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Abstract

Metastable particles are common in many models of new physics at the TeV scale. If
charged or colored, a reasonable fraction of all such particles produced at the LHC will stop
in the detectors and give observable out of time decays. We discuss strategies for measuring
the type of decay (two- vs three-body), the types of particles produced, and the angular
distribution of the produced particles using the LHC detectors. We demonstrate that with
a plausible level of control over experimental uncertainties and O(10− 100) observed decay
events, the gauge properties and some couplings of the new particles can be measured. If
the new particle has a dominant three-body decay, then the spin properties of the particles
and Lorentz structure of the decay operator can also be distinguished or constrained. These
measurements can not only reveal the correct model of new physics at the TeV scale, but
also give information on physics giving rise to the decay at energy scales far above those the
LHC can probe directly.



1 Introduction

The discovery of new long lived particles at the Large Hadron Collider (LHC) would be tremen-

dously interesting and could shed light on the dark matter puzzle as well as on physics of very high

scales. Particles that are long lived on collider time scales (� ns) which are colored or electrically

charged will be slowed down by electromagnetic interactions in the detectors at the LHC, causing

a fraction of them to stop [1, 2]. Observations of the eventual out-of-time decay of these stopped

particles can, in many cases, unmask their gauge quantum numbers, spin, and the nature of the

physics responsible for decay. In this paper, we present strategies to make measurements on the

decays of stopped particles in the LHC detectors. Keeping in mind possible limitations of the

detectors, we evaluate the prospects for identifying TeV and UV physics that couples these new

particles to the Standard Model.

Massive metastable colored or electrically charged particles (MMCP, referred to in the draft as

X) generically arise if the particle is protected from rapid decay due to accidental symmetries of

the low energy Lagrangian that are nevertheless violated by physics in the ultraviolet. The possible

decay of the proton caused by the presence of GUT scale interactions that violate the accidental

baryon number symmetry of the standard model is a well known example of this phenomenon.

Metastable particles that carry color (SIMPs) or electric charge (CHAMPs) emerge naturally in

several scenarios of physics beyond the standard model (for general reviews see refs. [3, 4]). An

example of this scenario is a charged next to lightest supersymmetric particle (NLSP) such as a

stau or stop decaying via higher dimension operators to a gravitino or axino. Other models with

long lived charged particles include [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,

22, 23, 24, 25, 26, 27]. While metastability due to high scale physics is well motivated, the new

particle may be long lived because of very small marginal couplings, such as in R-parity violating

SUSY [28], pure Dirac neutrinos [29], or TeV scale See-Saw1 [30].

If such a new particle is discovered at the LHC, it will be crucial to directly measure as many of

its properties as possible in order to determine the underlying physics models. It has been shown

that using production and propagation, it is possible to measure the MMCP’s mass [10, 31, 32],

spin [33, 34, 35, 36], color representation [36], flavor content [37, 38], polarization [39], as well

as its coupling to the Higgs and other standard model particles [40, 41]. It has also been shown

that MMCP’s can be used to measure other properties of the new physics sector [42, 43, 44,

45, 46, 47, 48]. There have been searches for slow-moving MMCP’s at LEP [49, 50, 51], the

Tevatron [52, 53, 54], and the LHC [55, 56, 57, 58, 59] which place bounds on their production.

While much can be learned by studying the production and propagation of X particles at

the LHC, there is interesting physics that can only be learned by studying their decays. For

example, the Lorentz structure of the decay and the branching fractions to different standard

1A particle may also be long lived due to kinematics, namely X is nearly degenerate with the final state it can
decay to, but we will not consider this case because it is experimentally extremely difficult.
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model particles can constrain the UV physics causing the decay. Previous proposals to study

decays of Xs include looking for decays from the surrounding rock [60], and building a new

detector to capture X particles [61, 62, 63]. While these proposals could be implemented in the

far future, it is interesting to see what measurements can be made with the detectors that are

already in place. It is often the case that many X particles will be stopped in the detectors [2],

and the present detectors can sometimes be better at capturing MMCPs than potential new

detectors [62]. Observing decays within the detector can be quite challenging because the LHC

apparatus were designed to measure particles coming from a central interaction point, while in our

case the event originates elsewhere. Despite these difficulties, both the D0 [64] and CMS [65, 66]

have performed searches for decays of stopped particles, demonstrating that difficult experimental

issues such as triggering can be solved.

Previous studies of decays have shown that it is in principle possible to measure the scale

suppressing the operator which mediates decays as well as the spins of the X in the context

of certain models without taking into account experimental realities [67, 68]. More realistic

studies have demonstrated how to measure the lifetime [69, 70], and how to measure the origin

of longevity in the specific case of a stau NLSP [71]. In this paper we will show that topologies

and kinematic distributions of out-of-time decays can realistically be measured at the LHC, and

these measurements can reveal the properties of TeV-sector particles as well as test and motivate

models of UV physics responsible for the decay.

In this context, the primary purpose of this paper is to provide theoretical guidance for the

types of measurement and accuracy which could feasibly distinguish different scenarios of long-

lived particles based on observations of their out-of-time decays in the LHC detectors. In Section

2 we motivate and describe a simple model parameterizing the observables and uncertainties for

experimental measurements of the details of out-of-time decays. We apply this in Section 3 to

determine the ability of the LHC to distinguish MMCP scenarios based on the decay products

in several motivated scenarios and in general. In Section 4 we focus on MMCPs with three-body

decays and determine to what degree the LHC can distinguish models with particles of different

spin and interactions of different Lorentz structure. We then conclude.

2 Observing Decay Properties at the LHC

As will be discussed, the vast majority of stopped MMCPs will come to rest in the barrel calorime-

ters at ATLAS and CMS [2]. Therefore searches for late decays at ATLAS and CMS [65] look

for energy deposits in the calorimeters occurring out of time with beam crossings, which will be

observable for MMCP lifetimes of 100 ns . τ . 1 year. In this section we describe a simplified

model of the observables in out-of-time decays occuring in the LHC calorimeters, including the

sources and treatment of systematic uncertainties, the expected event rates for a variety of MM-
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CPs, and the reduction of cosmic ray backgrounds. For concreteness we work in the context of a

specific search strategy focused on out-of-time decays originating in the electromagnetic calorime-

ter (ECAL) of CMS or ATLAS, but we note that most of our results in the following sections

can be applied more generally to evaluate a variety of possible search strategies for observing the

details of out-of-time decays in the LHC detectors and beyond.

2.1 Observables and systematic uncertainties

For out-of-time decays originating in the barrel calorimeter as depicted in Figure 1, the ability

to identify and measure the kinematic properties of final-state particles is very diminished by the

geometry and stopping power of the calorimeters and the absence of information from the inner

detector. There are however a variety of ways in which these obstacles could be overcome by

exploiting the spatial segmentation of the calorimeters. To illustrate this point, we propose to

look for events originating in the ECAL with a large fraction of the radiation escaping the ECAL

and interacting with other parts of the detector, especially the hadronic calorimeter (HCAL).

The motivations and details of this strategy are discussed in more detail in Appendix A. We find

that in these types of events, the location of the decay vertex and the multiplicity and direction

(though not energy) of jets and hard muons can then be reconstructed from the pattern of energy

deposition in the finely segmented η × φ plane of the barrel ECAL and HCAL, as illustrated in

Figure 1.

