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We investigate inclusive prompt photon and semi-inclusive prompt photon-hadron production in
high energy proton-nucleus collisions using the Color Glass Condensate (CGC) formalism which in-
corporates non-linear dynamics of gluon saturation at small x via Balitsky-Kovchegov equation with
running coupling. For inclusive prompt photon production, we rewrite the cross-section in terms
of direct and fragmentation contributions and show that the direct photon (and isolated prompt
photon) production is more sensitive to gluon saturation effects. We then analyze azimuthal cor-
relations in photon-hadron production in high energy proton-nucleus collisions and obtain a strong
suppression of the away-side peak in photon-hadron correlations at forward rapidities, similar to
the observed mono-jet production in deuteron-gold collisions at forward rapidity at RHIC. We make
predictions for the nuclear modification factor Rp(d)A and photon-hadron azimuthal correlations in
proton(deuteron)-nucleus collisions at RHIC and the LHC at various rapidities.

I. INTRODUCTION

The Color Glass Condensate (CGC) formalism has been successfully applied to many processes in high energy
collisions involving at least one hadron or nucleus in the initial state. Examples are structure functions (inclusive and
diffractive) in Deeply Inelastic Scattering of electrons on protons or nuclei, and particle production in proton-proton,
proton-nucleus and nucleus-nucleus collisions, for a recent review see Ref. [1]. The predicted suppression of RdA for
the single inclusive hadron production in deuteron-nucleus (dA) collisions as well as the disappearance of the away
side peak in di-hadron angular correlations in the forward rapidity region of RHIC [2, 3] are two of most robust
predictions of the formalism which have been confirmed [4], see also Refs. [5–7]. The CGC formalism has been also
successful in providing predictions for the first LHC data [8] in proton-proton (pp) and nucleus-nucleus collisions [9–
11]. Nevertheless, there are more recent, alternative phenomenological approaches which combine nuclear shadowing,
transverse momentum broadening and cold matter energy loss to describe the RHIC data [12, 13]. Therefore, one
needs to consider other observables which may help clarify the underlying dynamics of forward rapidity particle
production at small x.
Inclusive prompt photon production [14] and prompt photon-hadron angular correlations [15] in the forward rapidity

region are two such examples. Furthermore, there are advantages to studying prompt photon production as compared
to hadron production. It is theoretically cleaner; one avoids the difficulties involved with description of hadronization
of final state quarks and gluons, usually described by fragmentation functions valid at high transverse momentum.
Also, one does not have to worry about possible initial state-final state interference effects which may be present for
hadron production. In case of photon-hadron vs. di-hadron angular correlations, again the underlying theoretical
understanding is more robust. Unlike di-hadron correlations which involve higher number of Wilson lines [16], photon-
hadron correlations depend only on the dipole cross section properties of which are well understood.
Both processes have been investigated previously, albeit not in detail and only in a limited kinematic range [14, 15],

see also Refs. [17, 18]. In this work, we extend the existing results for inclusive prompt photon production by clearly
separating the contribution of direct and fragmentation photons. We show that direct photons are more sensitive to
gluon saturation effects in the kinematics regions considered. We then investigate the dependence of prompt photon-
hadron azimuthal angular correlations on high gluon density effects and show that gluon saturation effects lead to
disappearance of the away side peak. The effect is very similar to the disappearance of the away side peak in di-hadron
correlations observed in the forward rapidity region of RHIC in dA collisions [19]. Therefore, a measurement of this
correlation at RHIC and the LHC would greatly help to clarify the role of CGC in the dynamics of particle production
at high energy.
The advantage of the CGC formalism over the more phenomenological models is that the cross section for many

of these processes have the same common ingredient [1, 20, 21], the dipole total cross section; the imaginary part
of the forward scattering amplitude of a quark-antiquark dipole on a proton or nucleus target. Its rapidity (energy)
dependence is governed by the B-JIMWLK/BK evolutions equations [22, 23] and is pretty well-understood. The
most recent advances in our understanding of the rapidity dependence of the dipole cross section include the running



2

coupling constant corrections and the full Next-to-Leading Order corrections [24]. The only input is the dipole profile
(dependence on the dipole size rt) at the initial rapidity y0 which is modeled, usually motivated by the McLerran-
Venugopalan (MV) model [25]. The sensitivity to this initial condition is expected to go away at very large rapidities,
see Sec. III and Ref. [6].
This paper is organized as follows; we consider prompt photon-hadron production cross section in section IIA and

inclusive prompt photon production in section IIB where we describe how to separate the contribution of direct and
fragmentation photons. We then present our detailed numerical results and predictions at kinematics appropriate for
RHIC and the LHC experiments in section III. We summarize our results in section IV.

