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The ‘Miranda Procedure’ proposed for analyzing Dalitz plots for CP asymmetries in charged B
and D decays in a model-independent manner is extended and refined. The complexity of CKM CP
phenomenology through order λ6 is needed in searches for New Dynamics (ND). Detailed analyses
of three-body final states offer great advantages: (i) They give us more powerful tools for deciding
whether an observed CP asymmetry represents the manifestation of ND and its features. (ii)
Many advantages can already be obtained by the ‘Miranda Procedure’ without construction of
a detailed Dalitz plot description. (iii) One studies CP asymmetries independent of production
asymmetries. We illustrate the power of a second generation Miranda Procedure with examples
with time integrated rates for Bd/B̄d decays to final states KSπ

+π− as trial runs with comments
on B± → K±π+π−/K±K+K−.
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I. LANDSCAPE OF Bu,d,s, Du,d,s & τ CP VIOLATIONS

The predictions of CKM theory have been impressively confirmed to a degree that has persuaded a part of our
community to focus on scenarios of Minimal Flavour Violation (MFV) – i.e., models of New Dynamics (ND) that
contain the same sources of flavour violations as the Standard Model (SM). Some intriguing work has been done along
these lines, yet we view the hypothesis of MFV as far from compelling at present. The data still allow for sizable
deviations from SM predictions in heavy flavour transitions; in D0 and some Bs decays they could even be dominant.
Furthermore, baryogenesis requires the intervention of ND with CP violation. If ND appears around the O(1 TeV)
scale underlying the weak-electric phase transition, which is not intrinsically connected with flavour dynamics, it will
affect CP asymmetries in heavy flavour decays – but not on the leading level. CP asymmetries are given by three
classes of observables, namely

• |q/p| 6= 1, which shows purely indirect CP violation.

• Absolute amplitudes |Af | 6= |Āf | that show purely direct CP violation and depend on the final states.

• The relative phases between q/p and Āf ⊗A∗f , which will depend on the final state f . We write Āf ⊗A∗f rather

than just ĀfA
∗
f , because for a three-body final state one has to denote the position in the two-dimension plot.

The significance of this feature will become clearer through the illustrations given below.

A. Present Status of CP Asymmetries in B, D & τ Transitions

Oscillations have been observed for all three heavy flavours Bs, Bd and D0 mesons, but on very different numerical
levels.

1. Indirect CP Violation in Bd,s Transitions

Indirect CP violation has been measured with very good accuracy in Bd → ψKS/KL and Bd → π+π− [1]:

S(Bd → ψKS) = 0.658± 0.024 (1)

S(Bd → π+π−) = −0.61± 0.08 (2)

Purely indirect CP violation gives S(Bd → ψKS) = −S(Bd → π+π−).

Very recent data from LHCb [2] on Bs → ψφ, ψf0(980) give

φs = −0.002± 0.083± 0.027 rad (3)

2. Direct CP Violation in Bu,d,s Transitions

Direct CP asymmetries has been established in Bd decays [1, 3]:

ACP (Bd → K+π−)|PDG′10 = −0.098± 0.013 (4)

ACP (Bd → K+π−)|LHCb′11 = −0.088± 0.011± 0.008 (5)

C(Bd → π+π−) = −0.38± 0.17 (6)

No sign for direct CP violation has been found in Bd → KSπ
0 – by sizable asymmetry can still be allowed:

ACP (Bd → KSπ
0)|PDG′10 = 0.00± 0.13 (7)
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Intriguing evidences for direct CP violation has been found in Bs and B+ in (quasi-)two-body final states [1, 3, 4]:

ACP (B̄s → K+π−)|LHCb′11 = +0.27± 0.08± 0.02 (8)

ACP (B+ → DCP [+1]K
+) = +0.24± 0.06 (9)

ACP (B+ → ρ0K+) = +0.37± 0.10 (10)

ACP (B+ → f0(1370)π+) = +0.72± 0.22 (11)

ACP (B+ → ηK+) = −0.37± 0.09 (12)

ACP (B+ → f2(1270)K+) = −0.68+0.19
−0.17 (13)

ACP (B̄s → K+π−)|LHCb′11 = +0.27± 0.08± 0.02 (14)

ACP (B̄s → K+π−)|CDF = +0.39± 0.15± 0.08 (15)

3. Evidence for CP Asymmetries in D0 Decays

No sign of indirect CP violation has been found in D0 → K+K−/π+π− [5]:∣∣∣∣qp
∣∣∣∣ = 0.88+0.18

−0.16 , φ =
(
−10.2+9.4

−8.9

)o
(16)

Direct CP asymmetry has been found in Γ(D0 → K+K−) − Γ(D0 → π+π−) with 3.5 sigma away from zero by
LHCb [6] and with 2.7 sigma by CDF [7];

∆ACP = −0.82± 0.21(stat)± 0.11(syst)% LHCb (17)

∆ACP = −0.62± 0.21(stat)± 0.10(syst)% CDF (18)

with ∆ACP ≡ ACP (D0 → K+K−) − ACP (D0 → π+π−). This is the first significant evidence for CP violation in
∆C 6= 0 dynamics, and it is important whether it is due to alone SM or need impact from ND.

4. Evidence for CP Asymmetries in τ Decays

In τ− → KSπ
−ν decays one has a prediction [8]

ACP(τ+ → ν̄ +KSπ
+)|SM = (0.36± 0.01)% , (19)

independent of dynamics that generate K0 → K̄0 oscillations, and data from the BaBar Collab. [9]:

ACP(τ+ → ν̄ +KSπ
+[≥ 0π0])|BaBar = (−0.36± 0.23± 0.11)% . (20)

B. CKM Matrix Parametrization through O(λ6)

The usually applied the Wolfenstein parameterization of the CKM matrix gives real parts through O(λ3) and the
imaginary part through O(λ4). The CKM matrix is usually described by the four parameters λ, ρ, η and A with the

last three ones of order unity; thus one gets |Vub/Vcb| ' λ
√
ρ2 + η2 ∼ O(λ).

PDG states |Vub/Vcb| ∼ 0.085. The global fit leads to ρ ' 0.13 and η ' 0.34. It means that one has to use a
parametrization with through order of λ6 and with other quantities of true order of unity. One has been found in
Ref.[10]: 

1− λ2

2 −
λ4

8 −
λ6

16 , λ, h̄λ4e−iδQM ,

−λ+ λ5

2 f
2, 1− λ2

2 −
λ4

8 (1 + 4f2)− fh̄λ5e−iδQM fλ2 + h̄λ3e−iδQM

+λ6

16 (4f2 − 4h̄2 − 1), −λ
5

2 h̄e
−iδQM ,

fλ3, −fλ2 − h̄λ3e−iδQM 1− λ4

2 f
2 − fh̄λ5e−iδQM

+λ4

2 f + λ6

8 f, −λ
6

2 h̄
2

+O(λ7) (21)

A global fit of the CKM matrix gives: λ ' 0.225, f ' 0.75, h̄ ' 1.35 and the ‘maximal’ phase δQM ' 90o.
This pattern is not so obvious as from the Wolfenstein parametrization, more subtle for CP violation and is similar

only in a semi-quantitive way [11]. To give three examples:
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• CP asymmetry in Bd → ψKS depends in SM on

−Im
V ∗tbVtd
VtbV ∗td

VcbV
∗
cs

V ∗cbVcs
'

2h̄λ
f sinδQM +

(
h̄λ
f

)2

sin2δQM

1 +
(
h̄λ
f

)2

+ 2h̄λ
f cosδQM

(22)

One gets:

S(Bd → ψKS) = sin2φ1 ' 0.63− 0.69 for δQM ' 75o − 90o (23)

S(Bd → ψKS) = sin2φ1 ∼ 0.74 for δQM ' 100o − 120o ; (24)

i.e., CKM dynamics could produce S(Bd → ψKS) ∼ 0.74 as largest value for CP asymmetry with δQM '
100o − 120o, not with the maximal δQM = 90o.