To understand the detailed response of the detectors to out-of-time off-vertex decays would

require an event-by-event detector-level simulation. This is however beyond the scope of our

analysis and unnecessary to demonstrate the observable features which will distinguish MMCP

models and to explore the rough capabilities of the LHC detectors. Instead, we will work with

events at the parton level and parametrize the experimental uncertainty with a simple model.

After the initial hard decay of the MMCP and subsequent prompt decays of daughter particles,

colored particles passing an energy cut Ej are identified as hard “jets”, and muons passing an

energy cut Eµ > 20 GeV are identified as hard muons. To parametrize the uncertainty in detector

response, we define an angular uncertainty ∆θ. The measurement of the direction of each jet and

muon in each decay event is taken from a gaussian distribution of full width ∆θ around the

true angle. As described in Appendix A, the geometry of the calorimeters motivates optimistic,

nominal, and conservative benchmark values of respectively ∆θ = 10◦, 30◦, and 60◦. ∆θ also sets

the angular separation at which a jet will be considered distinct in the analysis. Any colored

particles within this separation are grouped as a single “jet”, and we restrict our attention also

to muons isolated by ∆θ from any jet. For a typical jet we will consider, the values of ∆θ are

greater than or comparable to the angular spreading of the jet due to soft colored radiation, so

we ignore this effect.

Clearly the actual uncertainty in angular measurement will be non-isotropic and a function
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Figure 1: A schematic view of the event geometry we are considering. This is a cross sectional
x−y view of a detector taken from [72]. The inner circle is the tracking chamber, the next (green)
section is the electromagnetic calorimeter, followed by the (orange) hadronic calorimeter. The
outermost layers are the muon chambers. An MMCP X that had stopped in the ECAL decays
into two jets and an invisible Y which escapes the detector without interacting. The ECAL cell
where the decay took place shows energy deposition. One of the jets exits the ECAL and deposits
its energy into the HCAL. The second jet exits the ECAL in another direction, leaving tracks
which do not point back to the interaction region, and then depositing energy in a different region
of both the ECAL and HCAL. This is a schematic representation; the φ resolution of the actual
detector is much finer in both the ECAL and HCAL, so that the cells that lit up in the calorimeter
should give enough information to approximately determine θ12, the angle between the jets.
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of the location of the decay vertex and the direction and energy of each object. Our approxima-

tion is partially justified by the fact that the locations of decay vertices in the calorimeters are

uniformly distributed in the azimuthal direction, and that the overall orientation of the decays

are isotropically distributed. Moreover, our results can be viewed as approximate targets for the

degree to which the uncertainties in direction measurements must be understood in a full search

to meet certain physics goals.

It is also important to consider how the triggers, energy cuts, and true uncertainty in direction

measurement can distort the statistical distributions of event observables. In our simplified model,

we will estimate the magnitude of these effects by studying the changes in these distributions as

we adjust the parameters ∆θ and Ej.

In Appendix A we discuss further the details, motivation, and expected performance at CMS

and ATLAS for this strategy. However, in the analysis of Sections 3 and 4, we rely only on the

assumption that the direction and multiplicity of muons and jets are measurable in out-of-time

decays. The specific details of the measurement strategy do enter our results when we estimate

signal rates by considering the stopping rates in the barrel ECAL, but limited explorations suggest

that other strategies would obtain similar or worse efficiencies.

2.2 Signal rates

To interpret our results it will be useful to make an estimate of the minimal event rates for a

variety of MMCPs, taking into account the production cross sections and stopping rates of the

MMCP and the trigger and cut efficiencies for out-of-time decays originating in the ECAL.

Electrically charged MMCPs are slowed down due to electromagnetic interactions with the

detector material, and colored MMCPs will slow in the same way if they hadronize to charged

states. A fraction δ of produced X will lose enough energy to stop within the barrel ECAL.

We focus on the barrel ECAL because heavy X that are directly pair produced will tend to be

produced centrally and stop in the barrel calorimeters, although for more general models it may

not be the optimal strategy.

To determine the 14 TeV LHC reach quantitatively, we take as a benchmark a hypothetical

dataset of 200 fb−1. If a late decaying particle with lifetime & 100 ns is discovered, the proton

bunch structure could in principle be optimized to allow the decays of ∼ 50% of stopped MMCPs

to be observed sufficiently out of time with any LHC collisions. Taking a further 50% trigger/cut

efficiency for late decay searches [65], in such a dataset the number of late decays observed in the

ECAL for a particle with pair production cross section σ will be

N = 25×
( σ

100 fb

)( δ

0.25%

)
. (1)

For an MMCP of given spin and gauge representations, there is a minimal production rate

due to direct production. Table 1 shows the corresponding mass at which 10 and 100 out-of-
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N M σ(M) δ(M)

Q=0 color octet fermion
(gluino)

10 ∼ 1300 GeV 40 fb 0.25%

100 ∼ 1000 GeV 400 fb 0.25%

Q=2/3 color triplet scalar
(stop)

10 ∼ 600 GeV 50 fb 0.2%

100 ∼ 400 GeV 400 fb 0.25%

Q=1 SU(2) doublet fermion
(higgsino)

10 ∼ 500 GeV 33 fb 0.3%

100 ∼ 300 GeV 290 fb 0.35%

Table 1: The masses at which N = 10 and N = 100 observable late decay events are produced in
the ATLAS or CMS ECAL with 200 fb−1 at the 14 TeV LHC, assuming only direct production
as in Eq. (1). The relevant direct production cross section σ(M) and stopping fraction δ(M)
calculated at each mass are shown. For colored particles, only colored production was included.
Tree level cross sections and velocity distributions calculated with MadGraph 5 [73], NLO cross
sections for gluino from [74].

time decays with vertex in the ECAL would be observed in the benchmark dataset. As can be

seen, statistically significant distributions of the experimental observables can be obtained for

a variety of MMCPs over interesting mass ranges, even with the conservative assumption that

model-dependent effects do not increase the overall production rate. The calculation of stopping

fraction δ is described in Appendix B.

To get a feel for the numbers, consider a 1 TeV gluino. At the 14 TeV LHC with our benchmark

set of 200 fb−1, 120,000 gluinos will be produced, and we can use Eq. (1) and the calculation of δ

in Appendix B to find that there will be about 75 observed decays in the ECAL. As we will see in

Sections 3 and 4, this is enough to distinguish Split SUSY2 from many other possible scenarios.

Most other MMCP candidates also have large enough direct production rates at the LHC for our

methods to be applicable. However, for direct production of a right handed stau more than ∼ 10

decays in the ECAL will only be observed for a mass lighter than 90 GeV. This is excluded by

LEP searches for long lived charged particles [75], and therefore our methods are only applicable

to a stau MMCP when the total LHC production cross section is enhanced by cascades to the

NLSP.3

2Our benchmark models, including Split SUSY, will be described in Section 3.1.
3Since this work originally appeared, stronger limits have been released [55]. We discuss these in the conclusions.
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2.3 Background rates

The primary advantages of studying decays occuring out-of-time from beam crossings are that

there is no stastistical background from competing processes in collisions, and no event-by-event

background from pile-up or the underlying event. However, for MMCPs produced at low rates,

cosmic rays become an important source of statistical background.