II. THEORETICAL FRAMEWORK

A. Semi-inclusive Photon-hadron production in proton-nucleus (pA) collisions

The cross section for production of a quark and a prompt photon with 4-momenta l and k respectively (both
on-shell) in scattering of a on-shell quark with 4-momentum p on a target (either proton or nucleus) in the CGC
formalism has been calculated in [14] and is given by

d σ =
e2 e2q
2

d3k

(2π)3 2k−
d3l

(2π)3 2l−
1

2p−
(2π) δ(p− − l− − k−) trD [· · · ] d2~bt d2~rt ei(~lt+~kt)·~rt NF (bt, rt, xg), (1)

where TrD [· · · ] is given by

trD [· · · ] = 8 [(p−)2 + (l−)2]

[

p · l
p · k l · k +

1

l · k − 1

p · k

]

, (2)

which, after using the explicit forms of the momenta in the expression for the trace, can be written as,

dσq(p) T→q(l) γ(k)X

d2~bt dk2t dl
2
t dyγ dyl dθ

=
e2q αem√
2(2π)3

k−

k2t
√
S

1 + ( l−

p−
)2

[k− ~lt − l− ~kt]2

δ[xq −
lt√
S
eyl − kt√

S
eyγ ]

[

2l−k− ~lt · ~kt + k−(p− − k−) l2t + l−(p− − l−) k2t

]

∫

d2~rt e
i(~lt+~kt)·~rt NF (bt, rt, xg), (3)

where the symbol T stands for a proton p or a nucleus A target,
√
S is the nucleon-nucleon center of mass energy

and xq is the ratio of the incoming quark to nucleon energies such that p− = xq

√

S/2. The outgoing photon and

quark rapidities are defined via k− = kt√
2
eyγ and l− = lt√

2
eyl whereas ∆θ is angle between the final state quark and

photon, cos(∆θ) ≡ ~lt·~kt

ltkt
. We note that this cross section was first computed in [17] in coordinate space using the

dipole formalism, the result of which agrees with the expression in Eq. (3) after Fourier transforming to momentum
space.
The imaginary part of of (quark-antiquark) dipole-target forward scattering amplitude NF (bt, rt, xg) satisfies the

B-JIMWLK equation and has all the multiple scattering and small x evolution effects encoded. It is defined as

NF (bt, rt, xg) =
1

Nc
< Tr[1− V †(xt)V (yt)] >, (4)

where Nc is the number of color. The vector ~bt ≡ (~xt+ ~yt)/2 is the impact parameter of the dipole from the target and
~rt ≡ ~xt− ~yt denotes the dipole transverse vector. The matrix V (yt) is a unitary matrix in fundamental representation
of SU(Nc) containing the interactions of a quark and the colored glass condensate target. The dipole scattering
probability depends on Bjorken xg via the B-JIMWLK renormalization group equations. In the present case, it is
related to the prompt photon and final state quark rapidities and transverse momenta via

xg =
1√
S
[kte

−yγ + lte
−yl ] . (5)

In order to relate the above partonic production cross-section to proton (deuteron)-target collisions, one needs
to convolute the partonic cross-section in Eq. (3) with the quark and antiquark distribution functions of a proton
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(deuteron) and the quark-hadron fragmentation function:

dσp T→γ(k) h(q)X

d2~bt dk2t dq
2
t dηγ dηhdθ

=

∫ 1

zmin
f

dzf
z2f

∫

dxq f(xq, Q
2)

dσq T→γ q X

d2~bt dk2t dl
2
t dηγ dηh dθ

Dh/q(zf , Q
2), (6)

where qt is the transverse momentum of the produced hadron, and f(xq, Q
2) is the parton distribution function

