result of the three different choices for d2.

where

M2
φ (h, S,A) =

(
m2

2
+
δ2
4

(
S2 +A2

)
+
λ

4
h2

)
I3×3 (A3)

m2
hh (h, S,A) =

m2

2
+
δ2
2

(
S2 +A2

)
+

3λ

4
h2 (A4)

m2
hS (h, S,A) =

δ2
2
hS (A5)

m2
hA (h, S,A) =

δ2
2
hA (A6)

m2
SS (h, S,A) =

1

2
(b2 − b1) +

δ2
4
h2 +

d2

4

(
3S2 +A2

)
(A7)

m2
SA (h, S,A) =

d2

2
SA (A8)

m2
AA (h, S,A) =

1

2
(b2 + b1) +

δ2
4
h2 +

d2

4

(
S2 + 3A2

)
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FIG. 12. The same as fig. 11 but with a dark matter mass of 100 GeV.

M2
fermion =

1

2
y2
t h

2 (A10)

M2
vector = Diag

(
1

4
g2h2,

1

4
g2h2,

1

4

(
g2 + g′2

)
h2

)
(A11)

nscalar = 1, nfermion = −2, nvector = 3 (A12)

cscalar =
3

2
, cfermion =

3

2
, cvector =

5

6
(A13)

The β and γ functions are defined as

βX ≡ µ
dX

dµ
, γY ≡

µ

2

d logZY
dµ

(A14)

for some coupling or mass parameter X and some field Y with wave function renormalization ZY . The β and γ
functions for the CxSM are shown in eqns. (A15)-(A25). Since there are no interactions between scalars involving
derivatives, at one-loop order there is no contribution to γh, γS , or γA from scalar loops. Thus γS = γA = 0 and γh
is unchanged from the SM result.
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16π2
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4
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4
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9
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g2g′
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4
g4
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βδ2 =
1

16π2

(
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2 + 3δ2λ
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+ 2δ2 (γh + γS) (A16)

βd2 =
1

16π2

(
5d2

2 + 2δ2
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+ 4d2γS (A17)

βm2 =
1

16π2

(
b2δ2 + 3m2λ

)
+ 2m2γh (A18)

βb1 =
1

16π2
(b1d2) + 2b1γS (A19)
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16π2

(
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βa1 = a1γS (A21)
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16π2
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γS = γA = 0 (A23)

(A24)

Also included is the running of the vacuum energy,

µ
dΩ

dµ
=

1

16π2

(
b21
4

+
b22
4

+
m4

2

)
(A25)

Appendix B: Oblique Parameters

Here we present the oblique parameters S, T , and U , in terms of the gauge boson propagator corrections. We use
the usual shorthand cw = cos θw = MW /MZ , sw = sin θw, tw = tan θw.

αT = − g2

(4π)
2

1

M2
W

(
c2W [ΠZZ (0) + 2twΠZγ (0)]−ΠWW (0)

)
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2
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(B1)

When calculating the differences ∆O between the CxSM and the SM values of S, T , and U , all terms except those
dependent upon the scalar masses cancel. The relevant terms are given in eqn. (B2).
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The functions F0, F1, and F2 (∆F12 ≡ F1 − F2) are given by eqn. (B3).

Fi
(
M2

1 ,M
2
2 , q

2
)

=

∫ 1

0

dz zi ln
[
(1− z)M2

1 + zM2
2 − z (1− z) q2

]
(B3)
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