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Apartado Postal 70-543, México D.F. 04510, México†
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In this paper we study the kinetic theory of many-particle astrophysical systems imposing axial
symmetry and extending our previous analysis in Phys. Rev. D 83, 123007 (2011). Starting from a
Newtonian model describing a collisionless self-gravitating gas, we develop a framework to include
systematically the first general relativistic corrections to the matter distribution and gravitational
potentials for general stationary systems. Then, we use our method to obtain particular solutions
for the case of the Morgan & Morgan disks. The models obtained are fully analytical and correspond
to the post-Newtonian generalizations of classical ones. We explore some properties of the models
in order to estimate the importance of post-Newtonian corrections and we find that, contrary to
the expectations, the main modifications appear far from the galaxy cores. As a by-product of this
investigation we derive the corrected version of the tensor virial theorem. For stationary systems
we recover the same result as in the Newtonian theory. However, for time dependent backgrounds
we find that there is an extra piece that contributes to the variation of the inertia tensor.
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I. INTRODUCTION

The dynamics and evolution of collisionless stellar en-
sembles is a subject of great interest in astrophysics since
they are the primary tool for comparisons of observa-
tions and theory in galactic dynamics [1]. Such systems
are generally composed by billions of stars, so it is nei-
ther practical nor worthwhile to follow the orbit of each
particle in the ensemble. Most testable predictions de-
pend only on the distribution function F (x,v, t) (DF),
a quantity that determines the probability of finding a
single star in a given phase-space volume d3xd3v around
the position x and the velocity v. The dynamics of the
DF follows from the appropriate kinetic equation and it
in turn determines the statistical evolution of the system.

In the framework of the general theory of relativity
(GR) it is assumed that the DF satisfies the general rela-
tivistic version of the Fokker-Planck equation [2–4] or the
collisionless Boltzmann equation (CBE) [5, 6]. The first
one is devoted to systems in which local gravitational en-
counters dominate in their evolution whereas the latter
is useful to study systems sufficiently smooth, so that
they may be considered to be collisionless [1]. One can
actually consider systems in which a number of particle
species can collide and produce different species. This
is how the formation of the light elements in the big
bang nucleosynthesis is calculated (see [7] for a review).
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However, in systems such as galaxies and galaxy clusters,
physical encounters between the stars are very rare, and
the effect of gravitational collisions can be neglected for
times far longer than the age of the universe. Thus, for
these systems, the CBE provides a very good approxima-
tion.

For a typical galaxy, the relaxation time, trelax, is arbi-
trarily large in comparison with the crossing time, tcross.
This means that they can be approximated as a con-
tinuum rather than concentrated into nearly point-like
stars. Now, it is commonly assumed that the main con-
tribution of the mass in a galaxy is concentrated in an
axisymmetric flat distribution [1]. For this reason the ob-
tention of idealized thin disk models has been a problem
of great astrophysical relevance. In this case, the most
straightforward way to construct a self-consistent model
is by means of finding the DF for a system with a known
gravitational interactions and matter distribution. Since
the mass density of the system is defined by the integra-
tion of the DF over the velocity, the problem of finding a
DF is that of solving an integral equation (see [8–13] and
the references therein). At present we have at disposal a
variety of self-consistent galaxy models: [14–25].

Now, even though for most systems under considera-
tion Newtonian gravity is believed to be dominant, gen-
eral relativistic corrections might play an important role
in their evolution. As a matter of fact, in recent years
it has been an increasing interest in the incorporation of
GR in the description of these systems, and up to date we
have a variety of fully relativistic galaxy models: [26–34],
among others. Perhaps the principal reason of including
GR corrections in galactic dynamics, is the hypothesis
that it is possible to overcome the problem of the rota-
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tion curves predicted by the Newtonian theory. While,
some authors argue that by using GR the inclusion of
a dark matter halo is unnecessary at galactic scales (see
for instance [35–39]), several publications have pointed
out that this is not entirely true [40–44]. In particular,
the authors of [45] presented a model in which the per-
centage of dark matter needed to explain flat rotation
curves turns out to be ∼ 30% less than the required by
the Newtonian theory. It is important to point out that
currently there are alternative approaches to GR which
address the problem of rotation curves in spiral galaxies,
as for example the so-called f(R) gravity (see [46], for
references).

Despite the fact that the relativistic contributions do
not solve completely the problem of rotation curves in
galaxies, it seems that they do introduce significant cor-
rections. Thus, in order to estimate the effects on the
various observables we are interested in, it would be
nice to have a framework to include systematically gen-
eral relativistic corrections to a given Newtonian model.
The post-Newtonian approximation is perfectly suited for
this purpose. The appropriate scheme that describes
the effects of the first corrections beyond the Newto-
nian theory, was first formulated in [47–49] (see [50] for
a textbook analysis) and it is known as the first post-
Newtonian (1PN) approximation. This approach holds
if the particles in the system are moving non relativis-
tically (v̄ ≪ c) (as in the case of a star moving around
a typical galaxy) and gives the corrections up to order
v̄2/c2, where v̄ is a typical velocity in the system and
c is the speed of light. Currently, higher order PN ap-
proximations have been developed because of the increas-
ing interest around kinematics and associated emission
of gravitational waves by binary pulsars, neutron stars
and black holes, with promising candidates for detectors
such as LIGO, VIRGO and GEO600 (see [51, 52] for ref-
erences).

Based in the above considerations, we recently started
a general study of self-gravitating gases in the collision-
less regime and, as a first step, we derived a version of
the CBE that accounts for the first general relativistic
corrections [53]. With this tool in hand, we obtained the
1PN version of the Eddington’s polytropes, starting from
an ergodic DF proportional to En. The purpose of this
paper is twofold. First, to implement a similar proce-
dure in the axially symmetric case in order to setup our
general framework. And second, to obtain a new set of
self-consistent models starting from a Newtonian ‘seed’
and study the impact of relativistic corrections on the
various observables.

The rest of the paper is organized as follows. In section
II we present a brief overview about the basics of the 1PN
approximation, revisiting the field equations, as well as
the kinetic theory for arbitrary self-gravitating systems.
In section III we show the fundamental equations defining
self-consistent models with post-Newtonian corrections.
We start dealing with arbitrary systems but then we fo-
cus on discoidal configurations with axial symmetry, in

order to prepare the ground to construct 1PN galaxy
models in section IV. Finally, we summarize the princi-
pal results in section V.

II. GENERAL FRAMEWORK

A. The 1PN approximation

The post-Newtonian approximation has been reviewed
carefully in a number of references (see for example [50]).
However, we will include here the basic definitions and
relations for completeness.