(PDF) of the incoming proton (deuteron) which depends on the light-cone momentum fraction xq and the hard scale
Q. A summation over the quark and antiquark flavors in the above expression should be understood. The function
Dh/q(zf , Q) is the quark-hadron fragmentation function (FF) where zf is the ratio of energies of the produced hadron

and quark 1. Note that due to the assumption of collinear fragmentation of a quark into a hadron, the angle ∆θ is
now the angle between the produced photon and hadron.
The light-cone momentum fraction xq, xq̄, xg are related to the transverse momenta and rapidities of the produced

hadron and prompt photon via (details are given in the appendix)

xq = xq̄ =
1√
S

(

kt e
ηγ +

qt
zf

eηh

)

,

xg =
1√
S

(

kt e
−ηγ +

qt
zf

e−ηh

)

,

zf = qt/lt with zmin
f =

qt√
S

(

eηh

1− kt√
S
eηγ

)

. (7)

B. Single inclusive prompt photon production in proton-nuclear collisions

The single inclusive prompt photon cross section can be readily obtained from Eq. (1) by integrating over the
momenta of the final state quark. Integration over the quark energy l− is trivially done by using the delta function

and leads to (after shifting ~lt → ~lt − ~kt) ,

dσq(p)T→γ(k)X

d2~btdk2t dηγ
=

e2qαem

(2π)3
z2[1 + (1− z)2]

1

k2t

∫

d2~rt d
2~lt

l2t

[z~lt − ~kt]2
ei

~lt·~rt NF (bt, rt, xg), (8)

where z ≡ k−/p− denotes the fraction of the projectile quark energy p− carried by the photon and dηγ ≡ dz
z . Various

limits of this expression have been studied in [14] where it was shown that in the limit where photon has a large
transverse momentum kt ≫ z lt such that the collinear singularity is suppressed, one recovers the LO pQCD result
for direct photon production process q g → q γ convoluted with the unintegrated gluon distribution function of the
target. On the other hand, if one performs the lt integration above without any restriction, one recovers the LO pQCD
expression for quark-photon fragmentation function convoluted with dipole scattering probability. In the limit where
one can ignore multiple scattering of the quark on the target (”leading twist” kinematics), this expression reduces to
the pQCD one describing LO production of fragmentation photons. It is therefore useful to explicitly separate the
contribution of fragmentation photons from that of the direct photons. To this end, we rewrite Eq. (8) as

dσq(p) T→γ(k)X

d2~btd2 ~ktdηγ
=

e2qαem

π(2π)3
z2[1 + (1 − z)2]

1

k2t

∫

d2~lt l
2
t

[ 1

[z~lt − ~kt]2
− 1

k2t

]

NF (xg , bt, lt),

+
e2qαem

π(2π)3
z2[1 + (1 − z)2]

1

k4t

∫

d2~lt l
2
tNF (xg, bt, lt), (9)

where we have added and subtracted the second term. Notice that we use the same notation for coordinate rep-
resentation of the forward dipole-target scattering amplitude NF and its two-dimensional Fourier transform. The
second term in this expression describes production of direct photons whereas the first term gives the contribution of

1 Since produced hadrons are assumed to be massless, we make no distinction between the rapidity of a quark and the hadron to which
it fragments. Moreover, for massless hadrons, rapidity y and pseudo-rapidity η is the same.
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fragmentation photons. In order to see this more explicitly, we let ~lt → ~lt +
~kt

z in the first term and keep the most
divergent piece of the lt integral to get

dσq(p) T→γ(k)X

d2~btd2 ~ktdηγ
=

dσFragmentation

d2~btd2 ~ktdηγ
+

dσDirect

d2~btd2 ~ktdηγ

=
1

(2π)2
1

z
Dγ/q(z, k

2
t )NF (xg, bt, kt/z) +

e2qαem

π(2π)3
z2[1 + (1− z)2]

1

k4t

∫ k2
t

d2~lt l
2
t NF (x̄g, bt, lt) (10)

where Dγ/q(z, k
2
t ) is the leading order quark-photon fragmentation function [26],

Dγ/q(z,Q
2) =

e2qαem

2π

1 + (1− z)2

z
lnQ2/Λ2. (11)

