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A New Mechanism for Generating a Single Transverse Spin Asymmetry

Yuri V. Kovchegov,a Matthew D. Sievertb

Department of Physics, The Ohio State University, Columbus, OH 43210, USA

We propose a new mechanism for generating a single transverse spin asymmetry (STSA) in polar-
ized proton–proton and proton–nucleus collisions in the high-energy scattering approximation. In
this framework the STSA originates from the q → q G splitting in the projectile (proton) light-cone
wave function followed by a perturbative (C-odd) odderon interaction, together with a C-even inter-
action, between the projectile and the target. We show that some aspects of the obtained expression
for the STSA of the produced quarks are in qualitative agreement with experiment: STSA decreases
with decreasing projectile xF and is a non-monotonic function of the transverse momentum kT . In
our framework the STSA peaks at kT near the saturation scale Qs. Our mechanism predicts that the
quark STSA in proton–nucleus collisions should be much smaller than in proton–proton collisions.
We also observe that in our formalism the STSA for prompt photons is zero.

PACS numbers: 24.85.+p, 12.38.Bx, 13.88.+e, 24.70.+s

I. INTRODUCTION

In recent years a significant theoretical effort has been directed toward understanding the origin and the interesting
properties of transverse spin asymmetries observed in high-energy scattering experiments. The single transverse spin

asymmetry (STSA) in polarized scattering P ↑(p)+A→ h(k)+X is an observable describing the correlation between
the transverse spin vector S of the projectile P and the transverse momentum k of the produced hadron h. This
correlation can be expressed either in terms of the asymmetry in the scattering of the spin-up and spin-down transverse
spin states, or in terms of the “left-right” (k ↔ −k) asymmetric momentum distribution in spin-up scattering:

AN (k) ≡
dσ↑

d2k dy − dσ↓

d2k dy

dσ↑

d2k dy + dσ↓

d2k dy

=

dσ↑

d2k dy (k)− dσ↑

d2k dy (−k)

dσ↑

d2k dy (k) +
dσ↑

d2k dy (−k)
≡ d(∆σ)

2 dσunp
. (1)

Interpreted as a left-right asymmetry in the produced hadron distribution, the sign of AN is fixed to reflect a pref-
erential scattering of particles to the beam-left when AN is positive and a preferential scattering to the beam-right
when AN is negative. More concretely, if the polarized projectile moves along the +z axis and the transverse spin
is oriented along the +x axis, then positive AN corresponds to more outgoing particles produced along the −y axis
than along the +y axis. The geometry of polarized scattering is illustrated in Fig. 1. The STSA can also be thought

of as a spin-momentum coupling term proportional to (~S × ~p ) · ~k in the particle production cross section, where ~p is
the momentum of the incoming projectile. For a review of the current status of STSA physics see [1].
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FIG. 1. A sketch of the geometry of polarized scattering: the incoming transversely-polarized projectile is moving along the
+z-axis, while its spin is pointing along the +x-axis. The positive y-axis points to the right of the beam.

In the 1990’s, the E581 and E704 collaborations at Fermilab reported data on hadron production in transversely
polarized proton-proton scattering that showed large unanticipated transverse spin asymmetries of up to 30-40% [2–
7]. Qualitatively, the asymmetries were consistent with zero for mid rapidities, but increased rapidly in the forward
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FIG. 2. Experimental data on the pion single transverse spin asymmetry AN as a function of Feynman-x reported by E581 and
E704 collaborations (graphically reconstructed from [3], shown in the left panel) for 0.7 ≤ kT ≤ 2.0 GeV/c, and as a function
of the pion transverse momentum kT collected by the STAR collaboration [12] (right panel).

scattering direction, as illustrated by the data shown in the left panel of Fig. 2. More recently, the PHENIX, STAR,
and BRAHMS collaborations at the Relativistic Heavy Ion Collider (RHIC) have studied transverse spin asymmetries
over a wide kinematic range at

√
s = 200GeV [8–11]. The data they have presented [8–10] confirmed and extended

the Fermilab results, and also indicated a non-monotonic dependence of STSA on the transverse momentum kT of
the produced hadron [12, 13], shown in the right panel of Fig. 2.

At the time these spin asymmetries were first observed, there was no theoretical framework to understand them;
on the contrary, prevailing wisdom expected spin-dependent effects to become negligible at high energies [14]. Much
theoretical progress in classifying and modeling sources of STSA has been made since then, predominantly within the
framework of collinear factorization.

There are three stages in the scattering process where an asymmetry could be generated, illustrated in Fig. 3. Sivers
[15, 16] proposed the existence of a correlation between the spin of the polarized hadron and the transverse momentum
distribution of its partons. This Sivers effect would act within the parton distribution function (PDF) (or, equivalently,
the initial state wave function) of the polarized projectile to generate an asymmetry. Being a part of the PDF, this is
an intrinsically non-perturbative process. The asymmetry could also be generated in the partonic scattering processes
themselves; since the leading-order scattering process does not generate an asymmetry, any contribution would come
from “higher-twist” terms in the interaction, as suggested in [17–26]. Such an asymmetry generated by the interaction
may be perturbative, depending on the kinematics. Finally, Collins [27] proposed a similar correlation between spin
and transverse momentum that could occur during hadronization, as a produced parton undergoes fragmentation into
final-state hadrons. The Collins effect would couple the spin of a produced parton to the momentum dependence of

FIG. 3. Sketch of the three potential sources of asymmetry: in the parton distribution function via the Sivers effect, via partonic
interaction, or in the fragmentation function via the Collins effect.
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its fragmentation function, resulting in a left-right asymmetry within the final-state jet. Again, the Collins effect is a
low-energy, intrinsically non-perturbative process.
Recent studies from STAR [28] were able to resolve the angular distribution within the jets and thus probe the

Collins function directly. Their data suggests that the Collins effect’s contribution to the asymmetry is small or
consistent with zero, as illustrated in Fig. 4.
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FIG. 4. Recent preliminary data from the STAR collaboration (graphically reconstructed from [28]) for the π0 asymmetry
within final-state jets as a function of the angle γ between the outgoing pion and the jet thrust axis. The Collins contribution
is proportional to the slope of the data, and is consistent with zero.

We are interested in understanding which perturbative mechanisms within the interaction can give rise to transverse
spin asymmetries, and we would like to study the interaction with proton–nucleus (p↑ +A) collisions in mind. When
the target is a heavy nucleus at high energies, or when the energy of the proton–proton collision is high enough,
the projectile scatters off of the target’s small-x parton distribution where parton densities are high. The effective
interactions in this small-x regime are well described by the parton saturation/Color Glass Condensate (CGC) formal-
ism [29],[30],[31],[32–34],[35–37],[38, 39],[40–48],[49–53],[54–56] which resums the multiple rescatterings in these dense
color fields and incorporates the small-x evolution of those fields. This saturation framework is expressed naturally in
coordinate space and introduces a characteristic saturation scale Qs describing the color-charge density fluctuations
within the target.
With the CGC interactions that mediate p↑ +A scattering in mind, it is natural to search for the asymmetry using

the language of the small-x interactions, light-cone perturbation theory (LCPT) [57, 58], instead of the usual collinear
factorization. Using LCPT, we calculate spin-dependent processes that contribute to the projectile’s light-cone wave
function, then convolute this wave function (squared) with the known scattering amplitudes from CGC that are
responsible for the interaction of partons with the target. Surprisingly enough this procedure yields a non-zero STSA
for quark and gluon production in p↑ + A scattering. Our approach yields a different but complementary picture to
the usual collinear factorization mechanisms for generating STSA and may provide new insight into the underlying
physics for generating transverse spin asymmetry.
In the past the interplay of spin and small-x evolution was investigated in [59] using the standard Feynman diagram

approach. In more recent years the role of spin has also been investigated within the McLerran-Venugopalan (MV)
model [35–37] in [60] and within Mueller’s dipole model [32–34] in [61]. The transverse spin asymmetry in the CGC
formalism was studied in [62–65], with the STSA being a completely non-perturbative effect on top of the perturbative
CGC dynamics. Other non-perturbative approaches include using QCD instantons to generate STSA as discussed in
[66].
In this paper, we present an analysis of STSA generated by the interaction of the spin-dependent LCPT wave

function of the projectile with the target gluon field in the saturation/CGC framework. The paper is organized
as follows. In Sec. II we derive the general expressions for the quark, gluon, and photon single transverse spin
asymmetries in our formalism. These general results are given in Eqs. (32), (40) and (44). We show that to generate
the asymmetry the projectile needs to interact with the target via a C-odd scattering amplitude, commonly known as
the QCD odderon [67–74]. In Sec. III we simplify the interaction of the light-cone wave function with the target using
the Glauber-Mueller approximation [75], and we present a closed-form estimate of the asymmetry for produced quarks.
We find that a C-odd exchange alone is insufficient to generate the asymmetry, and needs to be accompanied by a
C-even exchange for the asymmetry to be non-zero. We also see that the generated STSA (AN ) is a non-monotonic
function of transverse momentum kT and an increasing function of xF , in qualitative agreement with the data shown
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in Fig. 2. Our rough estimates of the asymmetry are plotted in Figs. 13, 14 and 15, which, when compared to the data
in Fig. 2, suggest that it may even be possible to achieve quantitative agreement with the data using our approach in
a detailed phenomenological study. We conclude by summarizing our main results in Sec. IV.

II. GENERAL RESULT: COUPLING SPIN TO INTERACTION C-PARITY

In this paper we consider two processes contributing to the STSA of hadron production in the scattering of trans-
versely polarized protons on an unpolarized target (proton or nucleus), p↑ +A→ h+X : quark production and gluon
production. We will also consider STSA in prompt photon production, p↑ + A → γ + X . The proton’s transverse
spin is transmitted to a quark in its wave function (giving rise to the transversity distribution); for simplicity we
consider the scattering of this transversely polarized quark on the target separately from other (spectator) quarks in
the proton. This process is illustrated in Fig. 5, where the high energy interaction between the projectile quark and
the target nucleus is schematically denoted by gluon exchanges.

q↑

nucleus, A

q, G, γ

X

FIG. 5. Transversely polarized quark scattering in the field of the nucleus producing either a quark (q), gluon (G), or a prompt
photon (γ) along with extra hadrons denoted by X: q↑ + A → (q, G, γ) +X.

