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Abstract

Results are presented for hadron spectroscopy with gauge groups SU(N) with N = 3, 5, 7. Cal-

culations use the quenched approximation. Lattice spacings are matched using the static potential.

Meson spectra show independence on N and vacuum-to-hadron matrix elements scale as
√
N . The

baryon spectrum shows the excitation levels of a rigid rotor.
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I. INTRODUCTION

Replacing the “3” of color SU(3) by “N”” and then taking N to infinity has a long history

in the (continuum) phenomenology of the strong interactions, dating back to Refs. [1, 2].

There is also a literature of lattice simulations applied to gauge theories with the group

SU(N), for moderately large N . Most of it [3–10] is directed at the properties of pure

gauge theory. I know of two papers on meson spectroscopy: Refs. [11, 12]. They are done

at smaller values of “large N ,” N = 2, 3, 4, 6. They are pretty standard lattice QCD

spectroscopy calculations and reveal the N -independence of meson masses. Narayanan,

Neuberger, and collaborators [13, 14] have measured masses and the pseudoscalar decay

constant from simulations at much larger N (exploiting reduction, to simulate on smaller

lattice sizes).

But only Ref. [15] discusses large N expectations for baryons, and it only makes compar-

isons to actual lattice data for N = 3. So it seemed like an appropriate time to look at a

lattice calculation of baryon spectroscopy at several values of N .

Baryons in large N seem to be fascinating objects, either viewed as many-quark states

[16] or as topological objects in effective theories of mesons[17, 18]. There is an enormous

(continuum) literature about spectroscopy and matrix elements for large N baryons. As-

sorted early references include [19–23], summarized in a review, Ref. [24]. Perhaps a lattice

study might reveal something interesting?

In fact, it does: general arguments [18, 19] state that the mass of an N color baryon of

angular momentum J should show a rotor spectrum:

M(N, J) = NA +
J(J + 1)

N
B. (1)

The formula applies to baryons made of an SU(2) isospin doublet of equal mass quarks. The

parameters A and B depend on the quark mass and both should be some “typical hadron

size,” a few hundred MeV. The observation of Eq. 1 in simulation data is the main new

result of this paper. Common expectations are that Eq. 1 is only true for small values of J ,

because then the terms have meaning as a good expansion in 1/N . However, I observe that

it holds both for the bottom and the top of the multiplets where I did measurements.

The first response of the lattice simulator to a proposal to look at baryons at large N is

undoubtedly negative: The cost of an N -color simulation scales roughly like N3, just from
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the cost of multiplying SU(N) matrices. Baryons are large objects so big volumes will be

needed. Ordinary (N = 3) baryon correlators are noisy and because baryon masses scale

as N , baryons in higher N are probably noisier. And most of the literature involves some

combination of small 1/N effects and expectation values of operators (ξ ∼ 〈B|O|B〉), which
are already hard enough for N = 3 [25]. Fortunately, large N tests seem (mostly) not to

require extrapolations to zero quark mass.

Only for odd N are baryons fermions, of course, so I am performing simulations of SU(N)

gauge theories with N = 3, 5, 7.

I used the quenched approximation for all N . The quenched approximation contains

many of the same ingredients as the N → ∞ limit of QCD: hadrons are bound states of the

minimum number of fermions, and decay widths and other effects effects of virtual q̄q loops

die away as inverse powers of N . At nonzero N all these effects are present. That means

that, truly, I am not simulating QCD for any value of N . However, a first study does not

quite demand the same level of quality as a later one might. I am interested in comparing

simple observables in systems which differ only in N , but otherwise have the same UV cutoff

(lattice spacing), lattice action, and physical volume. This is easy to set up in quenched

approximation. Quenched simulations for N = 3 are obsolete, but the effects of dynamical

fermions on spectroscopy are really not all that large: away from the deep chiral limit they

are small, order ten per cent for simple observables (compare Fig. 1 in Ref. [26]).

A practical difficulty with using the quenched approximation comes when one wishes to

convert a lattice number to MeV. The spectrum of quenched QCD is simply different from

the spectrum of “real” QCD. I will compare dimensionless ratios of lattice quantities in my

tests of scaling with N . Any conversions to MeV I make are only qualitative statements.

One could take the position that one should test everything about large-N QCD at once,

by doing simulations with dynamical fermions at several values of N . This just postpones

the matching problem: the spectrum of the different N QCD’s will be different. But perhaps

that is not the right point of view. The real question one asks when comparing several values

of N is whether dimensionless ratios of masses show some smooth behavior with N . And for

that, one can begin simply, make observations, and then ask how they change as one does

ever more realistic simulations.