First off, note that in Newtonian mechanics the typical
kinetic energy is roughly of the same order of magnitude
as the typical potential energy, and thus

v̄2 ∼ φ,

where v̄ is the mean velocity in the system. The idea is
then, to express all physical quantities in terms of a series
expansion of the small parameter v̄/c≪ 1, and keep the
leading order beyond the Newtonian theory. The first
quantity to consider is the spacetime itself: any manifold
can be considered to be locally flat so, for particles that
are moving nonrelativistically, we proceed to express the
metric tensor as

g00 = −1+
2
g00 +

4
g00 + · · · ,

gij = δij+
2
gij +

4
gij + · · · , (1)

g0i =
1
g0i +

3
g0i +

5
g0i + · · · ,

where the symbol
n
gµν denotes the term in gµν of order

(v̄/c)n. Odd powers of v̄/c appear in g0i because these
components must change sign under time-reversal trans-
formation t→ −t.
It is natural to assume a similar expansion for the com-

ponents of the energy momentum tensor. From their in-
terpretation as the energy density, momentum flux and
energy flux, we expect that

T 00 =
0

T 00 +
2

T 00 + · · · ,

T ij =
2

T ij +
4

T ij + · · · , (2)

T 0i =
1

T 0i +
3

T 0i + · · · .

These expansions lead to a consistent solution of Einstein
field equations.

Working in harmonic coordinates (i.e. coordinates
such that gµνΓ λ

µν = 0) and to our order of approxima-
tion, the various components of the metric tensor can
be expressed in terms of the Newtonian potential φ and
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post-Newtonian potentials ψ and ξi as

2
g00 = −2φ/c2,

4
g00 = −2(φ2 + ψ)/c4,

2
gij = −2φδij/c

2,

1
g0i = 0,

3
g0i = ξi/c

3.

(3)

Thus, the Einstein equations reduce to

∇2φ = 4πG
0

T 00, (4)

∇2ψ = 4πGc2(
2

T 00 +
2

T ii) +
∂2φ

∂t2
, (5)

∇2ξi = 16πGc
1

T 0i, (6)

along with the coordinate condition

4
∂φ

∂t
+∇ · ξ = 0. (7)

One can also consider the motion of test particles in a
given background. For general potentials φ, ψ and ξi one
finds that the free falling particle obeys the equation

dv

dt
= −∇φ− 1

c2

[

∇
(

2φ2 + ψ
)

+
∂ξ

∂t
− v × (∇× ξ)

− 3v
∂φ

∂t
− 4v(v · ∇φ) + v2∇φ

]

, (8)

which partially resembles the mathematical structure of
the Lorentz force experienced by a charged particle, with
velocity v, in the presence of an electromagnetic field.
Such law of motion will determine, for instance, the ro-
tation curve corresponding to a given galactic model (see
Appendix A for details).
It is instructive to point out that the equations of mo-

tion (8) can be derived from the Lagrangian [50]

L =
v2

2
− φ− 1

c2

(

φ2

2
+

3φv2

2
− v4

8
+ ψ − v · ξ

)

. (9)

For stationary spacetimes, the potentials are indepen-
dent of time and the associated Hamiltonian H =
∑

i ẋi∂L/∂vi − L, is a conserved quantity that can be
interpreted as the 1PN generalization of the classical en-
ergy:

E =
v2

2
+ φ+

1

c2

(

3v4

8
− 3v2φ

2
+
φ2

2
+ ψ

)

. (10)

Note that this expression is independent of the vector
field ξ.

If the source of gravitation is endowed with axial sym-
metry, the z-component of the angular momentum is an
additional integral of motion. In cylindrical coordinates
(R,ϕ, z) we obtain that, for ϕ-independent potentials,
the quantity

Lz = Rvϕ +
1

c2

[

Rvϕ

(

v2

2
− 3φ

)

+Rξϕ

]

(11)

can be interpreted as the 1PN generalization of the
azimuthal angular momentum. In this case ξ plays a
role, through its rotational component.

B. 1PN statistical mechanics

From a statistical point of view, the state of the sys-
tem can be determined by its DF, F (x,v, t), depending
on the spatial coordinates, velocity and time. Now, as
mentioned in the Introduction, for applications in galac-
tic dynamics it is commonly assumed that the encounters
between particles are negligible and hence, the evolution
of the stellar system must obey the so-called collision-
less Boltzmann equation. In 1PN approximation, such
relation can be written as [53]

∂F

∂t
+ vi

∂F

∂xi
− ∂φ

∂xi
∂F

∂vi
+

1

c2

(

v2

2
− φ

)(

∂F

∂t
+ vi

∂F

∂xi

)

+
1

c2

[

4vivj
∂φ

∂xj
−
(

3v2

2
+ 3φ

)

∂φ

∂xi
− vj

(

∂ξi
∂xj

− ∂ξj
∂xi

)

+ 3vi
∂φ

∂t
− ∂ψ

∂xi
− ∂ξi

∂t

]

∂F

∂vi
= 0.

(12)

For situations in which encounters play a dominant role,
the r.h.s of the above expression can be replaced by a

collisional term of the Fokker-Planck type [54].
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If the self-gravitating system is in a stationary state,
∂F/∂t = 0 and the DF can be expressed as a function
of the energy (a first integral of motion). Moreover, if
the system is endowed with additional symmetries we
can expect that, as in Newtonian theory, the stationary
solutions of (12) are also functions of the remaining inte-
grals of motion. In other words, there is a 1PN version
of the Jeans theorem, which simply reflects the fact that
equation (12) can be rewriten as dF/dt = 0 [53].
The DF describes completely the sate of the system.

We can extract from it all the relevant physical quanti-
ties, like the mass density, the mean velocity, the velocity-
dispersion tensor, etc. For instance, by taking the mo-
ments of equation (12), we could in principle obtain
some useful results regarding the hydrodynamics of self-
gravitating systems at 1PN order. This was first derived
by Chandrasekhar [55] using a different approach so we
will refrain from writing out these results here, since they
are not particularly illuminating.
Another important fact that can be derived with the

help of the DF, is the 1PN virial theorem (see appendix
B for details). This theorem shows that there exist a
linear relation between the variation of the moment of
inertia tensor Iik, the kinetic energy tensor Kik and the
potential energy tensor W ik, according to:

d2Iik

dt2
= 2Kik +W ik +

1

2

d

dt

∫

d3x

0
ρ

c2
∂φ

∂t
xixk . (13)

This 1PN virial equation has a similar form as the Newto-
nian one, except for the last term in the right hand side.
The temporal variation of φ contributes to the variation
of Iik. In particular, for stationary states we have

W = −2K,

as in the Newtonian case. This is, the total gravitational
potential energy (a negative quantity), is two times the
total kinetic energy.

III. THE 1PN SELF-GRAVITATION

EQUATIONS

The integration of the DF over the velocity space, leads
to the energy-momentum tensor. It in turn determines
the gravitational field via the Einstein equations, so it
should be possible to derive a relation between F and the
potentials φ, ψ and ξ. Such relation is represented by a
set of couple equations which we shall call the 1PN self-

gravitation equations. At first we deal with the general
case of arbitrary self-gravitating systems and then we
shall consider the special case of razor thin disks.