To introduce the methodology, we will concentrate on the quark production process, q↑ + A → q + X . We
are interested in isolating the spin-dependent contribution of the quark–target scattering. Certainly keeping only
the eikonal interaction would be insufficient to reach this goal, since the eikonal scattering is independent of the
quark polarization. A non-eikonal correction has to be included: in the multiple-rescattering Glauber-Mueller [75]
approximation, the non-eikonal rescattering corrections are suppressed by powers of energy and are very small. A
much larger spin-dependent contribution comes from the non-eikonal splitting of the projectile quark into a quark and
a gluon, q → q G, which is suppressed only by a power of the strong coupling αs. In the LCPT language the q → q G
splitting may take place either before or after the interaction with the target, as shown in Fig. 6. (Splitting during the
interaction with the target is suppressed by powers of energy [76].) The lowest-order diagrams shown in Fig. 6 that
contribute to STSA in q↑+A→ q+X contain the emission of a single gluon from the polarized quark, where both the
gluon and quark can scatter in the field of the target. (Multi-gluon non-eikonal emissions are also possible, but they
are higher-order in αs and, hence, outside of the leading-order precision of this work.) The spin dependence of the
process illustrated in Fig. 6 originates within the light-cone wave function of the quark-gluon system, which couples
to the interaction in a way that generates the asymmetry. In this Section, we will first outline the calculation of the
q → q G light-cone wave function using LCPT. Then we will combine the resulting splitting wave function squared
with the quark and gluon interactions in the field of the target and identify the contribution to the asymmetry. In the
end we obtain general expressions for quark, gluon, and photon STSA’s in our formalism. The incoming light quark
has a particular flavor f ; multiple quark flavors can be incorporated into our formalism by convoluting the obtained
cross sections with quark distributions corresponding to different flavors (inserting the appropriate quark masses into
our results below).

Throughout this paper, we will work in light-cone coordinates pµ = (p+, p−,p) with p± ≡ p0±p3 and the transverse-
plane vector p ≡ (p1, p2). Note that p · q = (1/2) (p+q− + p−q+) − p · q and pµ p

µ = p+p− − p2T with pT = |p|. We
assume that the incoming projectile quark is moving along the light-cone x+-axis, while the target is moving along
the x−-axis. We will work in the light-cone gauge of the projectile, A+ = 0.
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FIG. 6. Two contributions to the amplitude for the high energy quark–target scattering in LCPT.

A. Light-Cone Wave Function and Transverse Polarization

Consider the splitting shown in Fig. 7 of a transversely polarized quark with momentum p and polarization χ = ±1
decaying into a gluon (with momentum p − k, polarization λ, and color a) and a recoiling quark (with momentum
k and polarization χ′). The projectile quark is traveling along the light-cone x+-direction and the recoiling quark
carries a fraction

α ≡ k+

p+
(2)

of the incoming quark’s longitudinal momentum. We do not restrict ourselves to the case of an eikonal quark emitting
a soft gluon (1 − α ≪ 1), but work in the general case when both the quark and the gluon can carry comparable
longitudinal momenta.

p, χ

k, χ ′

p − k, λ

a

u

x

z

FIG. 7. The light-cone wave function for the q → q G splitting. Vertical dotted line denotes the intermediate state.

The calculation of the light-cone wave function corresponding to the diagram in Fig. 7 is different from other similar
calculations in the literature (see e.g. [77, 78]) only in that now the incoming quark is polarized transversely. To
account for the transverse spin of the projectile traveling in the x3 = z direction, we define the axis of spin quantization
to be the x1 = x axis, and we need to construct the Dirac spinors corresponding to the spin projection eigenvalues
χ = ±1 on the x-axis. The proper Lorentz-covariant operator describing the spin orientation is the Pauli-Lubanski
vector

Wµ ≡ −1

2
ǫµνρσS

νρpσ , (3)

where

Sνρ ≡ i

4

[

γν , γρ
]

are the generators of the Lorentz group and we are using the convention in which ǫ0123 = +1.
For our purposes, we need to find the eigenspinors of W1 for a particle moving along the z-axis. Diagonalizing W1

in terms of the pure helicity eigenspinors gives (cf. e.g. [79])

Uχ ≡ 1√
2

[

U(+z) + χU(−z)

]

, (4)
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where U±z are the spinors in the helicity basis and χ = ±1. These particular spinors Uχ are simultaneous eigenstates
of W1 and of the Dirac operator:

W1 Uχ = χ
m

2
Uχ

(γ · p−m)Uχ = 0 .

Since the incoming quark is polarized transversely, it is convenient to use the same spinor basis (4) for the outgoing
quark in Fig. 7 as well. Using the standard rules of LCPT [57, 58] and working in the transverse polarization basis
(4) for the spinors, we evaluate the light-cone wave function shown in Fig. 7 as

ψa
λχχ′ (k,p, α) =

g T a

p− − k− − (p− k)−

[

Ūχ′(k)√
k+

γ · ǫ∗λ
Uχ(p)
√

p+

]

, (5)

where

ǫµλ =

(

0,
2 ǫλ · (p− k)

p+ − k+
, ǫλ

)

(6)

is the gluon polarization vector with the transverse components ǫλ = (−1/
√
2) (λ, i).

In arriving at Eq. (5) we have used the fact that the incoming state in Fig. 7 contains only the quark with momentum
p while the intermediate state contains the quark and the gluon, as denoted by the vertical dotted line in Fig. 7. For
diagrams where the polarized quark scatters in the nucleus before the gluon emission, as shown in the right panel of
Fig. 6, the roles are reversed: the quark line p is the intermediate state, and the quark–gluon system is the final state.
Since

∑

init p
−
i =

∑

final p
−
i , the energy denominator reverses sign for final-state splittings.

Using the on-shell conditions explicitly gives the terms entering the energy denominator:

p− =
p2T +m2

p+
, k− =

k2T +m2

k+
, (p− k)− =

(p− k)2

p+ − k+
. (7)

We use the spinors in the Brodsky–Lepage convention [57, 58], which, for a particle moving along the z-axis, become
helicity eigenstates. The spinor matrix elements for the Brodsky–Lepage spinors are well known [57, 58]. Making the
change of basis (4) gives the relevant spinor products as 1

Ūχ′(k)√
k+

γ+
Uχ(p)
√

p+
= 2 δχ,χ′ (8a)

Ūχ′(k)√
k+

γi⊥
Uχ(p)
√

p+
=
δχ,χ′

α p+

[

(ki⊥ + α pi⊥)− (1− α) imχ δi2
]

(8b)

− δχ,−χ′

α p+

[

i ǫij (kj⊥ − αpj⊥)− (1 − α)mχδi1
]

,

and the γ− matrix element does not contribute to γ · ǫ∗λ since ǫ+λ = 0 in the light-cone gauge. Here ǫ12 = −ǫ21 = 1,
ǫ11 = ǫ22 = 0. With the matrix elements (8) it is straightforward to evaluate the light-cone wave function (5) in
momentum space, obtaining

ψa
λχχ′ (k,p, α) =

g T a

(k − α p)2 + m̃2

×
[

ǫ∗λ · (k − αp)

(

(1 + α) δχχ′ + λ (1 − α) δχ,−χ′

)

− m̃√
2
(1− α)χ

(

δχχ′ − λ δχ,−χ′

)

]

, (9)

where

m̃ ≡ (1− α)m

is a natural effective mass parameter in the wave function and T a are the SU(Nc) generators in the fundamental
representation.

1 Note again that Uχ(p) becomes a spinor for a transversely polarized particle only for p = 0: Eqs. (8) give us the matrix elements for
spinors related to the Brodsky–Lepage spinors via Eq. (4), which do not necessarily correspond to transverse polarizations in the general
case.
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Now we can Fourier transform the wave function to coordinate space

ψa
λχχ′ (x, z, α;u) ≡

∫

d2k

(2π)2
d2p

(2π)2
eik·(z−x) eip·(x−u) ψa

λχχ′ (k,p, α) (10)

with the transverse coordinates defined in Fig. 7. Since the momentum-space wave function depends only on k−αp,
one of the two integrals can be performed to yield a delta function δ2[(x−u) +α (z−x)]. Performing the remaining
momentum integral in Eq. (10) yields

ψa
λχχ′ (x, z, α;u) =

g T a

2π
δ2[(x− u) + α(z − x)] m̃

{

i ǫ∗λ · z − x

|z − x| K1(m̃ |z − x|)
[

(1 + α) δχ,χ′ + λ (1 − α) δχ,−χ′

]

− χ (1− α)√
2

K0(m̃ |z − x|)
[

δχ,χ′ − λ δχ,−χ′

]}

. (11)

It is useful to separate out the color factor T a and the delta function from the rest of the wave function (denoted by
Ψλχχ′ ), such that

ψa
λχχ′ (x, z, α;u) ≡ T a δ2[(u− x)− α (z − x)] Ψλχχ′ (z − x, α) . (12)

Finally, we need to square the wave function and sum over the final particles’ polarizations. Here we are interested in
producing a quark with a fixed transverse momentum, while integrating over all transverse momenta of the produced
gluon in Fig. 6. According to the standard prescription [56, 76], for coordinate-space scattering amplitudes this
means that the gluon’s transverse coordinate x will be the same both in the amplitude and in the complex conjugate
amplitude (since its transverse momentum is integrated over in the cross section), while the quarks have different
transverse coordinates between the amplitude and the conjugate amplitude (since they are the observed particles).
(See Fig. 10 below for the illustration of the amplitude squared.) The “square” of the light cone wave function (11)
with the above rule for the quark and gluon transverse coordinates is illustrated in Fig. 8.

u

x

z y

x

w

FIG. 8. Light-cone wave function from Fig. 7 squared. The vertical straight line separates the wave function from its conjugate,
while the cross denotes the quark that we tag on. The untagged gluon’s coordinate x is unchanged, but the quark coordinates
differ (z and u vs. y and w, as explained in the text.)