For all N ’s, I use lattices of size 163 × 32 points. I match the bare couplings so that the

lattice spacings, as measured by various observables from the heavy quark potential, are the
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same, and then sweep in quark mass over similar ranges. This insures that finite volume and

nonzero lattice spacing artifacts will be similar across the board. I set the common scale

using the shorter version of the Sommer [27] parameter, r1, defined in terms of the force

F (r) so that r2F (r) = −1.0 at r = r1. The real-world value is r1 = 0.31 fm [28], and with

it my lattice spacings would be about 0.08 fm.

Before going on, it’s useful to set some definitions. The ’t Hooft coupling is

g2N = λ (2)

and the usual gauge coupling is thus

β =
2N

g2
=

2N2

λ
. (3)

The combination g2CF , which appears in all perturbative calculations of renormalization

factors, is equal to λ(1− 1/N2)/2. For comparisons at fixed ’t Hooft coupling, like the ones

I present, this suggests that differences which might be perturbative (lattice–to–continuum

matching factors, for example) will scale up to corrections of order 1/N2.

The outline of the paper is as follows: The next section describes some technical problems

I faced: using fat links, gauge fixing, and the construction of baryon operators. Only the

third topic might be of interest to continuum physicists. Next, I present lattice results for the

potential and for meson masses and simple matrix elements. The potential measurements

show the extent to which lattice spacings are matched. The mesonic observables illustrate

the N – independence of masses and the
√
N scaling of quantities like the pseudoscalar

decay constant. Finally, in Section IV, I show some results for baryon spectra. The major

one is the presence of a rotor spectrum of excitations for two-flavor baryons.

II. TECHNICAL DETAILS

A. Simulation techniques

My simulations use a version of the publicly available package of the MILC collabora-

tion [29], modified to generate gauge configurations and quark propagators at arbitrary N .

Prior to this project, it had been extensively used in studies of N = 2, 3, 4 [30–32].

The gauge action is the usual Wilson action. Quenched simulations are performed using

the standard mix of Brown - Woch microcanonical over-relaxation [33] and Cabibbo - Mari-
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nari heat bath updates [34], performed on all N(N − 1)/2 SU(2) subgroups of the SU(N)

link variables. It is known that simulations performed on SU(2) subgroups suffer critical

slowing down at larger N , but the largest N is only 7 and this problem did not appear.

Lattices are spaced 100 sweeps of the lattice apart, for later analysis.

The spectroscopy was intended to be a typical SU(3) lattice QCD calculation writ large.

This involved an improved fermion action and extended sources for hadronic correlation

functions. To achieve these goals a number of small technical problems had to be solved.

Many of them have been encountered in other large-N studies, but perhaps my solutions

are a bit different than what is found there, and might be worth reporting.

B. SU(N) fat links; gauge fixing

My lattice fermions are clover fermions with normalized hypercubic (nHYP) smeared

links as their gauge connections[35]. The clover coefficient is fixed at its tree level value,

cSW = 1. This particular discretization is known to work well, with small scaling violations,

in both ordinary QCD phenomenology and in beyond-Standard Model studies in SU(2),

SU(3), SU(4). So the first technical problem is the construction of the nHYP link for

arbitrary N . To describe the nHYP link in words, it is a local average of gauge connections

over the hypercubes surrounding the link, which smears out the gauge field for the fermion.

The specific problem to be solved is that the fat link is the average of a set of paths which

produces a sum of SU(N) matrices, call it Σ. The fat link Vµ is defined as

Vµ =
Σ√
Σ†Σ

. (4)

This is the matrix which maximizes ReTrVµΣ
†. The quantity Q−1/2 = 1/

√
Σ†Σ is com-

puted using the Cayley - Hamilton theorem as described in Appendix B of Ref. [32]. This

construction involves finding the eigenvalues of Q, which is done using a Jacobi algorithm.

As written, Vµ is an element of U(N), not SU(N). This is not an issue when it is used

for the fermions since all that we care about is that our action should be gauge invariant,

and under a gauge transformation both the thin and fat links transform the same way.

State of the art spectroscopic calculations use extended sources as interpolating fields

for hadrons. In this work configuration of link variables is gauge fixed to lattice Coulomb

gauge and the source for the quark propagator is some spatially extended function. So,
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we need to gauge fix our lattices to lattice Coulomb gauge, rotating the links to maximize
∑

x

∑

i ReTrUi(x), i labeling the spatial directions. This is done by finding a matrix V at

each site of the lattice x which maximizes ReTr V Σ† where Σ is the sum of forward going

Ui(x)’s emanating from x minus the sum of U †
i (x− î)’s terminating on site x.