• Again one finds that indirect CP violation in Bs is CKM suppressed in the SM by

Im

[
V ∗tbVts
VtbV ∗ts

VcbV
∗
cs

V ∗cbVcs

]
' 2(h̄/f)λ3 [sinδQM + 2(h̄/f)sin2δQM]

1 + (4h̄/f)λ cosδQM
∼ 0.03− 0.05 . (25)

with δQM ' (75− 120)o.

• Direct CP violation in B± → D+K
± depends on sinφ3, where one gets:

φ3 = arg

(
V ∗ubVud
−V ∗cbVcd

)
' (1− λ2/2)

h̄λ

f

sinδQM

1 + (h̄λ/f)2 + 2(h̄λ/f)cosδQM
(26)

Thus

φ3 = 0.28 / 0.34 / 0.42 for δQM = 75o / 90o / 110o . (27)

Therefore sin2φ1 ' 0.69 ± 0.06 and sinφ3 ' 0.34 ± 0.07 are consistent with CKM dynamics with lower values of φ1

& φ3 correlated with each other with 10 % vs. 20 %. Nevertheless the impact of ND can ‘hide’ in predicted CP
asymmetries.

C. Present Resume on CP Asymmetries in Two-Body Final States in B and D Decays

SM generates indirect and direct CP asymmetries in B & D (and in K) transitions. Their strengths are based on
several items:

• The CKM matrix is discussed above in Sect.I B. We can say that SM is at least the leading source of CP
violation in B on most transitions – except at present for Bs → ψφ/ψf0(980). On the other hand ND can affect
CP asymmetries on the level of ∼ 10− 20% for Bu,d decays. Furthermore one has to focus on correlations with
CKM suppressed decays of Bu,d,s (and K and D(s)) on the level of 20 %. Therefore one need more accuracy
from data and their interpretation to find impact of one (or two) ND – and to probe three-body final states.

• While the final states K+π− in Bd and B̄s are the same, the underlying dynamics are very different:

– SM amplitudes for B̄d → K−π+ are given by ‘tree’ Cabibbo suppressed transitions b → uūs and (1-loop)
‘Penguin’ b→ sq̄q; ∼ 10 % CP asymmetry seems a reasonable value in SM.

– On the other hand SM amplitude for B̄s → K+π− is given by ‘tree’ Cabibbo favoured b → uūd and
Cabibbo suppressed ‘Penguin’ b → dq̄q. Therefore one expects CP asymmetry on the ‘natural’ level of
O(1%).

ND can enhance ‘Penguin’ amplitude significantly. However one expects such effect in other B decays –
unless a nearby resonance can affect mostly Bs, but not Bd,u decays.

For D decays the landscape is much more subtle, but also very ‘topical’:

– CKM dynamics produce direct CP asymmetries in singly Cabibbo suppressed (SCS) decays around the
scale of 0.001.
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– CP asymmetries in double Cabibbo suppressed (DCS) ones are zero at O(λ4).

• CP asymmetries are controlled by non-perturbative QCD.

• The difference between ACP(τ+ → ν̄ + KSπ
+[≥ 0π0])|measured and ACP(τ+ → ν̄ + KSπ

+)|SM depend on our
control of non-perturbative QCD – like the plots of the final states of ACP(τ+ → ν̄ + [Kπ]+) and ACP(τ+ →
ν̄ + [Kππ]+) [12].

Finding impact of ND in CP asymmetries in B and D decays is one thing – however probing the ‘shape’ of one (or
two) ND is another challenge.

Dedicated studies of three-bodies final states are needed to identify important features of ND involved [13]. Three-
body final states analyses are very time consuming. In Sect.II we list the general advantages that such analyses merit
the needed work; we first sketch in Sect.III the situations for three-body decays of Bs, Bd, D

0 in general for searching
CP asymmetries through (partly) time integrated data to set the stage; afterwords we give more realistic situations
in Bd transitions in Sect.IV B and comments on Bs transitions in Sect.V; finally we summarize our main conclusions
in Sect.VI.

II. ADVANTAGES OF STUDIES OF THREE-BODY FINAL STATES

While the weak dynamics from CKM and ND are the driving forces for CP asymmetries, one has to control FSI
from non-perturbative QCD not only in a qualitatively way – that is the focus of our study.

A. Opportunities Offered by Dalitz Plot Studies

No study of any three-body final states in B decays have found an established CP violation, and none from K or
D mesons shows any sign for it. However there can be – actually they are more likely to be found. The average over
CP asymmetries in a Dalitz plot is expected to be much larger than ‘local’ asymmetries, which often compensate with
each other. As explained in some detail in [13], crucial insights into CP odd dynamics will be learnt from their impact
on final state distributions. Dalitz studies will play a central role in the future for several reasons:

• Differential or ‘local’ asymmetries could be considerably larger than ones averaged over the Dalitz plot.

• For two-body final states there is only one CP asymmetry, namely Γ(B0/D0 → h+h−) vs. Γ(B̄0/D̄0 → h+h−).
On the other hand the topologies of Dalitz plots for B0 → h+h−h0 and B̄0 → h+h−h0 are in general different;
for example the two half of the plots sh+h0 − sh−h0 for the B0 and B̄0 are different. However their sum have to
be symmetric – unless CP asymmetries occur!

• While the difference in total rates for B/D → 3h vs. B̄/D̄ → 3h are affected by production asymmetries,
differences between corresponding regions in the Dalitz plots are not.

• Nontrivial correlations provide powerful validation tools.

• The pattern of a CP asymmetry that has emerged in a Dalitz plot can tell us about the spin structure of the
underlying effective operator.

• The cleanest experimental sign whether an observed asymmetry is produced by direct or indirect CP violation
(or which parts are due to one or the other) is their dependence on the time of decay. Direct asymmetry is
independent of the time of decay, whereas indirect violation evolutes in time in a clear prescription, since it is
driven by oscillations. With only time integrated data with two-body final states one cannot decide it. If one
observes a CP asymmetry in a leading CKM final state – like Bd → ψKS or Bs → ψφ – you will argue that it
is most likely indirect. Yet for CKM-suppressed decays you hardly have such an argument. As explained later,
one can use more decision criterions from three-body final states.

• Time depending CP asymmetries give us more informations about underlying dynamics for B0 and D0 tran-
sitions. Of course one needs more statistics. Partially time integrated rates for three-body final states give us
more insights.

Dalitz studies offer also a more technical advantage when searching for CP asymmetries, namely ‘tunable’ strong
phases. Since that is of direct relevance for our subsequent analysis, we explain it next.
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B. Phases with Breit-Wigner Resonances

With CP violation being expressed by a complex weak phase due to CPT invariance, it can lead to an observable
asymmetry only if one has the interference between two different amplitudes. Yet more is needed: hadronization has
to affect the two amplitudes differently. This is usually expressed by stating that the two amplitudes have to exhibit
different weak as well as strong phases.

