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The quantum fluctuations of an ‘accelerated’ vacuum state, that is vacuum fluctuations in pres-
ence of a constant electromagnetic field, can be described by a temperature TM. Considering TM for
the gyromagnetic factor g = 1 we show that TM(g = 1) = TU, where TU is the Unruh temperature
experienced by an accelerated observer. We conjecture that both particle production and nonlin-
ear field effects inherent in the Unruh accelerated observer case are described by the case g = 1
QED of strong fields. We present rates of particle production for g = 0, 1, 2 and show that the
case g = 1 is experimentally distinguishable from g = 0, 2. Therefore either accelerated observers
are distinguishable from accelerated vacuum or there is unexpected modification of the theoretical
framework.

PACS numbers: 03.70.+k, 11.15.Tk, 12.20.Ds, 13.40.-f

Introduction: A detector in a matter- and field-free
spacetime undergoing constant acceleration aU is found
to be embedded in a thermal background at the Unruh
temperature (~ = c = 1 = kB)

TU =
aU
2π
. (1)

The statistics of the thermal distribution are bosonic
considering the vacuum of a scalar particle [1, 2] and
fermionic in the vacuum of a Fermi particle [3]. Said dif-
ferently, the free and unstructured vacuum fluctuations
appear to an accelerated observer as having an effective
temperature TU with statistics corresponding to the fluc-
tuation of either Fermi or Bose type.
A complementary effect was recognized by Müller et

al [4] who found that the structured vacuum fluctuations
induced by an exactly constant electric field E (or mag-
netic field) can be understood as a thermal background
characterized by the temperature parameter

TM =
eE

mπ
. (2)

TM arises from the exact solution introduced by Heisen-
berg and Euler [5] and generalized by Schwinger [6] of
vacuum fluctuation properties for constant electromag-
netic fields in QED evaluated at lowest order in α.
Since an electric field accelerates all charged particles

and in particular the electron-positron pairs whose fluc-
tuations are considered, it is natural to introduce the
global acceleration av = eE/m [7] (see p.569 ff) and
consider this equivalent to an ‘accelerated quantum vac-
uum’ state. A succinct discussion is found in the work of
Pauchy Hwang and Kim [8].
Comparing to the Unruh temperature,

TM =
eE

mπ
=
av
π

= 2TU . (3)

The factor two in temperature is not the only differ-
ence between the accelerated vacuum and accelerated ob-
server. For the case of the accelerated vacuum, Müller
et al. [4] show the associated thermal distribution to be

opposite expectation, being bosonic for spin-1/2 elec-
tron fluctuations and fermionic for spin-0 charged par-
ticle fluctuations.

The difference between the physical conditions giving
rise to the Unruh and Müller temperatures is whether it

is the observer or the vacuum state that is accelerated.
While frame independence of physics phenomena is as-
sured for inertial observers, there is no imperative need
for the two cases we consider, accelerated observer and
accelerated vacuum, to yield equivalent results. Owing
to the mathematical similarity the two different acceler-
ation cases can be solved by similar methods [9]. For
this reason the difference in outcomes Eq. (3) is some-
what unexpected, and our objective here is to identify a
possible origin of the discrepancy, which could point to
new physics: either modification of the theoretical frame-
work, or inequivalence of accelerated quantum observers,
however small acceleration can be.

In QED, the structure of vacuum fluctuations is
encoded in the effective action, from which one derives
spontaneous particle creation and the associated temper-
ature. The difference arises in connection with the spin
and statistics of the particle. Therefore we study the
structure of the QED vacuum fluctuations in presence of
strong fields for different values of the g-factor. We show
that the specific value g = 1 reconciles the temperatures
and statistics and discuss pair production in strong fields
which can help distinguish the accelerated observer from
accelerated vacuum state.

Temperature of electron fluctuations: Separate
conservation of charge-convective and spin currents
means that for any particle the value of the gyromag-
netic ratio g can be arbitrary. For point-like electrically
charged leptons, quantum corrections result in g − 2 =
α/π + ..., and composite spin 1/2 particles have values
which can significantly differ from the Dirac value g = 2.