The wave function (11) squared Φχ as shown in Fig. 8 contains one contribution which is polarization-independent
and another which is proportional to the quark polarization eigenvalue χ

Φχ(z−x,y−x, α) ≡
∑

λ , χ′=±1

Ψλχχ′ (z−x, α)Ψ∗
λχχ′(y−x, α) ≡ Φunp(z−x,y−x, α)+χΦpol(z−x,y−x, α) . (13)

Substituting the wave function (11) into Eq. (13) and performing the sums gives the unpolarized part as

Φunp =
2αs

π
m̃2

[

(1 + α2)
(z − x) · (y − x)

|z − x| |y − x| K1(m̃ |z − x|)K1(m̃ |y − x|) (14)

+ (1− α)2K0(m̃ |z − x|)K0(m̃ |y − x|)
]

and the transversely-polarized part as

Φpol =
2αs

π
m̃2 α (1 − α)

[

z2 − x2

|z − x| K0(m̃ |y − x|)K1(m̃ |z − x|) + y2 − x2

|y − x| K1(m̃ |y − x|)K0(m̃ |z − x|)
]

. (15)
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Note that Φunp is a scalar under rotations in the transverse plane, whereas Φpol has an explicitly preferred x2-direction
(i.e., the y-axis) since it “knows” about the transverse polarization of the incoming quark. The x2-axis can be written

as the direction of the ~p × ~S vector, since the incoming quark with momentum ~p is moving along the z-axis, while

being polarized along the x = x1-axis, such that ~S ‖ x̂1. We show that the unpolarized part of the wave function
squared Φunp contributes to the unpolarized quark production cross section dσunp, while the polarization-dependent
part of the wave function squared Φpol generates the spin-asymmetric cross section d(∆σ).

B. Spin, Asymmetry, and C-Parity in Quark Production

Having computed the q → q G light-cone wave function, we can now construct the scattering cross section by allowing
the wave function to interact with the small-x field of the target nucleus. It is well known [44, 49] that eikonal quark
and gluon propagators in the background color field Aµ a can be correspondingly written as fundamental and adjoint
path-ordered Wilson lines

Vx ≡ P exp



i g

+∞
∫

−∞

dx+ T aA− a(x+, x− = 0,x)



 (16a)

U ba
x ≡ P exp



i g

+∞
∫

−∞

dx+ tcA− c(x+, x− = 0,x)





ba

, (16b)

where ta’s are the SU(Nc) generators in the adjoint representation and the projectile is moving along the light-cone
x+-axis. In essence, this means that the the projectile’s transverse position is not altered during the scattering, and
the effect of the target field is to perform a net SU(Nc) color rotation on the projectile. The Wilson lines resum these
interactions and give the total phase of that color rotation. They are illustrated in Fig. 9. Note that the adjoint
Wilson line U ba

x is real-valued.

Vx ≡

x

nucleus, A

x x+

U ba
x ≡

x+x

nucleus, A

x

ba

FIG. 9. Wilson lines resumming scattering in the small-x field of the target. The quark propagator is in the fundamental
representation (top), and the gluon propagator is in the adjoint representation (bottom).

The Wilson-line approach is quite generic: if the target gluon field is quasi-classical, as in the case of the McLerran–
Venugopalan (MV) model [35–37], then correlators of the Wilson lines resum powers of α2

s A
1/3 corresponding to

the Glauber–Mueller multiple-rescattering approximation [75]. Non-linear small-x evolution resumming powers of
αs Y ∼ αs ln s can be included into the correlators of the Wilson lines through the Balitsky–Kovchegov (BK) [49–
53] and Jalilian-Marian–Iancu–McLerran–Weigert–Leonidov–Kovner (JIMWLK) [40–48] evolution equations. Thus
expressing the interaction with the target in terms of the Wilson lines (16) allows for several different levels of
approximation for this interaction.
The scattering amplitude for quark production is composed of two sub-processes: the splitting of Eq. (11) calculated

in Sec. II A and the Wilson line scattering (16) of the quark and the gluon in the field of the target. These elements give
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w
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a c
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FIG. 10. The cross section for quark production in the polarized quark–nucleus scattering.

two distinct diagrams contributing to the scattering amplitude shown in Fig. 6 above. To find the quark production
cross section we need to square the diagrams in Fig. 6, keeping the transverse momentum of the quark fixed, as
depicted in Fig. 10. As discussed above, this implies that the transverse coordinates of the quark are different on both
sides of the cut. Just like in other similar calculations [76, 78] the q → q G splitting may occur either before or after
the interaction with the target, both in the amplitude and in the complex conjugate amplitude, resulting in the four
different terms shown in Fig. 10.
Using Fig. 10 we can write down the expression for the color-averaged amplitude squared

〈

M2
〉

in terms of Wilson
lines and the wave function responsible for the splitting, remembering to reverse the sign in the wave function for
splitting occurring after the interaction:

〈

M2
〉

=
1

Nc

∑

λ,χ′

[

Tr
[

Vz ψ
a
λχχ′ ψ

c †
λχχ′ V

†
y

]

U ba
x U bc

x +Tr
[

ψa
λχχ′ Vu V

†
w ψ

a †
λχχ′

]

(17)

− Tr
[

Vz ψ
a
λχχ′ V †

w ψ
b †
λχχ′

]

U ba
x − Tr

[

ψa
λχχ′ Vu ψ

b †
λχχ′ V

†
y

]

Uab
x

]

,

where Nc is the number of colors, the traces are taken over the fundamental representation indices, and summation
is implied over repeated adjoint color indices. Substituting Eq. (12) into Eq. (17) and using the identities

U ba
x T a = V †

x T
b Vx , Tr [AT aB T a] =

1

2
TrA TrB − 1

2Nc
Tr [AB] (18)

for arbitrary Nc ×Nc matrices A, B, we find

〈

M2
〉

= CF δ
2
[

u− x− α (z − x)
]

δ2
[

w − x− α (y − x)
]

Φχ(z − x,y − x) I(q) (19)

where the factor responsible for the quark’s interaction with the target, denoted by I(q), is given by

I(q) =

〈

1

Nc
Tr

[

Vz V
†
y

]

+
1

Nc
Tr

[

Vu V
†
w

]

− 1

2NcCF
Tr

[

Vz V
†
x

]

Tr
[

Vx V
†
w

]

+
1

2N2
c CF

Tr
[

Vz V
†
w

]

− 1

2NcCF
Tr

[

Vu V
†
x

]

Tr
[

Vx V
†
y

]

+
1

2N2
c CF

Tr
[

Vu V
†
y

]

〉

. (20)

Here CF = (N2
c − 1)/2Nc is the fundamental Casimir operator of SU(Nc), and the angle brackets on the right denote

averaging over the field configurations of the target.
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Defining the S-matrix operator for a fundamental-representation color dipole by

D̂xy ≡ 1

Nc
Tr

[

Vx V
†
y

]

(21)

we can rewrite I(q) more compactly as

I(q) =

〈

D̂z y + D̂uw − Nc

2CF
D̂z x D̂xw +

1

2NcCF
D̂zw − Nc

2CF
D̂ux D̂xy +

1

2NcCF
D̂uy

〉

. (22)

As we have already mentioned, this interaction with the target can be evaluated either in the Glauber–Mueller
multiple-rescattering approximation or using the JIMWLK evolution equation.
The expression (22) simplifies in ’t Hooft’s large-Nc limit, in which the correlators of several single-trace operators

factorize, such that, for instance, 〈D̂ux D̂xy〉 = 〈D̂ux〉 〈D̂xy〉 [49, 52, 55]. Defining

Dxy ≡
〈

D̂xy

〉

=
1

Nc

〈

Tr
[

Vx V
†
y

]〉

(23)

we rewrite Eq. (22) in the large-Nc limit as

I(q)

∣

∣

∣

∣

large−Nc

= Dz y +Duw −Dz xDxw −DuxDxy . (24)

To compute the quark production cross sections, we need to Fourier transform the coordinate space amplitude
squared of Eq. (19) back to momentum space and include the appropriate kinematic factors. This is accomplished by
[56]

dσ(q)

d2k dyq
=

1

2 (2π)3
α

1− α

∫

d2x d2y d2z d2u d2w e−ik·(z−y) eip·(u−w) 〈M2〉 (25)

with k and yq the transverse momentum and rapidity of the produced quark. Integrating over the delta functions in
(19) imposes the kinematic constraints

u = x+ α (z − x) (26a)

w = x+ α (y − x) (26b)

which relate the quark coordinates before and after the q → q G splitting and describe the non-eikonal quark recoil.
To make the incoming quark transversely polarized we need to put the transverse momentum of the incoming quark
to zero: p = 0. We thus obtain the general result for the quark production in the q↑ +A scattering

dσ(q)

d2k dyq
=

CF

2 (2π)3
α

1− α

∫

d2x d2y d2z e−ik·(z−y) Φχ(z − x , y − x, α) I(q)(x , y , z) (27)

with Φχ from Eq. (13) and I(q) from Eq. (22). The expression (27) contains multiple rescatterings and non-linear
small-x evolution between the projectile and the target. Note that it does not resum the small-x evolution between
the produced quark and the projectile (which can be included following [78]), and hence is not valid for very small
α (i.e., the values of α are restricted by αs ln 1/α ≪ 1). Since, as we will see below, both the experimental STSA
and STSA resulting from our production mechanism fall off with decreasing α, the region of interest in this work
corresponds to α not being very small, where Eq. (27) is fully applicable.
Now we are in a position to analyze the symmetry properties of the wave function and the interaction. There are

two relevant symmetries to consider: k → −k or “kT -parity” and χ → −χ spin-flip. Under kT -parity, the quark and
antiquark coordinates z and y get interchanged, z ↔ y. (Note that, due to Eqs. (26), this also implies that u ↔ w.)
From our previous calculation of the wave function (14), (15), we note that Φunp is spin-independent, a scalar under
rotations in the transverse plane, and kT -even. Similarly, χΦpol is odd under spin-flip, a vector under transverse
rotations, and kT -even. We can explicitly (anti-)symmetrize the interaction with the target under z ↔ y interchange

Isymm/ anti ≡
1

2

(

I ± (z ↔ y)

)

. (28)
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To do so we first need to decompose each dipole S-matrix into the even and odd pieces under the exchange of transverse
coordinates, which corresponds to the C-parity operation exchanging the quark and the anti-quark [71, 72]:

D̂xy ≡ Ŝxy + i Ôxy (29a)

Ŝxy ≡ 1

2
(D̂xy + D̂y x) (29b)

Ôxy ≡ 1

2i
(D̂xy − D̂y x) . (29c)

The C-even real part of the target field-averaged S-matrix Sxy ≡ 〈Ŝxy〉 is responsible for the total unpolarized cross
section of the dipole–target interactions. Its small-x evolution is given by the BK/JIMWLK equations. The C-odd

imaginary part of the target-averaged S-matrix Oxy ≡ 〈Ôxy〉 is known as the odderon interaction [67–69]. The
small-x evolution equation for Oxy was constructed in [71–73], and, in the linear approximation, was found to be
identical to the dipole BFKL equation [32] with C-odd initial conditions. The intercept of the linearized odderon
evolution was found to be αO − 1 = 0, in agreement with the solution of the Bartels–Kwiecinski–Praszalowicz (BKP)
[80, 81] equation for the odderon found in [70]. For the current status of the experimental searches for the QCD
odderon and for an overview of the theory see [69].
With these explicitly symmetrized elements, it is straightforward to construct the symmetric and antisymmetric

parts of the interaction with the target (22) for quark production:

