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We compute the charged pion loop contribution to the light-by-light scattering amplitude for off-
shell photons in chiral perturbation theory through next-to-leading order (NLO). We show that for
small photon virtualities (k2

≪ m2
π) the NLO contributions are relatively more important due to an

accidental numerical supression of the leading-order (LO) terms. This behavior is consistent with
previous calculations of the hadronic light-by-light (HLBL) contribution to the muon anomalous
magnetic moment, aHLBL

µ , whose leading order value receives O(1) corrections from models incor-
porating some of the NLO physics. We also show that models employed thus far for the charged
pion loop contribution to aHLBL

µ are not fully consistent with low-momentum behavior implied by
quantum chromodynamics, having omitted potentially significant contributions from the pion po-
larizability.

In this note, we report on the first computation of
the charged pion contribution to the light-by-light (LBL)
scattering amplitude for off-shell photons to next-to-
leading order in chiral perturbation theory. The LBL
amplitude constitutes an important input to the Stan-
dard Model (SM) prediction for the anomalous magnetic
moment of the muon, aµ = (gµ−2)/2, an observable that
continues be of considerable interest in particle and nu-
clear physics. To the extent that the SM prediction aSMµ
is sufficiently reliable, a deviation for the experimental
value aexpµ could indicate the presence of contributions
from physics beyond the SM. Thus, it is important to
scrutinize the ingredients in the SM prediction, particu-
larly those associated with hadronic dynamics. The fol-
lowing work represents an effort in this direction.

To set the context, we first review experimental and
theoretical situation that motivates this work. The
present experimental value, aexpµ = 116592089(63) ×
10−11 obtained by the E821 Collaboration[1–3] differs
from theoretical expectations by 3.6σ assuming the SM
of particle physics and state-of-the-art computations of
hadronic contributions, including those obtained using
data on σ(e+e− → hadrons) and dispersion relation
methods: aSMµ = 116591802(49)× 10−11 (for recent re-
views, see Ref. [4, 5] as well as references therein). A
deviation of this magnitude can be naturally explained
in a number of scenarios for physics beyond the Stan-
dard Model (BSM), including (but not limited to) super-
symmetry, extra dimensions, or additional neutral gauge
bosons [6–8] . A next generation experiment planned
for Fermilab would reduce the experimental uncertainty
by a factor of four[9]. If a corresponding reduction in
the theoretical, SM uncertainty were achieved, the muon
anomalous moment could provide an even more powerful
indirect probe of BSM physics.

The most significant pieces of the error quoted above
for aSMµ are associated with the leading order hadronic
vacuum polarization (HVP) and the HLBL contributions:

δaHVP
µ (LO) = ±42 × 10−11 and δaHLBL

µ = ±26 × 10−11

[10] (other authors give somewhat different error es-
timates for the latter [14–22] , but we will refer to
these numbers as points of reference; see [23] for a re-
view). In recent years, considerable scrutiny has been
applied to the determination of aHVP

µ (LO) from data
on σ(e+e− → hadrons) and hadronic τ decays. Use of
the latter indicates a somewhat smaller discrepancy be-
tween the SM and experimental values for aµ than quoted
above. Clearly, a significant improvement in this deter-
mination will be needed if the levels of theoretical and
future experimental precision are to be commensurate.

Here, we concentrate on the aHLBL
µ , focusing in partic-

ular on the contributions from charged pion loops. Sub-
sequent to the first results from the E821 Collaboration,
the theoretical community devoted substantial effort to
refining the predictions for pseudoscalar “pole” contri-
butions, which appear at leading order in the expansion
of the number of colors NC and which are numerically
dominant. However, the error quoted for the charged
pion loop contributions, which enter at subleading order
in NC , is now comparable to the uncertainty associated
with the pseudoscalar pole terms. Thus, we are moti-
vated to revisit the former as part of the effort to improve
the level of confidence in the theoretical SM prediction
for aHLBL

µ .

As a first step in that direction, we have computed the
HLBL scattering amplitude for off-shell photons to NLO
in Chiral Perturbation Theory (χPT). χPT is an effec-
tive field theory for low-energy interactions of hadrons
and photons that incorporates the approximate chiral
symmetry of quantum chromodynamics (QCD) for light
quarks. Long-distance hadronic effects can be computed
order-by-order in an expansion of p/Λχ, where p is a typ-
ical energy scale (such as the pion mass mπ or momen-
tum) and Λχ = 4πFπ ∼ 1 GeV is the hadronic scale with
Fπ = 93.4 MeV being the pion decay constant. At each
order in the expansion, presently incalculable strong in-
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teraction effects associated with energy scales of order Λχ

are parameterized by a set of effective operators whose
coefficients – “low energy constants” (LECs) – are fit to
experimental results and then used to predict other low-
energy observables.