In the author’s SU(3) code, gauge fixing is done iteratively by sweeping through the

lattice and, site by site, determining an optimal V by maximizing ReTr V Σ†. As in the

case of configuration generation, the relaxation is done using the SU(2) subgroups of V .

Unfortunately, for N > 4 relaxing on the subgroups suffers critical slowing down and it

becomes impossible to carry out gauge fixing without performing an enormous number of

iterations.

This is a variation of a problem which has been previously observed (and solved) by

several groups simulating large N gauge theories, with N > 10 [36, 37]. There the problem

is in the update step. Updating on SU(2) subgroups produces a simulation algorithm with

a long autocorrelation time, which becomes longer with increasing N . The solution is to

perform over-relaxation on the full SU(N) group, implementing an old idea of Creutz [38].

I do this a little differently than Refs. [36, 37]. The maximizing V is given by Eq, 4, which

I have already dealt with while generating the fat links for the fermion action. The same

application of the Cayley-Hamilton theorem gives V . As I already remarked, this V is an

element of U(N), not SU(N). Now one needs SU(N) elements, so I must compute the

determinant of V , extracting its phase φ and performing an additional multiplication by the

diagonal matrix exp(−iφ/N). Doing this makes gauge fixing no more expensive for SU(7)

than for SU(3).

C. Baryon operators

Mesonic states are constructed in the usual way, by sandwiching fermion propagators

with Dirac matrices. Baryons are a bit more complicated. In SU(3) it is common to use

relativistic sources (ǫabc[u
aCγ5d

b]uc, for example, for the proton). I don’t know a nice way to

generalize this to N > 3, so I built baryon states using non-relativistic quark model states.

So far, I have only considered Nf = 2 flavors of quarks. In what follows, I will usually label

the flavors as u and d, although one can give them different masses – in SU(3) the same

operator can give the p or Ξ, for example.
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In the MILC code, quark propagators are constructed in the Weyl (γ5 diagonal) basis,

and are rotated to γ0 basis. I keep the two “large” components of the propagator’s source

and sink spin indices to be the fields which contract the quark model states. There are two

choices for projection (states which are eigenvectors of γ0 with eigenvalues ±1 allow forward

going in time and backward going two-component quark propagators). One projection has

the lightest positive parity state in a channel as the forward-going state, and the lightest

negative-parity state as the backward-going one. The situation is reversed for the other γ0

projector. In order to reduce noise, these two propagators are summed (actually subtracted),

configuration by configuration. This produces a single correlator extending halfway across

the lattice, which is a candidate for fitting to a single decaying exponential.

A generic N−color baryon operator can be written as

|B〉 = ǫabc...N
∑

{sj}

C{sj}u
a
s1u

b
s2 . . . d

N
sN

|0〉 . (5)

The C’s are an appropriate set of Clebsch-Gordan coefficients. The baryon propagator is

a multiple sum over source and sink colors and spin coefficients of products of N quark

propagators. This creates the possibility a large number of terms. Fortunately, many are

redundant.

I condense states as follows. (I suspect that this is quite inefficient and that more efficiency

is almost certainly possible.) I begin with states of definite u and d content. These states

are eigenstates of I3, J , and J3. I then anticommute fermion fields into a “standard order,”

shown in Eq. 5: moving from the left, spin-up u quarks, spin-down u quarks, spin-up d

quarks, and spin-down d quarks. The epsilon symbol absorbs the resulting minus signs.

Then, two examples are the I = J = J3 = N/2 state

|B, I = J = N/2〉 = ǫabc...Nua↑ . . . u
N
↑ |0〉 (6)

and the SU(3) proton operator

|p, ↑〉 = ǫabc
√

2

3
(ua↑u

b
↑d

c
↓ − ua↑u

b
↓d

c
↑) |0〉 . (7)

Wick’s theorem says that the n−quark propagator itself is also a determinant:

〈qi1(x)q̄j1(y) qi2(x) q̄j2(y) . . . qin(x)q̄jn(y)〉

= (−)n
∑

P (1,2...n)

sign(P )(D−1
i1,jP1

(x− y)D−1
i2,jP2

(x− y) . . .D−1
in,jPn

(x− y)).