I(q)
symm =

〈

Ŝz y + Ŝuw − Nc

2CF

(

Ŝz x Ŝxw − Ôz x Ôxw

)

+
1

2NcCF
Ŝz w

− Nc

2CF

(

Ŝux Ŝxy − Ôux Ôxy

)

+
1

2NcCF
Ŝuy

〉

, (30a)

I(q)
anti = i

〈

Ôz y + Ôuw − Nc

2CF

(

Ôz x Ŝxw + Ŝz x Ôxw

)

+
1

2NcCF
Ôzw

− Nc

2CF

(

Ôux Ŝxy + Ŝux Ôxy

)

+
1

2NcCF
Ôuy

〉

. (30b)

In the large-Nc limit these expressions simplify to

I(q)
symm

∣

∣

∣

∣

large−Nc

= Sz y + Suw − Sz x Sxw − Sux Sxy +Oz xOxw +OuxOxy, (31a)

I(q)
anti

∣

∣

∣

∣

large−Nc

= i [Oz y +Ouw −Oz x Sxw −Oux Sxy − Sz xOxw − SuxOxy] . (31b)

Because the production cross section preserves azimuthal rotational symmetry, any physical observable must behave
the same way under both kT -parity and spin flip; that is, the only terms which are non-zero are those which are even
under the combined operation kT ⊗ (spin flip). Note that Φunp is even under the spin-flip, while χΦpol is odd under

spin-flip, and both are even under kT -parity. Hence in the Φχ I(q) product in Eq. (27) the terms which give non-zero

contributions to the cross section are Φunp I(q)
symm and χΦpol I(q)

anti. The other terms Φunp I(q)
anti and χΦpol I(q)

symm

contain a contradiction between their vector structure and their kT -parity, so they vanish identically: for instance,

the contribution to the cross section coming from Φunp I(q)
anti is odd under kT -parity and is a function of k2T only,

which is possible only if it is zero. Similarly, the contribution of χΦpol I(q)
symm is even under kT -parity and is a vector

in transverse space, which implies that it is also zero. Of the nonzero terms, Φunp I(q)
symm does not change its sign

under spin-flip; it generates the symmetric part of the distribution dσunp in Eq. (1). At the same time χΦpol I(q)
anti

does change sign under spin-flip; it generates the transverse spin asymmetry we are looking for.
Knowing these symmetry properties, we can explicitly construct the spin-dependent and spin-averaged cross sections

d(∆σ) and dσunp for quark production from their definitions (1) obtaining

d(∆σ(q)) =
CF

(2π)3
α

1− α

∫

d2x d2y d2z e−ik·(z−y) Φpol(z − x , y − x, α) I(q)
anti(x , y , z) (32a)

dσ(q)
unp =

CF

2 (2π)3
α

1− α

∫

d2x d2y d2z e−ik·(z−y) Φunp(z − x , y − x, α) I(q)
symm(x , y , z) , (32b)

where the wave functions squared are given by Eqs. (14), (15), and the interactions are given by Eqs. (30) (and by
Eqs. (31) in the large-Nc limit). Eqs. (32) are one of the main results of this work: together with Eq. (1) they give the
single-transverse spin asymmetry AN generated in quark production by the C-odd CGC interactions with the target.



12

The mechanism for the generation of the STSA in Eqs. (32) is different from both the well-known Sivers [15, 16]
and Collins [27] effects. It appears difficult (if not impossible) to absorb the interactions of Fig. 10 into the projectile
wave function (distribution function): hence our result is different from the Sivers effect. In the above calculation
the asymmetry is generated before fragmentation; hence the STSA resulting from Eqs. (32) cannot be due to Collins
effect either. As we will see below, the non-zero part of Eq. (32a) stems from the multiple interactions with the target
(higher-twist effects), and its contribution is in fact zero in the linearized (leading-twist) approximation. In this sense
the above mechanism for generating STSA is similar in spirit to the higher-twist mechanisms of [17–26], though a
detailed comparison of the diagrams appears to indicate that the two approaches are, in fact, different.
We have shown explicitly that the single-transverse spin asymmetry AN occurs in the CGC framework as a coupling

between the transverse spin of the projectile and a C-odd interaction with the target, driven by the odderon.2 Note
that to date there is no unambiguous experimental evidence for the QCD odderon. If our mechanism for generating
STSA can be isolated experimentally from other contributions, it may constitute the first direct observation of the
QCD odderon! To make such a distinction possible, one needs to determine phenomenological characteristics of our
mechanism, such as its rapidity, energy, and centrality dependence; some of this work will be carried out below, while
the rest, along with a proper phenomenological implementation of our results, is left for future work.
Within LCPT, the real-virtual cancellations or “crossing symmetry” embodied in Eq. (18) allow particles appearing

in the complex conjugate amplitudeM∗ to be rewritten as their charge-conjugate particles appearing in the amplitude
M . This is what gives rise to the natural dipole degrees of freedom within CGC, and in terms of the asymmetry, this
feature translates the kT -parity of the cross section into the C-parity of the interaction with the target. This is the
reason the odderon appears naturally in the expression for the asymmetry.
In the literature it is often emphasized that the STSA AN is odd under the time reversal transformation T [27].

To elucidate how the obtained result transforms under T we note that T reverses the directions of ~S, ~p, and ~k:

~S
T→ − ~S, ~p

T→ − ~p, ~k
T→ − ~k. (33)

Since (~p× ~S) ‖ x̂2 is invariant under T , the only effect of time-reversal on the spin-dependent cross section (32a) is

d(∆σ(q))(k)
T→ d(∆σ(q))(−k), (34)

since it is a real Lorentz-scalar momentum-space quantity. Therefore time reversal is equivalent to the kT -parity
transformation discussed above, and, hence, to the z ↔ y interchange. Because of the odderon exchange, the

interaction with the target I(q)
anti(x , y , z) is z ↔ y anti-symmetric, and is, therefore, T -odd. This results in the

spin-dependent cross section being T -odd too,

d(∆σ(q))(k)
T→ d(∆σ(q))(−k) = −d(∆σ(q))(k), (35)

leading to the T -odd STSA AN , in agreement with the standard expectations [27].
It is interesting to note that in the high-energy approximation considered here the application of time reversal to

dipole correlators is equivalent to the application of C-parity, such that the STSA arises from the odderon exchange,
which is both T - and C-odd. As one can check explicitly, under time reversal Wilson lines transform as

Vx
T→ T Vx T

−1 = (V †
x )

∗ = V T
x (36)

with T in the superscript denoting transposition. Note that if the original Wilson line was a future-pointing integral
along the x+-axis, the time-reversed Wilson line on the right of Eq. (36) can be thought of as a complex conjugate of
a past-pointing Wilson line or a transpose of the future-pointing Wilson line. The integration in either interpretation
runs along the x− axis: we will not show or refer to such x+ ↔ x− interchange explicitly, as it can be eliminated by
a simple relabeling of the x3-axis. Since the averaging over the nuclear target is T -even, which can be inferred from
[35, 36], the (coordinate-space) time reversal of the odderon amplitude Oxy = 〈Ôxy〉 applies only to the odderon
operator, such that

〈Ôxy〉 T→ − 〈Ôxy〉, (37)

because 〈D̂xy〉 is invariant under transposition and T is antilinear (i
T→ − i). Thus we see that the T -odd odderon

exchange leads to the T -odd STSA observable AN .
Finally, the reader may wonder whether the cross section in Eq. (32a) is in fact non-zero. While it is very difficult

to carry out the integration in Eq. (32a) exactly, we instead will evaluate Eq. (32a) approximately in Sec. III, showing
that the cross section and the corresponding STSA AN are in fact non-zero. However, first we would like to derive
the analogues of Eqs. (32) for gluon and prompt photon production.

2 In the past, the relation between the odderon and the single and double transverse spin asymmetries was investigated in [82–86] in the
pomeron and reggeon formalism.
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C. STSA in Direct Quark Production

Another channel for quark production is shown in Fig. 11 and contains a “virtual” gluon correction, without the
gluon being present in the final state. The gluon and quark in the loop may still interact with the target, as depicted
in Fig. 11. It can be shown that similar diagrams with the gluon loop located either completely before or after
the interaction with the target do not contribute to the STSA and are, therefore, not considered here. The process
illustrated in Fig. 11 only leads to quark production at α = 1, and may seem to be negligible if, in order to avoid
the projectile’s fragmentation region, we constrain ourselves to α < 1 kinematics for the produced quark. However,
remembering that for phenomenological applications one would have to convolute our quark production cross section
(32) with the quark distribution in the projectile proton, we see that α = 1 production may still lead to non-negligible
quark production at Feynman-x less than one, possibly avoiding mixing with the proton’s fragmentation region.

u

x

w

z y

C. C.

a b

v

FIG. 11. Direct quark production in the polarized quark–nucleus scattering.

The calculation of the cross section for the process in Fig. 11 can be straightforwardly carried out along the lines
specified above, yielding for p = 0

dσ(q) direct

d2k dyq
=

CF

(2 π)2
δ(1− α)

∫

d2x d2y d2z d2u d2v d2w e−ik·(z−y)

1
∫

0

dα′

4 π (1− α′)
Φχ(v − x,v − x, α′)

×
[

δ2[(u− x)− α′ (v − x)] δ2[(z − x)− α′ (v − x)] δ2(y −w) I(q) direct
1 (x , y , v)

+ δ2[(w − x)− α′ (v − x)] δ2[(y − x)− α′ (v − x)] δ2(z − u) I(q) direct
2 (x , z , v)

]

(38)

with α′ the longitudinal momentum fraction of the incoming quark carried by the quark in the loop, yq ∼ ln 1/α (up
to an additive term defining the zero rapidity direction), and the interactions with the target

I(q) direct
1 (x , y , v) =

〈

Nc

2CF
D̂v x D̂xy − 1

2NcCF
D̂v y

〉

, (39a)

I(q) direct
2 (x , z , v) =

〈

Nc

2CF
D̂xv D̂z x − 1

2NcCF
D̂z v

〉

. (39b)

To obtain the contribution to the numerator of STSA in Eq. (1) from Eq. (38) we keep the spin-dependent part
of the wave function squared, Φpol, and anti-symmetrize the integrand with respect to the z ↔ y interchange. This
gives

d(∆σ(q) direct) =
CF

2 (2 π)3
δ(1 − α)

∫

d2x d2y d2z e−ik·(z−y)

1
∫

0

dα′

(1− α′)α′ 2

×
[

Φpol

(

z − x

α′
,
z − x

α′
, α′

)

I(q) direct
anti (x , y , z)− Φpol

(

y − x

α′
,
y − x

α′
, α′

)

I(q) direct
anti (x , z , y)

]

(40)
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with the anti-symmetrized interaction given by

I(q) direct
anti (x , y , z) ≡ I(q) direct

1

(

x , y , x+
z − x

α′

)

− I(q) direct
2

(

x , y , x+
z − x

α′

)

= i

〈

Nc

CF

[

Ŝx,y Ôx+ 1
α′ (z−x),x + Ŝx,x+ 1

α′ (z−x) Ôx,y

]

+
1

Nc CF
Ôy,x+ 1

α′ (z−x)

〉

. (41)

Note again that the single transverse spin asymmetry is due to the odderon-mediated interactions with the target.