A. Fundamental equations for arbitrary systems

We begin by considering the following expression
for the energy-momentum tensor, valid for any self-

gravitating system:

T µν(xi, t) =
1

c

∫

UµUν

U0
F (xi, U i, t)

√−gd3U. (14)

Here Uν is the four-velocity, which is related to the
three-velocity by U i = U0vi/c (Greek indices run from
0 to 3 and Latin indices from 1 to 3). From the re-
lation gµνU

µUν = −c2 we can compute the quantities
we need to derive the 1PN approximation of the energy-
momentum tensor. After some calculations, we obtain

U0

c
= 1 +

v2

2c2
− φ

c2
, (15)

and

d3U =

(

1 +
5v2

2c2
− 3φ

c2

)

d3v (16)

Now, taking into account that
√−g = 1− 2φ/c2+ ..., we

find that

T 00 =

∫

γFd3v,

T ij =
1

c2

∫

γ vivjFd3v, (17)

T 0i =
1

c

∫

γ viFd3v,

where

γ = 1 +
3v2

c2
− 6φ

c2
(18)

is the measure of the integration over velocities.
According to the above relations, we expect that the

DF can be expanded in power series of v̄/c as

F =
0

F +
2

F + · · · , (19)

where
0

F is the Newtonian contribution to the DF (which

is itself a solution of the classical CBE) and
2

F is the first
post-Newtonian correction. Plugging (19) into (17) leads
to the different components of the energy-momentum
tensor at the orders required by the 1PN approximation:

0

T 00 =

∫

0

F d3v, (20)

2

T 00 =
3

c2

∫

(v2 − 2φ)
0

F d3v +

∫

2

F d3v, (21)

2

T ij =
1

c2

∫

vivj
0

F d3v, (22)

1

T 0i =
1

c

∫

vi
0

F d3v, (23)

along with
0

T ij= 0, as expected. With these results we
are ready to write the 1PN self-gravitation equations for



5

general stationary systems:

∇2φ = 4πG

∫

0

F d3v, (24)

∇2ψ = 8πG

∫

(2v2 − 3φ)
0

F d3v

+4πGc2
∫

2

F d3v, (25)

∇2ξi = 16πG

∫

vi
0

F d3v. (26)

To summarize, we can say that a stellar system charac-
terized by an equilibrium DF satisfying (12) is described
by a matter distribution given by (20)-(23), and grav-
itational interactions determined by the field equations
(4)-(6). In order to provide a self-consistent description,
the relations (24)-(26) must be satisfied. All of these
equations are written as power expansions in the small
parameter v̄/c and, in consequence, we can clearly distin-
guish between the Newtonian contribution and the post-
Newtonian corrections.

B. The case of stationary razor thin disks

The so-called razor thin disks are of special interest in
modeling a number of axisymetric galaxies. In this case,
the DF depends on velocities and positions in the form

F = f(R, vR, vϕ)δ(z)δ(vz), (27)

where δ is the Dirac delta function and f is a re-
duced phase-space density describing the stellar popu-
lation placed on the equatorial plane z = 0 (for a finite
thin disk of radius a, f must vanish for R > a). Equa-
tions (24) and (25) can be written as

∇2φ = 4πGδ(z)

∫

0

f d2v, (28)

∇2ψ = 4πGδ(z)

[
∫

(4v2 − 6φ)
0

f d2v + c2
∫

2

f d2v

]

(29)

where d2v = dvRdvϕ. Equation (26) requires a lit-
tle more attention. First start with equation (6)
(which is equivalent to (26)). The general solu-
tion that vanishes at infinity can be written as
[50]

ξi(x) = −4Gc

∫

1

T 0i (x′)d3x′

|x− x′| , (30)

which, in our case, reduces to

−4G

∫ ∫

vi
0

F d3x′d3v

|x− x′| = −4G

∫ ∫

vi
0

f δ(z′)d3x′d2v

|x− x′| ,

where we have computed the integral with re-
spect to vz (we use the notation v1 = vx, v

2 =
vy and v3 = vz). This expression can be mas-
saged into a useful form by taking into account

two facts: (i) the relation between the carte-
sian components vx, vy and the cylindrical com-
ponents vR, vϕ, i.e. vx = vR cosϕ − vϕ sinϕ and
vy = vR sinϕ + vϕ cosϕ; (ii) since we are dealing
with stationary axisymmetric systems, the DF
is an even function of vR [1] and in consequence
∫

vRfdvR = 0 . Thus, we can write

∫ ∫

vx
0

f δ(z′)d3x′d2v

|x− x′| = − sinϕ

∫ ∫

vϕ
0

f δ(z′)d3x′d2v

|x− x′|

and

∫ ∫

vy
0

f δ(z′)d3x′d2v

|x− x′| = cosϕ

∫ ∫

vϕ
0

f δ(z′)d3x′d2v

|x− x′| .

Now, by introducing the relations ξx = ξR cosϕ −
ξϕ sinϕ and ξy = ξR sinϕ+ξϕ cosϕ in (30), we obtain

ξR cosϕ− ξϕ sinϕ = sinϕ

∫ ∫

4G
vϕ

0

f δ(z′)d3x′d2v

|x− x′|

and

ξR sinϕ+ ξϕ cosϕ = − cosϕ

∫ ∫

4G
vϕ

0

f δ(z′)d3x′d2v

|x− x′| .

Since we assume that ξ is ϕ-independent, each of
these expressions leads us to the conclusion that

ξR = 0, for finite distributions, (31)

and that ξϕ is solution of the following equation:

∇2ξϕ = 16πGδ(z)

∫

vϕ
0

f d2v. (32)

The equation for the component ξz can be ob-
tained easily by replacing (27) in (26), and the
result is the Laplace equation, ∇2ξz = 0. Its solu-
tion can be determined through condition (7). A
straightforward calculation leads to

ξz(R) = ξzo ln(R/Ro), (33)

where ξzo and Ro are constants of integration. In
the case of distributions with finite extent, we
demand as a boundary condition that limR→∞ ξz =
0. In consequence, we have to choose ξzo = 0, and
hence

ξz = 0, for finite thin disks. (34)

On the other hand, we expect that f obeys the col-
lisionless Boltzmann equation in the three-dimensional
phase-space (R, vR, vϕ). In fact, by introducing (27) in
(12) and performing an integration on z and vz , it follows
that the distribution f obeys the relation
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−
(

1 +
v2

2c2
− φ

c2
− 4R

c2
∂φ

∂R
− R

c2vϕ

∂ξϕ
∂R

)

vRvϕ
R

∂f

∂vϕ
+

(

1 +
v2

2c2
− φ

c2

)

vR
∂f

∂R

(35)

+

[

(

1 +
v2

2c2
− φ

c2

)

v2ϕ
R

(

1 +
3v2ϕ − 5v2R

2c2
+

3φ

c2

)

∂φ

∂R
− 1

c2
∂ψ

∂R
+
vϕ
c2
∂ξϕ
∂R

]

∂f

∂vR
= 0,

where v2 = v2R+v2ϕ and ∂φ/∂R, ∂ψ/∂R and ∂ξϕ/∂R are
evaluated at z = 0. The above relation is the 1PN ver-
sion of the Boltzmann equation for an axisymetric two-
dimensional shell, located at the equatorial plane, and in
a stationary state. Of course, f(R, vR, vϕ) plays the role
of the reduced DF describing the diskoidal shell.
It is straightforward to show that E and Lz, given by

equations (10) and (11), are solutions of (35). This means
that, for axially symmetric systems, any f depending on
E and Lz is solution of the CBE; conversely, any solution
of the CBE can always be expressed as a function of E
and Lz. Thus, any two-integral DF, f(E,Lz), provides
a complete statistical description for the (two-degree-of-
freedom) stellar system. This fact will be very useful
for the formulation of post-newtonian models in the next
section.