(8)
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(P is a permutation of indices.) The baryon propagator, then is a product of an up-quark

determinant times a down quark determinant, summed over all the color combinations of

the individual up and down quarks. Many terms are redundant in this product, as can be

seen in an example, the SU(3) proton: The contributions from the ǫabcua↑u
b
↑ source terms are

antisymmetric in both Eqs. 5 and 8. This means that it is only necessary to keep one color

ordering (b > a, for example) for each pair of colors (a, b) in the baryon propagator, and

each term can be reweighted by a factor of 2!. This generalizes straightforwardly so that a

a term in any wave function with Nu
↑ spin-up u quarks, Nu

↓ spin-down u quarks, Nd
↑ spin-up

d quarks, Nd
↓ spin-down d quarks, picks up a restricted color sum, a single color ordering for

each individual spin-flavor label and a multiplicity Nu
↑ !N

u
↓ !N

d
↑ !N

d
↓ !.

An extreme example of this pruning procedure is the the propagator for the I = N/2, J =

N/2 state of Eq. 6. It is

∆(x, y) = (N !)2detM(x, y) (9)

where M is the N ×N matrix of u↑ propagators from a source color to a sink one.

The lower the J , the more complicated are the wave functions. By SU(7), the J = 1/2

states involve several hundred color combinations per spin configuration. This is getting

quite unwieldy. (Since the nonrelativistic quark propagator is itself only a (2N) × (2N)

matrix, there must be more redundancy.) But for now, I go on, naively.

To summarize, flavor SU(2) wave functions and propagators for the various states are

• I = J = N/2: as already described, there is one determinant of an N ×N matrix, for

a cost N3.

• Analogs of Σ∗ and Ξ∗ states are

|B, I = N/2− 1, J = N/2〉 =
√

(N − 1)!(ua↑ . . . u
N−1
↑ sN↑ |0〉 . (10)

The baryon correlator is built of N2 terms, one for each s color in the source and sink.

Each is a determinant of an (N − 1) × (N − 1) matrix – the propagator of the up

quarks.

• I = J = N/2− 1: We have an (N − 1)× (N − 1) matrix of u−quark propagators and

N +N(N − 1) color terms in the interpolating field for a cost of roughly N4+3 = N7:

|B, I = J = N/2− 1〉 =
√

N − 1

N
(ua↑ . . . u

N−1
↑ dN↓ − ua↑ . . . u

N−2
↑ uN−1

↓ dN↑ ) |0〉 (11)
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• I = J = N/2− 2: An (N − 2)× (N − 2) matrix of propagators. The last term in the

interpolating field has about N3 color possibilities, for a cost of N9.

|B, I = J = N/2− 2〉 ∝ (ua↑ . . . u
N−2
↑ dN−1

↓ dN↓

−2ua↑ . . . u
N−3
↑ uN−2

↓ dN−1
↑ dN↓

+ua↑ . . . u
N−4
↑ uN−3

↓ uN−2
↓ dN−1

↑ dN↑ ) |0〉

(12)

• I = J = N/2− 3: our lowest state if N = 7; there are N11 terms to evaluate.

|B, I = J = N/2− 3〉 ∝ (ua↑ . . . u
N−3
↑ dN−2

↓ . . . dN↓

−3ua↑ . . . u
N−4
↑ uN−3

↓ dN−2
↑ dN−1

↓ dN↓

+3ua↑ . . . u
N−5
↑ uN−4

↓ uN−3
↓ dN−2

↑ dN−1
↑ dN↓

−ua↑ . . . uN−6
↑ uN−5

↓ . . . uN−3
↓ dN−2

↑ . . . dN↑ ) |0〉

(13)

Still to be constructed are three flavor (u, d, s) states.

An obvious solution to the problem of increasing multiplicity is to prune states by doing

an incomplete color sum. This will collide with another big problem: SU(N) baryon signals

degrade as N increases. For now, the only way to fight this is to collect larger data sets.

Along the way, however, one can try to improve our signals by tactics such as averaging over

the propagators with the same J and different mJ ’s. (In practice, I combine the mJ and

−mJ propagators into a single correlator.) Another approach involves forcing a fit of several

correlators which couple to the same states to a common mass. Ultimately, a variational

calculation along the lines of what is done for excited state baryon spectroscopy might be

necessary.

III. RESULTS FOR PURE GAUGE AND MESONIC OBSERVABLES

The simulations use the Wilson gauge action. Pure gauge systems with the Wilson action

and N = 2 and 3 have a rapid crossover from strong to weak coupling, which becomes

increasingly strong as N rises, converting to a real first order bulk transition by N = 6 or

so. The location of the bulk transition has been tabulated in Ref. [3]. It is a lattice artifact.
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The weak coupling side of the transition is the physical one from the point of view of

making comparisons to continuum physics: only there is physics in the ultraviolet governed

by asymptotic freedom so that the lattice spacing can be taken to zero by tuning the bare g2

to zero. It is necessary to perform simulations above this transition, and I checked that my

simulations were above it, by using the table and by doing my own simulations on smaller

lattices to find the transition.