Consider the decay P → f receiving contributions from two coherent amplitudes,

A(P → f) = eiφ
W
1 eiδ

FSI
1 |A1|+ eiφ

W
2 eiδ

FSI
2 |A2| (28)

A(P̄ → f̄) = e−iφ
W
1 eiδ

FSI
1 |A1|+ e−iφ

W
2 eiδ

FSI
2 |A2|, (29)

where φWi and δFSI
i are the weak and strong phases, respectively, and Ai are the moduli of the amplitudes. The CP

asymmetry between partial widths

ACP =
Γ(P → f)− Γ(P̄ → f̄)

Γ(P → f) + Γ(P̄ → f̄)
, (30)

is given by

ACP =
2 sin(∆φW ) sin(∆δFSI)|A2A1|

1 + |A2A1|2 + 2|A2A1| cos(∆φW ) cos(∆δFSI)
(31)

CP violation is induced by ∆φW , but it becomes observable only if the final state interaction (FSI) introduces a
non-trivial phase shift.

For two-body final states it is often implied that the strong phases δFSI
i carry a fixed value for a given final state f

(the two amplitudes are assumed to have different isospin contents up to isospin violation).
In the case of three-body decays, the transition P → f is dominated by resonant intermediate states. The re-

quirement of non-trivial strong phase different is satisfied by the energy dependent phases of the resonances. The
Breit-Wigner excitation curve for a resonance R reads

FBW
R (s) =

1

m2
R − s− imRΓR(s)

, (32)

introducing a sizable phase as expressed through

ImFBW
R (s) =

mRΓR(s)

(m2
R − s)2 + (mRΓR(s))2

, (33)

where ΓR(s) denotes the energy dependent relativistic width.
For P → p1p2p3 we define s1 = (p1 +p2)2 and s2 = (p1 +p3)2. The previously constant strong phases and amplitude

moduli in Eq.(31) now depend on the position in the Dalitz plot, δFSI → δ(s1, s2) and A → A(s1, s2). The resonant
amplitudes populate the whole phase space in D decays, and a large portion of it in B decays. Therefore, the CP
asymmetry will also depend on the Dalitz plot coordinates, ACP → ACP(s1, s2).

After taking the modulus square of these amplitudes one reads off that a CP asymmetry will arise, when there
are non-zero weak phases. Having to deal with non-uniform strong phases might appear as a complication that just
creates more work for analysis of decays with three-(and four-)body final states. However there is an award for extra
works: a resonance – in particular if it is relatively narrow – can tell us where CP asymmetries have to be and that
the asymmetry has to change over a relatively narrow range in the Dalitz plot. The Dalitz plots carry the same area
independent of production asymmetries; yet the relative corresponding population densities probe CP invariance.

C. ‘Miranda Procedure’

Indirect CP violation in B0 decays is and will be well measured in Bd → ψKS and Bs → ψφ, ψf0(980) – and maybe
in D0 → φKS ; ND can impact those transitions in a sizable way. Direct CP violations affect final states in different
strengths, in particular CKM suppressed ones both in SM and ND. The existence of ND might – and probably will –
be found in indirect and direct CP violation in two-body final states – yet its main features have to extracted from
three-(and four-)body final states. Some asymmetries can tell us about the spin operators creating about etc. There
ere three classes of sources of CP asymmetries, namely



7

1. from CP conjugated quasi-two-body final states;

2. interference between quasi-two-body final states;

3. contributions from ”true” three-body final states or broad resonances like σ.

Contributions from the first class like Kρ or πρ are obvious. However from the second class one finds positive and
negative contributions to the CP asymmetry; therefore those get washed out from the total integral over the phase
space. This applies mostly to the third class of CP asymmetries. Therefore we will denote CP asymmetries from the
first and second classes by CPVA and CPVI below. For the third class one can help sizably from future theoretical
efforts.

The advantages listed above for CP studies in three-body final states justify the considerable ‘overhead’ in statistics
and tuning efforts that constructing a satisfactory Dalitz model requires. Yet one cannot count on obtaining a unique
Dalitz model even with infinite statistics. It is thus of considerable practical value to develop another method for
analyzing a Dalitz plot that is model-independent; it will allow important statements about the existence of a CP
asymmetry and its approximate localization inside the Dalitz plot with smaller data sets than constructing a full
fledged Dalitz model. At the very least it would help to identify the sub-domain in the Dalitz plot where one had to
focus the tuning efforts for the Dalitz model.

In Ref. [13] we have proposed one method that can serve such a purpose in a quantifying way. When searching for
CP asymmetries we have suggested to analyze the significance

Σ(i) ≡ N(i)− N̄(i)√
N(i) + N̄(i)

, (34)

which amounts to a standard deviation for a Poissonian distribution rather than the customary fractional asymmetry

∆(i) ≡ N(i)− N̄(i)

N(i) + N̄(i)
(35)

in particle vs. anti-particle populations N(i) and N̄(i) for each bin i, respectively. One analyzes, whether the Σ(i)
distribution has a higher frequency of exhibiting large deviations from zero than expected for fluctuations We have
illustrated this method – ‘mirandizing’ in vernacular – by applying it to B± → K±π+π− and D± → π±π+π−;
the Dalitz plots have been constructed with fast MC simulations making specific assumptions about the underlying
dynamics and the source of the CP asymmetry. In those pilot studies we could show that using the observable Σ(i)
instead of ∆(i) allowed a much more robust extraction of the seeded CP asymmetry and its location inside the Dalitz
plot. It remains to be seen of course how mirandizing holds up when treating real data.

Our claim is not to replace full fledged Dalitz plot analysis. Our goal is to present an analysis that can produce
significant results on CP violations from smaller data set while maintaining many of the advantages of a full Dalitz
plot study. The latter is still the final goal of our road to ‘Rome’ – the impact of New Physics on CP violations in
nonleptonic decays of beauty and charm hadrons. We also want to encourage others to try other possible roads to
this ‘Rome’. An interesting work can be found in Ref. [14]

D. Comment on CP Asymmetries in τ− → ν[Kπ/Kππ]−

The SM generates a global CP asymmetries in τ− → νKS [S = 0] due to K0 − K̄0 oscillations with 2Re εK , but
not beyond that. On the other hand ND has a larger chance to appear in the CP asymmetries in τ− → ν[Kπ′s]−,
since SM amplitudes are Cabibbo suppressed.

For τ− → ν[Kπ]− one has a three-body final states in general, and in τ− → ν[K2π/3K]− one has three-body
hadronic final states. The ‘Miranda Procedure’ can and should be applied here with some refining Dalitz plots: the
masses of the hadronic systems are not fixed as in B and D decays.

III. SETTING THE STAGE FOR PROBING CP INVARIANCE

Both indirect and directly CP violations have been established in K0 and Bd transitions, and SM through CKM
theory gives at least the leading contributions. The ND expected – or hoped for – to find around the few TeV scales
should produce some ‘footprints’ through CP asymmetries in B and D transitions. However ‘reading’ them produces
large both experimental and theoretical challenges. The time evolutions of the flavour tagged transitions provide the
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most powerful tool in identifying to source of the underlying dynamics. To begin this projects we want to show what
you learn from non-flavour tagging transitions without time resolved analyses.