D. STSA in Gluon and Photon Production

Having laid out the methodology in Sections II B and IIC, we can now perform similar calculations of STSA for
the cases of gluon and photon production.
We begin with the gluon production. The gluon production diagrams are shown in Fig. 12. Since now we tag on the

gluon, its transverse-space positions are different on both sides of the cut, now denoted z and y, while the untagged
quark has the same transverse positions x in the amplitude and in the complex conjugate amplitude. We see that
to obtain the gluon production cross section from the quark production expression found in the previous Section, we
need to interchange

z ↔ x and y ↔ x (42)

in the wave function and its complex conjugate correspondingly. In addition, since we are interested in the differential
cross section per unit gluon rapidity yG, we use

dyG =
α

1− α
dyq (43)

(with α still the fraction of the incoming quark’s longitudinal momentum carried by the final state quark).

u

z

w

x x C. C.

u

z

w

x x

u

z y

w

x x

a c

b

a

a
b

y

y

FIG. 12. Diagrams contributing to the gluon / photon production cross section.

These modifications lead to the following expressions for the polarization-dependent and unpolarized cross sections
for gluon production

d(∆σ(G)) =
CF

(2π)3

∫

d2x d2y d2z e−ik·(z−y) Φpol(x− z , x− y, α) I(G)
anti(x , y , z) (44a)

dσ(G)
unp =

CF

2 (2π)3

∫

d2x d2y d2z e−ik·(z−y) Φunp(x− z , x− y, α) I(G)
symm(x , y , z) , (44b)
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with Φpol and Φunp still given by Eqs. (15) and (14).
The interaction with the target for the gluon production case can be calculated along the similar lines to the above

calculation of quark production by using Fig. 12, yielding

I(G) =

〈

D̂uw +
Nc

2CF
D̂z y D̂y z − 1

2NcCF
− Nc

2CF
D̂xz D̂zw +

1

2NcCF
D̂xw − Nc

2CF
D̂uy D̂y x +

1

2NcCF
D̂ux

〉

.

(45)
Note that now

u = x+ (1− α) (z − x) (46a)

w = x+ (1 − α) (y − x) (46b)

due to the interchanges of Eq. (42) carried out in Eqs. (26).
Separating the interaction into the symmetric and anti-symmetric components under the z ↔ y interchange one

obtains

I(G)
symm =

〈

Ŝuw +
Nc

2CF

(

Ŝz y Ŝy z − Ôz y Ôy z

)

− 1

2NcCF
− Nc

2CF

(

Ŝx z Ŝzw − Ôx z Ôzw

)

+
1

2NcCF
Ŝxw

− Nc

2CF

(

Ŝuy Ŝy x − Ôuy Ôy x

)

+
1

2NcCF
Ŝux

〉

, (47a)

I(G)
anti = i

〈

Ôuw − Nc

2CF

(

Ŝxz Ôz w + Ôxz Ŝzw

)

+
1

2NcCF
Ôxw

− Nc

2CF

(

Ŝuy Ôy x + Ôuy Ŝy x

)

+
1

2NcCF
Ôux

〉

, (47b)

where we have used the fact that Ôy z = −Ôz y which follows from the definition in Eq. (29c).
Finally, in the large-Nc limit Eqs. (47) simplify to

I(G)
symm

∣

∣

∣

∣

large−Nc

= Suw + (Sz y)
2 − Sx z Szw − Suy Sy x + (Oz y)

2 +Ox z Oz w +Ouy Oy x (48a)

I(G)
anti

∣

∣

∣

∣

large−Nc

= i [Ouw − Sxz Oz w −Ox z Szw − Suy Oy x −Ouy Sy x] . (48b)

Eqs. (47) and (44), when used in Eq. (1), give an expression for the gluon STSA in the CGC formalism. This is
another main result of this work.
Constructing the cross sections for prompt photon production out of the gluon production cross sections we have just

derived is straightforward. One has to drop all color factors in the light-cone wave functions, replace αs → αEM Z2
f

with Zf the electric charge of a quark with flavor f in units of the electron charge, and recalculate the interaction
with the target remembering that the photon, in this lowest order in αEM approximation does not interact. One
obtains the polarization-dependent and unpolarized cross sections for photon production

d(∆σ(γ)) =
1

(2π)3

∫

d2x d2y d2z e−ik·(z−y) Φpol(x− z , x− y, α) I(γ)
anti(x , y , z) (49a)

dσ(γ)
unp =

1

2 (2π)3

∫

d2x d2y d2z e−ik·(z−y) Φunp(x− z , x− y, α) I(γ)
symm(x , y , z) , (49b)

where Φpol and Φunp are given by Eqs. (15) and (14) with the αs → αEM Z2
f replacement.

The interaction with the target is calculated to be

I(γ) = 1 +Duw −Dxw −Dux (50)

with the symmetric and anti-symmetric under z ↔ y parts

I(γ)
symm = 1 + Suw − Sxw − Sux (51a)

I(γ)
anti = i [Ouw −Oxw −Oux] . (51b)

Eqs. (51) and (49) along with Eq. (1) give us the prompt photon STSA. This is the third and final main formal result
of this work. Note that below we will show that Eq. (49a) leads to d(∆σ(γ)) = 0 for any target, which implies zero
STSA for photons in our mechanism.
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We have constructed general expressions for STSA generated by quark, gluon, and photon production in q↑ + A
collisions. Knowing the light-cone wave functions squared (14), (15) and the interactions for the 3 channels (30)
(along with (41)), (47), (51) one can make explicit predictions for the corresponding asymmetries. In general terms,
we have shown that in this formalism the asymmetry is generated by coupling of the spin-dependent part of the wave
function to the Odderon interaction with the target.

III. EVALUATIONS AND ESTIMATES OF THE ASYMMETRY

Unfortunately, Eqs. (32), (44), and (49) are too complicated to be integrated out analytically in the general case.
In this Section, in order to understand the qualitative behavior of our results, we evaluate the integrals analytically,
taking the interaction with the target in the quasi-classical Glauber–Mueller approximation. In such a quasi-classical
limit, the real part of the S matrix (29b) is [75]

Sxy = exp

[

−1

4
|x− y|2 Q2

s

(

x+ y

2

)

ln
1

|x− y|Λ

]

, (52)

where the quark saturation scale scale Q2(b) is defined in terms of the nuclear profile function (transverse nuclear
density) T (b) as

Q2
s(b) ≡

4 π α2
s CF

Nc
T (b) (53)

and Λ is a non-perturbative IR cutoff.
In the same quasi-classical approximation the odderon amplitude is [71]

Oxy =

〈

c0 α
3
s ln3

|x− r|
|y − r|

〉

exp

[

−1

4
|x− y|2 Q2

s

(

x+ y

2

)

ln
1

|x− y|Λ

]

(54)

with the constant [72–74]3

c0 = − (N2
c − 4) (N2

c − 1)

12N3
c

. (55)

The logarithm cubed in Eq. (54) arises due to the triple gluon exchange between the dipole and some quark in the
target nucleus located at transverse position r. Angle brackets in Eq. (54) denote the averaging over positions of the
quark in the nuclear wave function, along with the summation over all the nucleons in the nucleus that may contain
this quark. This averaging is carried out in Appendix A, yielding

Oxy ≈ −c0 α3
s

3 π

16
|x− y|2 exp

[

−1

4
|x− y|2 Q2

s

(

x+ y

2

)

ln
1

|x− y|Λ

]

(x− y) ·∇T

(

x+ y

2

)

. (56)

For simplicity we will also work in the large-Nc limit for the light-cone wave function. Just like before, we mainly
concentrate on the quark production case in Eq. (32): STSA in the gluon production channel can be evaluated along
similar lines. We will also consider STSA for the prompt photon production.

A. Single Transverse Spin Asymmetry in Quark Production

1. Spin-Dependent Quark Production Cross Section

First let us evaluate the numerator of the STSA in Eq. (1), which, in the quark production case, is given by
Eq. (32a). (For simplicity we assume that α < 1 which allows us to drop the contribution from Eq. (40).) Working

3 Note that the sign is different from that in [72, 74]: the sign in Eq. (55) arises when using a consistent convention for the sign of the
coupling g both in the Wilson lines and in the classical gluon field of the target. (Our sign convention is to have +i g for the quark-gluon
vertex, resulting in +i g in the Wilson lines (16).) While the physical conclusions reached in [71–74] are independent of the sign of the
odderon amplitude, the direction of the asymmetry in question explicitly depends on the sign of Oxy .
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in the large-Nc limit for the light-cone wave function we substitute the interaction from Eq. (31b) into Eq. (32a) to
obtain

d(∆σ(q)) = i
Nc

2 (2π)3
α

1− α

∫

d2x d2y d2z e−ik·(z−y) Φpol(z − x , y − x, α) [Oz y +Ouw −Oz x Sxw −Oux Sxy

−Sz xOxw − SuxOxy] . (57)

Our goal now is to evaluate this expression using the S-matrix from Eq. (52) and the odderon amplitude (56).
The interaction with the target in Eq. (57) is non-linear. It is tempting to try to simplify the problem by neglecting

all the multiple rescattering saturation effects. In such a linearized approximation Eq. (57) reduces to

d(∆σ(q))lin = i
Nc

2 (2π)3
α

1− α

∫

d2x d2y d2z e−ik·(z−y) Φpol(z − x , y − x, α)

