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We use Monte Carlo simulation to probe the phase structure of a SU(2) gauge theory containing
Ny Dirac fermion flavors transforming in the fundamental representation of the group and interacting
through an additional four fermion term. Pairs of physical flavors are implemented using the two
tastes present in a reduced staggered fermion formulation of the theory. The resultant lattice theory
is invariant under a set of shift symmetries which correspond to a discrete subgroup of the continuum
chiral-flavor symmetry. The pseudoreal character of the representation guarantees that the theory
has no sign problem. For the case of Ny = 4 we observe a crossover in the behavior of the chiral
condensate for strong four fermi coupling associated with the generation of a dynamical mass for
the fermions. At weak gauge coupling this crossover is consistent with the usual continuous phase
transition seen in the pure (ungauged) NJL model. However, if the gauge coupling is strong enough
to cause confinement we observe a much more rapid crossover in the chiral condensate consistent

with a first order phase transition

PACS numbers: 05.50.4+q, 64.60.A-, 05.70.Fh

I. INTRODUCTION

Elucidating the nature of the electroweak symmetry
breaking sector of the Standard Model (SM) is the main
goal of the Large Hadron Collider currently running at
CERN. It is widely believed that the simplest scenario in-
volving a single scalar Higgs field is untenable due to the
fine tuning and triviality problems which arise in scalar
field theories. One natural solution to these problems can
be found by assuming that the Higgs sector in the Stan-
dard Model arises as an effective field theory describing
the dynamics of a composite field arising from strongly
bound fermion-antifermion pairs.

One class of models that have been proposed which
exhibit these features are technicolor theories (TC) [1, 2]
in which a new non-abelian gauge interaction causes the
condensation at low energy of fermion bound states which
are presumed to carry electroweak quantum numbers.
These condensates break the electroweak gauge group,
giving mass to the W and Z bosons. The realization
that theories of this type utilizing fermions in two index
representations of the gauge group may offer an expla-
nation of dynamical symmetry breaking which is not at
variance with electroweak precision measurements [3] has
led to numerous recent lattice studies - see the conference
reviews [4-7] and references therein.

However, to obtain fermion masses in these scenarios
requires additional model building, as in extended techni-
color models [8-11] and models of top-condensation [12-
15]. In the latter models four-fermion interactions drive
the formation and condensation of a scalar top—anti-top
bound state which plays the role of the Higgs at low en-
ergies.

Our motivation in this paper is to study how the inclu-
sion of such four fermion interactions may influence the
phase structure and low energy behavior of non-abelian
gauge theories in general. Specifically we have examined
a model with both gauge interactions and a chirally in-
variant four fermi interaction - a model known in the

literature as the gauged NJL model [16]. The original
NJL model [17] without gauge interactions is known to
exhibit spontaneous breaking of chiral symmetry for large
four fermi coupling. These models have been studied ex-
tensively on the lattice [18, 19]. In the vicinity of the
phase transition between chirally symmetric and broken
phases, the theory is thought to be renormalizable and
to correspond to an elementary scalar field theory cou-
pled to fermions [20]. As such, the continuum limit is
believed to be governed by the usual IR attractive gaus-
sian fixed point characteristic of scalar field theory'.The
abelian gauged NJL model has been studied on the lattice
as well [21], in which numerical evidence for the triviality
of QED was presented.

The focus of the current work is to explore the phase
diagram when fermions are charged under a non-abelian
gauge group. Indeed, arguments have been given in the
continuum that the gauged NJL model may exhibit dif-
ferent critical behavior at the boundary between the sym-
metric and broken phases 2 corresponding to the appear-
ance of a line of new fixed points associated with a mass
anomalous dimension varying in the range 1 < v, < 2
[16, 22]. The evidence for this behavior derives from
calculations utilizing the ladder approximation in Lan-
dau gauge to the Schwinger-Dyson equations. A primary
goal of the current study was to use lattice simulation
to check the validity of these conclusions and specifi-
cally to search for qualitatively new critical behavior in
the gauged model as compared to the pure NJL theory.
While we will present results that indicate that the phase
structure of the gauged NJL model is indeed different
from pure NJL, we shall argue that our results are not

1 The authors wish to thank Julius Kuti and Anna Hasenfratz for
important discussions on these issues

2 Notice that the appearance of a true phase transition in the
gauged NJL models depends on the approximation that we can
neglect the running of the gauge coupling



consistent with the presence of any new fixed points in
the theory. Related work on the relation of the decon-
finement and chiral phase transition can be found in [23].