Ref. [76] describes the cuts used to reduce the cosmic background in ATLAS out-of-time decay

searches, which all together reduce the cosmic sample by factor of ∼ 5×105. For a triggering rate

in the calorimeters of 2 Hz [77], this corresponds to a reduced background rate of ∼ 20 cosmic

ray events per year in our benchmark dataset (with the reasonable assumption 5× 106s of empty

bunch crossings during live beam per year). Focusing on events with mid-ranged electromagnetic

energy fractions, 0.1 < Jet EMF < 0.9 as would be expected for a decay orginating in the ECAL,

would reduce the rate to ∼ 1 − 5 events per year [76]. This study included a cut E > 50 GeV

for the leading jet, and the background rate could be easily reduced to O(1/yr) by increasing the

cut while remaining sensitive to higher mass MMCP decays.

However, the cuts described in Ref. [76] include a cut on events with muon segments present

which reduces the background by a factor of ∼ 1000. If we wish to measure muons in late decay

events, the cosmic muon background needs to be reduced in another way. For example, because

the cosmic spectrum falls off with energy, increasing the calorimeter energy selection to E & 500

GeV would reduce the background by 3 orders of magnitude based on the measured spectrum

[78]. In most of the decays we consider the muons are relatively soft compared to the total energy

of the event, and therefore a cut on muons with high energies relative to the calorimeter deposit

could also be used to reduce the cosmic background while preserving the signal. Furthermore,

because the cosmic muon background vanishes below the horizon, it is likely also possible to

use track direction and timing measurements to veto the cosmic backgrounds while retaining a

large fraction of signal events. This would lead to a reduction in the number of accepted signal

events when muons are present, but because the overall decay orientation will be isotropically

distributed, the total rate could in principle be inferred from the below-horizon rate. It seems

plausible that the background can be reduced in these ways, but a more detailed analysis is

beyond the scope of this paper and we do not include the effects of such cuts in our analysis.

We therefore expect that the cosmic ray contamination of our benchmark dataset can be

reduced to O(1). For a dataset of 100 signal events, this is comparable to both the systematic

errors we will estimate from signal acceptance and the statistical uncertainties.

We note that Ref. [76] also employs cuts on jet shape which could in principle distort the

distributions of our observables. However, these cuts are conservative and consistent with the

shapes of energy depositions we expect from out-of-time decays involving large hadronic energy

components. We model these effects only through our energy cuts on the parton-level “jets” and

muons.
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At the high luminosities we are considering, beam related backgrounds could become impor-

tant. These are however more easily reduced from the characteristic tracks and patterns of energy

deposition [76].

3 Distinguishing Decay Topologies

In general a heavy MMCP will decay dominantly to low multiplicity primary states including

on-shell heavy standard model particles. In many models a conserved quantum number (e.g.

R-parity) requires the MMCP primary decay to also include another new particle associated

with dark matter, which may be the dark matter candidate itself (e.g. neutralino, gravitino,

axino) or directly connected to the dark matter sector (e.g. chargino). We will refer to these

as WIMPs/WIMP sector particles though our meaning is more generic than the normal usage.

Measuring the properties and branching fractions for the primary products of an MMCP decay can

in principle directly reveal properties of the MMCP, the WIMP sector, and the physics mediating

the MMCP decay. However, in realistic scenarios this is obscured by the secondary decays of the

heavy primary SM particles (W , Z, h, t), the possible secondary decay chain of the WIMP sector

particle to the WIMP, and the overall resolution and capabilities of the detector. In this section

we discuss how these difficulties can be overcome, and how the late decay observables described

in Section 2 can be used to distinguish models with sufficiently different decay modes.

3.1 Benchmark Models

To explore the possibility of identifying MMCP properties and distinguishing different models, we

consider several motivated benchmark cases with parameters chosen to give similar LHC event

rates and signatures, summarized in the caption of Table 2. Our objective is not to explore all

possible models and their parameter spaces, but rather to demonstrate that the observables we

have identified provide interesting information about and can distinguish between a variety of

motivated models.

In Split Supersymmetry [20], the gluino is long lived because the squarks that mediate its

decay are much heavier than 1 TeV. In particular, a 1-2 TeV gluino can have out-of time decays

for scalar masses 107 GeV . m0 . 1011 GeV [79]. Depending on the gluino and scalar mass

scales, either a three-body decay to quarks and neutralino, or a two-body decay to quarks and

neutralino/chargino can dominate, or both can compete [79] – we therefore consider the two-

body and three-body decays separately. These two decays are shown in Figure 2. To obtain the

correct relic density for a weak scale WIMP, the Split SUSY neutralino is constrained to have

a significant higgsino component [80]. To explore the remaining freedom in the Split SUSY low

energy parameter space, we consider two representative benchmark points motivated by gaugino

mass unification boundary conditions and dark matter relic density.
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Figure 2: Feynman diagrams for the decays of a long lived gluino in Split SUSY. The blob
represents the four point vertex generated after integrating out the heavy squark. The diagram
on the left is a tree level three-body decay to two quarks and a neutralino, while the diagram
on the right is the loop level two-body decay to a neutralino and a gluon. In certain regions of
parameter space, the loop induced decay can become dominant over the three-body decay [79].

A stop or stau NLSP can be meta-stable decaying to a gravitino or axino for sufficiently high

scales of 〈F 〉 and fa respectively, with the dominant two-body decays insensitive to the other

parameters of the model. Finally, we also consider a simple R-parity violating (RPV) scenario

with a chargino LSP. In order to explore signals without an invisible WIMP, as well as those with

a lepton rich final state, we study a model with a single dominant λLLEc RPV coupling, which

for wino mass M2 ∼ 500 GeV and slepton masses m˜̀∼ TeV yields observable out-of-time decays

when 10−12 . λ . 10−8 [81]. This decay is pictured in Figure 3.

3.2 Results

As discussed in Section 2, we can classify the topology of each observed event by nj, the number

of hard jets observed and nµ, the number of isolated hard muons observed. We require nj ≥ 1

to suppress calorimeter noise and cosmic ray backgrounds. The branching fractions to SM decay

modes can be translated into branching fractions for the different observable decay topologies.

For an MMCP mass of order 1 TeV and a large splitting between the MMCP and invisible

particle’s mass, jets from primary (u, d, s, c, b) quarks will be collimated and reflect the kinematic

properties of the primary particle.4 Heavy particles (W , Z, h, t) will be produced with small

boosts (γ ∼ 2 − 5), and although some directional information will be preserved, their decay

products will lead to separated jets and muons.

4Muons from bottom and charm decays could be associated with jets to identify the flavor structure of of the
decay, but here we will simply treat these muons as part of the jet.

9



1 QED

e

e

γ

e

γ

γ

e

e

e

γ

e

e

e

e

e

e

γ

e

γ

e

e

e

γ

e

e

ee

γ

ee

e

e

e

e

1

χ+

�+

ν̃ �+

�−

1 QED

e

e

γ

e

γ

γ

e

e

e

γ

e

e

e

e

e

e

γ

e

γ

e

e

e

γ

e

e

ee

γ

ee

e

e

e

e

1

χ+

�+

ν

�̃+

νλ λ

Tuesday, October 18, 2011

Figure 3: Feynman diagrams for decays of a chargino LSP in the R-parity violating scenario.
The blob represents a tiny RPV coupling λ, which mediates the decay of the chargino to three
charged leptons, or to one charged lepton and two neutrinos. We have suppressed lepton flavor
indices, but in the text we only consider λ323 to be non-zero.