For this study we describe the time integrated rates also for non-flavour tagged data and give comments on partly
time resolved rates.

CP asymmetries are control by five observables:

1. x = ∆M/Γ̄ and y = ∆Γ/2Γ̄, which are insensitive to CP violation;

2. |q/p| 6= 1, which shows purely indirect CP violation, and is determined by |q/p| ' 1− 1
2a

CP
SL, where denote the

CP asymmetry in semi-leptonic decays in ‘wrong’-sign leptons;

3. absolute amplitudes |Af | 6= |Āf | that show purely direct CP violation and depend on the final states and

4. the relative phases between q/p and Āf ⊗A∗f , which will depend on the final state f due to direct CP violation.

We write Āf ⊗A∗f rather than just ĀfA
∗
f , because for a three-body final state one has to denote the position in

the two-dimension plot. The significance of this feature will become clearer through the our illustrations later.

We give general expressions with these observables. Then we show that in describing for Bd decays we can ignore yd
effects, while for D0 decays one has to include both xD and yD dependences, but only to first order. For Bs transitions
one has xs � ys, but one has to include ys effects due to spectacularly fast xs oscillations for time integrated data;
CP asymmetries controlled by Im qs

ps
Āf ⊗Af are suppressed by 1/xs.

Indirect CP violation affects all channels through two quantities, namely |q/p| and the relative phase between q/p
and Āf ⊗A∗f ; their weight of course depends on ||q/p| − 1| and the strength of |Āf ⊗A∗f |. As mentioned above we can

use the approximation of |q/p| = 1 for Bd and Bs channels; the effect of indirect CP violation is affected the direct
CP on rate Bd and Bs modes and therefore the impact of ND that is probably different for mode to mode.

For two-body final states like Bs → h+h− vs. B̄s → h+h− time dependent CP asymmetries are reduced by 1/x2
s;

however for direct CP violation in Bs → h+h−h0 vs. B̄s → h+h−h0 one can find an asymmetry between corresponding
regions of the sum of Dalitz plots of Bs → f and B̄s → f due to interference effects – i.e., without flavour tagging.

Obviously flavour tagged time resolved analyses bring the largest information about the underlying dynamics;
our main goal for this study is how many lessons can be obtained from non-flavour tagged time integrated data.
Flavour-tagged and time resolved data will come later.

A. Three-Body Decays for Neutral Mesons

For neutral B or D decays into two-body final states like K+K− or π+π−, it is clear that it is a (even) CP
eigenstate. For f = h+h−h0 like KSπ

+π−, KSK
+K− or π+π−π0 the judgement is more complex: it can be [CP=+]

KSf0(980)/KSσ → KSπ
+π−, [CP=-] KSφ → KSK

+K−, [CP=-] ρ0π0 → π+π−π0 or [CP=+] σπ0 → π+π−π0. At
the same time one has final states K∗±π∓, ρ±π∓ etc. and interferences between them. Not only the total time
integrated widths for P → h+h−h0 vs. P̄ → h+h−h0 give us a lesson on CP violating dynamics, but also their
‘topologies’ – i.e., the distributions over the Dalitz plots. Therefore we denote Af and Āf̄ for P → h+h−h0 and

P̄ → h+h−h0, respectively.
The ‘Miranda procedure’ can be applied to all three-body final states, but here we will discuss it only for f = h+h−h0

like KSπ
+π−.

The time dependent rates can distinguish the three types of CP violations: |q/p| 6= |p/q|, |Af | 6= |Āf̄ | and Im q
p Āf̄⊗A

∗
f

6= Imp
qAf ⊗ Ā

∗
f̄
. For practical reasons we focus on time integrated widths for this study:

Γ(P → f) =
C

Γ1

a+
1

1− ∆Γ
Γ1

b+
1

1− ∆Γ
2Γ1

1

1 + (∆M)2

(Γ1−∆Γ
2 )2

[
c+

∆M

Γ1 − ∆Γ
2

d

] (36)

Γ(P̄ → f̄) =
C

Γ1

ā+
1

1− ∆Γ
Γ1

b̄+
1

1− ∆Γ
2Γ1

1

1 + (∆M)2

(Γ1−∆Γ
2 )2

[
c̄+

∆M

Γ1 − ∆Γ
2

d̄

] (37)

CP violation can appear in the time integrated widths in principle from the three sources listed above.
While the time integrated observables have the largest statistics, the time dependent ones have most detailed

information about the underlying dynamics; partially integrated one can give us most of that information depending
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on how the parameters for the hadrons and their transitions.

Γ∞t ≡
∫ ∞
t

dtΓ(P → f ; t) (38)

Γ̄∞t ≡
∫ ∞
t

dtΓ(P̄ → f̄ ; t) ; (39)

therefore

Γt0 = Γ(P → f)− Γ∞t (40)

Γ̄t0 = Γ(P̄ → f̄)− Γ̄∞t (41)

1. Bd → h+h−h0

For Bd transitions one can simplify these expressions in two ways, namely yd ' 0 and |qd/pd| ' 1 for realistic
experimental sensitivities. Integrated over all times of decays we get∫ ∞

0

dt|A(Bd → f ; t)|2 =
C

ΓBd

[
|Af |2 + |Āf̄ |2 +

1

1 + x2
d

(
|Af |2 − |Āf̄ |2

)
− 2xd

1 + x2
d

Im

(
qd
pd
Āf̄ ⊗A∗f

)]
(42)∫ ∞

0

dt|A(B̄d → f̄ ; t)|2 =
C

ΓBd

[
|Af |2 + |Āf̄ |2 +

1

1 + x2
d

(
|Āf̄ |2 − |Af |2

)
+

2xd
1 + x2

d

Im

(
qd
pd
Āf̄ ⊗A∗f

)]
(43)

For equal productions of Bd and B̄d – ρ(Bd) = 1
2 = ρ(B̄d) – we get

1

2

[∫ ∞
0

dt|A(Bd → f ; t)|2 +

∫ ∞
0

dt|A(B̄d → f ; t)|2
]

= |Af |2 + |Āf̄ |2 (44)

For a two-body final state f = h+h− one gets no information about CP violation from the time integrated sum as
expected. However for f = h+h−h0 direct CP violation can produce an asymmetry in corresponding regions of the
sum of Dalitz plots as sketched before. Our studies given below will illustrate this feature. Their sum is weighted by
their ratio due to a real production asymmetry (or a difference in their efficiencies)

ρ(Bd)

∫ ∞
0

dt|A(Bd → f ; t)|2 + (1− ρ(Bd))

∫ ∞
0

dt|A(B̄d → f̄ ; t)|2 =

1

1 + x2
d

[
(2ρ(Bd) + x2

d)|Af |2 + (2(1− ρ(Bd)) + x2
d)|Āf̄ |2 + 2xd(1− 2ρ(Bd))Im

(
qd
pd
Āf̄ ⊗A∗f

)]
(45)

If there is production asymmetry, it is not a ‘vice’, but a ‘virtue’. It can be tracked by B̄d → ψK−π+ vs.
Bd → ψK+π− or by B± → ψK±. The strength of indirect CP violation is measured in Bd → ψKS , whether the SM
produces the whole or just the leading source of it. Used as an input for Bd → KSπ

+π−, KSK
+K− one can interpret

the impact of direct CP violation through the term Im
(
qd
pd
Āf̄ ⊗A∗f

)
, see Eq.(45).