To facilitate this study we have chosen to employ a re-
duced staggered fermion lattice formalism. This has the
advantage of allowing us to incorporate as few as two con-
tinuum flavors of Dirac fermion and, as we will show in
Section III, allows us to build in lattice four fermi terms
which are invariant under a discrete subgroup of the con-
tinuum chiral symmetries [24, 26]. The presence of four
fermi interactions has an additional attractive feature -
it allows us to study the lattice theory with exactly zero
fermion mass [27]. Thus the observation of a non zero
condensate corresponds, in the infinite volume limit, to
a spontaneous breaking of lattice chiral symmetry and
the dynamical generation of quark masses. This discrete
symmetry breaking should correspond in the continuum
limit to a breaking of the usual continuous chiral-flavor
symmetry. The price one pays for this simplicity is that
the lattice fermion operator possesses small eigenvalues
(at least for small four fermi coupling) and it has only
been possible to study modest lattice volumes using a
GPU accelerated code. Nevertheless the results show no
strong volume dependence and should give a robust indi-
cation of the phase structure of the theory in the infinite
volume limit.

In the work reported here we have concentrated on the
four flavor theory corresponding to two copies of the ba-
sic Dirac doublet used in the lattice construction. The
four flavor theory is expected to be chirally broken and
confining at zero four fermi coupling. Understanding the
effects of the four fermion term in this theory can then
serve as a benchmark for future studies of theories which,
for zero four fermi coupling, lie near or inside the con-
formal window. In the latter case the addition of a four
fermion term will break conformal invariance but in prin-
ciple that breaking may be made arbitrarily small by tun-
ing the four fermi coupling. It is entirely possible that
the phase diagrams of such conformal or walking theo-
ries in the presence of four fermi terms may exhibit very
different features than those seen for a confining gauge
theory.

In the next section we write down the continuum the-
ory we are studying and explain how to rewrite it in
a more convenient twisted basis in which the two usual
Dirac spinors of the theory are replaced by a single ma-
trix valued fermion field. This is the same transforma-
tion that lies at the heart of recent efforts to construct
lattice theories with exact supersymmetry [28] and cor-
responds also to the spin-taste representation of stag-
gered fermions [24]. We then show how to discretize
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this twisted two fermion theory to arrive at a reduced
staggered fermion lattice theory which incorporates the
Yukawa interactions needed to generate the four fermi
terms [26]. We then describe the exact symmetries of the
lattice action relating them to the chiral-flavor symme-
tries of the continuum theory. The pseudoreal character
of the fundamental representation of the SU(2) group al-
lows us to avoid a potential sign problem after integration
over the fermions.

We then go on to describe our numerical results on the
phase diagram for the four flavor theory. We have simu-
lated the model by sweeping in the four fermi coupling for
a fixed gauge coupling. A series of these gauge couplings
were examined which span the range from confined to
deconfined regimes of the gauge theory in the absence of
four fermion terms. We show that the chiral phase transi-
tion expected in the simple NJL model changes character
in the gauged model; strictly speaking the gauge model
(at least for four flavors) already breaks chiral symmetry
spontaneously even for zero four fermi coupling so that
no true transition is present. Nevertheless we observe a
very rapid crossover behavior for strong four fermi cou-
pling and recover evidence for would be Goldstone bosons
above the crossover region. We see no evidence for the
existence of new UV fixed points in the theory.

II. CONTINUUM GAUGED NJL MODEL

We will consider a model which consists of Ny/2 dou-
blets of gauged massless Dirac fermions in the fundamen-
tal representation of an SU(2) gauge group and incorpo-
rating an SU(2), x SU(2)g chirally invariant four fermi
interaction. The action for a single doublet takes the
form
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where G is the four-fermi coupling, g the usual gauge
coupling and 7%,a = 1...3 are the generators of the
SU(2) flavour group.

This theory has been explored in the continuum us-
ing approximations to the Schwinger-Dyson equations in
which sub-classes of planar loop diagrams are re-summed.
This “ladder” approximation neglects the running of the
four-fermion interaction, and treats the running of the
gauge coupling in only a heuristic way, implementing the
momentum dependence of the non-abelian gauge cou-
pling by hand. In this approximation, the Schwinger-
Dyson equation for the fermion two point function is
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FIG. 1. Diagramatic truncated Schwinger-Dyson equation for
the fermion self-energy

where the gauge boson propagator is taken to be in Lan-
dau gauge, such that this self-energy term is finite with-
out taking into account vertex corrections. This equa-
tion is expressed diagrammatically in Figure 1. A typical
ansatz for the functional form of the gauge coupling is

a[A?] 2
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where b is the S-function coefficient, and A, is the con-
finement scale for the gauge theory.