Cascade decays in the WIMP sector typically produce Z’s, W ’s, and lighter SM particles. If

the splittings are comparable to the WIMP mass, this can produce additional hard jets and muons

in the event. Although such a cascade allows information to be determined about the WIMP

sector particles, it also complicates the identification of the primary decay products. Fortunately,

the cascade particles are typically softer than the primary decay particles and lead to higher

multiplicity events, which can be exploited to explore the two sectors separately.

In Table 2, the branching fractions to different decay topologies are shown for our benchmark

models. Because the overall event rate is a priori unknown, we consider only the branching ratios

between observable states (nj ≥ 1).

We begin by estimating the order of magnitude of the systematic uncertainties in the mea-

surement by varying the energy cuts and choice of angular resolution, as shown in the first rows

of Table 2 for the three-body decay of the gluino. Varying the angular resolution from ∆θ = 10◦

to ∆θ = 30◦ changes the muon and low jet multiplicity branching fractions by O(0.01). The high

jet multiplicity branching fractions vary by O(0.1) because there is a greater probability of jets

overlapping for higher multiplicity modes, leading to greater uncertainty in identifying branching

fractions. Varying the jet energy cut from Ej = 50 GeV to Ej = 20 GeV changes the low jet mul-

tiplicity and isolated muon branching fractions by O(0.01) and the high jet multiplicity branching

fractions by O(0.1). The effects of different angular and energy cuts on the other benchmark mod-

els were similar and are not shown. Varying ∆θ = 30◦ to ∆θ = 60◦ has a much greater effect and

thus distinguishing models with an experimental performance of ∆θ ∼ 60◦ would be considerably

more difficult. We therefore focus on the case of ∆θ = 30◦ and estimate that systematics uncer-
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Mode Ej(GeV) ∆Θ 1j 2j 3j ≥4j 1µ 2µ

A1: g̃ → qq′χ0,±
i

50 10◦ 1% 28% 26% 45% 13% 2%

50 30◦ 2% 30% 31% 37% 12% 2%

50 60◦ 5% 43% 41% 11% 9% 1%

20 30◦ 1% 21% 18% 60% 12% 1%

A2: g̃ → qq′χ0,±
i 50 30◦ 2% 33% 31% 33% 13% 1%

B: g̃ → gχ0
i 50 30◦ 35% 31% 32% 2% 3% 3%

C: t̃1 → G̃t 50 30◦ 35% 40% 25% 0% 8% 0%

D: τ̃1 → G̃τ 50 30◦ 100% 0% 0% 0% 0% 0%

E: χ+ → τ−τ+µ+/τ+ντνµ/µ
+ντντ 50 30◦ 90% 10% 0% 0% 42% 8%

Table 2: The branching fractions to final state topologies for several MMCP benchmarks. Model
A: Split SUSY three-body gluino decay g̃ → qq′χ0,±

i summed over branching to all neutralinos,
charginos, and SM states (see Figure 2). A1 corresponds to a LSP with large Bino fraction, with
low-energy mass parameters µ = 200 GeV, M1 = 130 GeV, M2 = 260 GeV, and mg̃ = 1 TeV, and
A2 is a mostly higgsino LSP with the same low-energy parameters except µ = −120. Model B:
Split SUSY two-body gluino decay g̃ → gχ0

i , same low energy parameters as for three-body decay
A1. Model C: Stop NLSP two-body decay to gravitino LSP for mt̃ = 600 GeV and mG̃ = 10
GeV. Model D: Stau NLSP two-body decay to gravitino LSP for mτ̃ = 150 GeV and mG̃ = 10
GeV. For (C) and (D) the small O(1%) branching fractions to primary three-body decays [82]
are ignored. Model E: R-parity violating (RPV) decay of a ∼ 400 GeV higgsino-like chargino
LSP through the superpotential operator L3L2E

c
3 (see Figure 3) in the MSSM with weak-scale

parameters M1 = −800 GeV, M2 = 1600 GeV, µ = 400 GeV and a GMSB-like scalar sector with
masses ∼ 3 TeV. Numerical calculations performed using MadGraph 5 [73], BRIDGE [83], and
SUSYHIT [84].
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tainties prevent signatures from being distinguished by muon and low multiplicity jet branching

fractions that differ by less than O(0.01) and by high jet multiplicity branching fractions that

differ by less than O(0.1).

We can now attempt to distinguish different models. The first observation is that decay modes

with different numbers of primary colored particles can easily be distinguished. For a given decay,

the number of colored particles sets the minimum number of jets that will be present, regardless

of the details of decays of secondary particles and WIMP sector cascades. For example, in Split

SUSY, a long-lived gluino can dominantly decay either to a three-body mode or two-body mode

through a loop as shown in Figure 2. Depending on the region of parameter space, either of the

modes can dominate [79], and these two modes correspond to (A1) and (B) in Table 2. In model

(A1), the branching fraction to 1j is only 2%, with the small fraction coming from the second

primary jet being too soft or collinear with the first jet. In (B) on the other hand, there is only

one primary colored particle, and so the branching fraction to 1j is 36%. Therefore only O(10)

observed decays are necessary to statistically distinguish (A) from (B) at the 95% confidence

level. Model (A1) can be distinguished from model (C) in the same way, and this method is fairly

insensitive to the exact energy cuts and angular resolutions ∆θ used.

There is also a region of the Split SUSY parameter space where the two and three-body decays

(A1) and (B) have comparable branching fractions. In this case, a measurement can be made to

determine the three-body branching fraction ΓA1, which can be used to determine the UV scale

of the theory [85]. With O(100) events observed, ΓA1 can be determined to an accuracy of about

±10%. This possibility is not restricted to Split SUSY; two and three-body decays can naturally

compete in any model where three-body decays are mediated at a high scale and induce two-body

decay at loop levels, and a similar measurement will be possible in such scenarios. Of course not

everything about Split SUSY can be revealed by these methods. For instance, models (A1) and

(A2) differ only in the composition and spectrum of the neutralinos and charginos, (A1) having

a mostly bino LSP and (A2) mostly higgsino. The primary observable of two hard jets due to

the primary gluino decay is unchanged, and the changes in the cascade decays do not lead to

a significant difference in branching fractions. Likewise, because the form of the primary decay

vertex is identical in (A1) and (A2), these two scenario will also be degenerate in the kinematic

distributions discussed in Section 4 .

The only observable decay for model (D) involves the hadronic tau decay to a single jet, thus

(D) can be ruled out by the observation of a significant fraction of higher jet multiplicity events.

In particular it can be distinguished from (A), (B), and (C) with O(10) observed events. This

conclusion is insensitive to the mass of the stau, as long as it is sufficiently massive that the jets

can pass the triggers and cuts.

Another observation is that considering both muons and jets in the final state topologies is

necessary to distinguish the widest variety of models. For example, it might be expected that

12



the two-body decays of a stop (C) and gluino (B) would have fairly different branching fractions

to higher jet multiplicity states. However, the WIMP cascades in (B) and the secondary top

quark decay in (C) lead to nearly degenerate branching fractions to different jet multiplicities

for the two models. Fortunately, the two scenarios have different branching fractions to final

states containing muons. With O(100) observed decays, models (B) and (C) can be distinguished

by their branching fraction to decays containing a single isolated muon. Likewise, the R-parity

violating decay through the lepton-number violating operator (E) is easily distinguished by its

large branching fraction to events containing hard muons.

