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Abstract

We show that grand unified theories based on SO(10) generate naturally the next–

to–leading baryon number violating operators of dimension seven. These operators,

which violate (B − L), lead to unconventional decays of the nucleon such as n →
e−K+, e−π+ and p → νπ+. In two–step breaking schemes of non-supersymmetric

SO(10), nucleon lifetime for decays into these modes is found to be within reach

of experiments. We also identify supersymmetric scenarios where these decays may

be accessible, consistent with gauge coupling unification. Further, we show that

the (B − L)–asymmetry generated in the decays of GUT scale scalar bosons and/or

gauge bosons can explain consistently the observed baryon asymmetry of the universe.

The induced (B − L) asymmetry is sphaleron–proof, and survives down to the weak

scale without being erased by the electroweak interactions. This mechanism works

efficiently in a large class of non–SUSY and SUSY SO(10) models, with either a 126H

or a 16H Higgs field employed for rank reduction. In minimal models the induced

baryon asymmetry is tightly connected to the masses of quarks, leptons and neutrinos

and is found to be compatible with observations.
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1 Introduction

Baryon number violation is a very sensitive probe of physics beyond the Standard Model

(SM). Interactions which violate baryon number (B) are not present in the renormalizable

part of the SM Lagrangian, but they can arise as effective higher dimensional operators.

The lowest B–violating operators [1] have d = 6 and are suppressed by two powers of an

inverse mass scale. These operators are realized naturally when SM is embedded in a grand

unified theory (GUT) such as SU(5) and SO(10) upon integrating out the heavy vector

gauge bosons and colored scalar bosons. They lead to the decay of the nucleon into modes

such as p → e+π0 and p → νK+. Present experimental limits on nucleon lifetime constrain

the masses of the mediators (vector gauge boson or scalar bosons) to be larger than about

1015 GeV, which is close to the unification scale determined from the approximate meeting

of the three gauge couplings when extrapolated to higher energies.

An interesting feature of the d = 6 baryon number violating operators is that they

conserve baryon number minus lepton number (B − L) symmetry, leading to the selection

rule ∆(B − L) = 0 for nucleon decay [1]. Thus, observation of any decays which violate

∆(B − L) = 0 rule would hint at new dynamics different from those responsible for the

d = 6 operators. Decay modes in this category include p → νπ+, n → e−K+, e−π+ etc,

which all obey the selection rule ∆(B−L) = −2. Observation of these decay modes would

thus furnish evidence against the simple GUT picture with one step breaking to the SM.

In this paper we study the next–to–leading d = 7 operators, which obey the selection

rule ∆(B−L) = −2 for nucleon decay [2], and show that they arise naturally within SO(10)

grand unified theories. In non–supersymmetric SO(10) models with an intermediate scale

we find the nucleon lifetime for decay modes such as n → e−K+, e−π+ to be within reach

of ongoing and proposed experiments. We also identify SUSY SO(10) models where these

decays may be within reach, consistent with gauge coupling unification. While we focus

mainly on renormalizable SO(10) models with 126H of Higgs bosons employed for rank

reduction, we show that our results also hold for models with 16H used for this purpose.

The second main result of this paper is a mechanism for generating the baryon asym-

metry of the universe at the GUT epoch. The way it comes about is as follows. There

are heavy scalar bosons and gauge bosons in SO(10) theories which generate the d = 7

operators. These particles have (B − L)–violating two–body decays, which can generate

the observed baryon asymmetry of the universe naturally, as we show here. This would not

be possible in the case of (B−L)–preserving decays of GUT scale particles such as the ones

in SU(5). Although grand unified theories were thought to be the natural stage for imple-

menting the Sakharov’s conditions for baryogenesis [3] up until the mid-1980’s [4], this idea

was practically abandoned after the realization that the sphalerons [5], which violate B+L

symmetry, would erase any baryon asymmetry that obeyed the ∆(B−L) = 0 selection rule.
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This is because the effective interactions generated by sphalerons, the non-perturbative con-

figuration of the weak interactions, are in thermal equilibrium for temperatures in the range

102 GeV ≤ T ≤ 1012 GeV, and violate (B + L) symmetry. However, if baryon asymmetry

was generated by (B − L)–violating decays of GUT scale particles, they would be immune

to sphaleron destruction. We show that this mechanism of baryogenesis, which also in-

duces the d = 7 B–violating operators, is very efficient and occurs quite generically in

SO(10) models. In minimal models there is a tight connection between the induced baryon

asymmetry and the masses of quarks, leptons and the neutrinos. We also note that the

minimal renormalizable versions of these models [6,7] have been extremely successful in de-

scribing neutrino masses and mixings [6], and in particular predicted relatively large value

for the neutrino mixing angle θ13, which is consistent with recent results from Daya Bay,

T2K, Double-Chooz and MINOS experiments [8]. The results of the present paper show

that these models can also explain the observed baryon asymmetry in a manner closely

connected to the neutrino oscillation parameters.

This paper is organized as follows. In Sec. 2 we discuss the d = 7B and (B−L)–violating

operators. In Sec. 3 we show how these operators arise in unified SO(10) theories, both

in the non-supersymmetric version and in the SUSY version. In Sec. 4 we address nucleon

decay lifetime for the (B − L)–violating modes in SO(10) models with an intermediate

scale. Sec. 5 is devoted to GUT scale baryogenesis mechanism tied to the d = 7 operators.

Here we show the close connection between baryon asymmetry and fermion masses and

mixings. Finally, we conclude in Sec. 6. The highlights of this paper are summarized in a

short Letter [9].

2 Baryon number violating d = 7 operators

We begin by recalling the leading baryon number violating operators in the Standard Model

which have d = 6. There are five such operators with baryon number B = +1 [1, 10]:

O1 = (dcuc)∗(QiLj)ǫij , O2 = (QiQj)(u
cec)∗ǫij , O3 = (QiQj)(QkLl)ǫijǫkl

O4 = (QiQj)(QkLl)(~τǫ)ij · (~τǫ)kl, O5 = (dcuc)∗(ucec)∗ . (1)

Here we have not shown the color contractions (which is unique in each term via ǫαβγ), and

we have suppressed the flavor indices. We have followed the standard notation for fermion

fields with all fields being left–handed. Thus uc stands for the left–handed antiparticle of

uR. The spinor indices are contracted via the charge conjugation matrix between fields in

parentheses. i, j = 1, 2 are the SU(2)L indices. The complex conjugate operators of Eq.

(1) would of course carry B = −1.

An interesting feature of the d = 6 baryon number violating operators on Eq. (1) is

that they all carry lepton number L = 1 along with B = 1. Consequently these operators
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preserve (B−L). Thus nucleon decay mediated by these operators would obey the selection

rule ∆(B − L) = 0. The decays p → e+π0, νK+ and n → νπ0, e+K− would be allowed

by this selection rule, while decays such as p → νK+ and n → e−K+, e−π+, which require

∆(B − L) = −2 would be forbidden. Grand unified theories based on SU(5) and SO(10)

gauge symmetries generate the operators of Eq. (1) suppressed by two inverse powers of

GUT scale masses. With the GUT scale near 1015 GeV, as suggested by the approximate

unification of the three gauge couplings, these operators lead to nucleon lifetimes of order

1032 − 1036 years for (B − L) conserving modes, which are in the range that is currently

being probed by experiments. Discovery of nucleon decay into ∆(B − L) = −2 channels

such as n → e−K+, e−π+ would however suggest that the underlying dynamics is quite

different from that of the d = 6 effective operators of Eq. (1).

As already noted in the introduction, while GUT scale particles can generate a baryon

asymmetry in their B–violating decays, it was realized that interactions of the electroweak

sphalerons would wash out any such asymmetry that conserves (B−L). GUT scale baryo-

genesis thus went out of fashion after the discovery of sphalerons. This was also in part due

to the leptogenesis mechanism [11] discovered soon thereafter, which can elegantly explain

the observed baryon asymmetry with a connection to the small neutrino masses induced

via the seesaw mechanism [12].

Now we turn to the next–to–leading B–violating operators beyond those of Eq. (1),

which are of dimension seven. These operators are interesting in that they carry (B−L) =

±2 [2]. While they are suppressed by one additional power of a heavy mass scale, they can

naturally lead to sphaleron–proof baryogenesis, as we show here. In several instances we

also find that these operators may lead to observable (B − L) violating nucleon decay.