The dynamics of a particle ψ with arbitrary g is gen-
erated by the equation of motion

[

D2 +m2 −
g

2

eσµνF
µν

2

]

ψ = 0, (4)
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where D = i∂ + eA is the covariant derivative, Fµν

the electromagnetic field strength tensor and σµν =
(i/2)[γµ, γν ]. The Eq. (4) comprises a doubling of dynam-
ical components since the ‘squared’ equation commutes
with γ5. For the specific case g = 2 one can cast Eq. (4)
in the form of product of two Dirac equations with ±m.
We will explicitly show the number of physical degrees
of freedom. The effect of g on the vacuum fluctuations is
determined computing the effective potential

Veff = −
i

2
tr ln

[

D2 +m2 −
g

2

eσµνF
µν

2

]

. (5)

The Schwinger proper time method [6] can be applied
to evaluate Eq. (5) and one finds

Veff =
γs

32π2

∫ ∞

0

e−im2u

(

au cosh( g
2
au)

sinh(au)

bu cos( g
2
bu)

sin(bu)
− 1

)

du

u3

(6)
in which γs counts the number of degrees of freedom.
With only bosonic particle and antiparticle degrees of
freedom γs = −2 for g = 0. When g = 2, we have spin-
1/2 Dirac fermions, and counting spin degrees of free-
dom, γs = +4. The −1 inside the parentheses removes
the field-independent constant. In Eq. (6), we use a the
electric-like and b the magnetic-like eigenvalues of eFµν ,
which are related to the field strengths by

a2 − b2 = e2( ~E2 − ~B2) and (ab)2 = e4( ~E · ~B)2. (7)

The a eigenvalue is electric-like because a → e| ~E| in the

limit b→ 0, and similarly b→ e| ~B| in the limit a→ 0.
We discuss here the temperature and statistics for the

case of electric-only field; a transformation similar to that
detailed below is possible for the general case Eq. (6) [10].

For an electric-only field of strength E ≡ | ~E|, the b → 0
limit of Eq. (6) yields

Veff =
γs

32π2

∫ ∞

0

e−im2u

(

eEu cosh( g
2
eEu)

sinh eEu
− 1

)

du

u3
. (8)

Transforming Veff to a statistical format proceeds via
meromorphic expansion of the integrand of Eq. (8) [4].
We introduce the identity

1−
z cosh(zy)

sinh(z)
=− 2z2

∑

n=1

cosnπ(y + 1)

(nπ)2
(9)

+ 2z4
∑

n=1

cosnπ(y + 1)

(nπ)2(z2 + (nπ)2)

The first term (∝ x2) is identified as the logarithmically
divergent contribution and displays the renormalization
of charge.
The finite (regularized and renormalized) effective po-

tential is obtained by inserting only the second term
of Eq. (9) in the integrand of Eq. (8). Scaling u →
−inuπ/eE = −inu/mTM,

Veff=
γsm

2T 2

M

32π2

∫ ∞

0

2u du

u2−1+iǫ

∞
∑

n=1

e
−nu m

TM

n2
cos

(

nπ(
g

2
+ 1)

)

(10)

Note that we have rotated the integration contour onto
the real axis and defined the integration contour in ac-
cordance with the assignment

m2 → m2 − iǫ ≡ m2

−, (11)

which defines the imaginary part discussed further below.
While the real part of Veff controls nonlinear electromag-
netic field-field interactions, its imaginary part controls
the rate at which the electromagnetic field decays into
electron-positron pairs.
Setting g = 2 for a spin-1/2 (Dirac) electron, cos 2nπ =

1 for all n, and setting g = 0 for a spin-0 electron,
cosnπ = (−1)n producing an alternating sum. In each
case, integrating by parts twice and summing the series
yields the results of Müller et al [4] which with arbitrary
g we present as

Veff =
γsm

2TM
64π2

∫ ∞

0

dE ln(E2−m2

−)
∑

±

ln(1+e±iπ g

2 e−E/TM).