χPT has been applied with considerable success to the
analysis of a variety of hadronic and electromagnetic pro-
cesses (for a recent review, see e.g. [24]), making it an
in principle appropriate and model-independent frame-
work for investigating hadronic contributions to aµ, an-
other low-energy observable. In the χPT analysis of the
pseudoscalar pole contributions to aHLBL

µ , however, one
encounters a new LEC that cannot be determined in-
dependent of the aµ measurement itself. Consequently,
hadronic modeling is presently unavoidable if one wishes
to predict the anomalous moment. Nevertheless, the cal-
culable terms in χPT can be used to test or constrain
model input, as any credible model for the LBL ampli-
tude must reproduce behavior in the low-energy regime
that is dictated by QCD. Indeed, the χPT computa-
tion of the leading ln2 term in the pion pole contribu-
tion revealed a critical sign error in earlier numerical
computations of the pion pole contribution[17, 18]. The
sub-leading ln term can be obtained from a combination
of analytic computation[22] and a determination of the
relevant LEC from a determination of the π0 → e+e−

branching ratio[25], and it can be used to further con-
strain the model input.

In this spirit, we have analyzed the charged pion
loop contribution to the LBL amplitude to NLO and
have compared with corresponding predictions implied
by models used in the computation of aHLBL

µ . The lead-
ing order (in chiral counting) contribution is finite, con-
tains no LECs, and depends only on mπ and e. As we
show below, this contribution is fortuitously suppressed.
As a result, higher order contributions are likely to be
relatively more important than one might expect on gen-
eral grounds, rendering this quantity more susceptible to
model-dependent uncertainties. Thus, it is arguably all
the more important that any model used for the charged
pion contribution to aHLBL

µ respect the requirements of
QCD at NLO in the low-momentum regime.

In this respect, we find that models utilized to date
have omitted a potentially significant contribution as-
sociated with the pion polarizability. Consistently em-
bedding the polarizability in models that can be used to
predict the full charged pion loop contribution to aHLBL

µ

will be the subject of a future publication. Although
the three-loop point-like pion contribution to aHLBL

µ is
finite, a four-loop pure χPT computation requires an
overall counter term, as in the case of pseudoscalar pole
contribution. Since the finite part of the counter term
(the LEC) cannot be obtained except from the measure-
ment of aµ itself, obtaining an a priori prediction requires
appropriate modeling the higher-momentum behavior of
the HLBL amplitude. Doing so in a manner that incor-
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FIG. 1: Representative diagrams for charged pion loop con-
tributions to the LO and NLO to LBL amplitude.

porates the polarizability and analyzing the correspond-
ing model-dependent theoretical uncertainty goes beyond
the scope of the present study, where we focus on the un-
ambiguous requirements of chiral symmetry for the low-
momentum regime.

We compute the charged pion contributions to the
LBL vertex function Πµναβ through NLO from the di-
agrams in Figure 1, expanding the result as a power se-
ries in the external (photon) momentum and pion mass.
The LO amplitude that corresponds to a pure scalar
QED calculation for point-like charged pions follows from
Fig. 1(a) and yields a finite result that is free from
any LECs. The result contains two O(p4) structures
that can be expressed in terms of two dimension eight

(d = 8) operators, 32O
(8)
1 ≡ (F 2)2 ≡ (FµνF

µν)2 and

8O
(8)
2 ≡ F 4 = FαβF

βγFγλF
λα, whose coefficients are

given in Table I (the operators are defined to absorb sym-
metry factors). Naively, one would expect the magnitude
of the coefficients to be set by 1/(4π)2×1/m4

π . However,
we find that each operator contains an additional sup-
pression factor of 1/9 and 1/45, respectively. Thus, we
anticipate that the NLO contributions from the graphs
of Fig. 1(b-d) will be relatively more important.

The graphs in Figures 1(b-d) correspond respectively
to the propagator, vertex, and polarizability corrections.
The first two classes are divergent and require the in-
troduction of counterterms from the O(p4) chiral La-
grangian. We carry out the calculation using dimensional
regularization in d = 4 − 2ǫ dimensions and define the
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counterterms to remove the contributions proportional
to 1/ǫ − γ + ln 4π + 1 as is the standard convention
for χPT[24]. We find that the explicit dependence on
the counterterms needed for renormalization of the pion
propagator is cancelled by charge and mass renormaliza-
tion, leaving only a dependence on the O(p4) operator
associated with the charge radius of the pion:

L9 = ieα9 Fµν Tr
(

Q
[

DµΣ, DνΣ†
])

, (1)

where Q = diag(2/3,−1/3) is the electric charge ma-
trix and Σ = exp(iτa πa/Fπ) with a = 1, 2, 3 giving the
non-linear realization of the spontaneously broken chiral
symmetry. After renormalization, one has for the square
of the pion charge radius

r2π =
12

F 2
π

αr
9(µ) +

1

Λ2
χ

[

ln

(

µ2

m2
π

)

− 1

]

(2)

where the superscript “r” indicates the finite component
after the subtraction of 1/ǫ − γ + ln 4π + 1 term is per-
formed. Choosing µ = mρ and taking the experimental
value for r2π gives αr

9(mρ) = (7.0 ± 0.2) × 10−3 for two-
flavor χPT at O(p4). Within error bars, this result is the
same as obtained in Ref. [26] for the three-flavor case.