Approximate analytic numerical solutions for the
fermion self-energy were studied in [29]. It was argued
that in asymptotically free theories which themselves
confine and generate a chiral condensate, the second
order NJL phase transition in the ungauged NJL case
morphs with increasing gauge coupling into a cross-over
phenomenon where the chiral condensate is dramatically
enhanced at a critical value for the four fermi coupling.
Our analysis constitutes a non-perturbative exploration
of this crossover phenomenon in the two dimensional pa-
rameter space of the bare gauge and four fermi couplings.

To implement the theory in Eq. 1 on the lattice, it is
convenient to reparametrize the four fermi term in the
continuum action via the use of scalar auxiliary fields.
Specifically the fermion interaction term is replaced by
Yukawa and scalar mass terms

G - - 1
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(4)

The action is now quadratic in the fermions and that por-
tion of the path integral can be performed analytically.
This yields the usual fermion determinant as a function
of the scalar field configurations which are then numeri-
cally integrated over.

It is convenient when we come to discretization to
rewrite the fermionic sector of this theory in terms of
a new set of matrix valued fields. To see how these arise
consider first a system of four Dirac fermions 1!, where

Soux = | d*z

i =1...4is a flavor index and « a spinor index (ini-
tially consider a model without Yukawa interactions). If
we denote the matrix implementing the usual space-time
rotations by R.s and the corresponding one for flavor
rotations by F*/ then these fermions transform as

i, = Fiy R . (5)
Using only lower indices this can be trivially rewritten as
wia = Ej ¢j6 Rga' (6)

Thus under the diagonal subgroup corresponding to
equal rotations in flavor and space, R = F', one can treat
the fermions as matrix valued fields, W.

In this formalism there is a natural way to reduce the
number of degrees of freedom from four to two; introduce
the projected matrices

1
v — B (U — v5WUn5),

@ — (@ + ’}/5@")/5) (7)
More explicitly in a chiral basis this implies that the ma-
trix fields take the block matrix form

0 ¢r ¢ 0
q:/ = = —_ . 8
(o) v (vd) o
Note that while ¥ is a 4 x 4 matrix field the fields ¥r
and ¥y, are just 2 x 2 matrix fields each of which can be
thought of as corresponding to 2 flavors of Weyl fermion.

This can be confirmed by computing the kinetic term
which now reads

=
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where 0, = (0;,4I). Furthermore, Yukawa type interac-
tions of the form v; ¢pvhr + Y rd 1L, can also be written
in (projected) matrix form as

Tr (VU ), (10)

where

P = < ;))T g) = OV (11)

with the 2 x 2 matrix ¢ = ¢4I + i¢;7;. These Yukawa
interactions are chirally invariant if the scalar field ¢,
transforms appropriately. In the end we can use these
Yukawa terms to build four fermi interactions by adding
a quadratic term for the scalar field of the form %¢i and
subsequently integrating out ¢,,.

IIT. DISCRETIZATION ON A LATTICE

The reason that we have recast the continuum theory
in this language of matrix twisted fields is that it admits
a simple transcription to the lattice where it becomes



the well known reduced staggered formulation of lattice
fermions.

We start with the matrix fields ¥ and ¥ introduced
in the last section, for the moment considering the un-
projected matrices. We then expand these matrices on a
basis corresponding to products of gamma matrices and
associate these products with staggered fields x, X

v = g X0t +) (12)
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where y*+t = Hl 17”””'1) and the sums correspond to
the vertices in an elementary hypercube associated with
lattice site x as the components vary b; = 0,1 [26, 30]. It
is easy to see that the projected matrix fields introduced
in the continuum construction then merely correspond to
restricting the staggered fields y and Y to odd and even
lattice sites respectively via

X(z +b), (13)
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X(@) = 3[1—()] x(@) , X(x) =
where, €(z) = (—1)*1T*2test%4 Furthermore since y
and Y now live in different sites on the lattice we can drop
the bar on Y and write everything in terms of a single
staggered field x defined on all sites. This restriction of
the single component fields x and X reduces the number
of degrees of freedom by a factor of two so the continuum
limit of this lattice theory contains two Dirac fermion
flavors. The free reduced staggered kinetic action can
therefore be recast as