IV. ANALYTICAL MODELS FOR

AXISYMMETRIC GALAXIES

The purpose of this section is to show how to imple-
ment the formalism developed above in order to obtain
axially symmetric galaxy models. For the applications
we want to consider here we have to take into account
further considerations. First of all, recall that in [53] we
proved that Jeans theorem remains valid at 1PN order.
This means that any equilibrium solution of the CBE de-
pends only on the integrals of motion of the system, and
that any function of the integrals yields an equilibrium
solution of the CBE. Thus, for stationary systems with
axial symmetry, we can restrict ourselves to DFs depend-
ing on the energy (10) and the angular momentum (11),
which are themselves integrals of (12).
The next step would be to implement the previous re-

strictions starting from a given Newtonian potential-
density pair with a known DF, as was done in [53]
for the spherically symmetric case. As a result, one ex-
pects two coupled self-gravitation equations, providing a
method to determine, from a Newtonian model, its as-
sociated post-Newtonian corrections. In practice, the
present formalism leads to a two coupled ordinary differ-
ential equations in the spherically symmetric case. In the
axially symmetric situation however, one ends up with
two coupled elliptic partial differential equations (for gen-
eral volumetric matter distributions).
In this case such equations are much more involved

than the ones corresponding to the spherically symmet-
ric case, but the configurations we shall deal here permit
us to introduce some additional assumptions to simplify
the problem. In the next section, we shall show that a
dramatic simplification can be achieved by the consider-
ation of thin discoidal distributions in spheroidal oblate
coordinates: instead of getting differential equations, in
this case the post-Newtonian corrections can be obtained
from simple algebraic equations.

We then present a particular application where the re-
sulting equations can be solved analytically, which means
that it is possible to obtain 1PN exact solutions. The im-
portance of these solutions will be evaluated by a com-
parison between density profiles and rotation curves de-
scribed by Newtonian theory and the ones predicted by
the 1PN approximation. Although focus on the partic-
ular models introduced in [19] (revisited by [24]), our
framework can be applied to a wider variety of models.
In general, the method can be used for situations in which
the potentials are separable functions of the spheroidal
oblate coordinates.

A. Hunter’s method in the 1PN approximation

One can find in the literature a number of self-
consistent stellar models representing razor thin disks;
here we will deal with models belonging to the family of
Morgan & Morgan disks [19, 24]. In the Newtonian for-
mulation, they can be obtained by a formalism developed
by Hunter [56]. Such procedure (known as the Hunter’s
method) provides the surface density of the disks, the
gravitational potential and the circular velocity as se-
ries of elementary functions, by superposing solutions of
the Laplace equation in oblate spheroidal coordinates.
Hunter’s method can also be implemented in the context
of the 1PN approximation as follows.

To begin with, note that in vacuum, the field equations
(4)-(6) reduce to three Laplace equations for φ, ψ and ξϕ
(remember that ξz = 0 for distributions of finite extent).
Without loss of generality, we assume that the disk is
on the equatorial plane, so we have to impose that the
gravitational potentials have symmetry of reflection with
respect to the plane z = 0, i.e. φ(R, z) = φ(R,−z),
ψ(R, z) = ψ(R,−z) and ξϕ(R, z) = ξϕ(R,−z). Then, it
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follows that

∂φ

∂z
(R,−z) = −∂φ

∂z
(R, z), (36)

∂ψ

∂z
(R,−z) = −∂ψ

∂z
(R, z), (37)

∂ξϕ
∂z

(R,−z) = −∂ξϕ
∂z

(R, z), (38)

in agreement with the attractive character of gravitation.
We also assume that ∂φ/∂z, ∂ψ/∂z and ∂ξϕ/∂z do not
vanish in the disk’s zone, in order to have the correspond-
ing thin distribution of energy-momentum. Such distri-
bution, restricted to a region 0 ≤ R ≤ a in the plane
z = 0 (from here on, a will denote the disk radius), will
be described by a “shell-like” energy-momentum tensor.
If we define

0

T 00 = Σ(R)δ(z), (39)
2

T 00 +
2

T ii =
1

c2
σ(R)δ(z), (40)

1

T 0ϕ =
1

c
∆(R)δ(z), (41)

for 0 ≤ R ≤ a, it follows from Gauss’s Law that

Σ(R) =
1

2πG

(

∂φ

∂z

)

z=0+
, (42)

σ(R) =
1

2πG

(

∂ψ

∂z

)

z=0+
, (43)

∆(R) =
1

8πG

(

∂ξϕ
∂z

)

z=0+
. (44)

Note that Σ represents the surface mass density of the
Newtonian theory (i.e. without relativistic corrections),
while ∆ plays the role of the surface density of ϕ-
momentum. On the other hand, σ is associated both to
the pressure and the relativistic corrections to the mass
surface density.
The above relations mean that, in order to have a dis-

tribution of matter as the described by (42)-(44), we have
to demand that

∂φ

∂z
(R, 0+) 6= 0, R ≤ a, (45)

∂φ

∂z
(R, 0+) = 0, R > a, (46)

with the same requirement for ψ and ξϕ. At this point it
is convenient to introduce oblate spheroidal coordinates,
a system that adapts in a natural way to the geometry
of the problem. They are related to the cylindrical ones
through

R = a
√

(1 + ζ2)(1 − η2), (47)

z = aζη, (48)

where 0 ≤ ζ < ∞ and −1 ≤ η < 1. Note that (i) the
disk itself has coordinates ζ = 0, η2 = 1 − R2/a2; (ii)
conditions (45)-(46) become

∂φ

∂ζ

∣

∣

∣

∣

ζ=0

= H(η), (49)

∂φ

∂η

∣

∣

∣

∣

η=0

= 0, (50)

where H is an even function of η. The general solution
of Laplace’s equation satisfying the above conditions can
be written as

φ(ζ, η) = −
∞
∑

n=0

A2nq2n(ζ)P2n(η), (51)

where A2n are arbitrary constants, P2n(η) and q2n(ζ) =
i2n+1Q2n(iζ) are the usual Legendre polynomials and
the Legendre functions of second kind, respectively. The
post-Newtonian potentials ψ and ξϕ have the same form,

ψ(ζ, η) = −
∞
∑

n=0

B2nq2n(ζ)P2n(η), (52)

ξϕ(ζ, η) = −
∞
∑

n=0

C2nq2n(ζ)P2n(η), (53)

but here we have denoted the expansion constants as B2n

and C2n. We can derive explicit formulae for Σ, σ and ∆
in oblate spheroidal coordinates, by introducing (51)-(53)
in (42)-(44):

Σ =
1

2πaGη∗

∞
∑

n=0

A2n(2n+ 1)q2n+1(0)P2n(η∗), (54)

σ =
1

2πaGη∗

∞
∑

n=0

B2n(2n+ 1)q2n+1(0)P2n(η∗), (55)