Based on these analyses, we conclude that observing the branching fractions to different jet

and muon multiplicities of O(10− 100) late decay events is sufficient to distinguish many MMCP

scenarios, in particular those which differ in the color representation of the meta-stable particle or

the number of leptons produced in the decay. This conclusion relies on the assumptions discussed

earlier that an angular resolution of ∆Θ ∼ 30◦ can be obtained, and that background rate from

cosmics can be reduced to O(1) events. Comparing to Table 1, this corresponds for instance to

direct pair production cross sections of 40 − 400 fb and thus a mass reach of roughly 1.0 − 1.3

TeV for a color octet fermion.

For some measurements and models, it can be competitive to identify the MMCP and its

charges directly in production events. Looking for very high momentum tracks in the muon

chamber could be one of the first signs of a discovery of a CHAMP [29]. Mass measurements can be

performed with great accuracy from time-of-flight measurements, with for example better than 1%

accuracy for a gluino up to 1.5 TeV [32]. If another new particle decays promptly to the MMCP,

the couplings and mass of the MMCP can sometimes be revealed [42, 43, 44, 45, 46, 47, 48]. For

instance, for certain motivated spectra a fraction of stop squark MMCP production will come

from gluino decays, and the identity of the stop MMCP can be determined with similar reach

to our proposed methods from the presence of top quarks in these events [42]. More generically,

standard model particles radiated from the MMCP in direct production events probe the MMCP

couplings [40, 41]. For example, O(1) yukawa couplings of a colored MMCP to the Higgs can

be constrained with ∼ 20, 000 direct production events [41]; this could for example distinguish

a 1 TeV gluino from a 4th generation vector-like quark, giving this search comparable reach to

our proposal for identifying gluinos. Another proposal studied in less detail in the literature is to

exploit the differences in energy losses to distinguish color triplet MMCPs from color octets [36].

These and similar proposals for measuring the properties of other MMCPs in production events

are complementary to our proposed measurements in several ways. For colored MMCPs, while we

are sensitive to the interaction of R-hadrons in the detector in estimating the mass reach of our

methods, no knowledge of these interactions is required to perform the actual measurement. In

contrast, measurements of production events are sensitive to the in-flight detection and tracking of

R-hadrons, and therefore to uncertainties in modeling the interactions and spectra of R-hadrons.

13



In particular, most production searches rely on detecting the MMCP in the muon system, and

their efficiency will be greatly reduced if charge suppressing inelastic interactions take place as the

R-hadron propagates through the calorimeters [86]. More generally, our measurements are not

sensitive to the details of the production event, including any other new particles contributing to

the MMCP production. Finally, for MMCPs that do not decay in-flight, the nature of the decay,

including the Lorentz structure of the decay and any produced new particles which couple very

weakly to the standard model, can only be probed by observing the details of the out-of-time

decays.

4 Determining Lorentz Structure

As we saw in Section 3, many MMCP scenarios can be distinguished by the topology of the decay.

However, some scenarios could still be difficult to distinguish, for instance color octet SIMPs of

different spins could have similar standard model decay modes. If an MMCP is observed to

have dominantly three-body decays, then observing the kinematic distribution of the primary

decay particles provides a further test of UV and TeV physics by helping determine the Lorentz

structure of the couplings and the spins of the MMCP and WIMP.5 In this section, we study how

this information can be obtained from the kinematic properties of the final state muons and jets

in an MMCP decay.

4.1 Decay Operators

Most of the models discussed in Section 3 yield metastable particles X because the stability of

X is violated by physics at some high scale Λ. We can therefore integrate out the high scale

physics and study the MMCP decay in each scenario through the resulting effective operator.

In particular, we would like to answer the question: assuming the decay topology is compatible

with a given MMCP scenario, can measurements of the late decay kinematics at the LHC provide

a meaningful test of or rule out other possible decay operators? To answer this question, our

strategy is to compare the kinematic distributions for a given scenario to a wide variety of other

possible decay operators yielding similar decay topologies but different kinematic distributions.

The possible Lorentz structures and observable kinematics of the operators depend only on

the spins, so we have listed the operators by the MMCP and WIMP spins. Table 3 lists op-

erators involving two SM fermions (f = QL, uR, dR, `L, eR). Three-body decays to final states

involving SM bosons are also possible, but have not been included because they typically can be

distinguished from our reference scenarios using the methods of Section 3, and considering them

would not significantly change our conclusions. In listing these operators, we adopt the following

5In the case of two-body decays, the kinematics are trivial and contain no information.
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notation. The letter X will of course denote the metastable particle, with X a fermion, X̃ a scalar

and X a vector. Since many motivated cases involve a DM candidate, we will assume such an

invisible particle Y is present in the decay, but our results are easily generalizable to the case

where all primary particles produced are visible, e.g. an RPV decay. Of course, this list is not

meant to be exhaustive – the operators have however been chosen to give a wide representation

of the class of dimension five and six operators which can emerge naturally from heavy physics.

In particular the operator Off
S2 corresponds to the angular distribution between the quarks in the

three-body decay of the long lived gluino in Split SUSY (see Section 3.1). The same operator

also corresponds to the angular distribution between the tau-jets in the three-body RPV chargino

decay in the limit m˜̀� mχ+
1

.6

4.2 Angular Distributions

As described in Section 2, we take the angle θ of each jet to be measured within a Gaussian

distributed error of ∆θ. We wish to relate this measurement to the distribution dN/dθ of the

opening angle between the two primary SM particles in a decay. Because the MMCP decays at

rest, the initial center of mass frame is known and therefore this distribution will directly carry

information about the decay operator. The ideal situation for making this measurement would be

a decay to lighter quarks (u, d, c, s, b) or µ, the observable signatures of which will reflect directly

the primary particle kinematics up to the uncertainties due to detector resolution as discussed in

Section 2.

The kinematic distributions for some of the representative operators in Table 3 are plotted

in Figure 4 for the different benchmark values of the angular resolution ∆θ. The normalized

angular distributions are plotted, since the overall event rate is a priori unknown. We do not

apply any energy cuts to these distributions, but as we will see in a realistic scenario this does not

significantly affect the distribution. As is evident from these plots, there are order one differences

in the distributions and hence it should be possible to discriminate between operators by using

simple counting statistics such as the fraction of decays occurring between two angular intervals. It

is clear that we have discriminating power even with the rather coarse angular resolution assumed

for the LHC detectors in Section 2. When MX−MY

MY
� 1, the distribution will be insensitive to

the exact values of the WIMP and MMCP masses. Otherwise, we assume that the MMCP mass

can be measured in production events and that the splitting can be determined well enough from

the statistical distribution of total energy deposits to allow the appropriate distributions to be

compared.