2. Bs → h+h−h0

For Bs transitions, one can assume |qs/ps| ' 1, since even with sizable ND contributions to Bs − B̄s |qs/ps can
differ from unity not more than several permil. While ∆Γs is small – ys = ∆Γs/2Γ̄s ' 0.094± 0.024 – it should not
been ignored. Integrated over all times of decays we get ∫ ∞

0

dt|A(Bs → f ; t)|2 ∝ 1

2Γ1
·[

|Af |2 + |Āf̄ |2 +
∆Γs
Γ1

(
1

2
(|Af |2 + |Āf̄ |2)− Re

(
qs
ps
Āf̄ ⊗A∗f

))
− 2

xs
Im

(
q

p
Āf̄ ⊗A∗f

)
+O(1/x2

s)

]
(46)∫ ∞

0

dt|A(B̄s → f̄ ; t)|2 ∝ 1

2Γ1
·[

|Af |2 + |Āf̄ |2 +
∆Γs
Γ1

(
1

2
(|Af |2 + |Āf̄ |2)− Re

(
qs
ps
Āf̄ ⊗A∗f

))
+

2

xs
Im

(
q

p
Āf̄ ⊗A∗f

)
+O(1/x2

s)

]
(47)
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Therefore we get for non-flavour tagged sum

Γ1

[∫ ∞
0

dt|A(Bs → f ; t)|2 +

∫ ∞
0

dt|A(B̄s → f̄ ; t)|2
]

=

= 2|Af |2 + 2|Āf̄ |2 + 2ys

(
(|Af |2 + |Āf̄ |2)− 2Re

(
qs
ps
Āf̄ ⊗A∗f

))
(48)

If there is a production asymmetry one gets:

Γ1

[∫ ∞
0

dt|A(Bs → f ; t)|2 +

∫ ∞
0

dt|A(B̄s → f̄ ; t)|2
]

=

= 2|Af |2 + 2|Āf̄ |2 + 2ys

(
(|Af |2 + |Āf̄ |2)− 2Re

(
qs
ps
Āf̄ ⊗A∗f

))
+

2(1− 2ρ(Bs))

xs
Im

(
q

p
Āf̄ ⊗A∗f

)
(49)

While the strength of indirect CP violation has not measured in time-resolved data on Bs → ψφ, there are some
evidence that it might be significantly larger than the CKM prediction of around sin2βs ∼ 0.03−0.05. That situation
should be more clarified in one to three years. The 2ys term can give us useful information about the dynamics of B
decays, but itself does not represent a CP asymmetry. In principal if there is a production asymmetry – it could be

tracked by the Cabibbo suppressed transition B̄s → ψK+π− vs. Bs → ψK−π+ – one could obtain Im
(
qs
ps
Āf̄ ⊗A∗f

)
;

however it is greatly suppressed in Bs → KSπ
+π−, KSK

+K− by 1/xs – i.e., the spectacularly fast oscillation.

3. Comments on B0 transitions

Our goal for B0 transitions is to analyses the impact of ND on direct CP asymmetries in three-body decays in CKM
suppressed channels.

Indirect CP violation affects all transitions of a given meson – Bd, Bs and D0 – in the same way. For Bd we have
measured it with good accuracy in Bd → ψKS with CKM dynamics as the leading source. The SM prediction tell us
that |qd/pd| can differ from unity by less than 0.001.

For Bs transitions some evidence has been found in Bs → ψφ and Bs → l−X processes for a large impact of ND.
We expect that evidence will be validated or reject with good accuracy in the foreseeable future from LHCb, CMS
and ATLAS. For the time being one can use two scenarios, namely

• Case CKM: sin2βs ∼ 0.03− 0.05, ||qs/ps| − 1| < 0.0001;

• Case CKM + ND: sin2βs ' 0.11± 0.02, ||qs/ps| − 1| ' 0.003

keeping in mind that such cases will be decided about future data on Bs → ψφ and Bs → l−DX. We consider the
impact of ND in Bs → KSK

+K−, KSπ
+π−.

4. D0 → h+h−h0

For D0 transitions both xD and yD are small and probably of similar size, but |qD/pD| could differ from unity by
up to 30 %. Integrating over all times t of D0 decays one gets∫ ∞

0

dt|A(D0 → f ; t)|2 +

∫ ∞
0

dt|A(D̄0 → f̄ ; t)|2 ∝

|Af |2 + |Āf̄ |2 − yDRe

(
q

p
+
p∗

q∗

)
Āf̄ ⊗A∗f + xDIm

(
q

p
− p∗

q∗

)
Āf̄ ⊗A∗f (50)

An production asymmetry leads to

ρ(D0)

∫ ∞
0

dt|A(D0 → f ; t)|2 + (1− ρ(D0))

∫ ∞
0

dt|A(D̄0 → f̄ ; t)|2 ∝

ρ(D0)|Af |2 + (1− ρ(D0))|Āf̄ |2 − yDRe

[(
ρ(D0)

q

p
+ (1− ρ(D0))

p∗

q∗

)
Āf̄ ⊗A∗f

]
+

+xDIm

[(
ρ(D0)

q

p
− (1− ρ(D0))

p∗

q∗

)
Āf̄ ⊗A∗f

]
(51)
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In D0 decays the interplay of indirect and direct CP violations is not so clear mostly due to very slow oscillation.
Therefore we will consider scenarios with ||qD/pD| − 1| ' 0.1, 0.03, |Af |/|Āf̄ | ' 0.1, 0.03 and the relative phase of

qD/pD and Āf̄ ⊗A∗f . We will present studies in a future paper.

5. Comments on ND scenarios

For analyzing CP asymmetries in h+h−h0 final states one has to include not only PV final states, but also SP final
states like scalar σ and κ resonances. One reason for that is that exchanges from charged Higgs fields will introduces
CP asymmetries already on the zero-loop processes, and they will affect scalar resonances more than PV final states.

B. Future Progresses in Describing Dalitz Plots

When LHCb and the B factories at SLAC and KEK was planned and approved CKM theory had a competition
with other models for the leading source of CP violation in heavy flavour transitions. BaBar and Belle have found
with great success that CKM provides at least the leading source of the establish CP asymmetries in Bd decays.
LHCb is in a great position to find whether CKM is also the leading source of CP asymmetries in Bs decays even for
Bs → ψφ transitions that are largely reduced in CKM.

In addition LHCb and Super-Flavour Factories have to deal with the difficult task to find non-leading source(s) of
CP asymmetries in suppressed decays. There are several candidates for that ND – even there is no ‘standard’ version
of SUSY, let alone for other NDs.

The ‘Miranda Procedure’ can allow us to find a clean evidence for a CP asymmetry without a theoretical input. It
will encourage much more theoretical progress on our understanding on soft QCD, which can make use of other theory
tools obtained from hadronic dynamics. The tasks one faces inB andD decays into three-body final states are not quite
as challenging as for the astronomers mentioned above: we know the locations where clear CP asymmetries can occur
in B0 and D0 transitions – in particular in KSπ

+π− and KSK
+K− final states: They get sizable contributions from

KSρ
0, K∗±π∓ and KSφ. it has been shown that the Breit-Wigner parameterization provides a good approximation

for vector mesons like ρ, K∗ and φ. However scalar resonances will in general not be described that way; for a final
state KSf0(980) it might give a decent description due to its relatively narrow width, but not for KSσ(600) or κπ due
to their wide widths. Still using a Breit-Wigner parametrization published data include true scalar resonances under
‘non-resonance’ label; more theoretical analyses including the treatment of chiral dynamics is needed, very topical –
and possible now based on progress in the last few years. We know that they have to be performed separately for
different B/D → 3h transitions. We should understand the following: if present data for Kπ+π− final states are best
fitted without any σ → π+π− contribution or for two different σ1,2 → π+π− one, one should not ignore one with
the usual single σ(600) as long as it gives a satisfactory description. One needs more experimental and theoretical
analysis.

