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We derive a sum rule for the total quark angular momentum of a spin-one hadronic system within a
gauge invariant decomposition of the hadron’s spin. We show that the total angular momentum can
be measured through deeply virtual Compton scattering experiments using transversely polarized
deuterons.
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A crucial, outstanding question in QCD is the proton
spin puzzle. A number of experiments performed since
the ’80s, including the most recent HERMES, Jefferson
Lab and Compass measurements, have confirmed that
only about 30% of the proton spin is accounted by quarks,
and that the quark contribution is dominated by the va-
lence component (see review in [1]). Current efforts, both
in theory and experiment, are therefore directed towards
determining the contributions of the Orbital Angular Mo-
mentum (OAM) of the quarks, as well as of the spin and
OAM of the gluons. Sum rules were derived that relate
the Energy Momentum Tensor’s (EMT) form factors to
the nucleon angular momentum [2, 3]. [25] In [2], start-
ing from the classical/canonical form of the EMT, it is
possible to identify the four contributions from the quark
and gluon OAM and spin components. Of these only the
quark and gluon spin terms appear among the observ-
ables for hard scattering processes. On the other side,
the result derived in [3], uses the symmetric, Belinfante
form of the EMT and leads to different definitions of the
angular momentum components, Jq = Lq + ∆Σ, and Jg.
These can, in principle, be measured through Deeply Vir-
tual Compton Scattering (DVCS) (see also [7]). However,
the interpretation of these components in terms of unin-
tegrated parton angular momentum density distributions
is not straightforward. The values of the observables will
therefore differ in the two approaches [8].

Motivated by the challenge of the spin puzzle on one
side, and by the feasibility of DVCS type experiments, we
decided to investigate the angular momentum sum rules
for hadronic systems of different spin which are provided,
in practice, by nuclear targets. In this contribution we
present a sum rule for the total angular momentum in a
spin one nucleus, the deuteron. The sum rule is of par-
ticular relevance because it involves only one Generalized
Parton Distribution (GPD), namely
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Jq =
1

2

∫
dxxHq

2 (x, 0, 0). (1)

Hq
2 (x, ξ, t)’s first moment is equal to the deuteron mag-

netic form factor G2(t) ≡ GM (t) [9]. This expression can
be compared to the nucleon sum rule [3],

Jq =
1

2

∫
dxx [Hq(x, 0, 0) + Eq(x, 0, 0)] , (2)

where the first moment of the GPD sum Hq(x, ξ, t) +
Eq(x, ξ, t) is the nucleon magnetic form factor, F1(t) +
F2(t) ≡ GM (t). Similar to the proton GPD E, H2 does
not have a forward partonic limit.

In what follows we outline the fundamental steps of
the derivation. We start from the expression for angular
momentum in QCD,

J i =
1

2
εijk

∫
d3xM0jk , (3)

where the tensor M0ij is the angular momentum density
given in terms of the symmetric, gauge-invariant, and
conserved (Belinfante) EMT as Mαµν = Tανxµ−Tαµxν .
Notice that Tµν has separate gauge invariant contribu-
tions from quarks and gluons [3], along with their inter-
action through the gauge-covariant derivative.

Tµν = Tµνq + Tµνg =
1

2
[ψ̄γ(µi

−−→
Dν)ψ + ψ̄γ(µi

←−−
Dν)ψ]

+
1

4
gµνF 2 − FµαF να (4)

The connection of GPDs to the angular momentum be-
comes apparent by first writing down the matrix element
of Tµνq,g , separately for quarks and gluons, for a spin-one



2

system in terms of gravitational form factors as,

〈p′|Tµν |p〉 = −1

2
PµP ν(ε′∗ε)G1(t)

− 1

4
PµP ν

(εP )(ε′∗P )

M2
G2(t)− 1

2

[
∆µ∆ν − gµν∆2

]
(ε′∗ε)

× G3(t)− 1

4

[
∆µ∆ν − gµν∆2

] (εP )(ε′∗P )

M2
G4(t)

+
1

4
[(ε′∗µ(εP ) + εµ(ε′∗P ))P ν + µ↔ ν]G5(t)

+
1

4
[(ε′∗µ(εP )− εµ(ε′∗P )) ∆ν + µ↔ ν

+ 2gµν(εP )(ε′
′∗P )− (ε′∗µεν + ε′∗νεµ)∆2

]
G6(t)