× [oz y + ouw − oz x − oux − oxw − oxy] (58)

where

oxy ≈ α3
s

π Nc

64
|x− y|2 (x− y) ·∇T

(

x+ y

2

)

(59)

is the linear part of the averaged odderon amplitude (56). However, one can easily show that the cross section in
Eq. (58) is in fact zero, i.e., that

d(∆σ(q))lin = 0. (60)

We illustrate this by considering the oz y term in Eq. (58). Defining new transverse vectors

z̃ = z − x, ỹ = y − x, (61)

we rewrite the oz y contribution to the cross section in Eq. (58) as

i
Nc

2 (2π)3
α

1− α

∫

d2ỹ d2z̃ e−ik·(z̃−ỹ) Φpol(z̃, ỹ, α)

∫

d2x oz̃+x, ỹ+x. (62)

This expression is zero since

∫

d2x oz̃+x, ỹ+x = 0 (63)

due to the fact that the odderon amplitude (29c) (and, therefore, the linearized odderon amplitude (59)) is an anti-
symmetric function of its transverse coordinate arguments,

Oxy = −Oy x. (64)

The argument goes as follows. Employing Eq. (64) and shifting the integration variables we write

f(y) ≡
∫

d2x Ox,x+y = −
∫

d2x Ox,x−y = −f(−y). (65)

Since f(y) depends only on one vector y and is a scalar under the rotations in the transverse plane, it is a function
of y2 only, and can satisfy (65) (i.e., can be an odd function of y) only if f(y) = 0. This demonstrates that

∫

d2xOx,x+y = 0. (66)

Similar arguments can be carried out for other terms in Eq. (58), leading in the end to Eq. (60). We arrive at an
important conclusion: STSA cannot result from the interaction with the target mediated by the odderon exchange
alone. Neglecting the interactions contained in the dipole S-matrices in Eq. (57) would lead to zero transverse spin
asymmetry. This is an important observation elucidating the nature of our result (32) and the corresponding STSA:
in order to generate a non-zero STSA the interaction with the target has to contain both the C-odd and C-even
contributions!
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Returning to the general case of Eq. (57) we see that the argument we have just presented demonstrates that the
Oz y and Ouw terms are zero in the general case as well, since they are not multiplied by the S-matrices. Dropping
these terms yields

d(∆σ(q)) = −i Nc

2 (2π)3
α

1− α

∫

d2x d2y d2z e−ik·(z−y) Φpol(z − x , y − x, α)

× [Oz x Sxw +Oux Sxy +Oxw Sz x +Oxy Sux] . (67)

To evaluate Eq. (67) let us first study its large-kT asymptotics. Since m̃ ≤ m and the quark mass m is at most the
constituent quark mass of about 300 MeV (we assume light quark flavors), we have kT ≫ Qs ≫ m̃. Changing the
coordinates using Eq. (61) reduces it to

d(∆σ(q)) = −i Nc

2 (2π)3
α

1− α

∫

d2x d2ỹ d2z̃ e−ik·(z̃−ỹ)Φpol(z̃ , ỹ, α)

× [Ox+z̃,x Sx,x+α ỹ +Ox+α z̃, x Sx,x+ỹ +Ox,x+α ỹ Sx,x+z̃ +Ox,x+ỹ Sx,x+α z̃ ] . (68)

For each term in the square brackets of Eq. (68) the integrals over z̃ and ỹ factorize: taking the large-kT limit in each
of them separately, we see that the large-kT asymptotics corresponds to small z̃T and ỹT . We thus need to expand
the interaction with the target term in the square brackets of Eq. (68) to the lowest non-trivial order in z̃T and ỹT .
Note that above we have seen that if we keep the dipole S-matrices at the lowest order in the dipole size, S = 1,
then the spin-dependent cross section would be zero. We thus use Eqs. (52) and (56) to expand the S-matrices to
the next-to-lowest order, while keeping the odderon amplitudes at the lowest order given by Eq. (59). Performing the
expansion, substituting the wave function squared from Eq. (15) (also expanded to the lowest non-trivial order in z̃T
and ỹT ) into Eq. (68), and employing Eq. (53) we obtain

d(∆σ(q))

∣

∣

∣

∣

kT≫Qs

≈ i
N2

c

1024 π2
α6
s m̃α4

∫

d2x d2ỹ d2z̃ e−ik·(z̃−ỹ)

(

z̃2

z̃2T
ln

1

m̃ ỹT
+

ỹ2

ỹ2T
ln

1

m̃ z̃T

)

z̃2T ỹ
2
T

×
[

z̃ ·∇T

(

x+
z̃

2

)

T

(

x+
α ỹ

2

)

ln
1

α ỹT Λ
+ α z̃ ·∇T

(

x+
α z̃

2

)

T

(

x+
ỹ

2

)

ln
1

ỹT Λ
− (z̃ ↔ ỹ)

]

. (69)

Since z̃T and ỹT are small, one may think of neglecting them compared to x in the arguments of T ’s in Eq. (69).
However, this would lead to a zero answer after integration over x. The reason for this conclusion is that any
unpolarized target, after averaging over many events, is rotationally symmetric in the transverse plane. This implies
that ∇T (x) = ∇T (xT ) = x̂ T ′(xT ) where x̂ is a unit vector in the direction of x and T ′(xT ) = dT (xT )/dxT .
Integrating x̂ over the angles of x would give zero.
Instead of neglecting z̃T and ỹT , we shift x → x − z̃/2 in the first term in the square brackets of Eq. (69) and

expand T along the lines of Eq. (A7), and perform similar operations to the other terms in the brackets obtaining

d(∆σ(q))

∣

∣

∣

∣

kT ≫Qs

≈ i
N2

c

2048 π2
α6
s m̃ α4

∫

d2x d2y d2z e−ik·(z−y)

(

z2

z2T
ln

1

m̃ yT
+

y2

y2T
ln

1

m̃ zT

)

z2T y
2
T

×
[

z ·∇T (x) (α y − z) ·∇T (x) ln
1

αyT Λ
+ α z ·∇T (x) (y − α z) ·∇T (x) ln

1

yT Λ
− (z ↔ y)

]

, (70)

where we have dropped the tildes over y and z, since now it would not cause confusion.
Using ∇T (x) = ∇T (xT ) = x̂ T ′(xT ) and integrating over the angles of x reduces Eq. (70) to

d(∆σ(q))

∣

∣

∣

∣

kT≫Qs

≈ i
N2

c

4096 π
α6
s m̃ α4

∞
∫

0

dx2T [T ′(xT )]
2

∫

d2y d2z e−ik·(z−y)

(

z2

z2T
ln

1

m̃ yT
+

y2

y2T
ln

1

m̃ zT

)

z2T y
2
T

×
[

z · (α y − z) ln
1

αyT Λ
+ α z · (y − α z) ln

1

yT Λ
− α y · (z − α y) ln

1

zT Λ
− y · (α z − y) ln

1

α zT Λ

]

. (71)

Integrating over y and z in Eq. (71) and discarding delta-functions of k (since kT 6= 0) yields

d(∆σ(q))

∣

∣

∣

∣

kT ≫Qs

≈ π N2
c

8
α6
s m̃ α4 (2 + 3α+ 2α2)

∞
∫

0

dx2T [T ′(xT )]
2 k2

k10T
. (72)

We see that the polarized spectrum falls off rather steeply with kT , scaling as 1/k
9
T . This indicates that in the standard

collinear factorization framework our STSA generating mechanism originates in some higher-twist operator.
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Another important qualitative feature one can see in Eq. (72) is that the spin-dependent cross section falls off with
decreasing longitudinal momentum fraction α, which implies that the corresponding STSA decreases with decreasing
Feynman-x of the projectile, in qualitative agreement with the experimental data.
To improve on Eq. (72) let us find the spin-dependent differential cross section d(∆σ(q)) for lower kT , closer to the

saturation scale. To be more specific let us relax the kT ≫ Qs restriction and consider a broader region of kT . Qs

and kT & Qs, but still with kT ≫ m̃. For such not very large kT we can neglect the logarithms in the exponents of
Eqs. (52) and (56) as slowly varying functions compared to powers they multiply [56, 76, 87], writing

Sxy ≈ exp

[

−1

4
|x− y|2 Q2

s

(

x+ y

2

)]

(73)

and

Oxy ≈ −c0 α3
s

3 π

16
|x− y|2 exp

[

−1

4
|x− y|2 Q2

s

(

x+ y

2

)]

(x− y) ·∇T

(

x+ y

2

)

. (74)

Substituting Eqs. (73) and (74) into Eq. (68), expanding the polarized wave function squared, and dropping the tildes
yields

d(∆σ(q)) ≈ −i N2
c

512 π3
α4
s m̃ α2

∫

d2x d2y d2z e−ik·(z−y)

(

z2

z2T
ln

1

m̃ yT
+

y2

y2T
ln

1

m̃ zT

)[

z2T z ·∇T
(

x+
z

2

)

× e−
1
4 z2

T Q2
s(x+ z

2 )−
1
4 α2 y2

T Q2
s(x+

αy

2 ) + α3 z2T z ·∇T
(

x+
α z

2

)

e−
1
4 α2 z2

T Q2
s(x+α z

2 )− 1
4 y2

T Q2
s(x+

y

2 ) − (z ↔ y)

]

. (75)

Similar to the large-kT asymptotics, we shift x → x − z/2 in the first term in the square brackets of Eq. (75) and
expand the resulting exponential with the help of Eq. (53) as

e−
1
4 z2

T Q2
s(x)−

1
4 α2 y2

T Q2
s(x+

αy−z

2 ) ≈
[

1− π

4
α2
s α

2 y2T (α y − z) ·∇T (x)
]

e−
1
4 z2

T Q2
s(x)−

1
4 α2 y2

T Q2
s(x). (76)

The 1 in the square brackets of Eq. (76) does not contribute as its contribution vanishes after integration over the
angles of x in Eq. (75), leaving only the second term to contribute. Performing similar expansions in the other terms
in the square brackets of Eq. (75) we obtain

d(∆σ(q)) ≈ i
N2

c

2048 π2
α6
s m̃α4

∫

d2x d2y d2z e−ik·(z−y)

(

z2

z2T
+

y2

y2T

)

z2T y
2
T

[

z ·∇T (x) (αy − z) ·∇T (x)

× e−
1
4 z2

T Q2
s(x)−

1
4 α2 y2

T Q2
s(x) + α z ·∇T (x) (y − α z) ·∇T (x) e−

1
4 α2 z2

T Q2
s(x)−

1
4 y2

T Q2
s(x) − (z ↔ y)