In scenarios where the event has a higher multiplicity of jets or muons due to heavy decaying

6The kinematics of the muon from the RPV chargino decay could certainly be used to improve the measurement
of the tau-jet angular distribution, but for our purposes here it is sufficient to simply treat it as the invisible particle
Y .
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JMMCP × JWIMP Decay operators (ff modes)

0× 0
Oss
S Λ−1(f̄ 2

Rf
1
L)(X̃ Ỹ )

Oss
V Λ−2(f̄ 2

Lγ
µf 1

L)(X̃∂µỸ − Ỹ ∂µX̃)

1
2
× 1

2

Off
S1 Λ−2(f̄ 2

Rf
1
L)(Ȳ X)

Off
S2 Λ−2(f̄ 2

RX)(Ȳ f 1
L)

Off
V 1 Λ−2(f̄ 2

Lγ
µf 1

L)(Ȳ γµX)

Off
T1 Λ−2(f̄ 2

Lσ
µνf 1

R)(XσµνY )

Off
T2 Λ−2(f̄ 2

Lσ
µνX)(f̄ 1

RσµνY )

1× 1

Ovv
S Λ−1(f̄ 2

Rf
1
L)(Xµ Yµ)

Ovv
T Λ−1(f̄ 2

Rσ
µνf 1

L)(Xµ Yν)

Ovv
V 1 Λ−2(f̄ 2

Lγ
µf 1

L)(Yν∂νXµ)

Ovv
V 2 Λ−2(f̄ 2

Lγ
µf 1

L)(Xν∂νYµ)

Ovv
V 3 Λ−2(f̄ 2

Lγ
µf 1

L)(Xν∂µYν − Yν∂µX ν)

1× 0

Ovs
S Λ−2(f̄ 2

Rf
1
L)(X µ ∂µỸ )

Ovs
V Λ−1(f̄ 2

Lγ
µf 1

L)(Xµ Ỹ )

Ovs
T Λ−2(f̄ 2

Rσ
µνf 1

L)(Xµ ∂ν Ỹ −Xν ∂µỸ )

Table 3: Three-body decay operators with a WIMP and two SM fermions in the final state, listed
by MMCP and WIMP spin. Because of the chiral nature of the SM gauge group, only chiral
couplings of the SM fermions are considered. The operators for 0× 1 are the same as 1× 0 with
the WIMP and MMCP interchanged and are denoted Osv

( ). For all operators the addition of the
Hermitian conjugate is implied.
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Figure 4: Selected angular distributions dN/dθ for angular resolutions of ∆θ = 10◦, 30◦, and 60◦

from left to right for highly relativistic WIMP (mX/mY = 10). Solid (green): Reference Split
SUSY three-body distribution Off

S2. Dashed (red): other representative allowed operators with
same MMCP and WIMP spin and gauge representation (Off

T1, Off
T2, Off

S1 from top to bottom on
LHS). Dot-dashed (blue): operators allowed for same gauge representation but different spins
(Ovv

T , Ovv
S , Oss

S from top to bottom on LHS). All angular distributions shown were generated
using the CompHEP and LanHEP software packages [87, 88].

primary particles (W , Z, h, t) or cascade decays in the WIMP sector, it is more difficult to

reconstruct the primary particle angular distribution. One possible strategy is to group jets to

try to reconstruct the initial primary particle; for instance jets from W decay will still have an

angular correlation despite the low boost factor. Another strategy, if limited jet energy resolution

is possible, would be to determine the angular distribution between the two highest energy jets

in each event. Unless the secondary decays have splittings comparable to the primary decay,

this distribution will tend to reflect the kinematic distribution of the primary quarks produced

in the decay. To illustrate this, Figure 5 compares the normalized angular distribution between

the idealized case when only primary light quarks and a WIMP are produced in the gluino decay

model A1 (corresponding to Off
S2) with no energy cuts, to the true distribution of the two leading

energy jets after the heavy primary particle decays and WIMP cascade decays with an energy

cut Ej > 50 GeV. As can be seen, the distribution still carries much of the original kinematic

information. Therefore for the remainder of this analysis we will simply consider the distributions

of the two primary SM particles produced in an event.

4.3 Results

A simple way to quantify the difference between the angular distributions of two operators is to

ask how many three-body decays would need to be observed to distinguish one from another.

The average number of decays necessary to distinguish two distributions can be estimated using
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Figure 5: Angular distribution for the two leading energy jets produced in gluino decay of Model
A from Table 2 including all decay modes and secondary decays (solid) compared to the angular
distribution of primary quarks in the channel where only two light quarks and the WIMP are
produced (dashed). The secondary decays of top quarks and chargino/neutralinos are primarily
responsible for the differences in the two distributions.
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N σ M

∆θ12 = 10◦ 23 90 fb (60 fb) ∼ 1.2 TeV (∼ 400 GeV)

∆θ12 = 30◦ 41 160 fb (100 fb) ∼ 1.1 TeV (∼ 350 GeV)

∆θ12 = 60◦ 130 520 fb (370 fb) ∼ 0.9 TeV (∼ 250 GeV)

Table 4: N is the median value of the set of all Ni, the number of three-body decay events
necessary to distinguish the reference operator Off

S2 from an operator Oi in Table 3. Also shown
are the approximate necessary production cross section and direct production mass reach for this
number of events for a color octet SIMP (SU(2) doublet CHAMP) respectively as discussed in
Section 3.

the Kullback-Leibler distance (see [89] for a description in a similar context),

N(O1, O2) =
logR

KL(O1, O2)
; KL(O1, O2) =

∫
dθ log

(
dN1/dθ

dN2/dθ

)
dN1

dθ
, (2)

where dN/dθ are the normalized angular distributions, and R is the required confidence that the

distribution does not correspond to the operator O2, given that the true distribution is from O1.

Using this statistic, in Figure 6 we estimate the number of events needed to differentiate the

operators in Tables 3 from the reference Split SUSY gluino / RPV chargino distribution coming

from Off
S2. Note that in most cases, we only need ∼ O (100) observed three-body decays to

distinguish various operators even when the angular resolution ∆θ12 ≈ 60◦. With better angular

resolution ∆θ12 ≈ 10◦, we can distinguish most operators with ∼ O (10) stopped particles. In

Table 4 these numbers are converted to the necessary production cross section and corresponding

mass thresholds at the 14 TeV LHC for the applicability of these tests to various UV MMCP

scenarios, using the factors from Section 2.2. Assuming only direct production of MMCPs, with

the most optimistic ∆Θ resolution the 14 TeV LHC has a mass reach of 1.2 TeV (400 GeV) for

testing the identity of a gluino (chargino) MMCP through the angular distribution of decays.

The spin of the MMCP could also be determined from production events. To compare to

our methods, we note that O(100) observed out-of-time decays in the ECAL, corresponding to

O(40, 000) total pair production events, can distinguish a variety of different decay operators. For

colored MMCPs, Ref. [36] found that a similar magnitude of direct production events would need

to be observed to distinguish a scalar, fermion, and vector MMCP from one another by observing

the angular distribution of the production. For color singlet MMCPs, Ref. [33] found that the

angular distribution in pair production events for a O(100) GeV scalar can be distinguished from

a fermion with only O(3000) total production events. A major advantage of direct production

events over our methods is that the spin can be measured directly, rather than constrained through

the observed decay operator. Furthermore, in the case that the decay is dominantly two-body,
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Figure 6: Average number of observed decays necessary to distinguish decay operators at
95% confidence level from the reference operator Off

S2, from Eq. (2) using the distributions for
mX0/mX8 = 10. For each operator, from left to right the angular resolution is ∆θ = 10◦, 30◦, 60◦.

production events may be the only way to access the spin information. On the other hand,

measuring spin with direct production angular distribution measurements becomes more difficult

if other new particles contribute significantly to the production cross section. Furthermore, the

angular distribution in decay events can provide information beyond the spin of the MMCP, for

example it can distinguish different decay mechanisms involving particles of the same spin.