There are several important reasons to analyze the production of scalar resonances in the detailed way. Let us
just sketch one: Many models of ND contain physical charged Higgs states that can introduce CP asymmetries even
through their tree-level exchanges. Obviously scalar Higgs exchanges will leave their ‘footprint’ in the production of
scalar resonances with more weight than for pseudoscalar and vector states. Therefore such ND will produce more
‘readable’ impacts in CP asymmetries with scalar resonances and their interferences with pseudoscalar-vector final
states. Therefore we can first focus on the known location of the peaks of the ρ, K∗ and the f0(980) and their widths
from available data. Using this general input from theory we can generate binning for B0 → KSh

+h− and do it
separately for Bd and Bs transitions.

IV. SECOND GENERATION ‘MIRANDA PROCEDURE’

The procedure given in Ref. [13] is obviously powerful for finding CP asymmetries and even ‘localizing’ them.
However one wants to make it more quantitatively and to understand its source(s) – in particular for B transitions
CKM gives sizable ‘backgrounds’ when searching for ND.

The goal is to find a way to evaluate the strength of local effects, namely to have numbers that are equivalent to
the asymmetry between (time) integrated rates, ACP. The key idea is to divide the combined Dalitz plot into bins
with equal populations. If one knows the number of bins where CP is violated, the one can compute a local average
value of ACP(s1, s2), since the number of events is proportional to the number of bins.

Each bin has N = N+ +N− events, with N+ and N− being the numbers of B and B̄ candidates. We assume that
there are regions in the Dalitz plot with at least a few tens of bins in which positive events (N+) occur with the same
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probability p. N+ follows a binomial distribution with expected value and variance given by

E[N+] = Np, V [N+] = Np(1− p) (52)

When N is large enough (at least a few tens of events), the Central Limit Theorem ensures that N+ follows a normal
distribution, allowing one to write exact expressions for the expected difference N+ −N−. In this case one has

Abin
CP =

N+ −N−

N
=

2N+

N
− 1 (53)

with

µ = E[Abin
CP] =

2E[N+]

N
− 1 = 2p− 1 (54)

and

σ2 = V [Abin
CP] =

4V [N+]

N2
=

4p(1− p)
N

(55)

If CP symmetry is conserved – hereafter we assume that there is no other source of charge asymmetry – the
probabilities of positive and negative events are equal, p = 1/2. One therefore has

µ = 0, σ2 =
1

N
(56)

When CP is violated the Dalitz plot will have regions with and without asymmetries. Therefore, the distribution of
Abin

CP will be a superposition of a Gaussian with µ = 0 and σ = 1/
√
N plus some other function representing the CP

violating bins. The form of the latter depends on how CP violation occurs in the Dalitz plot and also on the specific
final state.

Three-body final states result, in general, of a cascade process in which the heavy meson decays to a resonance
plus a ‘bachelor’ hadron. The decay amplitude of a heavy meson P is usually modeled by a coherent sum of resonant
amplitudes, weighted by constant complex coefficients

M =
∑
i

ciAi, ci = aie
δi . (57)

CP violation results in a difference between M(P ) and M =M(P ). More specifically, M and M may

• differ by the magnitude of a set of resonant modes

• or a difference between their relative phases

• or a combination of both.

Rescattering at the hadronic level is a long distance effect that mixes different final states, e.g. K̄Kπ → πππ, and
this is another source of CP violation.

In this paper, we consider three possibilities: (i) CP violation due to re-scattering as a constant excess of one specie
over the other limited to some region of the Dalitz plot; (ii) CP violation through a difference in the magnitude of a
resonant amplitude; (iii) a difference between relative phases.

The case of constant CP violation is the simplest: it leads to asymmetries that have always the same sign. An
uniform and localized excess of one charge state over the other is equivalent to a constant value of p. In this case the
distribution of CP violating bins will be a Gaussian with mean and sigma given by Eqs.(54) and (55). Integration
over the phase space results is an observable global ACP.

Differences in magnitude would also correspond, in principle, to a constant p. However, the net effect depends on
the resonance spin and on the contribution of the other resonances. Angular momentum conservation constrains the
angular distribution of the decay products. For vector particles, for example, the Breit-Wigner is modulated by a spin
amplitude which is proportional to the cosine of an helicity angle. In the region where the momentum configuration is
such that the helicity angle is 90◦, the amplitude goes to zero. The relative contribution of the CP violating amplitude
varies from bin to bin, in spite of the constant difference in its magnitude. Even in the case of a scalar resonance
(constant spin amplitude), one needs to take into account the contribution from other resonant amplitudes to the CP
violating bins, which in general is not constant. Also in this case an integration over the phase space results in an
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observable global ACP, although the local effect will be always diluted by the relative contribution of the CP violating
amplitudes.

Differences in phases are the most complex case. As illustrated in [13], such differences lead to asymmetries that
change sign across the Dalitz plot. Integration over the phase space could result in a null asymmetry, in spite of large
local effects. In the simplest case of two resonances, Eq.(31) would read

ACP(s1, s2) =
2 sin(∆φW ) sin(∆δ(s1, s2))|A2A1|

1 + |A2A1|2 + 2|A2A1| cos(∆φW ) cos(∆δ(s1, s2))
(58)

The asymmetry is driven by ∆δ(s1, s2) due to interfering Breit-Wigner functions spread over the phase space. This
is equivalent to having a different value of p for each bin. The distribution of Abin

CP for the CP violating bins therefore
depends strongly on the final state, on which resonances and with which relative phases it is built of.

An important effect is the charge asymmetry induced by different production mechanisms. This is not possible in
pp̄ collider, but it may occur in asymmetric collisions (like for LHCb data). The production asymmetry may as large
as a 1-2% effect. Since it depends on the heavy meson momentum, it may vary across the Dalitz plot. In the following
examples we assume that any eventual production asymmetry would lead only to a global effect, constant throughout
the Dalitz plot.

A. Comment on CPT Constraints

It is mentioned usually that CPT symmetry gives equality of masses and total widths of P and P̄ . However it gives
also equality of different classes of final states, where mixing happens; some general comments are given in Sect. 4.10
in [15]. Up to isospin violation one has for example:

Γ(Bu,d,s → 2π, KK̄, 4π, 2K2K̄, 6π) = Γ(B̄u,d,s → 2π, KK̄, 4π, 2K2K̄, 6π) (59)

Γ(Du,d,s → 2π, KK̄, 4π) = Γ(D̄u,d,s → 2π, KK̄, 4π) (60)

While mixing happens – and diagrams show it – we have little quantitive control over it. In a qualitative way
one expects correlations like between CP asymmetries in D0 → K+K− and D0 → π+π− or in B̄d → K−π+ and
B̄d → KSπ

0 etc. As emphasized before that CP asymmetries with three-body final states will give us more information
– and probably crucial one – about the underlying dynamics. Since SM produce sizable CP violation in b → sqq̄
with q = u, d, s one expects sizable CP asymmetries in Bd → KSρ

0/KSσ/K
+ρ−/κπ and higher resonances etc. with

different signs compensate for CPT relation – but only qualitatively in practice.