(12)
The sum over ± ensures the distribution is real so that
the imaginary part arises only from the branch cut in
the first log factor. The exponential weights of the terms
in the series in Eq. (10) generate for integer values of g
an exact thermal distribution, and the statistics of the
distribution are determined by the phase of the terms in
the series.
For g = 1 (and more generally for any odd integer

value of g) summing in Eq. (12) over ± simplifies to

Veff

∣

∣

∣

g=1

=
γsm

2TU
32π2

∫ ∞

0

dE ln(E2−m2

−) ln(1+e
−E/TU) (13)

exhibiting in the second log factor a thermal fermionic
distribution controlled by the Unruh temperature, TU.
The effective potential of a ‘classical’ spinning electron
with g = 1 in a constant field thus has the format of
a thermodynamic potential with temperature parameter
and statistics in agreement with expectations based on
the result obtained for an accelerated observer in the (un-
accelerated) vacuum of a fermion field.
We thus find that when the gyromagnetic moment of

the electron is that of the ‘classical’ spinning particle
g = 1, the differences disappear between accelerated
observer and accelerated vacuum in both temperature
and statistics. This situation is summarized in Table I.
It seems that reconciliation of the physics arising under
Unruh and Müller experimental conditions implies that
we can no longer distinguish an accelerated observer
from an accelerated vacuum state. However, in our
opinion one must take the computation with g = 1 as
a method to evaluate the prior result attributed to the
accelerated observer case.

Observables: We discuss two observable effects inher-
ent in Veff : spontaneous pair production and light-by-
light scattering. Experiments seeking either of these ef-
fects may one day help resolve the question whether or
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Detector acceleration Constant Electric Field
aU relative to vacuum acceleration av = eE/m

g = 0 g = 2 g = 0 g = 1 g = 2

T
aU

2π

aU

2π

av

π

av

2π

av

π

statistics boson fermion fermion fermion boson

TABLE I: Relation between of accelerated observer in quan-
tum vacuum (Unruh case) to quantum vacuum accelerated
by external field (Müller et al. case).

not the two cases, accelerated observer and accelerated
vacuum, lead to different physics.
The analyticity of quantum field theory demands that

aside of heat fluctuations the accelerated observer also
sees a rate of real eē-pair production. Assuming that
g = 1 provides an accurate model of the physics seen
by an accelerated observer, pair production in this case
is obtained according to Heisenberg-Euler-Schwinger for
g = 1 with the field strength written in terms of accel-
eration. On the other hand, a strong field applied to
the vacuum is expected to produce the usual g = 2 pair
production [11–19].
We obtain the rate (per unit volume) of spontaneous

field decay by pair emission, an effect possible only in
the presence of an electric field, equivalently whenever
the field invariant a > 0, see Eq. (7). The decay rate
is controlled by the imaginary part of Veff , which arises
from the poles in the integrand of Eq. (8) at u = inπ/eE
for integer n (or equivalently in Eq. (10) at u = 1). The
integration contour is defined as in Eq. (11) by assigning
a small imaginary constant to the mass before rotating
onto the positive real u axis. For the electric-only field,

ImVeff =
γsm

2T 2

M

32π

∞
∑

n=1

(−1)n

n2
cos(nπ

g

2
) e−nm/TM . (14)

The total probability per unit volume per unit time of
decay of the field is twice this imaginary part, dΓ/d4x =
2ImVeff .
Setting g = 1 (accelerated observer case) changes the

analytic structure of Veff , giving odd-n terms in the sum
zero weight. The argument of the exponential is thus
doubled,

dΓ

d4x
= 2ImVeff |g=1

=
γsm

2T 2

U

16π

∞
∑

n=1

(−1)n

n2
e−nm/TU . (15)

This change is especially visible in the rate per unit vol-
ume of particle emission d〈N〉/d4x, which is given by the
first term of the series in Eq. (14) [16]. Seeing that the
n = 1 term vanishes in Eq. (14), the n = 2 term becomes
the first term in the series, effectively halving the tem-
perature to become the Unruh temperature,

d〈N〉

d4x

∣

∣

∣

∣

g=1

=
γsm

2T 2

U

32π
e−m/TU . (16)
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FIG. 1: The rate per unit volume of decay of the field
dΓ/d4x = 2Im Veff with ImVeff given by Eq. (14). The elec-
tric field magnitude is normalized to Ec = m2/e the critical
field strength, at which TM → m/π. For g 6= 2 the rate of
field decay is reduced with the largest reduction for g = 1.
Above Ec we see suppression due to the g-factor modifying
weights in the sum in Eq. (14).