There are nine d = 7 baryon number violation operators with B = +1 listed below [2,13]:

Õ1 = (dcuc)∗(dcLi)
∗H∗

j ǫij, Õ2 = (dcdc)∗(ucLi)
∗H∗

j ǫij ,

Õ3 = (QiQj)(d
cLk)

∗H∗
l ǫijǫkl, Õ4 = (QiQj)(d

cLk)
∗H∗

l (~τǫ)ij · (~τǫ)kl,
Õ5 = (Qie

c)(dcdc)∗H∗
i , Õ6 = (dcdc)∗(dcLi)

∗Hi,

Õ7 = (dcDµd
c)∗(Liγ

µQi), Õ8 = (dcDµLi)
∗(dcγµQi),

Õ9 = (dcDµd
c)∗(dcγµec) . (2)

We have used the same notation as in Eq. (1). Here H is the Standard Model Higgs

doublet transforming under SU(3)C × SU(2)L × U(1)Y as (1, 2,+1/2). Dµ stands for the

covariant derivative with respect to the SU(3)C × SU(2)L × U(1)Y gauge symmetry. Note

that Õ2, Õ5 and Õ6 must be antisymmetric in the down–flavor indices. Operators of the

type (dcD/Qi)(d
cLj)ǫij are not written, since they are related to those listed in Eq. (2) by

the equations of motion. All vector and tensor operators can be Fierz–transformed into the

set of operators in Eq. (2).
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Note that all operators of Eq. (2) carry B = 1 and L = −1, and thus (B − L) = +2,

with the complex conjugates operators carrying (B −L) = −2. It is these operators which

can mediate nucleon decay of the type n → e−K+, e−π+ and p → νπ+. The higher dimen-

sionality of these operators would suggest naively that the nucleon decay lifetime would be

much longer than the ones obtained from Eq. (1). However, as we show below, in unified

theories based on SO(10) with an intermediate scale, these decays may be accessible to

experiments. Most interestingly, these operators can naturally generate baryon asymme-

try of the universe at the GUT scale, which is facilitated by the fact that the electroweak

sphaleron interactions do not wash out a (B − L) asymmetry generated at such a scale.

In the supersymmetric version of the standard model, baryon number violation can

arise through operators in the superpotential analogous to Eq. (2). These superpotential

operators would have dimension six. Holomorphicity of the superpotential would however

constrain the allowed operators. There is a single operator of dimension six given by the

superpotential coupling

Õ SUSY
1 = dcdcucLi(Hu)jǫij, (3)

which carries B = −1 and B−L = −2. This operator must be antisymmetric in the down-

flavor indices owing to Bose symmetry. Hu here is the up–type Higgs doublet of MSSM. In

the superpotential, this operator will appear with two inverse powers of a heavy mass scale.

Terms in the Lagrangian resulting from Eq. (3) would have two fermion fields, one Higgs

field and two superpartner scalar fields, for example. When the superpartner scalar fields

are converted to standard model fermions by a gaugino loop, effective d = 7 operators of

Eq. (2) would be generated, suppressed by a factor (M2MSUSY)
−1, rather than M−3 that

occurs for Eq. (2) without SUSY, where M is the heavy mass scale. Therefore, potentially

these SUSY contributions can be more significant for nucleon decay.

We can now present the complete list of (B−L) = −2 effective operators through d = 7

in the SM by adding to Eq. (2) operators with B = 0, L = 2. These operators have been

classified in Ref. [14]. While not directly related to nucleon decay, these operators arise

along with the d = 7 operators of Eq. (2) in SO(10) unified theories, and they are also

relevant for GUT scale baryogenesis. Here we collect the linearly independent set of these

operators through d = 7. The leading operator of course is the well-known d = 5 seesaw

operator [1]

Od=5 = (LiLj)HkHl (~τǫ)ij · (~τǫ)kl . (4)
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The next–to–leading operators are of d = 7, and there are ten of them, as listed below.

O′
1 = (LiLj)(Lke

c)Hl ǫijǫkl, O′
2 = (LiLj)(Lke

c)Hl (~τǫ)ij · (~τǫ)kl,
O′

3 = (LiLj)(Qkd
c)Hl ǫijǫkl, O′

4 = (LiLj)(Qkd
c)Hl (~τǫ)ij · (~τǫ)kl,

O′
5 = (LiQj)(Lkd

c)Hl ǫijǫkl, O′
6 = (LiQj)(Lkd

c)Hl (~τǫ)ij · (~τǫ)kl,
O′

7 = (LiLj)(Qku
c)∗Hk ǫij , O′

8 = (LiLj)(Qku
c)∗Hl (~τǫ)ij · (~τǫ)kl,

O′
9 = (Lid

c)(ecuc)∗Hj ǫij , O′
10 = (LiDµLj)(ucγµdc) ǫij . (5)

We shall see the appearance of some of these operators in the embedding of Eq. (2) in

SO(10) models. In the supersymmetric standard model, the four holomorphic operators

O′
1 − O′

4 would be allowed in the superpotential (with no significance attributed to the

spinor contractions of Eq. (5) when applied to the superfields).

3 Origin of d = 7 B–violating operators in SO(10)

In this section, we show that the d = 7 baryon number violating operators of Eq. (2)

arise naturally in the context of SO(10) unified theories after the spontaneous breaking

of (B − L), which is a part of the gauge symmetry. The (B − L) symmetry may break

at the GUT scale so that SO(10) breaks directly to the Standard Model gauge symmetry,

or it may break at an intermediate scale MI below the GUT scale. In the latter case

the intermediate symmetry could be one among several possibilities: SU(4)C × SU(2)L ×
SU(2)R; SU(4)C × SU(2)L × U(1)R; SU(3)C × SU(2)L × SU(2)R × U(1)B−L; SU(3)C ×
SU(2)L × U(1)R × U(1)B−L; or SU(5)×U(1), with or without left–right parity symmetry.

In the non–supersymmetric version an intermediate scale is necessary to be compatible with

gauge coupling unification [15], while with supersymmetry the direct breaking of SO(10)

down to the MSSM is preferable. Even in the latter case, there is room for intermediate

scale particles, provided that they form complete multiplets of the SU(5) subgroup, since

such particles do not spoil the unification of gauge couplings observed with the MSSM

spectrum.

To see how the d = 7 operators of Eq. (2) arise within SO(10), we first focus on the

scalar–mediated operators and write down the Yukawa couplings in the most general setup.

The Higgs fields which can couple to the fermion bi-linears 16i16j are 10H , 126H and 120H,

with the couplings of the 10H and 126H being symmetric in flavor indices (i, j) and those

of the 120H being antisymmetric. The terms in these Yukawa couplings that are relevant

to the generation of the d = 7 operators are given below [16, 17].

L(16i16j10H) = hij

[

(uc
iQj + νc

iLj) h− (dciQj + eciLj) h+
( ǫ

2
QiQj + uc

ie
c
j − dciν

c
j

)

ω

+
(

ǫuc
id

c
j +QiLj

)

ωc
]

, (6)
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L(16i16j126H) = fij
[

(uc
iQj − 3νc

iLj) h− (dciQj − 3eciLj) h

+
√
3i
( ǫ

2
QiQj − uc

ie
c
j + νc

i d
c
j

)

ω1 +
√
3i(QiLj − ǫuc

id
c
j)ω

c
1

+
√
6(dciν

c
j + uc

ie
c
j)ω2 + 2

√
3i dci Lj ρ− 2

√
3i νc

i Qj ρ+ 2
√
3uc

i ν
c
j η

−2
√
3i uc

i Lj χ+ 2
√
3i eci Qj χ− 2

√
3 dci e

c
j δ +

√
6i Qi Lj Φ+ ....

]

,(7)

L(16i16j120H) = gij

[

(diQ
j + eciLj) h1 − (uc

iQj + νc
iLj) h1 −

√
2QiLj ω

c
1

−
√
2(uc

ie
c
j − dciν

c
j )ω1 −

i√
3
(dciQj − 3eciLj) h2 +

i√
3
(uc

iQj − 3νc
iLj) h2

−2eciQj χ+ 2νc
iQj ρ− 2dciLj ρ+ 2uc

iLj χ

−i ǫ dcid
c
j η + 2 i uc

iν
c
j η +

√
2 i ǫ dciu

c
j ω

c
2 +

√
2 i (dciν

c
j − eciu

c
j)ω2

− ǫ√
2
QiQjΦ−

√
2QiLjΦ− 2 i dci e

c
j δ + i ǫ uc

i u
c
j δ + ...

]

. (8)

These terms are written in terms of the Standard Model decomposition of the sub-multiplets.

We have followed the phase convention of Ref. [16]. ǫ stands for the SU(3)C tensor ǫαβγ .