]

, (77)

where we have also dropped ln 1/m̃ yT and ln 1/m̃ zT , since, with our precision, similar logarithms were neglected in
Eqs. (73) and (74) above as slowly varying functions of their arguments 4. Again, integrating over the angles of x
yields

d(∆σ(q)) ≈ i
N2

c

4096 π
α6
s m̃ α4

∞
∫

0

dx2T [T ′(xT )]
2

∫

d2y d2z e−ik·(z−y)

(

z2

z2T
+

y2

y2T

)

z2T y
2
T

×
[

(α2 y2T − z2T ) e
− 1

4 z2
T Q2

s(xT )− 1
4 α2 y2

T Q2
s(xT ) + (y2T − α2 z2T ) e

− 1
4 α2 z2

T Q2
s(xT )− 1

4 y2
T Q2

s(xT )

]

. (78)

Integrating over y and z we get

d(∆σ(q)) ≈ πN2
c

4

α6
s m̃

α4

∞
∫

0

dx2T [T ′(xT )]
2 k2 k2T
Q14

s (xT )

[

(1 − α2)2 k2T − α2 (1 + α2)Q2
s(xT )

]

e
−

k2
T

Q2
s(xT )

(1+ 1
α2 ). (79)

This is the final expression for the STSA-generating cross section for quark production. Note again that k2 is the
y-component of the quark’s transverse momentum k = (k1, k2). Let us point out a few of the important features of
Eq. (79). First of all, we see that similar to Eq. (72) decreases with decreasing α for small α, now due to the factor
of 1/α2 in the exponent. We also see that for kT → 0 the cross section d(∆σ(q)) also goes to zero. We also note that
the cross section (79) is not a monotonic function of kT . In particular, for positive k2 it starts out negative at small

kT , becoming positive for kT > Qs α
√
1 + α2/(1− α2), in agreement with the large-kT asymptotics of Eq. (72).

4 We have done the calculation without neglecting those logarithms: the resulting changes were mainly of quantitative nature, while the
obtained expression was significantly more complicated than Eq. (79). Since both the expressions with and without the logarithms are
approximate, we decided to only show the latter in this work due to its relative compactness.
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2. The Unpolarized Cross-Section

The real hadronic STSA in Eq. (1) contains contributions from both quark and gluon production cross sections
(32) and (44) in the numerator and in the denominator, convoluted with the fragmentation functions for the quarks
and gluons decaying into a particular hadron species as well as the transversity distribution of polarized quarks. This
is what needs to be done to have a real comparison of the data with our theoretical results. While such comparison is
beyond the scope of this work, we would like to assess the main qualitative features of our STSA-generating mechanism
by concentrating on quark STSA only.
It may be tempting to consider a situation where both the numerator and the denominator of Eq. (1) are driven

by the quark contributions. However, the unpolarized valence quark production cross section (32b) is known to
decrease with decreasing quark momentum fraction α [77, 78], while the unpolarized gluon and sea quark production
cross sections grow with decreasing α both in theoretical calculations [88, 89]. In the actual experiments the hadron
multiplicity also increases as we move further away from the projectile in rapidity.
Therefore, in order to get a somewhat realistic evaluation of the qualitative behavior of the obtained STSA, we

will use the unpolarized gluon production cross section in the denominator of Eq. (1). While evaluation of the
unpolarized gluon cross section (44b) along the same lines as were used to obtain Eq. (79) is somewhat involved, we
will approximate the result by assuming that the produced gluon is soft (i.e., far from the projectile in rapidity), in
which case the corresponding production cross section is [56, 76, 87]

dσ(G)
unp ≈ αsNc

2 π

∞
∫

0

dx2T

{

− 1

k2T
+

2

k2T
e
−

k2
T

Q2
s(xT ) +

1

Q2
s(xT )

e
−

k2
T

Q2
s(xT )

[

Ei

(

k2T
Q2

s(xT )

)

− ln
4 k2T Λ2

Q4
s(xT )

]}

. (80)

3. Single Transverse Spin Asymmetry

We now have all the essential ingredients to sketch the STSA due to quark production in the large-Nc limit (for the
wave function): we have Eqs. (79) and (80), giving the numerator and the denominator of Eq. (1) correspondingly.
We thus write

A
(q)
N (k) =

π2Nc α
5
sm

4

1− α

α4

∞
∫

0

dx2T [T ′(xT )]
2 k2 k2T
Q14

s (xT )

[

(1− α2)2 k2T − α2 (1 + α2)Q2
s(xT )

]

e
−

k2
T

Q2
s(xT )

(1+ 1
α2 )

×
[ ∞
∫

0

dy2T

{

− 1

k2T
+

2

k2T
e
−

k2
T

Q2
s(yT ) +

1

Q2
s(yT )

e
−

k2
T

Q2
s(yT )

[

Ei

(

k2T
Q2

s(yT )

)

− ln
4 k2T Λ2

Q4
s(yT )

]}

]−1

. (81)

The xT - and yT -integrals in Eq. (81) appear to be very hard to evaluate analytically. Instead we evaluate the integrals
numerically assuming a simple Gaussian form of the nuclear profile function,

T (b) =
4

3
Rρ e−b2T /R2

(82)

with R the nuclear radius and ρ the nucleon density. Such Gaussian profiles are of course not realistic for nuclei, but
have been successfully used to describe protons (see e.g. [90]).
In evaluating the STSA in Eq. (81) one has to remember that in the standard convention one has to choose k in

the direction left of the beam, which, in our notation, means along the negative y-axis (see Fig. 1). Hence we need to
replace k2 → −kT in Eq. (81).
To plot Eq. (81) we will attempt to use somewhat realistic numbers, while realizing that all the theoretically-

calculated cross sections are likely to have non-perturbative normalization corrections, which may affect the size of
the effect. To that end, we will use the saturation scale (cf. Eq. (53))

Q2
s(b) = 2 π α2

sK
2 T (b) (83)

with the K-factor fixed at K = 10 to make Qs ≈ 1 GeV, which is a realistic value for a proton. (Each T ′(xT ) in
Eq. (81) is multiplied by the same K2-factor, since it also arises from the saturation scale.) We put m = 300 MeV
to mimic a constituent quark, along with ρ = 0.35 fm−3 for a proton of radius R = 0.878 fm, and αs = 0.3. We plot

the resulting A
(q)
N from Eq. (81) in Fig. 13 for different values of α with the IR cutoff Λ = 100 MeV and cutting off

the xT - and yT integrals in Eq. (81) at 2.1 fm in the IR. (Note that strictly-speaking the CGC formalism employed
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here is valid only for scattering on a nuclear target, since it resums powers of a large parameter α2
s A

1/3. However
its applications to proton target have been successful phenomenologically in the past [91], giving one hope that our
estimates here could be relevant for p↑ + p collisions.)

0.1 0.2 0.3 0.4 0.5
kT

, GeV

-0.05
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0.20
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FIG. 13. Quark STSA from Eq. (81) for the proton target plotted as a function of kT for different values of the longitudinal
momentum fraction α carried by the produced quark: α = 0.9 (dash-dotted curve), α = 0.7 (solid curve), α = 0.6 (dashed
curve), and α = 0.5 (dotted curve).

From Fig. 13 we see that our STSA is a non-monotonic function of transverse momentum kT , first rising and then
falling off with kT in qualitative agreement with the data shown in the right panel of Fig. 2. As one can clearly see

from Eq. (81) the maximum of A
(q)
N at impact parameter xT in our formalism is determined (up to a constant) by

the saturation scale, kT ∼ Qs(xT ), such that the asymmetry integrated over all impact parameters peaks at kT ∼ Qs

with Qs an effective averaged saturation scale. The conclusion about AN peaking at kT ≈ Qs was previously reached
in [62]. Let us stress again that the STSA in our case changes sign when plotted as a function of kT or α (i.e., it has
a “node”).
Note that, while the magnitude of STSA plotted in Fig. 13 appears to be in the same range as the data in Fig. 2,

the momentum at which the asymmetry is non-zero appears to be much smaller in our Fig. 13 than it is in the data
of Fig. 2. The discrepancy of the kT -range of the data and our Fig. 13 signals the following potential problem: the
xT -integral in Eq. (81) is dominated by large xT , where Qs(xT ) is small, leading to small values of kT dominating AN ,
and potentially making the corresponding physics non-perturbative. Thus our perturbative calculation appears to be
sensitive to the non-perturbative domain. To illustrate this we replot AN from Fig. 13 in Fig. 14 cutting off the xT -
and yT -integrals in Eq. (81) by 1.3 fm: in this plot the kT -range of the asymmetry is broader than in Fig. 13, which
makes it closer to the experimental data in Fig. 2, but the height of the asymmetry is over an order-of-magnitude
lower than the data. More work is needed to assess whether this cutoff dependence is a result of the approximations
made, or whether it actually signals a potential breakdown of the approach indicating the non-perturbative nature of
STSA.
Another important observation one can make from Fig. 13 is that A

(q)
N increases with increasing α, except for very

large values of α when it starts to decrease. The increase of A
(q)
N with increasing α is in qualitative agreement with

the data in the left panel of Fig. 2, where the data points increase with increasing Feynman-x. One can also see that
while our STSA in Fig. 13 is mostly positive, the data for π− mesons in the left panel of Fig. 2 gives a negative STSA.
This result can be explained in the following simple model. Imagine a constituent-quark model of a proton, with the
spins of both up quarks aligned with the net proton spin, and the spin of the down quark pointing in the opposite
direction. Then in our mechanism each up-quark would give a positive STSA denoted Au, while the down-quark
would give a negative STSA of the same absolute value, denoted Ad = −Au. Imagining that after the collision the
up-quarks fragment into π+’s and π0’s, while the down quarks fragment into π0’s and π−’s, and taking into account
that there are twice as many up-quarks than down-quarks in the proton, and neglecting pions resulting from the gluon
fragmentation, we obtain Aπ+ = Au, Aπ0 = Au/2, and Aπ− = Ad/2 = −Au/2, thus obtaining a negative STSA for
π−’s.5 This naive model appears to be in a qualitative agreement (and in loose quantitative agreement) with the data
in the left panel of Fig. 2. Inclusion of gluon fragmentation may further improve the quantitative agreement with the
data.

5 We would like to thank Mickey Chiu for a discussion of these estimates.
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FIG. 14. Same as in Fig. 13, but with the 1.3 fm upper cutoff on the xT - and yT integrals in Eq. (81).