+
1

2
[ε∗ ′µεν + ε′∗νεµ]G7(t) + gµν(ε′ ∗ε)M2G8(t) (5)

where t = ∆2, P = p + p′ and ∆ = p′ − p, and ε, ε′

are the polarization vectors of the deuteron in the initial
and final helicity states, respectively. There are seven
conserved independent form factors, Gi(t), i = 1, 7, and
an additional non conserved term, gµν(ε′ ∗ε)M2G8(t). In
analogy with the nucleon case [10, 11], the enumeration
of the independent deuteron EMT form factors, as well
its Lorentz structure, was obtained using the partial wave
formalism and crossing symmetry (details on our method
for counting the form factors are presented in [12] (nu-
cleon) and in an upcoming paper [13] (deuteron)).

The energy momentum tensor was constructed by con-
sidering all independent scalar, vector, axial-vector, and
tensor components formed with the polarization and mo-
mentum four-vectors. In particular, the G7 term in our
formula corresponds to the irreducible second rank ten-
sor component. From an independent analysis of the JPC

quantum numbers for a spin 1 system in the t channel,
we find that seven form factors describe the n = 2 mo-
ments of the vector operator. These are: G1...G7. Notice
that the G7 term is at variance with G6 where an irre-
ducible tensor component also appears, since in this case
the tensor is multiplied by momenta to guarantee conser-
vation. The coefficient of G7 is conserved in the forward
limit. This sets it apart from the G8 coefficient which
cannot be conserved. Therefore, it turns out that G8

does not contribute to the sum rules while G7 does. A
more elaborate and detailed explanation will be given in
a forthcoming paper. We emphasize, however, that the
detailed treatment of this point does not affect the spin
sum rule, which is the main focus, and the original result
in this paper.

Following a point raised in Ref.[7], we carefully used a
wave-packet approach to derive the relation between Jz

and the EMT [2]. From Eq.(3), and using Eq.(5) for a
spin one system,

Jzq,g =
1

2
G5(0) (6)

One can now connect the gravitational form factors with
the coefficients of the correlator for (unpolarized) DVCS.

For a spin one system one can write this in terms of five
unpolarized GPDs (from the Lorentz symmetric part of
the hadronic tensor) [9],∫

dκ

2π
eixκP.n〈p′, λ′| ψ̄(−κn) γ.nψ(κn) |p, λ〉

= −(ε′∗.ε)H1 +
(ε.n)(ε′∗.P ) + (ε′∗.n)(ε.P )

P.n
H2

− (ε.P )(ε′∗.P )

2M2
H3 +

(ε.n)(ε′∗.P )− (ε′∗.n)(ε.P )

P.n
H4

+
{

4M2 (ε.n)(ε′∗.n)

(P.n)2
+

1

3
(ε′∗.ε)

}
H5 (7)

where n is a light-like vector. It follows that by expanding
the matrix element on the left hand side of Eq.(7) and
taking the second moment with respect to x one can find
the following relation between the second moments of the
GPDs Hi and the form factors Gi,

2

∫
dxx[H1(x, ξ, t)− 1

3
H5(x, ξ, t)]= G1(t) + ξ2G3(t)

(8)

2

∫
dxxH2(x, ξ, t) = G5(t) (9)

2

∫
dxxH3(x, ξ, t) = G2(t) + ξ2G4(t) (10)

−4

∫
dxxH4(x, ξ, t) = ξG6(t) (11)∫

dxxH5(x, ξ, t) = − t

8M2
D

G6(t) +
1

2
G7(t) (12)

For t = 0 then one finds the sum rule relation between
the deuteron GPD H2, and the angular momentum Jq,g,
shown in Eq.(1),

Jq,g =
1

2

∫
dxxHq,g

2 (x, 0, 0). (13)

This sum rule, which was derived following the same
steps as for the spin 1/2 case, is both the main result and
the starting point of our paper. We now ask the ques-
tions: i) what is the parton content of H2, and ii) can H2

be extracted from experiment with sufficient accuracy?
In order to explain the partonic sharing of angular mo-
mentum in the deuteron we start from a picture in terms
of bound nucleons. Eq.(7) can be written in terms of
“quark-nucleus” helicity amplitudes that depend on ξ, t
and Q2 while implicitly convoluting over the unobserved
quark and nucleon momenta,