Here we have not displayed terms that are irrelevant for inducing the d = 7 baryon num-

ber violating operators. (Specifically, we have omitted color singlet, color octet, and color

sextet couplings.) The Yukawa couplings obey hij = hji, fij = fji and gij = −gji. The

SU(3)C × SU(2)L × U(1)Y quantum numbers of the various sub-multiplets are given as

follows.

h(1, 2,+1/2), h(1, 2,−1/2), ω(3, 1,−1/3), ωc(3, 1, 1/3),

ρ(3, 2, 1/6), ρ(3, 2,−1/6), η(3, 1, 2/3), η(3, 1,−2/3),

Φ(3, 3,−1/3), Φ(3, 3, 1/3), χ(3, 2, 7/6), χ(3, 2,−7/6),

δ(3, 1,−4/3), δ(3, 1, 4/3) . (9)

Different fields with the same SM quantum numbers appear in some couplings, they are

distinguished by subscripts 1, 2 etc. We have used the same notation for fields with the same

SM quantum numbers in 10H , 126H and 120H , but it should be understood that these are

distinct fields. After GUT symmetry breaking various subfields with the same SM quantum

number would mix. Some of these mixings would involve the vacuum expectation value

of the SM singlet field from the 126H , denoted by ∆c carrying (B − L) = −2. It is this

field that supplies large Majorana mass for the right–handed neutrino through the coupling

fij
√
6νc

i ν
c
j∆

c. With 〈∆c〉 6= 0, trilinear scalar couplings of the type ρ∗ωH , η∗ρH , ρ∗ΦH and

χ∗ηH , will develop. This issue will be addressed in more detail below, but we note that

such couplings are invariant under the unbroken SM gauge symmetry. When combined

with the Yukawa couplings of Eqs. (6)-(8), they would induce the d = 7 baryon number

violating operators of Eq. (2).
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uc

dc

L

dc

ω ρ

H〈∆c〉

Q

Q

L

dc

ω ρ

H〈∆c〉

(a) (b)

Figure 1: Effective baryon number violating d = 7 operators induced by the symmetric
Yukawa couplings of 10H and 126H of SO(10). Here the SM quantum numbers of the
various fields are ω(3, 1,−1/3), ρ(3, 2, 1/6), and H(1, 2, 1/2).

To see how the d = 7 operators arise in more detail, let us focus of the flavor symmetric

Yukawa couplings of Eqs. (6)-(7). These couplings generate two of the d = 7 operators as

shown in Fig. 1. Here H(1, 2, 1/2) is the SM Higgs doublet, which is a linear combination

of the h(1, 2, 1/2) and h
∗
(1, 2,−1/2) fields from 10H, 126H as well as any other Higgs sub-

multiplet with the quantum number of (1, 2, 1/2) in the theory with which these fields

mix. Similarly, ω(3, 1,−1/3) generically stands for any linear combination of ω and (ωc)∗

from the 10H , ω1, ω2 and (ωc
1)

∗ from the 126H , etc. Before estimating the strength of these

operators, let us examine the origin of the trilinear scalar couplings that appear in these

diagrams in SO(10).

To see the origin of ρ∗ωH and similar vertices, let us recall first the decomposition of

various SO(10) fields under the subgroups SU(4)C ×SU(2)L × SU(2)R and SU(5)×U(1).

Under G(2, 2, 4) ≡ SU(2)L × SU(2)R × SU(4)C , we have the following decomposition:

16 = (2, 1, 4) + (1, 2, 4)

10 = (2, 2, 1) + (1, 1, 6)

126 = (1, 1, 6) + (3, 1, 10) + (1, 3, 10) + (2, 2, 15)

120 = (2, 2, 1) + (1, 1, 10) + (1, 1, 10) + (3, 1, 6) + (1, 3, 6) + (2, 2, 15) . (10)

Under the G(5, 1) ≡ SU(5)× U(1) subgroup various fields decompose as follows.

16 = 1(−5) + 5(3) + 10(−1)

10 = 5(2) + 5(−2)

126 = 1(−10) + 5(−2) + 10(−6) + 15(6) + 45(2) + 50(−2)

120 = 5(2) + 5(−2) + 10(−6) + 10(6) + 45(2) + 45(−2) (11)

Now, the quartic coupling (126)4, which is invariant (there is a single such coupling),

contains the term (2, 2, 15) · (2, 2, 15) · (1, 1, 6) · (1, 3, 10) under G(2, 2, 4). The ρ∗(3, 2,−1/6)

field is a subset of (2, 2, 15) fragment. The H(1, 2, 1/2) field is part of (2, 2, 15), while
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ω(3, 1,−1/3) ⊂ (1, 1, 6) and one such field is also part of (1, 3, 10). Thus one sees that the

coupling (2, 2, 15) · (2, 2, 15) · (1, 1, 6) · (1, 3, 10) would contain the term ρ∗ωH∆c, where ∆c

denotes the SM singlet field from 126H that acquires a GUT scale VEV. In the G(5, 1)

decomposition, ρ∗(3, 2,−1/6) ⊂ 15(6), H(1, 2, 1/2) ⊂ (45, 2), and ω(3, 1,−1/3) ⊂ (45, 2).

Thus (126)4 contains the term 15(6) · (45, 2) · (45, 2) · 1(−10), which has the piece ρ∗ωH∆c.

There are three non-trivial invariants of he type (126)2 · (126∗)2. These couplings also

contain the term (2, 2, 15) · (2, 2, 15) · (1, 3, 10) · (1, 1, 6), as can be seen by examining the

decomposition under G(2, 2, 4) and separately under G(5, 1).1 In an analogous fashion one

sees that the coupling (126)2 · (126∗10) contains (2, 2, 15) · (2, 2, 15) · (1, 3, 10) · (1, 1, 6), with
the (1, 1, 6) arising from the 10. To complete this discussion we also note that there are three

invariants of the type (120)2 · (126)2, which contain (1, 3, 6) · (1, 3, 10) · (2, 2, 15) · (2, 2, 15),
with the (1, 3, 6) and one (2, 2, 15) taken from the 120. The (1, 3, 6) fragment contains

the η(3, 1, 2/3) of Eq. (9), which would enter the d = 7 operators arising by integrating

out the flavor antisymmetric 120 fragments. In particular, this term would induce the

needed ρ∗ηH∗ vertex. The (1, 3, 6) · (1, 3, 10) · (2, 2, 15) · (2, 2, 15) term also contains χ∗ηH

vertex, with χ ⊂ (2, 2, 15), η ⊂ (1, 3, 6) from the 120. The (120)2 · (126)2 invariant also

contains the term (3, 1, 6) · (1, 3, 10) · (2, 2, 15) · (2, 2, 15), with the (3, 1, 6) and one (2, 2, 15)

taken from the 120. This piece generates the terms Φ∗ρH∗ vertex, with Φ∗ ⊂ (3, 1, 6).

Finally, there are two invariants of the type (120)2 · 126 · 126∗, which also contain the term

(1, 3, 6) · (1, 3, 10) · (2, 2, 15) · (2, 2, 15).
In order to complete SO(10) symmetry breaking, additional Higgs fields such as a 45,

54 or a 210 is needed. The interactions of these fields with 126 and 120 can generate

further trilinear and quadrilinear couplings. Take for example the case of a 54 employed

for completing the symmetry breaking. The trilinear couplings (126)2 54 and (126)2 54 are

then invariant. Noting that under SU(5) × U(1) subgroup, 54 = 15(4) + 15(−4) + 24(0),

we see that the latter coupling would contain a term 1(10) · 15(−6) · 15(−4). This has

a piece ∆c(1, 1, 0)126 ρ(3, 2, 1/6)126 ρ∗(3, 2,−1/6)54, which would mix the two ρ fields once

〈∆c〉 6= 0 develops, breaking (B−L) by two units. (Note that the ρ126 and ρ54 carry different

(B − L) charges.) The cubic coupling (126)2 54 also contains the terms 5(2) · 5(2) · 15(−4)

and 45(−2) · 45(−2) · 15(4) under SU(5) × U(1). These terms contain the couplings

ω(3, 1,−1/3)126 h(1, 2, 1/2)126 ρ∗(3, 2,−1/6)54 and ωc
126

h(1, 2,−1/2)126 ρ(3, 2, 1/6)54 re-

spectively. These are the desired trilinear couplings for the generation of the d = 7 opera-

tors. In this case, the mixing of ρ∗(3, 2,−1/6)54 with the ρ(3, 2, 1/6)126 is utilized in order

to connect the ρ field with the fermion fields in Fig. 1. Similar results follow from the

quartic couplings (126)2 (54)2 and (126 · 126) (54)2.
1The (126)2 (126)2 coupling would also contain a term (2, 2, 15) · (2, 2, 15) · (1, 3, 10) · (1, 3, 10) under

G(2, 2, 4), which has a ρ∗ωH∆c term in it. However, the ω appearing here is from the (1, 3, 10), which is
ω2 of Eq. (7). ω2 coupling by itself does not violate baryon number [18], as is evident from Eq. (7).
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Q

Q

L

dc

Φ ρ

H〈∆c〉

dc

dc

L

dc

η ρ

H〈∆c〉

dc

dc

ec

Q

η χ

H〈∆c〉

dc

dc

L

uc

η χ

H〈∆c〉

(a)

(d)(c)

(b)

Figure 2: Effective d = 7 baryon number violating operators obtained by integrat-
ing our fields from the 120. Here the SM quantum numbers of the scalar fields are:
H(1, 2,+1/2), ω(3, 1,−1/3), ρ(3, 2, 1/6), η(3, 1, 2/3), Φ(3, 3,−1/3), and χ(3, 2, 7/6).