Eq. (10) is new and is our main result for single inclusive prompt photon production which includes contribution of
both fragmentation (first term) and direct (second term) photons. In order to ensure that the divergence present in
Eq. (8) is properly removed, one needs to regulate it self-consistently. Here we have done this separation by imposing a
hard cutoff which would result in a mismatch between the finite corrections to our results and those that are included
in parameterizations of photon fragmentation function, for example, using the MS scheme. However this mismatch
is a higher order effect in the coupling constant and is therefore expected to be parametrically small. It should be
noted that the separation between the direct and fragmentation contributions depends on the hard scale, chosen to
be the photon transverse momentum, which is already well-known in pQCD.
Eq. (10) exhibits some interesting features; the dipole scattering probability NF is probed at kt/z (where kt is

the external momentum) in case of fragmentation photons whereas it depends on the internal momentum lt in case
of direct photons. Furthermore, in case of direct photons, the integrand is peaked at values of transverse momenta
lt ∼ Qs. This means that fragmentation photons should be much less sensitive to high gluon density effects than
direct photons since they probe the target structure at higher transverse momenta. This will be verified numerically
in the following sections.
In order to relate the partonic cross-section given by Eq. (10) to photon production in deuteron (proton)-nucleus

collisions, we convolute Eq. (10) with quark and antiquark distribution functions of the projectile deuteron (or proton),

dσp T→γ(k)X

d2~btd2 ~ktdηγ
=

∫ 1

xmin
q

dxq[fq(xq, k
2
t ) + fq̄(xq̄ , k

2
t )]

dσq(p) T→γ(k)X

d2~btd2 ~ktdηγ
, (12)

where a summation over different flavors is understood. Equations (10,12) are our final results for the single inclusive
prompt photon production. The light-cone fraction variables xg, x̄g, z in Eq. (10,12) are defined as follows,

xg =
k2t

z2 xq S
= xq e

−2 ηγ (13)

x̄g =
1

xq S

[

k2t
z

+
(lt − kt)

2

1− z

]

≈ 1

xq S

k2t
z(1− z)

, (14)

z ≡ k−

p−
=

kt

xq

√
S
eηγ =

xmin
q

xq
with xmin

q = zmin =
kt√
S
eηγ . (15)

where in Eq. (14) the right hand-side approximation is valid if lt ≪ kt. Notice that since now x̄g depends on the angle
between lt and kt, the integral over the angle in Eq. (10) is not more trivial and can be done numerically. One should
also note that the light-cone fraction variables defined above for the inclusive prompt photon cross-section Eqs. (10,12)
are different from the corresponding semi-inclusive hadron-photon cross-section Eqs. (3,6) defined in Eqs. (7), see the
appendix for the derivation.

III. NUMERICAL RESULTS AND PREDICTIONS

The forward dipole-target scattering amplitude appears in both semi-inclusive photon-hadron and inclusive prompt
photon cross-section Eq. (6,12) and incorporates small-x dynamics which can be computed via first principle non-
linear B-JIMWLK equations [22] in the CGC formalism. In the large Nc limit, the coupled B-JIMWLK equations are
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simplified to the Balitsky-Kovchegov (BK) equation [23], a closed-form equation for the evolution of the dipole am-
plitude in which both linear radiative processes and non-linear recombination effects are systematically incorporated.
The running-coupling BK (rcBK) equation has the following simple form:

∂NF (r, x)

∂ ln(x0/x)
=

∫

d2~r1 Krun(~r, ~r1, ~r2) [NF (r1, x) +NF (r2, x)−NF (r, x) −NF (r1, x)NF (r2, x)] , (16)

where ~r2 = ~r − ~r1. The evolution kernel Krun is given by Balitsky’s prescription [27] with the running coupling.
The explicit form of Krun with details can be found in Refs. [27, 28]. The only external input for the rcBK non-
linear equation is the initial condition for the evolution which is taken to have the following form motivated by
McLerran-Venugopalan (MV) model [25],

N (r, Y =0) = 1− exp

[

−
(

r2 Q2
0s

)γ

4
ln

(

1

Λ r
+ e

)

]

, (17)

where Λ = 0.241 GeV [10, 29]. The initial saturation scale Q0s (with s = p,A for a proton and nuclear target) at
starting point of evolution (at x0 = 0.01) and the parameter γ, are free parameters which are determined from a fit to
other experimental measurements at small-x. It was shown that inclusive single hadron data in pp collisions at RHIC
can be described with a initial saturation scale within Q2

0p = 0.168 ÷ 0.336 GeV2 [5, 6, 30]. However, HERA data

on proton structure functions prefers the lower value for the proton initial saturation scale Q2
0p ≈ 0.168 GeV2 [29].