I present quenched results from three N ’s, N = 3, 5, 7. I have data sets of 80, 120,

and 160 propagators, respectively. The bare gauge coupling β is tuned to match potentials

through the Sommer parameters r0 or r1. (Recall r
2
0F (r0) = −1.65. r1 is the shorter-distance

version of the Sommer parameter, r21F (r1) = −1.00. In the real world, r1 ∼ 0.31 fm.)

In the present simulations, β(N = 3) = 6.0175 (to match to previous work by Ref. [12]),

and then the N = 5 and 7 couplings were tuned to match r1. Couplings and derived

quantities are recorded in Table I. The bare ’t Hooft couplings λ turn out to be quite

similar. Potentials for the three values of N are shown in Fig. 1. They seem satisfactorily

matched.

The combination r0
√
σ or r1

√
σ (σ is the string tension) gives a dimensionless combination

of the Sommer radius and the string tension σ. The table shows that this quantity scales

well.

My spectroscopy is based on smeared Gaussian sources and ~p = 0 point sinks. At each N

I collected sets for several different values of the width of R0 for the source. These correlation

functions are not variational since the source and sink are different. Thus, as R0 is varied,

the effective mass (meff is defined through fitting correlators at a single distance to a single

exponential; with open boundary conditions for correlator C(t), meff = logC(t)/C(t + 1))

can approach its asymptotic value from above or below. I observe that typically, as R0 rises,

the mixed Gaussian - point correlators make their approach from above for smaller R0, and

from below for bigger R0. An example of this behavior is shown in Fig. 2. (At large t, the

signal deteriorates – a characteristic feature quite familiar from many SU(3) studies. The

noise is enhanced by the small data sets – 40 lattices – used to make the figure.) Then,

rather than re-running the propagator code with yet another source, I can combine pairs of

sources to produce a flat meff distribution using say

C(t) = C(R0 = 6, t) + fC(R0 = 8, t). (14)
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FIG. 1: Static potentials from 163 × 32 volumes: (a) SU(3) at β = 6.0175; (b) SU(5) at β = 17.5;

(c) SU(7) at β = 34.9. Effective mass fits for several values of t are overlaid.

For SU(3), the optimal source is a linear combination of R0 = 4 and 6 sources, favoring

larger R0 as the quark mass falls. For SU(5) I mix sources with R0 = 6 and 8. For SU(7)

the R0 = 8 source produced flat effective mass plots across my mass range, and I did not do

any source mixing.

Tables II-IV contain the resulting spectroscopy. The values of the masses are highly

correlated because they come from the same underlying configurations. Mass differences,

which will be described below, are taken from jackknife averages of the data.
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FIG. 2: Effective masses for the highest-spin baryon for different size sources, labeled by octagons

for R0 = 4, diamonds for R0 = 6, and squares, R0 = 8. (a) SU(3), κ = 0.1265; (b) SU(5) 123

volume, κ = 0.1275; (c) SU(7), 123 volume, κ = 0.129.

Now I turn to results for mesonic observables. The critical hopping parameter κc is

determined through the vanishing point for the Axial Ward Identity (AWI) quark mass,

defined as

∂t
∑

x

〈Aa
0(x, t)Oa〉 = 2mq

∑

x

〈P a(x, t)Oa〉 . (15)

where the axial current Aa
µ = ψ̄γµγ5(τ

a/2)ψ, the pseudoscalar density P a = ψ̄γ5(τ
a/2)ψ,

and Oa could be any source. Here it is my Gaussian shell model source.
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FIG. 3: Additive mass shift versus 1/N2. My data are shown as octagons. The diamonds are the

pure Wilson fermion data of Ref. [11], just for comparison over a wider N range.

The mass is shifted from its free value in the usual way. To compare to usual expectations,

recall the relation between g2CF and λ: we expect the mass shift

δm =
1

2κc
− 4 (16)

to show 1/N2 variation. This I roughly see; compare Fig. 3. Just for comparison over a

wider N range, I show the older results of Ref. [11], done with unimproved Wilson fermions.