While trilinear scalar couplings of the type η∗ρH and ΦρH∗ do arise for the 126H sub-

multiplets, these couplings do not directly lead to baryon number violation. The η field

from 126H has the coupling η uc νc, while Φ has the coupling ΦQL (see Eq. (7)). The

exchange of η − ρ from 126H would lead to an effective operator (ucνc)(dcLi)Hjǫij , while

that of Φ − ρ would generate the operator (QiLj)(d
cLk)Hl(~τǫ)ij · (~τǫ)kl, which is operator

O′
6 of Eq. (5). The η∗ρH and ΦρH∗ couplings of the 126H sub-multiplets would however

be relevant for GUT scale baryogenesis, since they also violate (B − L) symmetry.

In Fig. 2 we display the effective d = 7 operators obtained by integrating out the

flavor antisymmetric 120 coupling to fermions. We see that four operators are induced this

way. As already noted, the required trilinear vertices to complete these diagrams arise from

quartic couplings. It is also possible to replace the ρ fields in Fig. 2 by a ρ field from the

126, in which case the sum of such diagrams would have no definite symmetry property in

two of the flavor indices.

Note that all of the d = 7 operators arising from Fig. 1 and 2 respect B −L symmetry,

as can be seen by assigning (B − L)(∆c) = −2.

It should be noted that operators Õ7 − Õ9 of Eq. (2) do not arise at tree level by

integrating out superheavy particles. They can arise via loops, with suppressed strength. In

the estimate of nucleon lifetime these operators play a subleading role, since the amplitude

for the decay would be further suppressed by the nucleon momentum (rather than the
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electroweak VEV for operators Õ1 − Õ6).

What if the Higgs field employed for reducing the rank of SO(10) is a 16H rather than

a 126H? In this case the d = 7 diagrams of Fig. 1 and 2 would still arise, albeit in a slightly

different way. The (B − L) quantum numbers of the Higgs doublets h(1, 2, 1/2) from the

10H , 126H and 120H fields are all zero. The 16H contains a SM singlet filed with B−L = +1

which acquires a GUT scale VEV. It also contains a h(1, 2,−1/2) field with B − L = −1.

Similarly, 16H contains a SM singlet field with (B − L) = −1 and a h(1, 2, 1/2) field with

(B − L) = +1. The trilinear scalar couplings of the type 16H16H10H and 16H16H10H

would mix the B−L = 0 Higgs doublet h(1, 2, 1/2) from the 10H and the h(1, 2, 1/2) Higgs

from the 16H which has B − L = +1. The light SM Higgs doublet then would have no

definite B − L quantum number. The (1, 2, 4) component of 16H under G(2, 2, 4) contains

the field ρ∗(3, 2,−1/6), and the (2, 1, 4) of 16H under G(2, 2, 4) contains ω(3, 1,−1/3), and

thus the coupling ρ∗ωH is generated via the 16H16H10H coupling. One could also take

ω(3, 1,−1/3) from the 10H, ρ
∗(3, 2,−1/6) from the 16H and H(1, 2, 1/2) from the 16H to

generate the ρ∗ωH coupling from 16H16H10H. It should be noted that the ρ∗(3, 2,−1/6)

field from the 16H does have Yukawa couplings to fermions, since in this type of models the

heavy Majorana masses of the νc fields arise from the couplings 16i16j16H16H , and upon

insertion of one VEV for the SM singlet field here, the coupling of ρ∗ to fermions is realized.

We point out that the ρ(3, 2, 1/6) field is partly in the Goldstone mode, associated

with the breaking of SO(10) to SU(5). However, since other fields such as 45, 54 or 210

should be employed to complete the symmetry breaking down to the SM, one such physical

ρ(3, 2, 1/6) will remain in the spectrum. This is because the 45, 54 and 210 all contain a

ρ(3, 2, 1/6) field, and only one ρ is absorbed by the gauge multiplet.

The d = 7 operators of Eq. (2) can also arise by integrating out the gauge bosons

of SO(10). These vector operators are related by Fierz identities to the scalar operators

displayed in Eq. (2). The relevant diagrams are shown in Fig. 3. (Fig. 3 (d) conserves

B, but violates L and B − L [14]. The effective operator from this diagram, after a Fierz

rearrangement can be identified with O′
7 of Eq. (5).) In these diagrams VQ denotes the

gauge boson with the SM quantum numbers (3, 2, 1/6) (same as the quark doublet Q),

and Vuc is the gauge boson that transforms as (3, 1,−2/3), the same as that of uc fermion.

In Fig. 3, each vertex conserves B − L as it should, which can be seen by assigning

(B − L) = (−2/3,−4/3) to (VQ, Vuc). The covariant derivative for the rank reducing field

126H would contain the term VQVucH(∆c)† which enters the d = 7 operators. When 16H

is used instead of the 126H, the covariant derivative would contain a similar term, but now

the H and ∆c fields would carry (B − L) = +1 and −1 respectively.
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H〈∆c〉

H〈∆c〉

H〈∆c〉

H〈∆c〉

dc

Q

dc
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ec
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ucVQ V ∗
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(b)

Figure 3: Origin of d = 7 baryon number violating operators via the exchange of vector
gauge bosons VQ(3, 2, 1/6) and Vuc(3, 1,−2/3) of SO(10).

uc

dc

L

dcHu

ωc ω ρ ρ

dc

dc

L

ucHu

η η χ χ

(a) (b)

Figure 4: Superfield diagrams for the generation of d = 6 baryon number violating operator
of Eq. (3) in SO(10). Diagram (a) arises from integrating out colored fields from 10H and
126H , while diagram (b) arises from 120H.

3.1 B–violating d = 6 superpotential operators in SUSY SO(10)

We have identified in Eq. (3) a single holomorphic operator of dimension six in the super-

potential which violates B and (B − L). In Fig. 4 we show how this operator can arise

in SUSY SO(10). Fig. 4 (a) is obtained by integrating out colored fields in the 10H and

126H , while Fig. 4 (b) is obtained by integrating out such fields from the 120H . These

are superfield diagrams, effectively generating F–terms in the Lagrangian. Note that the

effective superpotential is antisymmetric in down-quark flavor in both diagrams (a) and

(b). This can be explicitly verified, by making use of the ǫ uc dc ωc vertex in Fig. 4 (a)

which is color antisymmetric.

In Fig. 4 (a), the vertex Ldcρ is contained in the Yukawa coupling of Eq. (7) and the

vertex ucdcωc can be either from Eq. (6) or from Eq. (7). The ωcω and ρρ transitions occur
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through (10H)
2 (or 126H 126H) mass term, for example. As for the vertex ω ρHu here is

a concrete example. The coupling 126H 10H 210H is invariant, and contains such a term,

where ω ⊂ 10H, ρ ⊂ 126H and Hu ⊂ 210H. Note that Hu ⊂ 210H carries (B − L) = +2,

since it is part of the fragment (2, 2, 10) under G(2, 2, 4). Of course, the MSSM field Hu

in this case is an admixture of h(1, 2, 1/2) from 10H , 126H , 126H and 210H and carries no

definite (B − L) charge.

As for Fig. 4 (b), the vertices χLuc and η dc dc are contained in the 120H Yukawa cou-

pling of Eq. (8). The vertex η χHu can arise from the superpotential coupling (120H)
2 210H,

which is invariant.

Suporpotential operators of Eq. (3) can also arise in SUSY SO(10) models which utilize

low dimensional Higgs representations, for e.g., {10H+10′H+16H+16H+16′H+16
′

H+45H}.
Such models have been widely discussed in the literature [19–22]. While R–parity is no

longer automatic in these models (unlike in the case of 126H models), it can be ensured

by a discrete Z2 symmetry which distinguishes 16H from the chiral fermions 16i and which

remains unbroken. The doublet–triplet splitting problem can be addressed without fine-

tuning in these models via the Dimopoulos–Wilczek mechanism [23]. Generation of fermion

masses in these models relies on higher dimensional operators such as 16i16j16H16H which

induce heavy Majorana masses for the νc, and 16i16j16H16
′
H which induce lighter family

masses and CKM mixings. (16H and 16H acquire GUT scale VEVs along their SM singlet

components, while 16′H and 16
′

H do not. The SU(2)L doublet components of 16H and 16′H
acquire weak scale VEVs, see for e.g., discussions in Ref. [22].) To see the origin of Eq.

(3) in such models, consider generation of Fig. 4 (a). The vertex Ldc ρ arises from the

Yukawa coupling 16i16j16H16
′
H after a GUT scale VEV is inserted for the 16H (note that

16′H contains a ρ field), and the vertex uc dc ωc is contained in the coupling 16i16j10H.

Now, ωc can convert itself into ω ⊂ 10′H via the coupling 10H 10′H 45H when the (B − L)–

preserving VEV of 45H is inserted, while the ρ can transition into ρ ⊂ 45H via the coupling

16′H 16H 45H with the insertion of a 16H VEV. The ρ ωHu term is contained in the coupling

10H 10′H 45H , which completes the diagram. Explicit models [22] contain all these terms

necessary for generating the d = 6 superpotential operator.