CΛ′λ′
q,Λλq =

∑
λN ,λ′

N

BΛ′λ′
N ,ΛλN

⊗Aλ′
Nλ

′
q,λNλq

, (14)

where Aλ′
Nλ

′
q ;λN ,λq

and Bλ′,λ′
N ;λ,λN

, are the quark-

nucleon [14], and nucleon-deuteron helicity amplitudes,
respectively, Λ, λN , λq, being the deuteron, nucleon, and
quark helicities. H2 can be explicitly evaluated from
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FIG. 1: (color online) Upper panel: Total angular momen-
tum density distributions, Jq, q = u, d, calculated using the
GPD parametrization of Ref.[14]. Theoretical error bands are
included. Lower panel: Orbital angular momentum density
distributions, Lq, q = u, d, obtained from Eq.(18), using the
parametrizations from [14] (Jq) and [20] (∆q). In both panels
the dashed lines correspond to the scale µ2 ≈ 0.1 GeV2 where
spectator models are evaluated [8]; the full lines from our fit
results are calculated at Q2 = 4 GeV2.

Eq.(14) using the convolution formalism that was de-
veloped in [15], taking care of the angular structure
for the deuteron [16]. For H2(x, 0, 0) = H2, only the
{Λ′,Λ} ≡ {1, 1}, {0, 1} deuteron helicity components
contribute [13, 16],

H2 = 2
∑
λq

(
C1λq,1λq

− 1√
2τD

C1λq,0λq

)

≈
MD/M∫

0

dzf1,1(z)HN (x/z, 0, 0) + f0,1(z)EN (x/z, 0, 0),

(15)

where HN = Hu + Hd, EN = Eu + Ed, are the
isoscalar nucleon GPDs, the kinematical variables, x =
k+/(P+

D/2), z = p+/(P+
D/2), p =| p |, τD = (t0 −

t)/2M2
D, with t0 = −4ξ2M2

D/(1− ξ2), involve the quark,
nucleon and deuteron four-momenta, kµ, pµ, and PD,µ,

respectively,

f1,1(z) = 2πM

∞∫
pmin(z)

dp p
∑
λ

χ
∗λ′

N1
λN2

1 (z, p)χ
λN1

λN2
1 (z, p)

(16a)

f0,1(z) = 4πM

∞∫
pmin(z)

dp p
∑
λ

χ
∗λ′

N1
λN2

0 (z, p)χ
λN1

λN2
1 (z, p).

(16b)

where λN1 (λ′N1
) are the initial (returning) nucleons’ he-

licities, λN2 is the spectator nucleon one, the sum index is

λ = {λN1
, λ′N1

, λN2
}; χλN1

,λN2

Λ (z, p) is the deuteron wave
function [17, 18],

χ
λN1

,λN2

Λ (z, p) = N
∑

L,mL,mS

(
j1 j2 1
λN1 λN2 mS

)(
L S J
mL mS Λ

)

× YLmL

(
p

p

)
uL(p). (17)

In Eq.(17), j1 = j2 = 1/2, S = J = 1; YLmL
depends on

cos θ = [M(1− z)−E]/p, M being the nucleon mass and
E the deuteron’s binding energy, consistently with the
formalism for describing deep inelastic processes from nu-
clear targets [19] in the approximation where the quarks’
k⊥ dependence is trivially integrated over, and no off-
shell effects are considered [15].

Our results are shown in Figures 1 and 2. In Fig.1 we
present the proton u and d quarks components of both
the total angular momentum density (upper panel), and
the orbital angular momentum density (lower panel),

Lq(x) = Jq(x)− 1

2
∆q(x), (18)

∆q(x) being the quark polarized density, and Jq(x) be-
ing the integrand in Eq.(2). Both the unpolarized and
polarized u and d quarks GPDs used in the calculation
are from the parametrization of Ref.[14]. The impor-
tance of perturbative QCD evolution is evident from the
comparison of results at an initial low scale used e.g. in
spectator models, Q2 = µ2 ≈ 0.1 GeV2, and evolved to
Q2 = 4 GeV2 (see discussion in [22]). As a consequence
of the Regge behavior of ∆q, the OAM density is peaked
at low x. Our values for the proton’s angular momentum
components are: Ju = 0.286±0.011, Jd = −0.049±0.007,
Lu = −0.104±0.087, Ld = 0.088±0.031 at Q2 = 4 GeV2.