∆ =
1

8πaGη∗

∞
∑

n=0

C2n(2n+ 1)q2n+1(0)P2n(η∗), (56)

where η∗ represents the value of coordinate η inside the
disk:

η∗ =

√

1− R2

a2
(57)

Now that we have stated the fundamental structure of
models with 1PN corrections, the next step is to demand
that the models obtained are self-consistent, i.e. that
they have an analytical equilibrium DF that is related
consistently to the surface mass distribution. In other
words, we have to formulate the corresponding 1PN self-
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gravitating equations:

∞
∑

n=0

Ã2n
P2n(η∗)

η∗
=

∫

0

f d2v, (58)

∞
∑

n=0

B̃2n
P2n(η∗)

η∗
=

∫

(4v2 − 6φ)
0

f d2v + c2
∫

2

f d2v,

(59)
∞
∑

n=0

C̃2n
P2n(η∗)

η∗
=

∫

vϕ
0

f d2v, (60)

where, for the sake of simplicity, we have defined

Ã2n =
(2n+ 1)q2n+1(0)

2πaG
A2n, (61)

the same for B̃2n, and

C̃2n =
(2n+ 1)q2n+1(0)

8πaG
C2n. (62)

Note that, part of the r.h.s of equations (58)-(60) is char-
acterized by three fundamental quantities in Newtonian
dynamics of self-gravitating systems: (i) the mass sur-

face density, Σ =
∫

0

f d2v; (ii) the mean square velocity,

〈v2〉 = Σ−1
∫

v2
0

f d2v, and (iii) the mean circular veloc-

ity, 〈vϕ〉 = Σ−1
∫

vϕ
0

f d2v. In particular, equation (58)
is the Newtonian self-gravitation equation.
There is a variety of cases that can be addressed by

the formalism presented above. They correspond to situ-
ations in which the gravitational fields (i) have symmetry
of reflection with respect to the equatorial plane, (ii) are
separable functions of the spheroidal oblate coordinates
and (iii) correspond to axially symmetric distributions
with finite extent. Note that any function with these
features can be expressed in the form (51).

B. The Morgan & Morgan disks with 1PN

corrections

In Newtonian gravity, the Generalized Kalnajs
Disks [24] are finite thin distributions of matter
with surface mass density

Σm(R) =
(2m+ 1)M

2πa2

(

1− R2

a2

)m−1/2

, m ∈ N
(63)

and gravitational potential φm, given by (51), with the
following expansion constants

A
(m)
2n =

MG

a

√
π2−2m−1(4n+ 1)(2m+ 1)!

(2n+ 1)(m− n)!Γ (m+ n+ 3
2 )q2n+1(0)

.

(64)
These solutions were first obtained by Morgan &
Morgan (MM) [19], by solving a boundary value

problem in the context of GR. Even so, we refer
to the above solutions as MM disks for historical
reasons, but keeping in mind that we are dealing
with Newtonian gravity.
All the members of this family have interesting fea-

tures: a monotonically decreasing mass density and a
Keplerian rotation curve. The case m = 1, correspond-
ing to the well known Kalnajs disk [20] (see also [1]), is
an exception because it describes a self-gravitating disk
which rotates as a rigid body.
The superposition of members belonging to the MM

family, has been used to obtain new models with more re-
alistic properties. For example, in reference [25], the au-
thors constructed a family of models with approximately
flat rotation curves considering a particular combination
of MM disks. Another example is the family of mod-
els introduced by Letelier in [57], representing flat rings
(see also [58] for astrophysical applications). Adition-
ally, in reference [59] it was shown that it is posible to
construct models with realistic rotational curves obey-
ing simple polynomial expressions. In particular, the au-
thors constructed models for a number of galaxies of the
Ursa Major cluster, and as an application they estimated
their corresponding mass distriutions. This fact suggest
that there exist superpositions of MM members leading
to galactic models in agreement with the so-called maxi-

mum disk hypothesys [1]. It would be interesting to have
in hand the 1PN version of the MM family, along with
all of its features.
Here we illustrate how to obtain the post-Newtonian

version of the MM disks. We focus in the m = 2 model,
which is characterized by a density

Σ =
5M

2πa2
η3
∗
, (65)

but in principle, the same proceedure can be applied to
any of the remaining members (or linear combinations).
From here on, we will drop the subindex of Σm, for sim-
plicity.
It can be shown that the above surface density can be

obtained from the DF [60]

f(E,Lz) = k(ΩLz − E − 5Ω2a2/4)−1/4, (66)

where

k =
2√
3

[

10M

π11a5G3

]1/4

, Ω =

√

15πGM

32a3
. (67)

Note that the DF defined by (66) is function of the Ja-
cobi’s integral, EJ = E −ΩLz , which can be interpreted
as the energy measured from a frame that rotates with
constant angular speed Ω (see Appendix C).
In order to obtain a 1PN version of the model, we start

from the DF given by (66) but using the post-Newtonian
expressions for E and Lz, i.e., equations (10) and (11).
Thus, at 1PN order we can write

f =
0

f +
2

f, (68)
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with

0

f= kJ
−1/4
0 and

2

f= −k
4
J2J

−5/4
0 , (69)

where

J0 = −φ− v2/2 +ΩRvϕ − 5Ω2a2/4, (70)

J2 = −c−2

[

φ2

2
+ ψ − 3v2φ

2
+

3v4

8

−ΩRvϕ
(

v2

2
− 3φ

)

−ΩRξϕ

]

. (71)

These relations determine the 1PN self-gravitation equa-
tions through (58)-(60) and the integrals

∫

0

f d2v =
5M

2πa2
η3
∗
, (72)

∫

v2
0

f d2v =
75GM2

448a3
(

7− 7η2
∗
+ 6η4

∗

)

η3
∗

(73)

∫

vϕ
0

f d2v =
5

8

√

15GM3

2πa5

√

(1− η2
∗
)η3

∗
(74)

∫

2

f d2v =
1

c2η∗

[

GM2

a3

4
∑

j=0

b2jη
2j
∗

(75)

+

√

160M

3π3a3G

√

(1− η2
∗
)ξϕ +

32ψ

32aGπ2

]

where

b0 = −2325

1024
, b2 =

75

512
, b4 =

1125

128
,

b6 =
1275

512
, b8 = −38475

7168
. (76)

By introducing (72)-(75) in (58)-(60), we obtain a system
of linear equations for the constantsB2n and C2n in terms
of A2n (which are known a priori), that can be solved
analytically. After some computations we find that

C2n =

(

GM

a

)3/2
(45− 48n− 92n2 + 16n3 + 16n4)

Γ (12 − n)Γ (72 − n)Γ (1 + n)Γ (4 + n)

× (4n+ 1)

(2n+ 1)q2n+1(0)

5π5/2
√
15

256
√
2

(77)

B2n =

(

GM

a

)2
I2n −∑∞

m=0Π2n,2m

(64/3)q2n(0) + π(2n+ 1)q2n+1(0)
,(78)

where I2n and Π2n,2m are constants defined in the Ap-
pendix D, equations (D9) and (D11), respectively.
With the constants C2n and B2n at hand, the post-