B. ‘Miranda Procedure’ for Bd Three-Body Decays

We give ‘realistic’ studies for Bd → KSπ
+π−, where we have decent data and some information about the

resonant structure [16, 17]. In all studies we consider time integrated, tagged samples. In each exercise two

samples of B0, B0 → KSπ
+π− were simulated independently using the same set of resonant amplitudes, namely

KSρ,KSf0(980),KSf0(1370), K∗(892)π and KSχc. The samples are generated with CP violation seeded in three
different ways, as described above.

A few remarks are in order:

• Indirect CP violation has been very well measured in Bd → ψKS with sin2φ1/β = 0.658±0.024; this observable
enters in many transitions as an input quantity. However for the time integrated Bd + B̄d rates indirect CP
asymmetry cannot contribute – unless there is a production asymmetry for Bd vs. B̄d.

• Direct CP violation can occur even in the time integrated Bd + B̄d rates.

• In the SM one has three quark-level processes, namely two tree-level b → uūs and b → sūu, where the second
one is generated by QCD radiative corrections, and the loop Penguin b → s + g′s. They produce another d̄d
and ūu pair for the final state KSπ

+π− and a s̄s for Bd → KSK
+K−. The Penguin operator b → s + g′s

generates no weak phase; since it produces a ∆I = 0 transition, there is no appreciable relative strong phase
from this contribution. On the other hand b→ uūs and b→ sūu represent a combination of ∆I = 0 and ∆I = 1
amplitudes that in general will have different strong phases. As an example for ND: Charged Higgs exchanges
would probably affect mostly b→ uūs and b→ sūu, introduce another weak phase and different strong phases.
Furthermore they should affect final states with pseudoscalar-scalar more than pseudoscalar-vector. The impact
of ND in direct CP violation should be clearer in the former than the latter, since the latter ‘suffer’ from a larger
‘background’ from CKM.
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• Sizable contributions from final states KSρ, K∗(892)π, K∗(1430)π, KSf0(980) and KSf0(1500) have been
reported. No obvious contributions from KSσ and/or κπ have been found, but might be hidden under the
‘no-resonance’ listing without 30 % of the rate of Bd → KSπ

+π−. There are several theoretical arguments that
such final states KSσ and κπ should occur in an appreciable way.

• While CKM dynamics has been found to produce at least the leading source of indirect CP violation in Bd− B̄d
oscillations, ND could still represent up to about 20 % of it. While no clear deviation from CKM theory has been
found in direct CP asymmetries in Bd decays, ND could produce significant contributions. One expects that the
weight of ND in direct CP asymmetries will change differently for classes of channels like pseudoscalar-vector
vs. pseudoscalar-scalar.

1. Bd/B̄d → KSπ
+π− – Constant CPV

Direct CP violation has been found in Bd → K+π− around 10 %. No sign has been found in C(Bd → K0π0) =
0.00± 0.13. Yet one could find sizable impact with future data.

The first and simplest study of the ‘Miranda Procedure’ refers to the case where one has one single source of direct

CP violation acting on a given region of the Dalitz plot. The CP violation is seeded as a 10% excess of B0 over B
0

in the region sKSπ+ , sπ+π− < 7.5 GeV2/c4. We have generated 300K B0 and 330K B
0

decays dividing the combined

Dalitz plot into 256 bins of equal population. This excess of B0 over B
0

events is equivalent to a global ACP of 4.76%.
The distribution of the Abin

CP across the Dalitz plot is shown in Fig.1.
Having only one source of CP violation (constant p), the values of Abin

CP for the bins in the region where CP violation
was seeded are the same within statistical fluctuations. We therefore expect the Abin

CP for the CP violating bins to be
also distributed as a Gaussian. The distribution in Fig.2 is fitted by two Gaussian functions. The one representing
the CP conserving bins has fixed mean (µ = 0) and sigma (σ = 1/

√
N), whereas the parameters defining the second

Gaussian are free.
The average value of Abin

CP in the region where CP violation was seeded is the mean of the second Gaussian, (13.64
± 0.25)%. The normalization of each Gaussian is the number of bins that conserve/violate CP. There are 167±13
bins conserving CP and 89±9 bins in which CP is violated. The number of events is the same for all bins, so we can
obtain the global ACP from the ratio of CP violating to the total number of bins, and from the average value of Abin

CP,

ACP =
n2

n1 + n2
< Abin

CP >= 4.98± 0.54% (61)

We not only recover the global ACP but also access the average Abin
CP and the fraction of events that violate CP and

thus the localization of the source.
This exercise clearly shows how the relatively large local effect is diluted when the CP violation strength is measured

by the global ACP (in this case, by the ratio of the area of the CP violation region and the total Dalitz plot area).

2. Bd/B̄d → KSπ
+π− – Difference in Magnitudes

In this example CP violation is seeded as a 10% difference in the magnitude of the resonant mode K∗(892)π,
aK∗(892)π = 0.9aK∗(892)π.

The total decay rates of B0 and B0 are proportional to the integral over the phase space ofM andM, respectively.

In the present example, this means a global CP asymmetry of 2.1%. Samples of 300K B0 and 287K B
0

decays were
generated. The combined B0 and B0 Dalitz plot was divided into 1024 bins of equal population.

The extra B0 events are distributed in the bins along the K∗(892) band, and the resulting Abin
CP across the Dalitz

plot is shown in Fig.3; note that the values of Abin
CP in the CP violating region are always positive.

In Fig.4 the distribution of Abin
CP for all bins is presented. The bins with no CP violation have equal number of B0

and B0 decays, within statistical fluctuations, resulting on a Gaussian distribution of Abin
CP with µ = 0 and σ = 1/

√
N .

The distribution of Abin
CP for the CP violating bins is again parameterized by Gaussian, but this is used as an effective

representation (p is no longer constant). As in the previous example, the distribution in Fig.4 is fitted to two Gaussian
functions, one with fixed mean and sigma representing the CP conserving bins.

We find 838 ± 46 bins with no CP violation and 186 ± 38 bins with average value of Abin
CP (11.1 ± 1.7)%. From

these parameters we extract the global asymmetry, ACP = 2.1± 0.1%.
These exercises show that the observable Abin

CP carries the relevant information about local asymmetry. In both
cases the CP violation is restricted to certain regions of the Dalitz plot, but leads to a global asymmetry. The local
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FIG. 1. Distribution of Abin
CP across the Bd → KSπ

+π− Dalitz plot. In this example a single source of CP violation – constant
excess of Bd over B̄d restricted to the low KSπ

+/π+π− mass region – was simulated. Bins have different size in order to contain
the same number of events.

effects are much more intense than the phase space integrated ones. We showed that the later can be recovered in a
consistent way.

3. Bd/B̄d → KSπ
+π− – Difference in Relative Phases

We now discuss a more general case, where the CP violation occur via a difference between B and B̄ in relative
phase of a given set of resonances. This is a much more difficult and subtle situation, which depends strongly on
the final state characteristics: (i) Which resonances are present. (ii) What are their relative phases. (iii) Is there an
sizable contribution from scalars [18].