The ππγγ vertex correction shown in Fig. 1(d) is finite,
but the polarizability amplitude nevertheless receives an
additional finite contribution from L9 and

L10 = e2α10 F 2 Tr
(

QΣQΣ†
)

. (3)

The corresponding combination entering the LBL ampli-
tude is αr

9+αr
10. As the sum of the one-loop polarizability

sub-graphs is finite, this combination of LECs is indepen-
dent of the renormalization scale. An experimental value
(αr

9 + αr
10)exp = (1.32 ± 0.14)× 10−3 has been obtained

from radiative pion decay [27]. As a cross check on the
extraction of these LECs we also consider the determina-
tion of αr

10 from semileptonic τ -decays given in Ref. [28].
Converting from three- to two-flavor χPT we obtain
αr
10(mρ) = −(5.19 ± 0.06) × 10−3, in reasonable agree-

ment with the determination of αr
9(mρ) from the pion

form factor and (αr
9+αr

10) from pion radiative decay. The
resulting prediction for the pion polarizability[29], which
we confirm by taking the on-shell photon limit of our
off-shell π+π−γγ computation, disagrees with the latest
experimental determination[30] by a factor of two[32].

The final NLO results for the LBL amplitude are sum-
marized in Table I. To lowest order in external momenta,
the only change from LO are polarizability corrections

which modify the O
(8)
1 coefficient. To see the full impact

of the (higher momentum) NLO terms, we expand our
result to O(p6), introducing a complete basis of seven

d = 10 four-photon operators:

16O
(10)
1 = ∂ρFµν∂

ρFµνFαβF
αβ

8 O
(10)
2 = ∂ρFµνF

µν∂ρFαβF
αβ

2 O
(10)
3 = ∂ρFαβ∂

ρF βγFγδF
δα

4 O
(10)
4 = ∂ρFαβF

βγ∂ρFγδF
δα

4 O
(10)
5 = ∂µFµνF

αν∂αFβγF
βγ

4 O
(10)
6 = FµνF

αν∂µFβγ∂αF
βγ

2 O
(10)
7 = Fµν∂

µFαβ∂
νF βγFγα

The coefficients of these operators are given in Table II.
At this order, both vertex and polarizability corrections
modify the LO result.
To obtain a sense of the numerical impact of the two-

loop corrections, including those involving αr
9 + αr

10, we
utilize the values of the LECs discussed above. In the
case of O

(8)
1 , the NLO (two-loop) contribution represents

a ∼ 20% correction to the LO term, substantially larger
than the ∼ m2

π/Λ
2
χ ∼ 0.01 magnitude one might expect

from power counting arguments. In the case of the d = 10
operators, the NLO corrections range from a few to ∼

30%. The largest impact of the charge radius corrections

is onO
(10)
1 (∼ 30%) while the most important effect of the

polarizability is on O
(10)
2 (∼ 10%). These results, while

illustrating the relative importance of the NLO terms
due to the LO suppression, may not be fully indicative
of their impact on aHLBL

µ , as they cover only a small

portion of the kinematic regime relevant to the aHLBL
µ

calculation. As we discuss below, pion form factors have
been included in previous works [12, 13, 15, 16] which
reproduce the charge radius terms at low energies. These
model based attempts to include higher order physics
all result in significant, O(1) shifts to the leading order
aHLBL
µ value. The impact on aHLBL

µ of extending these
models to correctly include the polarization contribution
remains to be seen.

TABLE I: Coefficients of lowest dimension (d = 8) operators
contributing to the HLBL amplitude, scaled by e−4(4π)2m4

π.
Second and third columns give LO and NLO contributions in
χPT, while final column indicates the VMD result [13].