Skin = 61 ZTF (z+ p)] (15)
:64 Z (x+b)x(xz+p+b)
z,,b,b’
x Tr ((7”””)*%7””“'“‘)
= S mleltontr 4 (16)

Here, we have substituted the matrix expressions given
in Eq. (13) into the free Dirac action having replaced
the continuum derivative with a symmetric difference
operator and evaluated the trace as 46y 4,7, (z) where
Nu(x) = (—l)zik1 *u is the usual staggered quark phase.
Gauging the reduced staggered theory we obtain [24]

Sin ==Y (@)X @

where

WUp(@)x(x+p)] (17

Uy(x) = 311+ )] Up(e) + 51— )] Us(e). (18)
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Finally, the Yukawa interactions from equation (10) on
the lattice take the form:

St = Tr (T(@)¥(2)0(2)) (19)
— Z (x+ b/)(b# (z)

z,b,b’
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where the trace evaluation now leads to 46, . ,&u(2)
with the phase £, (z) = (—1)Zfzu+1 ¥t and

8u(a) = 75 3 bl —b). (21)

Notice that if we assign the scalar to the dual lattice
this latter expression simply represents the average of
the scalar field over the dual hypercube associated with
a given lattice site. Combining Egs. (17) and (20), the
gauged massless action including Yukawa interactions
can be written in terms of a reduced staggered field as

S = Z Xt ) X(@+1) [ (2)+G 8, (x) €(x) §u(@)].

(22)
Notice that no single site mass term is allowed in this
model and the mass term that appears in eqn. 22 cor-
responds to one out of the sixteen possible mass terms
defined in the hypercube that are allowed for a staggered
fermion action - see the work by Goltermann and Smit
[25]. The two staggered tastes become the two physi-
cal quark flavors in the continuum limit and as we will
see the lattice action possesses additional discrete sym-
metries which form a subgroup of the continuum chiral-
flavor symmetries.

IV. SYMMETRIES OF THE LATTICE THEORY

Clearly the theory is invariant under the U(1) symme-
try x(z) — @ y(x) which is to be interpreted as the
U(1) symmetry corresponding to fermion number. More
interestingly it is also invariant under certain shift sym-
metries given by

x(@) = & (2)x(@ + p), (23)
Un(z) = Uy + p), (24)
Su(x) = (1) g ( + p). (25)

The transformed action is given by



S =" &o(@x" (@ + p) Up(w + p)Ep(x + )X (@ + 1+ p)nu(@) (14 G(a + p) (1) (=1)") (26)

where we have used the result £, (x)e(x) = (—1)%#n,(x).
Therefore, shifting the summation vector x — x — p and
assuming periodic boundary conditions, the transformed
action can then be rewritten

S = x(@)" Un()x(@ + ) A, p) (1 + Go(x)(=1)"")

(27)
where we have used the additional identities
Ep(@)8p (@ + 1) = &p(1t) (28)
Nu(z + p) = nu(z)nu(p)- (29)
and
Alp p) = [Ep()nu(p)] =1 (30)

Hence the action is invariant under the original shift sym-
metry. These shift symmetries correspond to a discrete
subgroup of the continuum axial flavor transformations
which act on the matrix field ¥ according to

U — 50y, (31)

V. NUMERICAL RESULTS

We have used the RHMC algorithm to simulate the
lattice theory with a standard Wilson gauge action being
employed for the gauge fields. Upon integration over the
basic fermion doublet we obtain a Pfaffian Pf(M(U)) de-
pending on the gauge field 3. The required pseudofermion
weight for N flavors is then Pf(M)Ns/2. The pseudoreal
character of SU(2) allows us to show that the Pfaffian is
purely real * and so we are guaranteed to have no sign
problem if we use multiples of four flavors corresponding
to a pseudofermion operator of the form (MM )_¥
The results in this paper are devoted to the case Ny = 4.
Notice that while the four flavor theory inherits an addi-
tional SU(2) vector symmetry associated to having now
two reduced staggered fields no new continuous chiral
symmetries appear. We have utilized a variety of lat-
tice sizes: 4%, 6%, 8% and 83 x 16 and a range of gauge
couplings 1.8 < 8 = 4/g*> < 10.0. To determine where
the pure gauge theory is strongly coupled and confining
we have examined the average Polyakov line as 8 varies
holding the four fermi coupling fixed at G = 0.1. This is

3 Note that the fermion operator appearing in eqn. 22 is antisym-
metric

4 In practice we observe that the Pfaffian is in fact not only real
but also always positive definite so multiples of two flavors should
be possible too.
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FIG. 2. Polyakov loop vs f at G = 0.1 with Ny =4

shown in Figure 2. We see a strong crossover between
a confining regime for small 5 to a deconfined regime at
large 8. The crossover coupling is volume dependent and
takes the value of 8. ~ 2.4 for lattices of size L = 8. For
B < 1.8 the plaquette drops below 0.5 which we take as
indicative of the presence of strong lattice spacing arti-
facts and so we have confined our simulations to larger
values of 3. We have set the fermion mass to zero in all
of our work so that our lattice action possesses the series
of exact chiral symmetries discussed earlier.