Next, we turn to spectroscopy, shown for mesons in Fig. 4 and baryons in Fig. 5. Data

are plotted in terms of the AWI quark mass, in units of r1, to make the x-axis the same for

all N . The near independence of meson masses on N (when expressed in terms of a common

variable) is apparent. This is not so, for baryons.

One is tempted to compare the chiral limit of the vector meson mass as a function of N .

A simple linear fit to the data of Fig. 4 gives r1mV = 1.58(2), 1.44(1) and 1.52(1) for N = 3,

5, 7. With a nominal 1/r1 = 635 MeV, this is about 900 MeV to 1 GeV versus 770 MeV for

the physical rho meson. One always has to be careful with quenched lattice results from a

single volume and lattice spacing, but the number is completely sensible. It is close to the

results of Refs. [11, 12].
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FIG. 4: Meson spectroscopy in units of r1 from N = 3, 5 and 7, plotted as squares, diamonds and

octagons, respectively. Panel (a) shows the squared pseudoscalar mass. Panel(b) shows the vector

meson mass.

(Using completely different methodology plus a different choice of physical input to set

the lattice scale, the authors of Ref. [14] have a mass which is from thirty per cent to a

factor of two higher than this. The difference between their result and the low-N ones will

probably only be resolved by removing the many differences in methodology one at at time.)

In what follows, I will replace the quark mass as the independent variable by the square

of the ratio of the pseudoscalar to vector meson mass. The quark mass is scheme dependent;

the ratio is not. Of course, nothing I say is affected by this choice.

Vacuum-to-meson matrix elements are expected to scale as
√
N . I have looked at the

pseudoscalar, vector meson, and axial vector meson decay constants. To be explicit, they

are defined as follows:

〈0|ūγ0γ5d|π〉 = mπfπ (17)

(so fπ ∼ 132 MeV) while the vector meson decay constant of state V is defined as

〈0|ūγid|V 〉 = m2
V fV ǫi (18)

and the axial vector meson decay constant of state A is

〈0|ūγiγ5d|A〉 = m2
AfAǫi. (19)
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FIG. 5: Baryon spectroscopy in units of r1 from N = 3, 5 and 7, plotted as squares, diamonds and

octagons, respectively. For all N , higher J lies higher in mass: for N = 3 and 5 I have all states

from J = 1/2 to J = N/2. For N = 7 only the J = 7/2, 5/2, and 3/2 states are shown.

ǫi is a unit polarization vector. The lattice quantities fL are converted to continuum con-

vention by f = fL(1 − (3κ)/(4κc)). I have left out the lattice-to-continuum Z-factor. With

nHYP clover fermions, it is a few percent away from unity. (Ref. [39] has a table of one-loop

Z-factors for various actions and HYP (hypercubic) links, which are a predecessor of nHYP

links with the same one-loop Z-factor: For a current of type i, Zi = 1 + g2Cf/(16π
2)zi.

The pseudoscalar factor is zP = 0.04. The corresponding vector and axial vector factors are

zV = −1.38 and zA = −1.30.)

The pseudoscalar decay constant is shown in Fig. 6. I show the dimensionless combination

r1fPS/
√
N . It’s nice to see the

√
N scaling. Naive linear extrapolations give r1fπ/

√
N =

0.154(2), 0.151(1) and 0.154(2) for N = 3, 5, 7. The real world value is 1/
√
3×0.31 fm ×132

MeV = 0.12, so the quenched decay constant at this lattice spacing is coming in about 15

per cent high. Experts know that this kind of extrapolation is far too naive, to say nothing

about comparing quenched QCD to the real world. Nevertheless, the answer is not absurd.
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FIG. 6: Pseudoscalar decay constant, matched from the different simulations using the r1 parameter

from the potential and rescaled by 1/
√
N . Squares, Nc = 3; diamonds, Nc = 5, octagons, Nc = 7.

Ref. [26] shows a figure with the ratio of quenched fπ to its experimental result about ten

per cent high.
√
N scaling for the pseudoscalar decay constant was first observed by the authors of

Ref. [13]. Their numerical result for the decay constant, translated to SU(3), is also high,

but by 40 per cent. Detecting the origin of this difference will probably again require detailed

numerical work.

The same comparison is shown for fV , and fa1 in Fig. 7. The a1 decay constant is quite

noisy at small quark mass and I omit those results as untrustworthy. The
√
N scaling rule

works well here, too.