4 (B − L)–violating nucleon decay rates in SO(10)

Before discussing the rates for (B − L)–violating nucleon decay, let us note that cer-

tain scalar bosons and certain gauge bosons would induce the more dominant d = 6

baryon number violating operators of Eq. (1). Scalar bosons with SM quantum numbers

ω(3, 1,−1/3), Φ(3, 3,−1/3) and δ(3, 1,−4/3) and vector gauge bosons with SM quantum

numbers X(3, 2,−5/6) and VQ(3, 2, 1/6) can can induce these (B − L) preserving d = 6

operators. Current nucleon lifetime limits restrict the masses of these gauge bosons to be
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larger than about 1015 GeV, and those for the scalar bosons to be heavier than about 1011

GeV (for Yukawa couplings of order 10−3). Since some of the d = 7 operators arise in

SO(10) via the exchange of these particles, the above limits have to be met in our estimate

of d = 7 decay rates.

We proceed to estimate the lifetime of the nucleon for its (B − L)–violating decays in

SO(10) a straightforward way.2 The diagrams of Fig. 1 lead to the estimate

Γ(n → e−π+)Fig.1 ≈
|Y ∗

QQωYLdcρ|2
64π

(1 +D + F )2
β2
Hmp

f 2
π

(

λvvR
M2

ρ

)2
1

M4
ω

. (12)

Here we have defined the Yukawa couplings of ω and ρ fields appearing in Fig. 1 to be Y ∗
QQω

and YLdcρ. These couplings are linear combinations of the Yukawa coupling matrices h, f

and g of Eqs. (6)-(8) with flavor indices corresponding to the first family fermions. The

factors D and F are chiral Lagrangian factors, D ≃ 0.8 and F ≃ 0.47. βH ≃ 0.012 GeV3

is the nucleon decay matrix element [25], vR ≡ 〈∆c〉, and v ≡ 〈H0〉 = 174 GeV. We have

defined the trilinear coupling of Fig. 1 to have a coefficient λvR. As expected, the rate is

suppressed by six powers of inverse mass, owing to the higher dimensionality of the effective

operator. The mass of ω(3, 1,−1/3) is constrained to be relatively large, as it mediates d = 6

nucleon decay. For Y ≈ 10−3, Mω > 1011 GeV must be met from the d = 6 decays. As an

illustration, choose YQQω = YLdcρ = 10−3, Mω = 1011 GeV, Mρ = 108 GeV, and λvR = 1011

GeV in Eq. (12). This choice would result in τn ≈ 3 × 1033 yrs. Such a spectrum is

motivated by the intermediate symmetry G(2, 2, 4) = SU(2)L×SU(2)R×SU(4)C (without

discrete Parity), which is found to be realized at MI ≈ 1011 GeV from gauge coupling

unification [15]. As a second example, take Mρ = 106 GeV, Mω = 1016 GeV, λvR = 1016

GeV, YQQω = YLdcρ = 3× 10−3. This choice of spectrum leads to τn ≈ 4× 1033 yrs.

This second choice for the spectrum can be motivated as follows. The unification of

gauge couplings may occur without any particular intermediate symmetry, but with certain

particles surviving to an intermediate scale. We have found two examples of this type

where the d = 7 nucleon decay is within observable range. Suppose the ρ(3, 2, 1/6) particle,

along with a pair of (1, 3, 0) scalar particles (contained in the 45H , 54H or 210H needed

for symmetry breaking) survive down to MI = 106 GeV. The three SM gauge couplings

are found to unify at a scale MX ≈ 1015 GeV in this case. This is shown in Fig. 5

right panel. This figure is obtained by the one-loop renormalization group evolution of

the SM gauge couplings above MI with beta function coefficients bi = (62/15,−2,−20/3),

where dgi/dlnµ = big
3
i /(16π

2). Since the d = 6 nucleon decay lifetime would also be

near τ(p → e+π0) ≈ 1034 yrs with such a unification scale, this scenario would predict

observable rates for both the (B − L)–conserving and (B − L)–violating nucleon decay

modes. Another possible scenario for consistent gauge coupling unification is to assume

2(B + L)–preserving nucleon decay has been studied in the context of R–parity breaking SUSY in
Ref. [24].
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Figure 5: Unification of the three SM gauge couplings obtained with a light ρ(3, 2, 1/6) and
two (1, 3, 0) scalar multiplets at MI = 106 GeV (right panel). The left panel corresponds
to having one ρ(3, 2, 1/6) and one (1, 3, 0) scalar fields at the weak scale.

that ρ(3, 2, 1/6) and one (1, 3, 0) scalar multiplet survive down to the weak scale. Again,

the gauge couplings unify around MX ≈ 1015 GeV, as shown in the left panel of Fig. 5.

Here the β–function coefficients used are bi = (62/15,−7/3,−20/3), appropriate for this

spectrum. The estimate τ(n → e−K+) ≈ 1033 yrs would follow, as in the second example

above, but now with YQQω = YLdcρ = 10−4.

Nucleon decay rates arising from diagrams of Fig. 2 are similar, but with a signifi-

cant difference. Take for example Fig. 2 (b) with the ηρ∗H trilinear vertex. Neither the

η(3, 1, 2/3) nor the ρ(3, 2, 1/6) field would mediate d = 6 nucleon decay, and may be con-

siderably lighter than the GUT scale. In non–supersymmetric SO(10) models it is natural

that some scalars survive down to an intermediate scale. Typically the intermediate scale

is of order 1010−1012 GeV if the associated symmetry contains SU(4)C . Thus it is possible

that both η and ρ have masses of order 1010 GeV. Nucleon decay rate is now estimated to

be

Γ(n → e−π+)Fig.2 ≈ |YLdcρYdcdcη|2
64π

(1 +D + F )2
β2
Hmp

f 2
π

(

λvvR
M2

ρ

)2
1

M4
η

. (13)

Here λvR is defined as the coefficient of the trilinear scalar vertex. For Mρ = Mη = 1010

GeV, vR = 1011 GeV, Y = 10−2, τn ≈ 3× 1033 yrs, which is in the observable range.

The gauge boson exchange diagrams of Fig. 3 would also induce (B − L)–violating

nucleon decay. However, we find the rates for these decays to be suppressed. Take Fig.

3 (a) for example. The vector gauge boson VQ must have mass of order 1015 GeV, since

it mediates d = 6 nucleon decay, while Vuc could be much lighter as it does not have

B–violating interaction by itself. The VQVucH vertex necessary for connecting the d = 7

diagram has a coefficient of order g2vR, while the mass of Vuc is of order gvR. The amplitude

for d = 7 nucleon decay arising from Fig. 3 is then given by A ≈ (g4vRv)/(M
2
VQ
M2

Vuc
) ≈

(g2/M2
VQ
)(v/vR). This amplitude is a factor (v/vR) smaller compared to the standard d = 6
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nucleon decay amplitude originating from GUT scale gauge bosons. Unless the (B − L)–

breaking scale vR is close to the weak scale v, not a likely scenario based on gauge coupling

unification, nucleon lifetime for (B − L)–violating modes from these diagrams would be

beyond the reach of experiments. However, as we shall see in the next section, the (B−L)–

violating decays of the gauge boson can naturally explain the observed baryon asymmetry

of the universe.

As for the supersymmetric diagram of Fig. 4, the d = 6 operator in the superpotential

Eq. (3) has a strength A = (Yucdcωc YLdcρ YωρHu
)/(MωMρ). The Lagrangian would contain

a term d̃cs̃c(ucν)vu, upon insertion of the VEV of Hu. The scalars can be converted to d

and s quarks via a gluino loop, and would result in the following estimate for processes

such as n → νK0:

Γ(n → νK0)Fig.4 ≈ |Yucdcωc YLdcρ YωρHu
|2

64π
(1 +D+ F )2

β2
Hmp

f 2
π

(

vu
MS

)2
(αs

π

)2 1

M2
ωM

2
ρ

. (14)

Here MS is a typical SUSY breaking mass scale. For Yucdcωc = YLdcρ = 10−2, YωρHu
= 1.0,

Mρ = 109 GeV, Mω = 1016 GeV, MS = 1 TeV, one obtains τ(n → νK0) ≈ 1034 yrs.

As for the consistency of such an intermediate scale mass for ρ with gauge coupling

unification in SUSY models, we note that ρ(3, 2, 1/6) forms a complete SU(5) 10–plet

along with a (3, 1,−2/3) and a (1, 1, 1) fields. If these fields also have an intermediate scale

mass, unification of gauge coupling would work as in the MSSM.

It should be noted that in SUSY models, the decay n → e−K+ would be suppressed,

since the VEV of Hu picks a neutrino field in Eq. (3). Discovery of n → e−K+ decay would

thus hint at a deeper non–supersymmetric dynamics.

5 Baryogenesis at the GUT epoch

We now proceed to the computation of the baryon asymmetry of the universe induced at

the GUT epoch. The (B −L)–violating decays of the scalars ω(3, 1,−1/3) and η(3, 1, 2/3)

and of the vector gauge boson VQ(3, 2, 1/6) will be used to illustrate the mechanism. We

shall see that in each case, the out of equilibrium condition can be satisfied, and that there

is enough CP violation. These decays generate an asymmetry in (B − L), which is not

destroyed by the effective interactions induced by the electroweak sphalerons, and would

survive to low temperatures. This is in contrast with the induced baryon asymmetry in the

(B − L)–preserving decays of GUT scale scalars and gauge bosons in unified models such

as SU(5), which is washed out by the spharleron interactions.