5 Conclusions

New metastable particles occur in many extensions of the Standard Model. The gravitino or

axino in the MSSM, the gluino in Split SUSY, or small R-parity violation give well-motivated

examples of such decays. Frequently the metastable particle is charged or colored so, if light

enough to be produced at the LHC, some fraction will stop in the detectors. These MMCPs

then decay out of time, giving an observable and striking signature. Searches for such events are

currently underway. In this work, we considered how measurements of these late decays in the

LHC detectors could go beyond a detection to explore the properties of both the MMCP and

perhaps even a dark matter particle produced in the decay. With reasonable assumptions about

the LHC performance, the observed couplings to standard model particles can give insight into

the gauge properties of the new particles, and, when a dominant decay mode is three-body, the

spin properties can also be constrained through observed angular distributions of decay products.
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Additionally, the decay of such a long-lived particle is often due to an accidental symmetry

being broken in the UV. In this case the structure of the decay operator is determined by the

UV physics giving rise to the decay. Our suggested measurements would then provide significant

hints of the UV physics, far above the scales the LHC can probe directly, by determining the

dominant couplings to standard model particles, and in the case of three-body decays differenti-

ating operators of different Lorentz structure. For example, although the squarks in Split SUSY

are far above the TeV scale, they could be indirectly “observed” in this way through the out of

time decays of the gluino.

We found that O(10−100) observed late decays originating in the electronic barrel calorimeter

of CMS or ATLAS is sufficient for discriminating many different MMCP candidates, see Figure 6

and Table 4. Taking into account only direct production as in Table 1, this corresponds for

instance to a mass reach of 1.0-1.3 TeV for a gluino at the 14 TeV LHC, 400-600 GeV for a

stop squark, and 300-500 GeV for a nearly-degenerate chargino. In particular, the measured

decay topologies can distinguish a variety of motivated models, especially those differing in the

color representation of the MMCP. For the case of Split SUSY, this result was found to be

insensitive to the composition of the neutralino. We also found that the relative branching

fractions of decay modes differing in final state colored particle multiplicity can be measured to

∼ 10% accuracy using the example of the two and three-body decay modes of the gluino in Split

SUSY. Furthermore, we showed that even in cases with degenerate decay topologies, if there is

a significant branching fraction to three-body decay modes, then the kinematics of the decay

can provide a nontrivial test of the MMCP and WIMP spins and the Lorentz structure of their

couplings.

Discovery searches place lower limits for example at ∼ 900 − 1100 GeV for a color octet

fermion (gluino) and ∼ 600−700 GeV for a color triplet scalar (stop) depending on the R-hadron

model [55].7 Our proposed measurements are therefore relevant to any colored MMCP discovered

in the remainder of the 7 or 8 TeV LHC run, or the beginning of the 14 TeV run, although

for a scalar triplet MMCP further optimization or more luminosity than our benchmark may be

required. Our proposed measurements are also relevant to non-colored MMCPs, although staus

with sufficient direct production cross section to be measured by our techniques are excluded by

Ref. [55].

The measurements we have discussed can be made independently of any measurement of the

MMCP properties or cross section in production events. They can therefore provide a source

of information independent from other proposed measurements of the MMCP gauge and spin

representation. Moreover, because the scale of physics mediating the MMCP decays is generally

far above the TeV scale, late decay measurements probe physics completely inaccessible in direct

production events. To make the most of the capabilities of the LHC detectors in this out-of-

7These new limits were released after this work first appeared.
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time decay window would require a dedicated experimental effort to understand the angular

measurement uncertainties for jets on a scale of ∆θ ∼ 30◦ and to control cosmic ray backgrounds

to O(1/yr) in the ECAL. We hope that this work has demonstrated the plausibility and utility of

this effort, and that it can serve as a useful resource providing motivated theoretical benchmarks

and a point of reference for comparison to more exotic proposals for dedicated detectors and

upgrades targeted at such metastable particles.
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A Measuring out-of-time decays in the ATLAS/CMS bar-

rel ECAL

In this section we describe and motivate a strategy for identifying out-of-time decays originating

in the barrel ECAL at ATLAS or CMS and measuring the direction and multiplicity of muons

and jets in the decay on an event-by-event basis.

When interactions occur at the collision point, the fine segmentation of the barrel calorimeters

in the transverse η × φ plane allows good reconstruction for the direction of isolated energy

deposits, even without tracking information. However, the vast majority of stopped particles in

ATLAS and CMS will come to rest in the central electronic and hadronic calorimeters [2]. With

the decay vertex in the calorimeter, the geometry of the detector is no longer projective in the

decay angles. Furthermore, the energy readout in the calorimeters is sensitive to the location and

orientation of an event relative to the active and inactive components of the calorimeter cells,

and it is unlikely that the visible energy can be measured reliably on an event-by-event basis8 for

decay vertices inside the calorimeters.

A promising observable however is the geometric pattern of energy deposition in the calorime-

ter cells, which could reveal the direction of the primary particles and the location of the decay

vertex. Electromagnetic energy will penetrate relatively few calorimeter cells, and it is therefore

8It seems likely, however, that for a large number of decays, the statistical distribution of energies could be
used to roughly determine the MMCP-WIMP splitting from the average visible decay energies.
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unlikely that useful directional information can be obtained from pure electromagnetic energy de-

posits except in the small fraction of decays producing products that pass back through the inner

detector or into the muon chambers. Hadronic products will however deposit their energy over

several nuclear interaction lengths, which corresponds to several cells in the HCAL and many cells

in the ECAL. It therefore seems likely that directional information about jets can be obtained.

Another promising observable is hard muons, which will generally escape the calorimeters to pass

through the muon chambers and are therefore straightforward to measure.

Motivated by these considerations, we want to consider how jets and muons produced in late

decays can be measured at the LHC detectors.

Measuring Jets

We first consider decays occurring inside the HCAL. The radial segmentation of the calorime-

ters is poor at both ATLAS and CMS.9 Because the HCAL is designed to contain radiation,

all the information about radial momentum will be lost. One could reconstruct the decay in

the plane transverse to the radial direction, but the orientation of the decay relative to that

plane is unknown. This ambiguity will distort the angular distributions discussed here, making

measurements much more difficult.

We instead focus on decay vertices located in the ECAL, which have the advantage that much

of the hadronic radiation will escape this calorimeter and deposit energy in other components

of the detector (at ATLAS and CMS the ECAL has an annular radius of about one nuclear

interaction length, while typical hadronic components deposit significant energy over a distance

of about five interaction lengths [90]). These decays can be identified by a large electromagnetic

fraction for the calorimeter energy deposit. Depending on the angle of the final state visible

particle relative to the detector geometry, different trajectories are possible. If the momentum is

pointing radially outward, the radiation will leave the ECAL and directly enter the HCAL and

further shower. If the momentum is pointing inward, it will leave the ECAL into the central

tracker, deposit some tracks, then re-enter the calorimeters in a different region. A small fraction

of the events will have a very small radial momentum and stay confined to the ECAL, but here

we focus on the majority of events where some radiation escapes the ECAL. The geometry is

shown in Figure 1 for a decay originating in the ECAL with two jets in the final state. We note

that this figure is schematic and the angular resolution of the calorimeters is much finer than

the depiction in the figure. The relevant geometric properties of the ATLAS and CMS detectors

are summarized in Table 5. Also relevant is the nuclear interaction length λI ∼ 20 cm for the

absorbing components of the calorimeters.