This notably shows the same numerical factors as the
analogous result for g = 0, 2 after substitution of the Un-
ruh temperature TU = TM/2, as can be expected con-
sidering the analytic properties of the effective action
Eq. (12) and the g = 1 form Eq. (13).
Figure 1 shows Eq. (14) for the values g = 0; 1; 2. The

results for g = 0; 2 are very similar and yield the largest
total decay probability as function of g. The reduction
in the rate driven by the effective temperature parameter
is largest for the particular case g = 1. Due to the ex-
ponential dependence, the reduction in the temperature
parameter by factor 2 reduces spontaneous pair produc-
tion below the critical field Ec = m2/e by many orders of
magnitude.
The real part of Veff leads to the nonlinear field-field

interaction. For g = 1 one finds,

Veff

∣

∣

∣

g=1

≃
γs

32π2

e4

m4

−1

5760

(

7( ~B2 − ~E2)2 + 4( ~E · ~B)2
)

(17)
The terms higher order in the field are given in [20]. Rel-

ative to the g = 2 values, the coefficients of ( ~B2 − ~E2)2

and ( ~E · ~B)2 in Eq. (17) are opposite in sign and
suppressed: for light-by-light scattering experiments the

important ( ~E · ~B)2 term is 224 times smaller.

Discussion and conclusions: In a constant electric
field E ≡ a > 0, the electron fluctuations display a ther-
mal Bose spectrum with temperature TM = eE/mπ =
av/π. This result contrasts with the Fermi spectrum and
the Unruh temperature TU = aU/2π experienced by an
accelerated observer. We discovered and exploited the
coincidence that case g = 1 used in accelerated vacuum
produces physics relevant to the case of an accelerated
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observer. It is important to recognize that we have not,
and in general cannot resolve the question why we should,
or should not, expect that the two cases, accelerated ob-
server and accelerated vacuum to yield different or the
same physics.
We have evaluated the effective QED potential of a g =

1 ‘electron’ in presence of a constant electric field Eq. (13)
finding the form of the QED effective potential with the
Unruh temperature and fermionic statistics appropriate
for the physics of an observer accelerated in the electro-
magnetic force field. Considering the quantum fluctua-
tions of a ‘classical spinning particle’ g = 1 thus describes
the Unruh result within the effective Heisenberg-Euler-
Schwinger action. We argued that the computation with
g = 1 is providing the complete effective potential gener-
ating the physics of an accelerated observer.
Two effects could be used to distinguish future the ac-

celerated observer g = 1 from the QED vacuum g = 2:
eē-pair production in strong electric fields and nonlin-
ear field-field interaction. We have shown that both are
greatly suppressed in the case g = 1 relative to the QED
g = 2 expectation. QED strong field experiments such as
light-field scattering [21, 22] will, if accelerated observer
case prevails, be seeking a much weaker signal.
This proves measurability of the difference between the

frames down to arbitrarily small acceleration. Being able
to determine who is accelerated means that there is a
universal class of inertial reference frames. Introduction
of a class of inertial reference frames realizes within the
quantum theory the Einstein view of the Mach Principle.

The Einstein-Mach Principle is incorporated in both the
Unruh-type calculation (by comparing to the vacuum of
flat (Minkowski) space) and the QED effective action (by
renormlizing with respect to the zero-particle state).
Experiment has not yet tested properties of the vac-

uum of quantum electrodynamics associated with the
critical field strength Ec = m2/e, a value considerably
beyond the limiting field of Born-Infeld theory [23] and
even beyond limits set considering precision strong field
tests [24]. For this reason it is necessary to ascertain that
QED of strong fields, which differs from the expectations
based on equivalent accelerated observer is indeed differ-
ent.
Should the strong-field QED experiment observe the

original g = 2 results, one would infer a difference in
temperatures Eq. (1) and Eq. (2), and it follows that the
two views of acceleration are not equivalent for any mag-
nitude of the acceleration. Note that the limit of weak
acceleration is achieved in QED by considering fields
smoothly varying on compact spatial domain. On the
other hand, the authors are not aware of a treatment of
the Unruh detector in which the accelerated observer is
smoothly connected to asymptotic inertial frames. If one
insists on equivalence of the accelerated observer and ac-
celerated vacuum, our result therefore suggests that there
is additional, undiscovered physics content in the prop-
erties of the Unruh accelerated detector.
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