IV. RESULTS FOR BARYONS – THE ROTOR SPECTRUM

My baryon data in Fig. 5 shows masses which increase roughly linearly in N . All data

shows that for the baryons, higher J does lie higher in energy. This is no surprise, so let’s

look deeper. Fig. 8 shows the splitting between the various members of each multiplet. It
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FIG. 7: Vector meson and axial vector meson decay constants, rescaled by 1/
√
N . Squares, Nc = 3;

diamonds, Nc = 5, octagons, Nc = 7.

is extracted using a jackknife average of differences of the two baryon masses.

I now demonstrate that the masses in Fig. 8 form a rotor spectrum. First, we can test

the numerator of the rotor term of Eq. 1 N by N . This is done by looking at the ratio of

differences

∆(J1, J2, J3) =
M(N, J2)−M(N, J3)

M(N, J1)−M(N, J3)
, (20)

for which the constants (A, B) cancel. The result is shown in Fig. 9. I just plot one

mass difference as a function of the other one and compare the data to a straight line of

zero intercept whose slope is given by Eq. 20. The rotor spectrum is confirmed for all the

members of the N = 5 and 7 multiplets I observe.

Second, one can look at the J = 3/2− 1/2 splitting, and check the N dependence for the

bottom of the multiplets:

M(N, 3/2) =M(N, 1/2) =
3B

N
. (21)

Given the states I have recorded, this can only be done for N = 3 and 5. Rescaling the mass

difference by N/3 exposes B. The result is shown in Fig. 10(a). This is quite promising:

the N = 3 and 5 data coincide.

Next, we can look at the top of the multiplet. Eq. 1 gives us a rescaled Landé interval

rule: it says that the splitting between the J = N/2 and J = N/2 − 1 states is a constant,
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FIG. 8: (a) Delta-proton (J = 3/2 − 1/2) mass splitting versus quark mass, in quenched SU(3).

(b) SU(5) mass splittings: octagons for J = 5/2− 1/2, squares for J = 5/2− 3/2, and crosses, for

J = 3/2− 1/2. (c) SU(7) mass splittings: octagons for J = 7/2− 3/2, squares for J = 7/2− 5/2,

and crosses, for J = 5/2−3/2. Eq. 1 says that the SU(5) J = 5/2−3/2 splitting is supposed to be

equal to the SU(3) J = 3/2 − 1/2 mass splitting, and also to the SU(7) J = 7/2− 5/2 splitting.

B, independent of J . Fig. 10(b) shows this difference. It and panel (a) share the common

N = 3 points, but the other points are different. The envelope of the curve is B(mq).

By design, these differences ignore the A term in Eq. 1. To get it, we can look at the
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FIG. 9: Mass differences in the SU(5) and SU(7) multiplets, panels (a) and (b) respectively. For

SU(5) the line has a slope which is equal to the ratio ∆(5/2, 3/2, 1/2) = 3/8 (recall Eq. 20). For

SU(7) the slope of the line is ∆(7/2, 5/2, 3/2) = 5/12.

FIG. 10: Exposing the B term of Eq. 1: (a) N/3 times the J = 3/2 − 1/2 mass differences in the

SU(3) and SU(5) multiplets, shown respectively as squares and diamonds. (b) The J = N/2 vs

J = N/2 − 1 mass difference in the SU(3), SU(5), and SU(7) multiplets, shown respectively as

squares, diamonds, and octagons.
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FIG. 11: Exposing the A term of Eq. 1: (a) Eq. 22 for the SU(3) and SU(5) multiplets, shown

respectively as squares and diamonds. (b) The J = N/2 vs J = N/2−1 mass difference of Eq. 23 in

the SU(3), SU(5), and SU(7) multiplets, shown respectively as squares, diamonds, and octagons.

bottom of the multiplets,

A =
5

4N
M(N, J = 1/2)− 1

4N
M(N, J = 3/2), (22)

or the top of the multiplets,

A =
N + 2

4N
M(N, J = N/2− 1)− N − 2

4N
M(N, J = N/2). (23)

Fig. 11 shows these two mass formulas. Again, they behave consistently.

Figs. 10 and 11 show that the A and B coefficients in Eq. 1 have typical hadronic sizes.

Inserting a nominal lattice spacing, 1/a ∼ 2100 MeV, we see that A = 400 MeV at small

quark mass and is an increasing function of quark mass. In quark model language, A is

the constituent quark mass, and its value and dependence on quark mass are both quite

reasonable. B = 300 MeV and falls with energy. Again this is a typical hadronic scale.

These values address an old conundrum of large-N phenomenology: the mass difference

of the nucleon and ∆ is supposed to be order ΛQCD/N . It is measured to be about 300

MeV, which is itself order ΛQCD. The plots of mass differences show that the nucleon-∆

mass splitting is indeed well-described by large-N QCD. Having data at several N ’s as well
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as at several quark masses makes this result appear immediately. In particular, the data

disfavor the large-N scenario of Ref. [40].