The total angular momentum density of quarks in the
deuteron is compared to the nucleon one in Fig.2. The
upper panel shows the isoscalar combination, JN (x) =
Ju(x) +Jd(x) at Q2 = 4 GeV2. In the absence of nuclear
effects, i.e. if the deuteron were treated as two indepen-
dently moving nucleons, in Eq.(15), f11(z) = f01(z) =
δ(1 − z), and H2 = H + E. Even including nuclear ef-
fects, the deuteron angular momentum is dominated by
the GPD H. The separate dependences of the various
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FIG. 2: (color online) (Upper panel) Contributions H + E,
H, and E, to the integrand in the angular momentum sum
rule, Eq.(1). All curves were calculated at the scale Q2 = 4
GeV2, using the parametrization from Ref.[14] for the free nu-
cleon. (Lower panel) Ratio of deuteron to nucleon contribu-
tions to angular momentum, H2/(HN +EN ) ≡ JD(x)/JN (x),
(full curve), calculated using Eq.(15) for the deuteron plot-
ted along with the ratio of unpolarized deuteron to nucleon
deep inelastic structure functions HD/HN (dashes). The
small hatched area represents the experimental results from
Ref.[21].

components in the deuteron, and their impact on angu-
lar momentum are illustrated in the lower panel of Fig.2,
representing the ratio of the nuclear to nucleon contribu-
tions, HD/HN , for the unpolarized deep inelastic struc-
ture functions, and H2/(HN + EN ) ≡ JD(x)/JN (x). As
in the forward case [23], we find that the distinct angular
dependence of the D-wave component plays a non triv-
ial role (more details will be given in [13]) producing a
most striking effect through the GPD E. Its impact is
however suppressed. A similar effect also can be shown
for H5(x, 0, 0) ≡ b1, in agreement with the model calcu-
lations of [23].

How does this affect the spin sum rule? On one side, in
a deuteron target, we observe that the angular momen-
tum is dominated by the GPD H. If the nuclear effects
were found to be small, as predicted within a “standard”
nuclear model, – nucleons bound by exchanged mesons –
the deuteron target would provide an easier access to to-
tal angular momentum. On the other side, any deviation

from the standard nuclear model predictions presented
here would signal a different origin of OAM, perhaps re-
lated to gluon components, and would therefore be ex-
tremely interesting. The question of whether the quarks’
OAM can actually be measured for a deuteron target is
therefore mandatory. While observables were presented
in [24] that contain several deuteron GPDs, none of them
is sensitive to H2. Here we suggest the measurement
of the deuteron target transverse spin asymmetry, AUT ,
which we derive in terms of GPDs as,

AUT ≈ −
4
√
τ0

Σ
=m
[
H∗1H5 +

(
H∗1 +

1

6
H∗5
)

(H2 −H4)

]
(19)

where τ0 = τ(ξ = 0), Σ is the sum of the transversely
polarized target cross sections, and Hi, are the Compton
form factors for the corresponding GPDs. One can see
that the term containing H2 should dominate the asym-
metry, given the expected smallness of H5 [9, 16].

In conclusion, we analyzed the question of OAM in
a spin one hadronic system. We derived a sum rule
whereby the second moment of the GPD H2 gives the to-
tal angular momentum, H2 being the same GPD whose
first moment gives the magnetic moment. Nuclear effects
evaluated within a standard model for the deuteron give
H2 ≈ H+E, that is the quarks’ angular momenta in the
deuteron, and hence their OAM, are predicted to be sim-
ilar to the sum of the neutron plus proton taken alone.
This cancellation is consistent with the smallness of the
deuteron magnetic moment, reflecting the approximate
cancellation between the proton and neutron magnetic
moments. If found in experiment, deviations from this
standard behavior which is calculable to high precision
and under control, could be a signal of other degrees of
freedom such as six quark components, or k⊥ dependent
re-interactions beyond the collinear convolution consid-
ered here. In either situation studying spin one hadronic
systems might shed light on the elusive gluon angular
momentum components. Finally, we show that measur-
ing angular momentum in the deuteron can be at reach
in future experimental facilities with high enough energy
and luminosity, through transverse spin observables.
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