One of the primary observables used in this study is
the chiral condensate which is computed from the gauge
invariant one link operator

X(@) U (@)x (@ + p) + Ul (= p)x(z = e,)) e(@) ((?2)
Because of the absence of spontaneous symmetry break-
ing in finite volume we measure the absolute value of this
operator. In a chirally broken phase we expect this to ap-
proach a constant as the lattice volume is sent to infinity.
Conversely if chiral symmetry is restored this observable
will approach zero in the same limit. In all our runs
we observe that the the only component of the auxiliary
field to develop a vacuum expectation value corresponds
to the Dirac mass term represented by the component
u = 4. This is consistent with the usual conjecture that
the chiral symmetries break to the maximal subgroup.
In principle the direction of this breaking is arbitrary
and on a finite lattice one might have expected the sys-
tem to tunnel between four discrete vacua correspond-
ing to giving a vacuum expectation value to each of the
four components of ¢,,. In practice we have not observed
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FIG. 3. (xx) vs G for varying 3 for the 8* lattice with N; = 4.

such changes in the direction of the vev in our simula-
tions which presumably indicates the tunneling time is
very long. In Figure 3 we show a plot of the absolute
value of the condensate at a variety of gauge couplings
B on 8% lattices. Notice the rather smooth transition be-
tween symmetric and broken phases around G ~ 0.9 for
B = 10. This is consistent with earlier work using sixteen
flavors of naive fermion reported in [20] which identified
a line of second order phase transitions in this region of
parameter space. It also agrees with the behavior seen in
previous simulations using conventional staggered quarks
[18]. Furthermore for weak gauge couplings we see that
the transition to large values of the condensate occurs at
smaller four fermi coupling in agreement with the naive
expectation that the presence of a chiral condensate due
to gauge interactions facilitates further chiral symmetry
breaking by the four fermi term. Notice this trend is
reversed for large gauge coupling which we interpret as
due to the presence of significant lattice artifacts®. We
are currently experimenting with a smeared fermion ac-
tion to see whether this is the case.

The second order nature of this transition, for large g
values, can be confirmed by examining the Monte Carlo
time series for the condensate close to the transition as
shown in Figure 4. Large fluctuations are observed but
there is no sign of metastability or a two state signal in
the Monte Carlo evolution. This behavior should be con-
trasted with the behavior of the condensate for strong

5 It is also possible that at strong gauge coupling the four flavor
system is able to generate a conventional single site condensate
by coupling the two reduced staggered fermions. This pairing
must then be broken to generate the condensate favored by the
four fermi term which requires a larger four fermi coupling. We
thank Don Sinclair for this suggestion
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FIG. 4. (xx) vs Monte Carlo time, t, for 8 = 10.0 at G = 1.0
for the 6* lattice with Ny = 4. Note that here we do not take
the absolute value. In this case, G = 1.0 = G, is the point
at which the transition occurs
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FIG. 5. (xx) vs G at 8 = 2.0 for lattices 4*, 6% and 8" with
Ny = 4.

gauge coupling 8 < 2.4. Here a very sharp transition
can be seen reminiscent of a first order phase transi-
tion. In Figure 5 we highlight this by showing a plot
of the condensate versus four fermi coupling at the single
gauge coupling 8 = 2.0 for a range of different lattice
sizes. The chiral condensate is now non-zero even for
small four fermi coupling and shows no strong depen-
dence on the volume consistent with spontaneous chiral
symmetry breaking in the pure gauge theory. However, it
jumps abruptly to much larger values when the four fermi
coupling exceeds some critical value. This crossover or
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FIG. 6. (xx) vs Monte Carlo time, t, for 8 = 1.8 at G = 1.59
for the 6 lattice with Ny = 4. Note that here we do not take
the absolute value. G = 1.59 = G, is the point at which the
transition occurs.

transition is markedly discontinuous in character - rem-
iniscent of a first order phase transition. Indeed, while
the position of the phase transition is only weakly vol-
ume dependent it appears to get sharper with increasing
volume. To try to see whether the jump is indeed first
order we have once again examined the Monte Carlo time
series for the condensate close to the jump - the results
are shown in Figure 6 for a lattice with L =6 at § = 1.8.
Clearly the system suffers from extremely long relaxation
times close to the transition region - only finding the cor-
rect ground state after hundreds of Monte Carlo sweeps.
However, we have not observed a tunneling between two
competing minima as one would expect of a true first
order transition and so it is hard to state with certainty
that the transition is indeed first order.