5.1 (B − L) asymmetry in ω → ρH∗ decay

We begin with the (B −L)–violating decay of the scalar ω(3, 1,−1/3) which is assumed to

have a mass of order the GUT scale. (B−L asymmetry in decays of specific heavy particles
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has recently been discussed in Ref. [26].) To be concrete, we shall work in the framework

of non–supersymmetric SO(10), although our results would hold for SUSY SO(10) as well,

with some minor modifications. We identify ω to be the lightest of the various ωi(3, 1,−1/3)

scalar fields in the SO(10) theory. The Yukawa couplings of Eq. (6)-(8) imply that ω (which

is in general a linear combination of ωi, ω
c∗
i from the 10H and 126H and 120H fields) has

two–body decays into fermions of the type ω → QQ, uc ec, νc dc, uc dc, QL. These decays

preserve (B − L), as can be seen by assigning (B − L)(ω) = −2/3. Now, ω also has a

two–body scalar decay, ω → ρH∗ as shown in Fig. 6 (a), which uses the (B − L) breaking

VEV of ∆c. The scalar field ρ has two–body fermionic decays of the type ρ → Ldc, νc Q

(the latter if kinematically allowed), which define (B − L) charge of ρ to be +4/3. Thus

the decay ω → ρH∗ would violate (B − L) by −2 (recall that H has zero (B − L) charge).

ρ

ω

H

〈∆c〉

(a) (b)

Q
νc

ω

ρ

H

〈∆c〉

νcL

νc

ω

ρ

H

dc

L

νc

〈∆c〉

ρ

ω′

H

〈∆c〉
ω

dc, Q,Q

νc, L,Q

(c) (d)

Figure 6: Tree–level diagram and one–loop corrections responsible for generating (B − L)
asymmetry in ω decay.

Focussing on the (B − L)–violating decay ω → ρH∗, we define a (B − L) asymmetry

parameter ǫB−L as follows. Let the branching ratio for ω → ρH∗ be r which produces a

net (B − L) number of 4/3, and that for ω∗ → ρ∗H be r, with net (B − L) = −4/3. The

branching ratio for the two–fermion decays ω → ff is then (1−r) which has (B−L) = −2/3,

and that for ω∗ → f f is (1 − r) which has (B − L) = 2/3. Thus in the decay of a ω + ω∗

pair, a net (B − L) number, defined as ǫB−L, is induced, with

ǫB−L ≡ (B − L)ω + (B − L)ω∗ =
4

3
(r − r)− 2

3
{(1− r)− (1− r)}

= 2(r − r) . (15)

Note that an interplay between the (B−L)–conserving decays and the (B−L)–preserving

decays of ω is necessary for inducing this asymmetry. In addition, CP violation is required,
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otherwise r = r and thus ǫB−L = 0. Nonzero ǫB−L also requires a loop diagram which has

an absorptive part. All these conditions are realized in SO(10) models. The loop diagrams

for ω → ρH∗ are shown in Fig. 6 (b)-(d), which involve the exchange of fermions. Since ω

can also decay to two on–shell fermions, these loop diagrams have absorptive parts. Note

that Fig. 6 (b)-(c) are proportional to the Majorana masses for the νc fields, while Fig 6

(d) is not. These diagrams have CP violating phases, ensuring a nonzero ǫB−L.

We evaluate Fig. 6 in a basis where the Majorana mass matrix of the νc fields is diagonal

and real. The contribution of Fig. 6 (b) to ǫB−L is found to be

ǫ
(b)
B−L = −1

π
Im

[

Tr{Y †
QLω∗ YQνcρ Mνc F1(Mνc) YνcLH)} λvR

|λvR|2

]

Br. (16)

Here we have defined the trilinear scalar vertex of Fig. 6 (a) to have a coefficient λvR in

the Lagrangian. YQνcρ is the Yukawa coupling matrix corresponding to the coupling Qνc ρ,

etc. Mνc is the diagonal and real mass matrix of νc fields. Br stands for the branching ratio

Br(ω → ρH∗). A factor of 2 has been included here for the two SU(2)L final states in the

decay. The function F1(Mj) is defined as

F1(Mj) = ln

(

1 +
M2

ω

M2
j

)

+Θ

(

1−
M2

j

M2
ρ

) (

1−
M2

j

M2
ρ

)

(17)

with Mj denoting the mass of νc
j . Here Θ stands for the step function, signalling additional

ways of cutting the diagram when Mj < Mρ in Fig. 6 (b).

Fig. 6 (c) yields the following contribution to ǫB−L:

ǫ
(c)
B−L =

1

π
Im

[

Tr{Ydcνcω Y
†
dcLρ YνcLH Mνc F2(Mνc)} λvR

|λvR|2

]

Br, (18)

where F2(Mj) is defined as

F2(Mj) = ln

(

1 +
M2

ρ

M2
j

)

+Θ

(

1−
M2

j

M2
ω

) (

1−
M2

j

M2
ω

)

. (19)

Fig. 6 (d) arises because in any realistic SO(10) model there are at least two ω fields.

The heavier ω field is denoted as ω′. In principle one can sum over all such ω′ contributions,

but here we have kept only one such ω′ field. Its contribution to ǫB−L is found to be

ǫ
(d)
B−L =

1

π
Im

[

Tr{Y †
dcνcω′ Ydcνcω F3(Mνc)}(λ′vR)

∗(λvR)

|λvR|2

]

Br, (20)

where F3(Mj) is defined as

F3(Mj) =

(

M2
ω −M2

j

M2
ω −M2

ω′

)

Θ

(

1−
M2

j

M2
ω

) (

1−
M2

j

M2
ω

)

. (21)
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This contribution, which is non-vanishing even in the limit of vanishing Mj, requires Mj <

Mω. Here we have defined the trilinear coupling ρ∗ω′H to have a coefficient λ′vR in the

Lagrangian. We have also assumed that Mω − M ′
ω ≫ Γω, so that there is no resonant

enhancement for the decay. (When ω and ω′ are nearly degenerate in mass, such a resonant

enhancement is possible. In this case, the expression for the decay rate will be smoothened

by the width of these particles. Appropriate expressions in this case can be found in

Ref. [27].)

The branching ratio factor Br = Br(ω → ρH∗) appearing in Eqs. (16), (18), (20) can

be estimated as follows. For this purpose let us assume that ω is the field ω from 10H with

Yukawa couplings as given in Eq. (6). The partial widths for the decays Γ1(ω → ρH∗) and

Γ2(ρ → ff) are then given by

Γ1(ω → ρH∗) =
|λvR|2
8πMω

(

1−
M2

ρ

M2
ω

)

, Γ2(ω → ff) =
Tr(h†h)

4π
Mω . (22)

In the expression for Γ2 we have assumed that νc is much lighter than ω. In terms of

these partial widths, the branching ratio that appears in Eqs. (16), (16), (20) is given as

Br = Γ1/(Γ1+Γ2). To get a feeling for numbers, let us choose a realistic set of parameters:

Mω = 1016 GeV, h33 = 0.6 (corresponding to the top quark Yukawa coupling at GUT

scale) with other hij negligible, and λvR = (1014, 1015, 1016) GeV. This would correspond

to Br = (1.4× 10−4, 1.4× 10−2, 0.58), which shows a strong dependence on λvR.

The total (B − L) asymmetry in ω → ρH∗ and its conjugate decay is given by

ǫB−L = ǫ
(b)
B−L + ǫ

(c)
B−L + ǫ

(d)
B−L . (23)

This will result in the baryon to entropy ratio YB given by

YB ≡ nB − nB

s
=

ǫB−L

g∗
d , (24)

where g∗ is the total number of relativistic degrees of freedom at the epoch when these decays

occur. In our present example g∗ = 130 which includes the SM particles and the ρ and ω

scalar fields. The factor d in Eq. (24) is the dilution factor which takes into account back

reactions that would partially wash out the induced baryon asymmetry. d is determined

by solving the Boltzmann equations numerically, but simple analytic approximations are

available suitable to the present setup. Defining a ratio

K =
Γ(ω → ρH∗)

2H

∣

∣

∣

∣

T=Mω

, (25)

where H is the Hubble expansion rate,

H = 1.66 g1/2∗

T 2

MPl
, (26)
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the dilution factor can be written as [28]

d ≃
{

1 (K < 1)
0.3

K(lnK)0.6
(K ≫ 1).

(27)

These approximations work well for K < 100 or so, beyond which d would be exponentially

suppressed. For Mω = 1016 GeV, λvR = (1014, 1015, 1016) GeV, we find K = (1.3 ×
10−4, 1.3 × 10−2, 1.23), with the corresponding dilution factors being d = (1.0, 1.0, 0.63).