Newtonian fields are completely determined along with
the remaining physical quantities. In galactic dynamics,

the circular velocity and the mass profile are two im-
portant measurable quantities used to verify a particular
model. In our case, the first one is given by the relation
(A5) whereas the second one is given by (65) plus the

1PN corrections coming from
2

T 00. The corrected surface
density can be written explicitly as

0

Σ +
2

Σ =
5M

2πa2

[

η3
∗
− 15πλ

224

(

7− 7η2
∗
+ 64η4

∗

)

η3
∗

+
λ

5η∗

∞
∑

n=0

(2n)!!B̂2n

(2n− 1)!!
P2n(η∗)

]

, (79)

where λ is a dimensionless parameter defined by

λ ≡ GM

ac2
, (80)

and B̂2n are the dimensionless constants

B̂2n =
a2B2n

G2M2
. (81)

The parameter λ, which is also present in the expression
for the circular velocity, is a measure of how large are the
1PN corrections. For example, in a galaxy with 1012 so-
lar masses and a radius of 10 Kpc, we have λ ≈ 5×10−6.
Here, we consider situations where the relativistic correc-
tions are larger and they can be visualized in the behav-
ior of rotation curves and mass profile. In Figure 1, we
plot the circular velocity when λ ∼ 10−3 and λ ∼ 10−2.
The 1PN corrections become important in the latter case
(last two figures), in particular for values of vϕ near to the
disk edge. This is somewhat surprising since one would
expect major corrections near the galaxy core, where the
mass concentration is maximum. A similar phenomenon
occurs with the mass profiles (see Figure 2). Their differ-
ences with the Newtonian profile become significant for
λ ∼ 10−2 and the magnitude of 1PN corrections increase
with the radius.

V. CONCLUDING REMARKS

We continued our study of the post-Newtonian kinetic
theory of collisionless self-gravitating gases, extending
our previous results [53] to systems with axial symme-
try. Before dealing with the applications, we developed
the 1PN version of the tensor virial theorem, applicable
for arbitrary self-gravitating systems. We found that the
1PN virial theorem differs from the Newtonian one by
the fact that the temporal variation of φ contributes to
the variation of the inertia tensor. However, for station-
ary systems we recover the same result as in Newtonian
theory: the absolute value of the total gravitational po-
tential energy is two times the kinetic energy. The prob-
lem about the validity of the virial theorem for collisional
systems (which remains valid in the Newtonian theory)
is an open question that we leave for future studies.
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Figure 1: Rotation curves for the 1PN version of the second MM member for different values of the parameter λ: (a) λ = 10−3,
(b) λ = 5 × 10−3, (c) λ = 2 × 10−2 and (d) λ = 7 × 10−2. For λ ∼ 10−2 or more, the differences with the Newtonian model
(dashed line) become significant. In this case, the rotation curve tends to flatten as λ grows.

The applications we considered here were devoted spe-
cially to address the modeling of systems in galactic dy-
namics, thus we focused in equilibrium situations with
rotational symmetry. We developed a formalism to con-
struct the 1PN version of Newtonian self-consistent mod-
els characterized by a stationary DF depending on the
Jacobi’s integral. The general case is mathematically
challenging as it involves a pair of coupled elliptic partial
differential equations. However, we restricted our atten-
tion to the study of thin models with finite extent, case in
which the system reduces to a set of algebraic equations.
As an illustrative example of the formalism developed
here, we obtained the 1PN version of the second MM
disk. The contributions of relativistic corrections found
are not significant for λ ∼ 10−3 or less, but they become
prominent for larger values of λ (provided that the 1PN
approximation is still valid). We noted that the correc-
tions grow with the radial distance, which is surprising
since one would expect major corrections near the disk
center, where the mass concentration is maximum.

The general formalism starts by implementing the
Hunter’s method in the 1PN scheme. Then, a stationary
DF (solution of the 1PN CBE) is selected and introduced
in the self-gravitation equations. Finally, by solving the

resulting algebraic equalities, we find the corresponding
post-Newtonian fields, ψ and ξi. The new 1PN-corrected
models obtained are also self-consistent, since this fea-
ture is an inherent requirement of the formalism. The
method is applicable to self-gravitating thin disks with
finite extent provided that: (i) the system has symme-
try of reflection with respect to the z = 0 plane; (ii) the
Newtonian potential is separable in spheroidal oblate co-
ordinates; (iii) The Newtonian DF is only function of E
and Lz.

It’s worth to point out the interesting work by
by Schenk, Shapiro and Teukolsky in 1999 [62]. In
this paper the authors focused on the Kalnajs disk
(the m = 1 member of the MM family) and solved
numerically the the Einstein equations coupled
to the relativistic CBE, obtaining the first self-
consistent model of a rotating relativistic disk. It
would be interesting to obtain the 1PN version of
the same model by using the formalism developed
in this paper in order to establish a comparison
of the two approaches and estimate the effects of
the higher order relativistic corrections.

As a final remark, it is important to mention
that the problem about the stability of these mod-
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Figure 2: Mass profiles for the 1PN version of the second MM member for the same values of the figure 1. As expected, the
differences with the Newtonian model (dashed line) become significant for λ ∼ 10−2 or more. In the case (d), we have a profile
which maximum is not at R = 0.

els is an important subject that will be addressed
in future works. This issue brings several points
to be investigated. One fundamental question is
to establish whether the discoidal structures con-
sidered here are stable by themselves or if they
need an additional component (a spheroidal halo,
for example) in order to be stable. Another ques-
tion is to determinate if the marginal stability of
Newtonian disks improves or not with the intro-
duction of relativistic corrections. At the present
we are performing a preliminary study about the
stability of test particles around the solutions
obtained, and their response to radial and ver-
tical perturbations in order to compare the re-
sults with the Newtonian theory (see for example
[25, 63]) and to provide a first test of stability.
Then we expect to implement a more conclusive
analysis regarding the Jeans-type instabilities by
perturbing the DF’s by themselves.
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Appendix A: Rotation Curves in the 1PN Approximation

The circular velocity is a widely used observable in galactic dynamics, so it is important to have in hand a formula
for the rotation curves in the 1PN approximation. In order to do this, we have to study the circular motion of test
particles in the equatorial plane. At first, note that according to (8), a star moving around an axisymmetric stationary
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thin disk with finite extension, obeys the following equations of motion:

R̈ = Rϕ̇2 − ∂φ

∂R

(

1 + c−2
(

4φ− 3Ṙ2 +R2ϕ̇2 + ż2
))

+c−2

(

4Ṙż
∂φ

∂z
− ∂ψ

∂R
+Rϕ̇

∂ξϕ
∂R

)

, (A1)

z̈ = −∂φ
∂z

(

1 + c−2
(

4φ− 3ż2 +R2ϕ̇2 + Ṙ2
))

+c−2

(

4żṘ
∂φ

∂R
− ∂ψ

∂z
+Rϕ̇

∂ξϕ
∂z

)

, (A2)

Rϕ̈ = −2Ṙϕ̇+
4Rϕ̇

c2

(

Ṙ
∂φ

∂R
+ ż

∂φ

∂z

)