V. CONCLUSIONS

The qualitative features of large - N QCD phenomenology are easy to observe. The shape

of the potential (characterized by the scaling combination r1
√
σ) is N - independent. Meson

masses show little N dependence – mHr1 is N -independent. Vacuum - to -hadron matrix

elements scale as
√
N . Two-flavor baryons show a prominent rotor spectrum. This seems

to be true for both the bottom of the spectrum (low J) and the top (J = N states).

Naively, one might expect that the wave function of the baryon would be N - independent.

Lattice simulations do not generally directly reveal wave function information, but one might

expect that the same interpolating fields might behave the same for different N ’s. That does

not seem to be the case; larger N seems to prefer larger Gaussian trial wave functions. But

perhaps even N = 7 is not such large N and one should push farther.

Readers who do lattice simulations can undoubtedly list many obvious extensions of this

project: smaller lattice spacing, to do an honest extrapolation to the continuum limit, bigger

volumes to check that the answers are trustworthy, smaller quark masses, and bigger N ’s

are obvious technical improvements. Giving the two fermions different masses, or better

yet, considering flavor SU(3), would allow more tests of large-N spectroscopy. One might

really want to test whether dynamical fermions become less important at large N . Writing

the code to simulate SU(N) fundamental fermions is straightforward; running it might be

costly, and seeing the expected small differences shrink as N rises would be even more costly.

The continuum literature of large - N baryons is more than thirty years old, and I clearly

have only scratched its surface in this paper. Several simple ingredients were useful: having

data at several N ’s, at several J ’s for each N , and having data at many quark masses. Most

of the continuum literature I have read restricts itself to statements about J = 1/2 and 3/2

– presumably because that is all that exists in experimental data. Predictions for any J can

challenge the lattice and would be candidates for future studies.
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SU(3) SU(5) SU(7)

β 6.0175 17.5 34.9

λ = g2N 2.99 2.86 2.81

r0/a 5.36(6) 5.20(5) 5.41(3)

r1/a 3.90(3) 3.77(3) 3.91(2)

r0
√
σ 1.175(3) 1.172(3) 1.167(2)

r1
√
σ 0.856(5) 0.850(4) 0.845(2)

TABLE I: Bare parameters and observables from potentials.

κ amq amPS amV amB(J = 3/2) amB(J = 1/2)

0.1230 0.119 0.525(2) 0.617(3) 0.996(6) 0.942(5)

0.1240 0.089 0.449(2) 0.561(3) 0.915(7) 0.846(5)

0.1250 0.055 0.362(2) 0.505(4) 0.835(8) 0.744(6)

0.1253 0.046 0.333(2) 0.491(5) 0.804(9) 0.700(6)

0.1260 0.029 0.255(3) 0.457(6) 0.747(12) 0.613(7)

0.1265 0.014 0.184(4) 0.427(10) 0.703(13) 0.516(12)

TABLE II: Spectra from SU(3) simulations.
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κ amq amPS amV amB(J = 5/2) amB(J = 3/2) amB(J = 1/2)

0.1240 0.127 0.565(1) 0.655(1) 1.864(6) 1.814(5) 1.786(5)

0.1250 0.099 0.488(1) 0.593(1) 1.708(6) 1.650(6) 1.616(5)

0.1260 0.070 0.403(1) 0.532(2) 1.566(7) 1.488(6) 1.446(6)

0.1265 0.055 0.356(1) 0.500(2) 1.486(7) 1.404(6) 1.356(6)

0.1270 0.041 0.302(2) 0.469(3) 1.419(8) 1.325(7) 1.270(7)

0.1275 0.026 0.240(2) 0.440(4) 1.357(10) 1.243(9) 1.177(8)

TABLE III: Spectra from SU(5) simulations.
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κ amq amPS amV amB(J = 7/2) amB(J = 5/2) amB(J = 3/2)

0.1260 0.115 0.565(1) 0.663(1) 2.681(11) 2.649(8) 2.612(8)

0.1270 0.088 0.488(1) 0.603(1) 2.483(9) 2.420(10) 2.386(9)

0.1280 0.062 0.401(1) 0.537(2) 2.279(11) 2.215(11) 2.174(10)

0.1290 0.036 0.299(1) 0.471(3) 2.082(15) 1.994(12) 1.929(11)

TABLE IV: Spectra from SU(7) simulations.
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