Thus we see that there is not much dilution with this choice of parameters, although

Br = (1.4 × 10−4, 1.4 × 10−2, 0.58) can become small for smaller values of λvR. If we

choose Mω = 1015 GeV instead, and vary λvR = (1014, 1015, 1016) GeV, then we find K =

(0.12, 12.3, 1230) and the corresponding dilution factors to be d = (1.0, 1.4 × 10−2, 7.5 ×
10−5), with Br = (1.3× 10−2, 0.58, 1.0).

Although the electroweak sphaleron interactions would not wash away the GUT scale

induced (B − L) asymmetry, partial wash–out can occur via the (B − L)–violating in-

teractions of the right–handed neutrinos. This is possible because the νc fields acquire

(B − L)–violating Majorana masses, and their interactions with the Higgs field and the

lepton fields can erase part of the GUT–induced asymmetry. In some cases it may be de-

sirable to have partial wash–out. One can also prevent any wash–out by decoupling the νc

fields at the same temperature as the ω field (which would happen if Mνc ∼ Mω). For the

surviving light νc fields, the condition Y 2/(8π) ≪ 1.66g
1/2
∗ (Mνc/MPl) would guarantee no

further wash–out, where Y is the Dirac Yukawa coupling of the light νc field.

While we do not present the calculation of YB in the supersymmetric version of the

SO(10) model, results in that case would be similar to the non–SUSY case. More diagrams

contribute to the generation of (B−L) asymmetry with superparticle decays included. The

number of relativistic degrees of freedom g∗ would also double in this case.

5.2 (B − L) asymmetry in η → ρH decay

The (B − L) asymmetry induced in the decay η(3, 1, 2/3) → ρH is similar to the one

induced in the decay ω → ρH∗. The tree–level (B − L)–violating decay and the one–loop

corrections are shown in Fig. 7. η has a fermionic decay mode η → uc νc shown in Fig. 7

(a), which can be used to define its (B − L) quantum number as (B − L)(η) = −2/3. The

decay η → Hρ (Fig. 7 (b)) would then violate (B−L) by +2 units, since (B−L)(ρ) = 4/3

obtained from the decays ρ → Ldc, νcQ. The one–loop correction to this decay is shown in

Fig. 7 (c), which is evaluated in analogy to Fig. 6 (c) to be

ǫ
(η)
B−L =

1

π
Im

[

Tr{Yucνcη Y
†
ucQH YνcQρMνc F̂2(Mνc)} λvR

|λvR|2

]

Br. (28)
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Here the function F̂2(Mj) is defined as

F̂2(Mj) = ln

(

1 +
M2

ρ

M2
j

)

+Θ

(

1−
M2

j

M2
η

) (

1−
M2

j

M2
η

)

, (29)

and λvR identified as the coefficient of the trilinear vertex ρ∗ηH∗.

η

uc

νc

H

η

ρ

〈∆c〉

νc

η

H

ρ

uc

Q

νc

〈∆c〉

(a) (c)(b)

Figure 7: Tree–level and one–loop level diagrams responsible for inducing (B − L) asym-
metry in η → ρH∗ decay.

A noteworthy feature of baryon asymmetry generated in the decay η → ρH∗ is that both

the scalars η and ρ can be relatively light, since they do not induce d = 6 baryon number

violating operators of Eq. (1). In supersymmetric extensions of SO(10), this allows for the

possibility that the gravitino abundance problem of supergravity models can be evaded.

Typically in supergravity models, the reheat temperature after inflation is required to be

Treheat < 108 GeV, in order to sufficiently dilute the gravitino abundance in the universe.

If Mη, Mρ < 108 GeV, this requirement would be compatible with the (B − L) asymmetry

generation.

5.3 (B−L) asymmetry in vector gauge boson decay VQ → V ∗

uc H
∗

The d = 7 baryon number violating operators of Eq. (2) can arise by integrating out the

VQ(3, 2, 1/6) and Vuc(3, 1,−2/3) gauge bosons of SO(10) (see Fig. 3), which lie outside of

the SU(5) subgroup. The decay VQ → V ∗
ucH∗ and the conjugate decay V ∗

Q → VucH can

produce a primordial (B − L) asymmetry at the GUT scale, which would survive down to

low temperatures without being washed out by the sphaleron interactions. The tree–level

decay diagram and the one–loop correction are shown in Fig. 8. The vector gauge boson VQ

has two–fermion decays into the following channels: V
2/3
Q → ucν, Qdc, νcu for the charge

2/3 component, and V
−1/3
Q → udc, uce, νcd for the charge −1/3 component. These decays

conserve (B − L), as can be seen by assigning (B − L)(VQ) = −2/3. The gauge boson V ∗
uc

has the fermionic decays V ∗
uc → ed, dcec, νu, ucνc, suggesting that (B−L)(V ∗

uc) = 4/3. The

decay VQ → V ∗
ucH∗ would then change (B − L) by +2, as in the case of the scalar decay

ω → ρH∗. The (B − L) asymmetry arising from Fig. 8 is found to be

ǫ
(V )
B−L = − 1

2π
Im

[

Tr{Mνc F4(Mνc) YνcLH}
g

c∗MVuc

]

Br, (30)
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with the function F4 defined as

F4(Mj) = ln

(

1 +
M2

Vuc

M2
j

)

+Θ

(

1−
M2

j

M2
VQ

) (

1−
M2

j

M2
VQ

)

. (31)

Here we have defined the Lagrangian coefficient of the VQVucH vertex to be g cMVuc
. This

is a consistent definition, since the lighter gauge boson Vuc would acquire a mass of order

gvR. Here c is a Clebsch factor of order unity, with its value depending on the Higgs

representation used for rank reduction (126H or 16H).

H〈∆c〉

VQ V ∗
uc

VQ

V ∗
uc

H

Q

L

νc

νc

〈∆c〉

(a) (b)

Figure 8: Tree graph and one–loop graph responsible for (B − L) asymmetry in the decay
of vector gauge boson VQ.

The factor Br that appears in Eq. (30) is the branching ratio Br(VQ → V ∗
ucH∗). It is

determined in terms of the two partial widths as Br = Γ1/(Γ1 + Γ2), where

Γ1(VQ → V ∗
ucH∗) =

g2|c|2
192π

MVQ

(

1−
M2

Vuc

M2
VQ

)







(

1−
M2

Vuc

M2
VQ

)2

+ 12
M2

Vuc

M2
VQ







,

Γ2(VQ → ff) =
g2

12π
MVQ

. (32)

If we choose MVQ
= 1016 GeV, K = Γ1/H ≃ 0.016 (with g = 0.55 and c = 1), so that the

dilution factor is d ≃ 1.0. There is a modest suppression in ǫ
(V )
B−L arising from the branching

ratio, since Br ≃ 0.06 with this choice.

5.4 Baryon asymmetry in a class of minimal SO(10) models

We now show how the GUT scale induced asymmetry in ω → ρH∗ decay can consistently

explain the observed value of YB = (8.75 ± 0.23) × 10−11, in a class of minimal SO(10)

models. In this class of models, a single 10H and a single 126H couple to fermions, as in

Eqs. (6)-(7). In SUSY models this is automatic with a single 10H and 126H employed.

In non–SUSY models the 10∗H can also couple (10H must be complexified to generate real-

istic fermion masses), however if a Peccei–Quinn symmetry is assumed, the 10∗H coupling

would be absent. This class of models is highly constrained due to the small number of

parameters that describe the fermion masses and mixings, and leads to predictions for the

neutrino oscillation parameters [6]. In addition to generating large mixing angles for solar

22



neutrino oscillations and for atmospheric neutrino oscillations, these models predict a rela-

tively large value of θ13, viz., sin
2 2θ13 ≈ (0.085− 0.095), both in the non–supersymmetric

and the supersymmetric versions, consistent with recent results from Daya Bay and other

experiments [8].

To illustrate how realistic choice of parameters generate acceptable YB, we choose the

ω field to be almost entirely in the 10H . We also choose λ′vR that appears in Fig. 6 (d) to

be small, so that the leading contribution to ǫB−L is from Fig. 6 (c), as given in Eq. (18).

In this limit, we find

ǫB−L ≈ 2
√
3

π

|h33f3|2
|λ|

{

1 + ln

(

1 +
M2

ρ

M2
νc
3

)}

sin φ . (33)

Here we have kept only the third family Yukawa couplings, which is the leading contribution,

and we have defined φ = arg{h2
33f

2
3λ + π

2
}. Choosing h33 ≃ 0.6 (the top quark Yukawa

coupling at the GUT scale), and λ = 0.25, vR = 1016 GeV, f3 = 10−2 (so that f3vR = 1014

GeV, consistent with the light ντ mass arising via the seesaw mechanism), φ = 0.12, we

find ǫB−L = 1.6 × 1.9 × 10−5. If Mω = 1015 GeV, then Br = 0.96, K = 197 so that the

dilution factor is d = 5.6 × 10−4. This results in a net YB = 8.2 × 10−11, consistent with

observations.