− Ṙ

c2
∂ξϕ
∂R

− ż

c2
∂ξϕ
∂z

,

(A3)

where the dot denotes derivation with respect to t. In particular, equatorial circular orbits must satisfy the conditions
Ṙ = ż = 0, R̈ = z̈ = 0 and z = 0. In this case (A1) reduces to

v2ϕ

(

1− R

c2
∂φ

∂R

)

+ vϕ
R

c2
∂ξϕ
∂R

−R
∂φ

∂R
− R

c2
∂

∂R
(2φ2 + ψ) = 0, (A4)

which can be used to derive an expression for v2ϕ at 1PN order. In particular, note that we can use the Newtonian

expression v2ϕ = R∂φ/∂R each time that vϕ is accompanied by an inverse power of c. After some straightforward
algebra we get

v2ϕ = R
∂φ

∂R

(

1 +
4φ

c2
+
R

c2
∂φ

∂R

)

+
R

c2

(

∂ψ

∂R
−
√

R
∂φ

∂R

∂ξϕ
∂R

)

, (A5)

where it is understood that all derivatives are evaluated at z = 0. There is a crucial difference between the above
relation and the classical formulae for the rotation curves: in the Newtonian case v2ϕ is linear in ∂φ/∂R, whereas in the
1PN case, it depends in non linear terms involving φ and derivatives of the gravitational potentials. This nonlinear
dependence may result significant in some cases.

Appendix B: Virial Theorem in the 1PN Approximation

The virial theorem is an important general result of the kinetic theory relating the contribution of kinetic and
potential energy to the temporal change of the inertia tensor associated to the system. In order to obtain the 1PN
version of the virial theorem we can start from the conservation laws

∂T µν

∂xµ
= −Γ ν

µλT
µλ − Γµ

µλT
λν . (B1)

At first order in v̄/c, this expression reproduce the Newtonian mass and momentum conservation laws, which are
given by

1

c

∂
0

T 00

∂t
+
∂

1

T i0

∂xi
= 0 , (B2)

1

c

∂
1

T 0i

∂t
+
∂

2

T ij

∂xj
= − 1

c2
∂φ

∂xi

0

T 00 . (B3)
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The corresponding 1PN corrections of the above laws are obtained by taking into account Christoffel symbols at
different orders [50]

1

c

∂
2

T 00

∂t
+
∂

3

T i0

∂xi
=

1

c3
∂φ

∂t

0

T 00 , (B4)

1

c

∂
3

T 0i

∂t
+
∂

4

T ij

∂xj
= −

4

Γ i
00

0

T 00 −
2

Γ i
00

2

T 00 −(2
3

Γ i
0j +δij

3

Γ 0
00 +δij

3

Γ k
0k)

1

T 0j

−(
2

Γ i
jk +δik

2

Γ 0
0j +δik

2

Γ l
lj)

2

T jk

= −
[ ∂

∂xi

(2φ2

c4
+
ψ

c4

)

+
1

c4
∂ζi
∂t

] 0

T 00 − 1

c2
∂φ

∂xi

2

T 00

− 1

c3

( ∂ζi
∂xj

− ∂ζj
∂xi

− 4δij
∂φ

∂t

) 1

T 0j − 1

c2

(

δjk
∂φ

∂xi
− 4δik

∂φ

∂xj

) 2

T jk . (B5)

On the other hand, the energy-momentum tensor, given in (17), can be splitted in two first order contributions:

T µν =

∫

0

F V µV νd3v +

∫

[ 0

F
(3v2

c2
− 6φ

c2

)

+
2

F
]

V µV νd3v (B6)

where V µ = (c,v). After some definitions

0
ρ≡

∫

0

F d3v,
2
ρ≡

∫

2

F d3v, and
2

ρ̃≡ 2
ρ +

0
ρ
(3v2

c2
− 6φ

c2

)

, (B7)

and using the different probability densities to compute expectation values,

A = (
0
ρ)−1

∫

0

F Ad3v ,
2

A = (
2
ρ̃)−1

∫

[ 0

F
(3v2

c2
− 6φ

c2

)

+
2

F
]

Ad3v , (B8)

we get the following simplified expressions for the momentum-energy components at different orders:

0

T 00= c2
0
ρ ,

2

T 00= c2
2
ρ̃ ,

1

T 0i= c
0
ρ vi , (B9)

3

T 0i= c
2
ρ

2

vi ,
2

T ij=
0
ρ vivj ,

4

T ij=
2
ρ̃

2

vivj . (B10)

Then, equations (B4)-(B5), can be written as

∂(
2
ρ̃)

∂t
+
∂(

2
ρ̃

2

vi)

∂xi
=

0
ρ

c2
∂φ

∂t
, (B11)

∂(
2
ρ̃

2

vi)

∂t
+
∂(

2
ρ̃

2

vivj)

∂xj
= − 0

ρ
[ ∂

∂xi

(2φ2

c2
+
ψ

c2

)

+
1

c2
∂ζi
∂t

]

−
2
ρ̃
∂φ

∂xi

− 0
ρ
vj

c2

( ∂ζi
∂xj

− ∂ζj
∂xi

− 4δij
∂φ

∂t

)

− 0
ρ
vjvk

c2

(

δjk
∂φ

∂xi
− 4δik

∂φ

∂xj

)

. (B12)

Now we can compute the symmetrized integral of the product xk/2 times the above equation:

1

2

d

dt

∫

d3x
2
ρ̃ (xk

2

vi +xi
2

vk) = 2
2

Kik +
2

W ik (B13)
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where

2

W ik = −1

2

∫

d3x
0
ρ xk

[

∂

∂xi

(2φ2

c2
+
ψ

c2

)

+
1

c2
∂ζi
∂t

+
vj

c2

( ∂ζi
∂xj

− ∂ζj
∂xi

− 4δij
∂φ

∂t

)

+
vjvl

c2

(

δjl
∂φ

∂xi
− 4δil

∂φ

∂xj

)

]

−1

2

∫

d3x
0
ρ xi

[

∂

∂xk

(2φ2

c2
+
ψ

c2

)

+
1

c2
∂ζk
∂t

+
vj

c2

(∂ζk
∂xj

− ∂ζj
∂xk

− 4δkj
∂φ

∂t

)

+
vjvl

c2

(

δjl
∂φ

∂xk
− 4δkl

∂φ

∂xj

)

]

−1

2

∫

d3x
2
ρ̃

(

xk
∂φ

∂xi
+ xi

∂φ

∂xk

)

, (B14)

2

Kik =
1

2

∫

d3x
2
ρ̃ vjvk . (B15)

By defining

2

Iik=

∫

d3x
2
ρ̃ xixk, (B16)

we can write the time derivative of the equation (B4) as

d
2

Iik

dt
=

∫

d3x
∂

2
ρ̃

∂t
xixk =

∫

d3x
2
ρ̃ (xk

2

vi +xi
2

vk) +

∫

d3x

0
ρ

c2
∂φ

∂t
xixk (B17)

and its second time derivative

d2
2

Iik

dt2
=

d

dt

∫

d3x
2

ρ̃ (xk
2

vi +xi
2

vk) +
d

dt

∫

d3x

0
ρ

c2
∂φ

∂t
xixk . (B18)