Operator 1 loop χPT 2 loop VMD

O
(8)
1 1/9

m2

π

F2
π

16
3
(αr

9 + αr
10) 0

O
(8)
2 1/45 0 0

We now compare the explicit NLO results in χPT
with the corresponding expectations for the operators
in Tables I and II derived from models used to com-
pute the charged pion loop contribution to aHLBL

µ . For
concreteness, we focus on the extended Nambu-Jona-
Lasinio (ENJL) model adopted in Ref. [13]. In that
work, the point-like contributions to the LBL vertex
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TABLE II: Coefficients of d = 10 operators O
(10)
n contributing

to the HLBL amplitude, scaled by e−4(4π)2m6
π. First column

denotes operator index n. Second and third columns give LO
and NLO contributions in χPT, while final column indicates
VMD result. Identifying r2π = 6/M2

V (see text) implies agree-
ment between the two-loop χPT and VMD predictions for the
charge radius contribution.

n 1 loop 2 loop VMD

1 1
45

1
3

{

1
9
(mπrπ)

2 + 4
5
(mπ

Fπ
)2(αr

9 + αr
10)

}

2
9

m2

π

M2

V

2 2
45

1
9

{

1
3
(mπrπ)

2 + 1
2

m2

π

Λ2
χ
+ 44

5
(mπ

Fπ
)2(αr

9 + αr
10)

}

2
9

m2

π

M2

V

3 2
315

1
135

(mπrπ)
2 2

45

m2

π

M2

V

4 1
189

1
135

(mπrπ)
2 2

45

m2

π

M2

V

5 1
135

4
45
(mπ

Fπ
)2(αr

9 + αr
10) 0

6 1
315

0 0

7 1
945

0 0

function Πµναβ are modified by the inclusion of vec-
tor meson dominance (VMD) type propagator functions
Vµλ(k

2) = (gµλM
2
V − pµpλ)/(M

2
V − p2) as

Πµναβ
→ Vµλ(p1)Vνσ(p2)Vαρ(p3)Vβη(p4) Π

λσρη , (4)

with the “vector meson mass” MV in general a function
of the photon momentum p2j . The Ward identities im-
ply that the pµpλ terms do not contribute to the overall
LBL vertex function; hence, the replacement of Eq. (4) is
equivalent introducing a VMD form factor for each pho-
ton when MV is taken to be a constant. The correspond-
ing prediction for the charge radius is (r2π)VMD = 6/M2

V .
For MV = mρ, one obtains a value for r2π in good agree-
ment with experiment. An analogous treatment using a
Hidden Local Symmetry approach [15, 16] agrees with
the ENJL prescription to O(p6).
Expanding the right hand side of Eq. (4) to first order

in p2/M2
V we obtain the VMD model prediction for the

NLO operator coefficients given in the last column of Ta-
bles I and II. Since Πµναβ is already O(p4) the leading
order expansion of Eq. (4) is O(p6). Hence, corrections
to Wilson coefficients from VMD start at d = 10 opera-
tors in Table II. Identifying 6/M2

V with the corresponding
quantity that gives the pion charge radius , we observe
that the VMD model reproduces some but not all of the
physics that one expects at NLO for the LBL amplitude.

In particular, the polarizability contributions to O
(8)
1 as

well as O
(10)
1,2,5 are absent from the VMD prescription. As

a point of principle, the results of this comparison imply
that the VMD-type models employed for aHLBL

µ are not
fully consistent with the strictures of QCD for the low-
momentum behavior of Πµναβ and that use of a more
consistent model prescription is warranted.
On a practical level, given the relative magnitudes of

the αr
9 + αr

10 and αr
9, one has reason to suspect that the

omission of the polarizability contribution could have nu-

merically significant implications for aHLBL
µ . As discussed

earlier, a comparison of the low-momentum LO and NLO
contributions to the low-momentum HLBL amplitude in-
dicates that the both the charge radius and polarizability
contributions that appear at NLO can generate substan-
tially larger corrections than one might expect based on
power counting, due to the fortuitous numerical suppres-
sion of the LO terms. Moreover, the charge radius and
polarizability contributions can have comparable magni-
tudes in the case of some operators, while for others, one
or the other dominates.

At this point, one may only speculate as to the ef-
fect on aHLBL

µ of the previously neglected polarizability
contribution. Nevertheless, it is instructive to refer to
existing model computations that introduce a pion form
factor at the π+π−γ vertices. In the original compu-
tation of Ref. [31], inclusion of the form factor via a
VMD prescription reduced the magnitude of the charged
pion loop contribution to aHLBL

µ by a factor of three from
the scalar QED/point-like pion result. The subsequent
computation using the HLS procedure yielded an even
stronger suppression (a factor of ten)[15, 16]. The ENJL
calculation of Ref. [13] leads to a result that is about four
times larger than the HLS computation, but still strongly
suppressed compared to the point-like pion/scalar QED
limit. In all cases, the use of a VMD type procedure
that matches onto the r2π terms for the HLBL amplitude
at low-momentum has a much more significant numeri-
cal impact on aHLBL

µ than the low-momentum compar-
isons would suggest. Given that the latter already indi-
cate a substantial contribution from the pion polarizabil-
ity, one has ample motivation to include the correspond-
ing physics in modeling the charged pion contribution to
aHLBL
µ . An effort to do so will be reported in forthcoming

work.
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