Finally, to test the dependence of our STSA in Eq. (81) on the size of the target, we note that for kT ≈ Qs one gets

A
(q)
N (kT ≈ Qs) ∼

1

Q7
s

∼ A−7/6, (84)

if Q2
s ∼ A1/3. This indicates a very steep falloff of STSA with the atomic number of the nuclear target. Such a

conclusion appears to be supported by the numerical evaluation of Eq. (81) for several different radii of the target

shown in Fig. 15. (Now the xT - and yT integrals are cut off at 2.4 fm.) One can see that A
(q)
N drops very rapidly

with the size of the target. If the experimentally observed STSA in p↑ + p collisions are due to our mechanism, our
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FIG. 15. Quark STSA from Eq. (81) plotted as a function of kT for different values of the target radius: R = 1 fm (top curve),
R = 1.4 fm (middle curve), and R = 2 fm (bottom curve) for α = 0.7.

prediction is then that in p↑ +A collisions STSA should be much smaller than that in p↑ + p. In the case of a heavy
ion target like Au the STSA due to our mechanism is likely to be negligibly small.

While we have demonstrated here the potential for our calculations to agree with the data, the evaluations presented
here have to be significantly improved to reach a definitive conclusion. For instance the kT -dependence and the overall
normalization in our Eqs. (79) and (80) is overly simple and is not ready to be compared to the data. The equations
need to be corrected for the effects of DGLAP evolution, small-x evolution and for the running of the coupling for
a meaningful quantitative comparison with the data. Only such a phenomenological analysis can determine whether
our mechanism for generating STSA is dominant, or whether it is simply one of the many factors contributing to the
asymmetry.
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B. STSA in Photon Production

Using the methods developed in Sec. III A we can now evaluate the photon STSA given by Eqs. (49) and (51).
Substituting Eq. (51b) into Eq. (49a) and performing the variable shift of Eq. (61) while keeping in mind that now u

and w are given by Eqs. (46) yields

d(∆σ(γ)) =
i

(2π)3

∫

d2x d2y d2z e−ik·(z−y) Φpol(−z , −y, α)
[

Ox+(1−α) z,x+(1−α) y −Ox,x+(1−α)y −Ox+(1−α) z,x

]

(85)
where we have again dropped the tildes for brevity. Using the argument of Eqs. (65) and (66) we see that each term
in the square brackets in Eq. (85) is zero after the integration over x. We thus have an exact result that

d(∆σ(γ)) = 0 (86)

in our mechanism for generating photon STSA. Hence the photon STSA is zero, A
(γ)
N = 0, in the forward production

region under consideration.

IV. CONCLUSIONS

To conclude let us summarize the main points of this work. Above we have shown how STSA can be generated
in the CGC formalism for quark and gluon production. The results for the corresponding cross sections are given in
Eqs. (32), (40) and (44). The same mechanism gives zero STSA for prompt photons.

In our case STSA is generated by both a splitting in the projectile wave function, and by the combination of the
C-odd and C-even interactions with the target. Hence our STSA-generating mechanism is distinctively different from
the Collins [27] and Sivers [15, 16] effects, and is more akin to (though still different from) the higher-twist mechanisms
of [17–26].

Evaluating the quark STSA in a simplified quasi-classical model we found qualitative agreement with the data:
quark STSA appears to be a non-monotonic function of kT , and is an increasing function of increasing xF (for most
of the xF -range). It is perhaps encouraging that the obtained asymmetry can be of the order-of-magnitude of the
experimental data. Further phenomenological studies of our formulas (32) and (44) are needed to determine whether
this qualitative agreement of our results with the data can become quantitative.

Analyzing the general quark production formula (27) one can see that the contribution to STSA arises from the
z ↔ y anti-symmetric part of the integrand. In arriving at Eq. (32a) from Eq. (27) we employed the lowest-order
(order-αs) spin-dependent part of the light-cone wave function squared (15), which happens to be symmetric under
the z ↔ y interchange: hence, in our case, to obtain a contribution to the STSA the interaction with the target had
to be z ↔ y anti-symmetric. However, it is possible that higher-order corrections to the light-cone wave function
squared would lead to a z ↔ y anti-symmetric contribution. (By the ’wave function corrections’ we understand all the
initial and final state corrections with rapidities between the projectile and the particle we tag on.) In such case, the
interaction with the target need not be z ↔ y anti-symmetric, and can be mediated by the standard C-even exchange.
To test whether such scenario is feasible within the CGC/saturation perturbative framework one has to calculate the
higher order corrections to the polarization-dependent light-cone wave function squared (15). The corrections would
need a generate a relative complex phase between the corrected and uncorrected wave functions, in agreement with
the initial proposal of [22, 23]. This can be accomplished in LCPT if the corrections lead to an intermediate state,
for which the imaginary part of the energy denominator leads to a non-vanishing polarization-dependent contribution
to the scattering amplitude. An example of such corrections in our case could be a modification of the amplitude
in Fig. 6 resulting from a gluon exchange between the outgoing quark and gluon formed in the projectile splitting.
Calculation of such diagrams appears to be rather complicated and is beyond the scope of this work. However, it
potentially may give a contribution comparable to the STSA resulting from Eq. (32a): the latter consists of the
order-αs light-cone wave function squared, convoluted with the target interaction resumming powers of α2

s A
1/3 and

αs Y , with one extra power of αs due to the odderon exchange (56). Our contribution (32a) is, therefore, order-α2
s,

if one assumes that α2
s A

1/3 ∼ 1 and αs Y ∼ 1, which is parametrically comparable to the C-odd order-α2
s light-cone

wave function squared, interacting with the target through a C-even order-one exchange. An explicit calculation is
needed to explore this possibility and is left for future work.
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Appendix A: Averaging the odderon amplitude over target wave function

Let us construct the dipole odderon amplitude averaged over the target field. The triple gluon exchange happens
between the dipole and a nucleon in the target, which, for simplicity we model as a valence quark in a bag. (The overall
factor in front of the averaged odderon amplitude should indeed depend on the details of the averaging; however, we
believe the coordinate-space dependence would remain the same for other models of the nuclear wave function.) The
target averaging then consists of averaging over the positions of the quark in the nucleon and over the positions of
nucleons in the nucleus, along with summation over all nucleons. Assuming, again for simplicity, that the quark has
equal probability to be anywhere inside the nucleon in the transverse plane (a cylindrical “nucleon” approximation),
we write for the averaged odderon amplitude

Oxy = c0 α
3
s

∫

d2b T (b)

∫

d2r

π a2
ln3

|x− b− r|
|y − b− r| θ(a− r) θ

(

a−
∣

∣

∣

∣

x+ y

2
− b

∣

∣

∣

∣

)

× exp

[

−1

4
|x− y|2 Q2

s

(

x+ y

2

)

ln
1

|x− y|Λ

]

. (A1)

Here b is the position of the center of a nucleon in the transverse plane with respect to the center of the nucleus, r is
the position of the valence quark in the nucleon, and a is the radius of the nucleon, as illustrated in Fig. 16. The two
theta-functions in Eq. (A1) insure that the valence quark and the center of the x,y-dipole are both located inside
the nucleon in the transverse plane. In our simple model of the collision the dipole has to hit the nucleon directly in

r
b

nucleon

nucleus

yx

FIG. 16. The geometry of the dipole–nucleus scattering as employed in Eq. (A1).

order to be able to interact with the quarks inside of it. Since the dipole x,y is perturbatively small, we enforce this
condition by demanding that only the center of the dipole is inside the nucleon’s transverse extent.
To integrate over r in Eq. (A1) we notice that

∫

d2r ln3 |x− b− r|
|y − b− r| = 0 (A2)

if the integration carries over the whole transverse plane. Using this result we write
∫

d2r ln3

( |x− b− r|
|y − b− r|

)

θ(a− r) = −
∫

d2r ln3
( |x− b− r|
|y − b− r|

)

θ(r − a). (A3)

To approximate the integral on the right-hand-side of Eq. (A3) we expand its integrand in powers of |x − b|/r and
|y − b|/r to the first non-trivial (after integration) order, thus obtaining

∫

d2r ln3
( |x− b− r|
|y − b− r|

)

θ(a− r) ≈ 3 π

8 a2
|x− y|2 (x− y) · (x+ y − 2 b). (A4)
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Substituting Eq. (A4) back into Eq. (A1) and defining a new integration variable

b̃ = b− x+ y

2
(A5)

yields

Oxy ≈ −c0 α3
s

3

4 a4
|x− y|2 exp

[

−1

4
|x− y|2 Q2

s

(

x+ y

2

)

ln
1

|x− y|Λ

]

× (x− y) ·
∫

d2b̃ b̃ T

(

x+ y

2
+ b̃

)

θ
(

a− b̃T

)

. (A6)

In principle this result is as far as one can simplify Oxy without the explicit knowledge of the nuclear profile
function T (b). To obtain a closed expression for the STSA in the text we expand

T

(

x+ y

2
+ b̃

)

= T

(

x+ y

2

)

+ b̃ ·∇T

(

x+ y

2

)

+ . . . (A7)

with ∇ the transverse gradient operator. Such expansion is potentially dangerous near the edge of the nucleus profile,
where the derivatives may get large. For instance, for a solid-sphere model of the nucleus the nuclear profile function
is T (b) = ρ 2

√
R2 − b2 with ρ the nucleon density and R the nuclear radius; the derivatives of such T (b) near b = R

are divergent. Using the realistic Woods-Saxon profile would make the derivatives finite, but they would still be large.
Thus we will proceed by using the expansion (A7) as a way to simplify the expression, keeping in mind that in the
cases where this expansion breaks down one has to return back to Eq. (A6).

Substituting Eq. (A7) into Eq. (A6) and integrating over b̃ yields (for the first non-trivial term after integration)

Oxy ≈ −c0 α3
s

3 π

16
|x− y|2 exp

[

−1

4
|x− y|2 Q2

s

(

x+ y

2

)

ln
1

|x− y|Λ

]

(x− y) ·∇T

(

x+ y

2

)

. (A8)

This is our final expression for the target-averaged odderon amplitude. Note an interesting feature of Eq. (A8): the
non-zero contribution to the odderon amplitude in the transverse coordinate space arises from the gradient of the
nuclear profile function. The odderon interaction with the target is thus only possible if the target has a non-uniform
profile in the transverse space. This is in stark contrast to the C-even exchanges, which are non-zero even for the
Bjorken model of a nucleus of infinite transverse extent with constant density in the transverse plane.
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