Two independent samples were generated using the same set of resonances as in the previous examples. A 60◦

phase difference in the ρKS mode was introduced between Bd and B̄d. The combined Dalitz plot was then divided
into 1024 bins. The seeded phase difference is large, causing local asymmetries that can be as large as 80%, shown in
Fig.5. The global asymmetry, however, is small: 1.0%. Due to the phase variation of the Breit-Wigner curve, the CP
asymmetry change sign along the ρ band. In this case the integration over the phase space – necessary to compute
the total rates – cancels out most of the effect of CP violation. This cancellation is clearly seen in Fig.6, which has
an enlarged view of the Dalitz plot region where CP violation occur.

The interference between ρKS and the other resonant modes, which is governed by the combined strong phases of
the Breit-Wigner curve, ∆δ(s1, s2), causes each bin to act as an independent source of CP violation. When one has
repeated the same experiment many times, the values of Abin

CP for each bin would be distributed with a mean and
sigma given by Eqs.(54,55), respectively, each bin having its own value of p. The distribution of Abin

CP for all bins will
have two components, as in the other examples. The distribution from the CP violating bins would no longer be a
Gaussian, but some function that is particular to each specific final state.

In general there would be as many bins with positive and negative Abin
CP±, so the procedure adopted in the previous

examples would underestimate the measurement of the average asymmetry in this case. As before, we can fit the
distribution to a Gaussian for the CP conserving bins – µ = 0 and σ = 1/

√
N , but with unknown area – plus one

function for the CP violating bins. Having defined the Gaussian CP conserving bins, this can then be subtracted
off,and two numbers could be computed: the average value of Abin

CP± for the regions where the asymmetry is either
positive or negative.

We illustrate this procedure in Fig.7, where the Abin
CP distribution for the CP violating bins was empirically fit to two

Gaussians. The fit yields 568 ± 83 bins in the CP conserving Gaussian, and 466 ± 41 bins in which CP is violated.
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FIG. 2. Distribution of Abin
CP for single, constant source of CP violation. The distribution was fitted to two Gaussians. The one

centered at zero represents bins where CP is conserved, whereas the second Gaussian represents the CP violating bins.

We then compute the weighted average value of Abin
CP∓ for the negative and for the positive part of the distribution in

Fig.7. This yields

< Abin
CP− >= −(14± 2)%, (62)

and

< Abin
CP+ >= (16± 2)%. (63)

In order to test this procedure, we go to the limit of very high statistics. Since the width of the distribution of CP
conserving bins is σ = 1/

√
N , when N is very large, the Gaussian gets very narrow, in practice restricted to the

central bin of Fig.7. We can then compute the weighted average in the negative and positive regions separately with
a simple counting procedure, discarding the central bin. The average values of Abin

CP∓ obtained are

< Abin
CP− >= −15% (64)

and

< Abin
CP+ >= 22.2% (65)

in good agreement with the fitting procedure used in the more realistic scenario.

V. Bs THREE-BODY DECAYS

At present, the experimental situation is very different for Bs transitions even beyond the fact that Bs − B̄s
oscillations are very fast.

• Within SM indirect CP violation is small – i.e. sin2βs ∼ 0.03 − 0.05. Finding it significantly larger is a clear
manifestation of ND. There is some evidence that indirect CP violation is larger than predicted by CKM; studies
of Bs → ψφ in LHC data should clarify this issue and allow sin2βs as an input for searching manifestations of
ND.

• If one indeed finds that CKM theory does not produce the leading source of indirect CP violation, there is a
good chance that ND generates a larger contribution also to direct CP violations.
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FIG. 3. Distribution of Abin
CP across the Bd → KSπ

+π− Dalitz plot for the case of CP violation seeded as a difference in the
magnitude of the ρKS mode between Bd and B̄d. The excess of Bd over B̄d events is concentrated along the ρ band. Note that
the values of Abin

CP for these bins are always positive.

• Measuring ys more accurately will help in cross checking finding CP asymmetries in the sum of time integrated
Bs and B̄s rates.

• There are no data for Bs → KSπ
+π− or Bs → KSK

+K−. One expects the Dalitz plots for these Bs transitions
very different for these Bd transitions.

• The tree diagram b → uūd and the Cabibbo disfavoured penguin one-loop diagram b → d + g′s to generate
direct CP violation in both CKM and ND. Again final states like KSσ should show clearly manifestations of
the impact of ND.

VI. OUTLOOK

Present data from Belle, BaBar, CDF and LHCb and future ones from LHCb, Super-Belle and Super-BaBar have
reached the status to probe the possible impact from ND in Bu,d,s andDu,d,s with accuracy and correlations. Analyzing
non-leptonic three-body final states there needs significantly more experimental efforts through ‘Miranda Procedure’
– but it will be awarded with more lessons about the underlying dynamics and deep insights into its ‘shape’.

The Miranda Procedure I is a good way to show whether or not there is CP asymmetry in three-body decays of D
and B mesons. It can also tell us where in the Dalitz plot CP violation occurs and give hints of the kind of operators
that are involved. A further development of this technique, presented here, is a necessary step towards a quantitative
output. One should keep in mind, however, the crucial difference between two- and three-body decays: while in
former case CP asymmetries are observed in total decay rates, in the latter case there are several options for CP
violation manifestations. CP asymmetries through phase difference – ‘favorited’ by model builders – are intrinsically
complicated because each bin acts as an independent source of CPV. Moreover, strong interactions governing phases
across the Dalitz plot are still out of control quantitively. Accurate data on three-body final states will help efforts
from theorists working on HEP and Hadrodynamics/MEP.

One should not forget about constraints from CPT symmetry, but those are not of quantitative value on a practical
level; it should tell us to think about other channels in a qualitative level; theoretical inputs help here.

The ‘Miranda Procedure’ helps greatly to ‘localize’ CP asymmetries and find evidence for the impact of ND and its
‘shape’. It does not mean that theoretical inputs are not needed, but to focus on them. It should enhance interests
from theorists working in HEP and HP/MEP.



18

CPA
-0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25

E
ve

nt
s 

/ (
 0

.0
2 

)

0

20

40

60

80

100

120

140

160

180

200

 

FIG. 4. Distribution of Abin
CP for the case of CP violation through a difference in the magnitude of the ρKS mode. The Gaussian

in red is an empirical representation of Abin
CP for the CP violating bins.

Applying ‘Second Generation of Miranda Procedure’ is now at the ‘starting line’ – the ‘race’ will proceed over many
longer ‘distances’ with simulations and – most importantly – with real data:

• Time integrated and non-flavour tagged rates for Bu,s/Du,d,s decays;

• Flavour tagged ones for Bu,d,s/Du,d,s;

• partially time integrated ones;

• τ → ν[Kπ/K2π/3K] decays.

One needs no more hardware – ‘only’ thinking and working.
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FIG. 5. Distribution of Abin
CP across the Bd → KSπ

+π− Dalitz plot for the third example. When the CP violation is seeded as
a relative phase difference, the values of Abin

CP change sign.

πK
2m

0 5 10 15 20 25 30

ππ2
m

0

0.5

1

1.5

2

2.5

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

 

FIG. 6. Enlarged view of the CP violating bins of Fig.5.
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FIG. 7. Distribution of Abin
CP for the third example. In addition to the Gaussian representing the CP conserving bins (green

curve), two other Gaussians were used to empirically represent the Abin
CP distribution of the CP violating bins (red and blue

curves).
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