While natural choices of parameters can generate acceptable YB, due to the high sensi-

tivity of dilution factor on the masses of the heavy particles, precise predictions are difficult

to make. For VQ → V ∗
ucH∗ decay we find the process to be typically out of equilibrium so

that d ≃ 1 for MVQ
∼ 1016 GeV. Natural values of the asymmetry parameter in this case is

ǫB−L ≈ 10−4. Some dilution effects from the νc interactions would be welcome in this case.

It should be mentioned that the d = 7 operators of Eq. (5) also arise naturally in

SO(10) models, as already noted. The η∗ρH and the ΦρH∗ vertices arising from the 126H

couplings can be used for GUT scale (B − L)–genesis without generating d = 7 nucleon

decay operators. The decays η → ρH has already been analyzed, but if these particles arise

from 126H they do not lead to (B − L)–violating nucleon decay.

6 Conclusion

In conclusion, we have pointed out that the complete set of d = 7 baryon number violating

operators that lead to the selection rule ∆(B − L) = ±2 in nucleon decay can emerge as

effective low energy operators in SO(10) unified theories with either a 126H or a 16H Higgs

field used for breaking the B−L gauge symmetry. The strength of these operators is unob-

servable in single–step models where SO(10) breaks directly down to the standard model.

In non–supersymmetric SO(10) models, an intermediate symmetry is required in order for

the gauge couplings to unify correctly. We have shown that in several instances with such
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an intermediate scale, the d = 7 baryon number violating operators can lead to observable

nucleon decay rates. The decay modes are distinct from the conventional GUT–motivated

modes, and include n → e−K+, e−π+, etc. We have also identified supersymmetric scenar-

ios where such modes may be within reach of experiments, consistent with gauge coupling

unification.

A second major result of this paper is a new way of generating (B − L) asymmetry

in the early universe by the decay of GUT mass particles. It is these particles which also

induce the d = 7 nucleon decay operators. Such an asymmetry is sphaleron–proof, in

that it does not get erased by the effective interactions of the electroweak sphalerons. We

present several examples where consistent asymmetry can be generated with the GUT scale

decays of particles obeying the ∆(B − L) = ±2 selection rule. Further, we show that in

minimal SO(10) models which explain the large neutrino mixing angles and predict relative

large value for θ13, consistent with recent experimental results, that the induced baryon

asymmetry via the proposed GUT–scale mechanism is compatible with observations. There

is thus a strong connection between neutrino oscillation parameters and baryon asymmetry

in this class of models.

Acknowledgement

The work of KSB is supported in part the US Department of Energy, Grant Numbers DE-

FG02-04ER41306 and that of RNM is supported in part by the National Science Foundation

Grant Number PHY-0968854. KSB acknowledges helpful discussions with J. Julio.

References

[1] S. Weinberg, Phys. Rev. Lett. 43, 1566 (1979); F. Wilczek and A. Zee, Phys. Rev.

Lett. 43, 1571 (1979).

[2] S. Weinberg, Phys. Rev. D 22, 1694 (1980).

[3] A. D. Sakharov, Pisma Zh. Eksp. Teor. Fiz. 5, 32 (1967) [JETP Lett. 5, 24 (1967)].

[4] For reviews on GUT scale baryogenesis before the discovery of the sphaleron and for

original references see: P. Langacker, Phys. Rept. 72, 185 (1981); E. W. Kolb and

M. S. Turner, Ann. Rev. Nucl. Part. Sci. 33, 645 (1983); The Early Universe, by E.

Kolb and M. Turner, (Frontiers in Physics) (1986).

[5] V. A. Kuzmin, V. A. Rubakov and M. E. Shaposhnikov, Phys. Lett. B 155, 36 (1985).

[6] K. S. Babu, R. N. Mohapatra, Phys. Rev. Lett. 70, 2845 (1993); B. Bajc, G. Senjanovic

and F. Vissani, hep-ph/0110310; Phys. Rev. Lett. 90, 051802 (2003); T. Fukuyama

24



and N. Okada, JHEP 0211, 011 (2002); H. S. Goh, R. N. Mohapatra, S. P. Ng, Phys.

Lett. B570, 215 (2003); K.S. Babu, C. Macesanu, Phys. Rev. D72, 115003 (2005); S.

Bertolini, T. Schwetz, M. Malinsky, Phys. Rev. D73, 115012 (2006); A. S. Joshipura,

K. M. Patel, arXiv:1105.5943 [hep-ph].

[7] C. S. Aulakh, B. Bajc, A. Melfo, G. Senjanovic, F. Vissani, Phys. Lett. B588, 196-202

(2004); T. Fukuyama, A. Ilakovac, T. Kikuchi, S. Meljanac, N. Okada, Phys. Rev.

D72, 051701 (2005); C. S. Aulakh and S. K. Garg, Nucl. Phys. B 857, 101 (2012).

[8] F. P. An et al. [DAYA-BAY Collaboration], arXiv:1203.1669 [hep-ex]. K. Abe et al.

[T2K Collaboration], Phys. Rev. Lett. 107, 041801 (2011); P. Adamson et al. [MI-

NOS Collaboration], Phys. Rev. Lett. 107, 181802 (2011); H. De. Kerrect [Dou-

ble CHOOZ Collaboration], talk at the LowNu conference in Seoul, Korea (2011),

http://workshop.kias.re.kr/lownu11/?Program.

[9] K. S. Babu and R. N. Mohapatra, arXiv:1207.5771 [hep-ph], to be published in Phys.

Rev. Lett. (2012).

[10] L. F. Abbott and M. B. Wise, Phys. Rev. D 22, 2208 (1980).

[11] M. Fukugita and T. Yanagida, Phys. Lett. B 174, 45 (1986).

[12] P. Minkowski, Phys. Lett. B 67, 421 (1977); M. Gell-Mann, P. Ramond, and R. Slan-

sky, in Supergravity, eds. D. Freedman et al., (North-Holland, Amsterdam, 1980); T.

Yanagida, in Proceedings of the Workshop on Baryon Number in the Universe, eds. O.

Sawada and A. Sugamoto, (KEK, 1979); R. Mohapatra and G. Senjanović, Phys. Rev.

Lett. 44, 912 (1980).

[13] H. A. Weldon and A. Zee, Nucl. Phys. B 173, 269 (1980).

[14] K. S. Babu and C. N. Leung, Nucl. Phys. B 619, 667 (2001).

[15] D. Chang, R. N. Mohapatra, J. Gipson, R. E. Marshak and M. K. Parida, Phys. Rev.

D 31, 1718 (1985); R. N. Mohapatra and M. K. Parida, Phys. Rev. D 47, 264 (1993);

N. G. Deshpande, E. Keith and P. B. Pal, Phys. Rev. D 46, 2261 (1993); S. Bertolini,

L. Di Luzio and M. Malinsky, Phys. Rev. D 80, 015013 (2009); S. Bertolini, L. Di

Luzio and M. Malinsky, arXiv:1202.0807 [hep-ph].

[16] C. S. Aulakh and A. Girdhar, Nucl. Phys. B 711, 275 (2005); C. S. Aulakh and

S. K. Garg, hep-ph/0612021.

[17] P. Nath and R. M. Syed, Phys. Lett. B 506, 68 (2001) [Erratum-ibid. B 508, 216

(2001)].

25



[18] R. N. Mohapatra and R. E. Marshak, Phys. Rev. Lett. 44, 1316 (1980) [Erratum-ibid.

44, 1643 (1980)].

[19] V. Lucas and S. Raby, Phys. Rev. D 55, 6986 (1997); R. Dermisek and S. Raby, Phys.

Rev. D 62, 015007 (2000); S. M. Barr and S. Raby, Phys. Rev. Lett. 79, 4748 (1997).

[20] C. H. Albright and S. M. Barr, Phys. Rev. D 58, 013002 (1998); C. H. Albright,

K. S. Babu and S. M. Barr, Phys. Rev. Lett. 81, 1167 (1998); C. H. Albright and

S. M. Barr, Phys. Rev. Lett. 85, 244 (2000).

[21] K. S. Babu, J. C. Pati and F. Wilczek, Nucl. Phys. B 566, 33 (2000).

[22] K. S. Babu, J. C. Pati and Z. Tavartkiladze, JHEP 1006, 084 (2010).

[23] S. Dimopoulos and F. Wilczek, Print-81-0600 (SANTA BARBARA); K. S. Babu and

S. M. Barr, Phys. Rev. D 48, 5354 (1993).

[24] F. Vissani, Phys. Rev. D 52, 4245 (1995).

[25] Y. Aoki et al. [RBC-UKQCD Collaboration], Phys. Rev. D 78, 054505 (2008).

[26] S. Enomoto and N. Maekawa, Phys. Rev. D 84, 096007 (2011); P. -H. Gu and U. Sarkar,

arXiv:1110.4581 [hep-ph].

[27] A. Pilaftsis, Phys. Rev. D 56, 5431 (1997); A. Pilaftsis and T. E. J. Underwood, Nucl.

Phys. B 692, 303 (2004).

[28] E. W. Kolb and M. S. Turner, The Early Universe, Ref. [4].

26