Due to the poor radial segmentation of the ATLAS and CMS calorimeters, the uncertainty

9At ATLAS the electromagnetic and hadronic calorimeters are each read out in two narrow and one thick
central radial shells, while at CMS the ECAL has a single radial readout, and the HCAL has two.
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ATLAS CMS

ECAL inner radius (RECAL) 115 cm 129 cm

ECAL instrumented annu-
lar radius (∆RECAL)

47 cm 23 cm

HCAL inner radius (RHCAL) 228 cm 175 cm

HCAL instrumented annu-
lar radius

164 cm 96 cm

ECAL η × φ resolution 0.025× 0.025 0.0174× 0.0174

HCAL η × φ resolution 0.1× 0.1 0.087× 0.087

Table 5: Geometric properties of the barrel components of the CMS and ATLAS calorimeters
from [91, 92, 93, 94, 95, 96].

in the measurement of θ12 is dominated by the radial uncertainty not the resolution in η × φ

plane. For particles that exit the ECAL into the central tracker, like the jet going down the

page in Figure 1, it is simple to estimate the angular resolution achievable. The first point in the

trajectory is the decay vertex, which can be located in the η × φ plane through the shape of the

deposit of EM energy in the ECAL. The radial uncertainty is given by the annular radius of the

ECAL, ∆RECAL. The second point on the trajectory is the location where the energy deposit

re-enters the ECAL. The characteristic angular resolution for this method is simply estimated in

terms of the ECAL inner and annular radii,

∆θ ∼ ∆RECAL

RECAL

. (3)

For ATLAS, ∆θ ∼ 25◦, and for CMS it is even better, ∆θ ∼ 10◦.

For particles like the jet going up the page in Figure 1 which go directly from the ECAL to

the HCAL, the second point in the trajectory is the center of the HCAL energy deposit, which

will occur in one of the nearby cells. The uncertainty in angle can be estimated from the distance

RE−H between the radial centers of the ECAL and and HCAL cells to be ∆θ ≈ ∆RECAL

RE−H
, with

∆θ ∼ 35◦ for ATLAS and ∆θ ∼ 25◦ for CMS.

These simplified cases and geometric estimates suggest that a resolution of ∆θ ≈ 30◦ is

plausible to expect for the measurement of jet direction, and that the geometry of CMS makes

a slightly better measurement possible. Of course without a detector simulation there remains

uncertainty in the true capabilities of the detectors, motivating us to to also consider optimistic

and conservative benchmarks of respectively ∆θ ≈ 10◦ and ∆θ ≈ 60◦.

Another source of uncertainty is the fact that colored particles undergo parton showers and
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hadronization and deposit energy in the form of jets. From jet shape studies [97], on average

∼ 90% of jet energy will be deposited within an angular cone of opening angle θjet ∼ 30◦ at

E = 100 GeV. For a 1 TeV X particle, the jet energies will be somewhat higher making their

opening angles moderately smaller, but this sets the rough limit on the relative angle at which

two jets can be distinguished from one another, and is incidentally roughly the same as the overall

angular resolution.

A more accurate method of making angular measurements might be possible through further

study of the shapes of energy distributions in the calorimeter cells, as well as the possible incorpo-

ration of inner detector measurements of charged particles. In our work, other possible strategies

considered had roughly the same or worse accuracy and efficiency.

Finally, we comment on the more remote possibility of obtaining more detailed radial infor-

mation from the calorimeters. For instance, the HCAL at CMS has 17 radial segments which

are an average of about 6 cm thick. The current setup of CMS integrates this into two different

readouts, so only very coarse transverse information is kept. If a long lived charged particle is

discovered, however, the experiment may achieve significant gains in reconstruction of the decay

points and jet direction within the HCAL by separately reading out each of the layers.

Measuring Muons

Isolated muons can be produced as primary particles in an X decay. Hard isolated and non-

isolated muons can also be produced in secondary decays. For a decay originating in the ECAL,

the muon direction can be measured from the location in η × φ of its entry into the barrel muon

system, or in R × φ plane for the endcap muon systems. The expected angular resolution is

superior to to the jet angular resolution, which we take to be the limiting factor in our analysis.

B Stopping MMCPs

When an MMCP X is produced, it is slowed down due to electromagnetic interactions with the

electrons in the detector material. For a given amount of material, the energy loss due to these

interactions will on average stop any X moving slower than a critical velocity β. We compute the

fraction of all X produced which stop in the central portion of the ATLAS and CMS ECAL by

simulating the production of different MMCPs in MadGraph 5 and applying a simple model of

the detector geometry.

The kinematic distribution and therefore the stopping fraction for a given MMCP depend on

its production mechanism and mass. If X is colored and produced in the primary hard process,

it will often be produced near threshold (due to PDF suppression) and will be slow. This is likely

in the case of heavy colored Xs such as the gluino. For direct pair production, scalars such as the

stau and stop will tend to be produced with a harder spectrum than fermions like gluinos and
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charginos. X could also be produced as a result of cascade decays of heavier particles, in which

case those particles will be more relativistic. This should be expected in the case of the long lived

stau or chargino in supersymmetry, where it will be produced dominantly as a result of cascade

decays from heavier colored particles. When X carries color, there is an additional source of

uncertainty coming from the spectrum of charged R-hadron states and their propagation through

the detector [2, 98, 99, 86].

There is thus some model dependence in estimating the number of stopped particles for a given

X. To address this, we compute stopping fractions and give mass reaches with the conservative

assumption that MMCPs are produced only by direct pair production. For colored MMCPs,

hadronization fractions to different R-hadron states are as in [86].10 We ignore the additional

hadronic interactions of R-hadrons with the detector here as on average . 1 such interaction will

take place before the particle leaves the ECAL [86] (in contrast, hadronic interactions are much

more important for determing the total stopping rate in the HCAL).

To determine the stopping fractions in Table 1, we have used MadGraph 5 to calculate the

tree-level cross section for pair production of a MMCP traveling toward the center of the ECAL

half barrel with |η| < 0.3 and velocity less than the critical velocity β. For larger values of η, the

physical size of the calorimeter cells is notably increased, and thus the resolution for measurements

of stopped particle decays would decrease. We note however that a less conservative cut of η < 1.3

as used in late decay discovery searches [65] increases stopping fractions by a factor of 10-30%

depending on the MMCP properties. For a MMCP of mass M , the critical velocity β is determined

by [2]

x = x0

(
M

500 GeV

)∫ β

β0

β′3dβ′

1 + log(β′)/κ
. (4)

The ATLAS and CMS ECALs have roughly the stopping power of x = 20 cm of lead for a

centrally produced X, and x0 = 503 m, κ = 3.6, and β0 ≈ 0.05 for lead. For colored particles the

final cross section has been scaled by higher order results for the total cross section.
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