Putting all together we obtain the tensor post-Newtonian virial theorem

d2
2

Iik

dt2
= 2

2

Kik +
2

W ik +
1

2

d

dt

∫

d3x

0
ρ

c2
∂φ

∂t
xixk , (B19)

and taking the trace, we obtain the scalar post-Newtonian virial theorem

d2
2

I

dt2
= 2

2

K +
2

W +
1

2

d

dt

∫

d3x

0
ρ

c2
∂φ

∂t
x2 , (B20)

where

2

O= trace(
2

Oik) . (B21)

In summary, we can collect all the above results and to state that if we define a moment of inertia tensor,

Iik =

∫ ∫

(

1 +
3v2

c2
− 6φ

c2

)

xixkFd3vd3x, (B22)

a kinetic energy tensor,

Kik =
1

2

∫ ∫

(

1 +
3v2

c2
− 6φ

c2

)

vivkFd3vd3x, (B23)

and a potential energy tensor

W ik =
0

W ik +
2

W ik, (B24)
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where
0

W ik is the Newtonian potential energy tensor and
2

W ik is given by (B15), then they satisfy the following relation

d2Iik

dt2
= 2Kik +W ik +

1

2

d

dt

∫

d3x

0
ρ

c2
∂φ

∂t
xixk , (B25)

which can be enunciated as the 1PN tensor virial theorem. The scalar virial equation is obtained by taking the trace
of the above relation:

d2I

dt2
= 2K +W +

1

2

d

dt

∫

d3x

0
ρ

c2
∂φ

∂t
x2.

Appendix C: Jacobi’s Integral in the 1PN Approximation

For the purposes of the present paper it is important to have in hand an expression of the Jacobi’s integral at 1PN
order, in order to verify that it has the same form as in Newtonian theory, i.e. EJ = E −ΩLz.
In a rotating reference frame with angular velocity Ω, velocities are related through

ṽ = v −Ω× x, (C1)

where ṽ and v are the velocity measured from the rotating and inertial frame, respectively. From this relation, and
the 1PN equations of motion it is possible to derive a 1PN corrected version for EJ [61]:

EJ =
ṽ2

2
+ φ− 1

2
(Ω× x)2 +

1

c2

[

3ṽ4

8
+
φ2

2
+ ψ − 3φṽ2

2
− (Ω× x) · ξ +

3φ

2
(Ω× x)2 − 1

8
(Ω× x)4

+
ṽ2

4
(Ω× x)2 + ṽ · (Ω× x)ṽ2 +

1

2
(ṽ · (Ω× x))2

]

. (C2)

In particular, if Ω = Ωêz and x = RêR, the above formula reduces to

EJ =
ṽ2

2
+ φ− Ω2R2

2
+

1

2c2

[

3ṽ4

4
+ φ2 + 2ψ − 3φṽ2 − 2ΩRξϕ + 3φΩ2R2

−Ω
4R4

4
+
ṽ2Ω2R2

2
+ 2ΩRṽϕṽ

2 + ṽ2ϕΩ
2R2

]

. (C3)

Now, by replacing ṽR = vR, ṽz = vz and ṽϕ = vϕ −ΩR in (C3), we can write

EJ = E −ΩLz, (C4)

where E and Lz are given by (10) and (11) respectively. Thus we see that the total energy associated to a test particle,
measured from a rotating frame, has the same form as in the Newtonian theory.

Appendix D: Derivation of the Constants B2n and C2n

For the DF given in (67) and for any function S(R, vR, vϕ), we can write

∫

Sfd2v = 21/4k

∫ ΩR+µ

ΩR−µ

dvϕ

∫ ν

−ν

S(R, vR, vϕ)dvR
(ν2 − v2R)

1/4
(D1)

where

µ =

√

45πGM

64a
η2
∗
, ν =

√

µ2 − (vϕ −ΩR)2. (D2)

In particular, by setting S = vϕ in (D1) and introducing the result in (60) we obtain

∞
∑

n=0

C̃2nP2n(η∗) =
5

8

√

15GM3

2πa5

√

1− η2
∗
η4
∗
,
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from which C̃2n can be found by using the orthogonalization condition
∫ 1

−1 Pm(x)Pl(x)dx = 2δlm/(2l + 1). We find

C̃2n = (4n+ 1)
5

8

√

15GM3

2πa5

∫ 1

0

√

1− x2x4P2n(x)dx. (D3)

The above integral can be solved by setting x = cos θ and using the following identity:

∫ π/2

0

(sin θ)mP2n(cos θ)dθ =
π
[

Γ (m+1
2 )
]2

2Γ (1 + n+ m
2 )Γ (

1
2 + m

2 − n)Γ (1 + n)Γ (12 − n)
. (D4)

After some calculations, we get

∫ 1

0

√

1− x2x4P2n(x)dx =
π2(45− 48n− 92n2 + 16n3 + 16n4)

128Γ (12 − n)Γ (72 − n)Γ (1 + n)Γ (4 + n)
. (D5)

Plugging the above result in (D3) we obtain the relation (77).
Now, performing the same procedure on equation (59) and obtain

π2Ga

∞
∑

n=0

B̃2nP2n(η∗) =
75π2

7168

(

GM

a

)2

H(η∗) +
32ψ

3
+

√

160πGM

3a
(1− η2

∗
)ξϕ

where

H(η∗) = 375η8
∗
− 154η6

∗
+ 392η4

∗
+ 14η2

∗
− 217. (D6)

Again, we use the orthogonality of Legendre polynomials to provide an explicit relation for B̃2n. In the calculations
we also find useful (i) the formula

∫ 1

−1

x2mP2n(x)dx =

√
π2−2mΓ (1 + 2m)

Γ (1 +m− n)Γ (32 +m+ n)
,

and (ii) the expression

∫ 1

−1

√

1− x2P2n(x)P2m(x)dx =
m
∑

k=0

m−k
∑

j=0

π(4m− 2k)!(m− k)!

22mk!(2m− k)!j!(m− k − j)!(2m− 2k)!

× (−1)k+j
[

Γ (j + 3
2 )
]2

Γ (2 + j + n)Γ (j − n+ 3
2 )Γ (1 + n)Γ (12 − n)

, (D7)

which we derived from (D4) and the series representation of the Legendre polynomials. After some calculations we
get

64

3
B2nq2n(0) + 2π2aGB̃2n =

(

GM

a

)2
[

I2n −
∞
∑

m=0

Π2n,2m

]

, (D8)

where

I2n = −75π5/2

16384

(4n+ 1)
∑8

k=0 akn
k

Γ (5− n)Γ (112 + n)
, (D9)

with

a0 = 370224 a1 = −337854 a2 = −628841

a3 = 185300 a4 = 174491 a5 = −25768

a6 = 16600 a7 = 992 a8 = 496 (D10)

and

Π2n,2m =
25π3

64

∫ 1

−1

√

1− x2P2n(x)P2m(x)dx. (D11)
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From (D8), it is straightforward to derive (78).
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[30] González G. A. and Letelier P. S., 2000, Phys. Rev. D62 064025, arXiv:gr-qc/0006002.
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