What seems clear is that the second order transition
seen in the pure NJL model is no longer present when the
gauge coupling is strong. In the next section we will ar-
gue that this is to be expected — in the gauged model one
can no longer send the fermion mass to zero by adjusting
the four fermi coupling since it receives a contribution
from gauge mediated chiral symmetry breaking. Indeed
the measured one link chiral condensate operator is not
an order parameter for such a transition since we ob-
serve it to be non-zero for all G. Notice however that we
see no sign that this condensate depends on the gauge
coupling /3 in the confining regime at small G. This is
qualitatively different from the behavior of regular stag-
gered quarks and we attribute it to the fact that the
reduced formalism does not allow for a single site mass
term or an exact continuous chiral symmetry. Thus the
spontaneous breaking of the residual discrete lattice chi-
ral symmetry by gauge interactions will not be signaled

by a light Goldstone pion and the measured condensate
will receive contributions only from massive states. The
transition we observe is probably best thought of as a
crossover phenomenon corresponding to the sudden on-
set of a new mechanism for dynamical mass generation
due to the strong four fermi interactions.

In the continuum limit we nevertheless expect that the
discrete lattice chiral symmetry will be enhanced to the
full continuous symmetry SUL(2) x SUg(2). In this case
we expect the auxiliary fields ¢;, ¢ = 1...3 to behave as
would be Goldstone bosons. Evidence in favor of this is
shown in Figure 7. which shows a plot of {¢1(t)¢1(0)) for
lattices 8% x 16 at 8 = 2.0 in the strongly broken regime
with four fermi coupling G = 2.2. We see indeed that the
auxiliary fields have developed dynamics and propagate
as light quasi Goldstone bosons.
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FIG. 7. Pion correlator for different G at 8 = 2.2 for 8% x 16
lattice with Ny =4

VI. SUMMARY

In this paper we have conducted numerical simulations
of the gauged NJL model for four flavors of Dirac fermion
in the fundamental representation of the SU(2) gauge
group. We have employed a reduced staggered fermion
discretization scheme which allows us to maintain an ex-
act subgroup of the continuum chiral symmetries.

We have examined the model for a variety of values for
lattices size, gauge coupling, and four fermi interaction
strength. In the NJL limit 8 — oo we find evidence for
a continuous phase transition for G ~ 1 corresponding
to the expected spontaneous breaking of chiral symme-
try. However, for gauge couplings that generate a non-
zero chiral condensate even for G = 0 this transition or
crossover appears much sharper and there is no evidence
of critical fluctuations in the chiral condensate.



Thus our results are consistent with the idea that the
second order phase transition which exists in the pure
NJL theory (8 = oo) survives at weak gauge coupling.
However our results indicate that any continuous transi-
tion ends if the gauge coupling becomes strong enough
to cause confinement. In this case we do however see ev-
idence of additional dynamical mass generation for suffi-
ciently large four fermi coupling associated with an ob-
served rapid crossover in the chiral condensate and a
possible first order phase transition. These results are
consistent with the numerical solution of an augmented
ladder calculation [29] reviewed in Section II.

The fact that we find the condensate non-zero and con-
stant for strong gauge coupling and G < Geposs shows
that the chiral symmetry of the theory is already bro-
ken as expected for SU(2) with Ny = 4 flavors. This
breaking of chiral symmetry due to the gauge interactions
is accompanied by the generation of a non-zero fermion
mass even for small four fermi coupling. Notice that this
type of scenario is actually true of top quark conden-
sate models in which the strong QCD interactions are

already expected to break chiral symmetry independent
of a four fermion top quark operator. The magnitude of
this residual fermion mass is not controlled by the four
fermi coupling and cannot to sent to zero by tuning the
four fermi coupling - there can be no continuous phase
transition in the system as we increase the four fermi cou-
pling - rather the condensate becomes strongly enhanced
for large G.
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