One have also freedom to run γ as a free parameter in the χ2 minimization and obtain its preferred value in a fit to
HERA data. In order to investigate the uncertainties due to initial condition of the rcBK equation, we will consider
the following three parameter sets which all provide an excellent fit to the HERA data for proton targets [10, 29]:

set I : Q2
0p = 0.2GeV2 γ = 1,

set II : Q2
0p = 0.168GeV2 γ = 1.119,

set III : Q2
0p = 0.157GeV2 γ = 1.101. (18)

In the MV model [25], the parameter γ in Eq. (17) is γ = 1. However, it has been recently shown [31] that the
effective value of γ can be larger than one when the sub-leading corrections to the MV model are included [32]. The
parameter γ appears to be also important in order to correctly reproduce the single inclusive particle spectra, and a
larger value γ > 1 is apparently preferable at large-kt [6, 10].
In our approach the difference between proton and nuclei originates from different initial saturation scales Q0s in the

rcBK equation via Eq. (17). In the case of inclusive hadron production in proton-nucleus collisions, due to theoretical
uncertainties and rather large errors of the experimental data, it is not possible to uniquely fix the initial value of
Q0A. In the case of minimum-bias dAu collisions, the initial nuclear (gold) saturation scale within Q2

0A = 3÷ 4 Q2
0p is

consistent with the RHIC inclusive hadron production data [2, 5, 6, 30]. The extracted value of Q0A is also consistent
with the DIS data for nuclear targets [29, 30]. Here, we will also consider the uncertainties due to the initial condition
of the rcBK equation for a nuclear target. Note that Q0A should be considered as an impact-parameter averaged value
since it was extracted from the minimum-bias data. For the minimum-bias collisions, one may assume that the initial
saturation scale of a nuclei with atomic mass number A, scales linearly with A1/3, namely we have Q2

0A = cA1/3 Q2
0p

where the parameter c is fixed from a fit to data. In Ref. [30], it was shown that NMC data can be described with
c ≈ 0.5.
We will use the NLO MSTW 2008 PDFs [33] and the NLO KKP FFs [34]. For the photon fragmentation function,

we will use the full leading log parametrization [26, 35]. We assume the factorization scale Q in the FFs and the
PDFs to be equal and its value is taken to be qt and kt for the semi-inclusive and inclusive prompt photon production,
respectively.

A. Direct and fragmentation prompt photon in pp and pA collisions at RHIC and the LHC

We start by considering direct and fragmentation photon production in pA collisions at RHIC and the LHC. In
nuclear collisions, nuclear effects on single particle production are usually evaluated in terms of ratios of particle
yields in pA and pp collisions (scaled with a proper normalization), the so-called nuclear modification factor RpA.
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FIG. 1: Nuclear modification factor for direct photon production in minimum-bias pA (dashed line) and dA (solid line) collisions

at RHIC (
√

S = 0.2 TeV) at η = 2, 3. The curves are obtained from Eq. (12) using the solution to rcBK equation with the
initial saturation scale Q2

0p = 0.168 GeV2 for proton and Q2
0A = 3Q2

0p for a nucleus (gold).

The nuclear modification factor Rp(d)A is defined as

Rγ
dA =

1

2Ncoll

dNdA→γX

d2pTdη
/
dNpp→γX

d2pTdη
,

Rγ
pA =

1

Ncoll

dNpA→γX

d2pTdη
/
dNpp→γX

d2pTdη
, (19)

where the yield dNp(d)A(p)→γX

d2pT dη can be calculated from the invariant cross-section given in Eq. (12). The normalization

constant Ncoll is the number of binary proton-nucleus collisions. We take Ncoll = 3.6, 6.5 and 7.4 at
√
s = 0.2, 4.4 and

8.8 TeV, respectively [36]. In order to compare our predictions for Rγ
pA with the experimental value, one should take

into account possible discrepancy between our assumed normalization Ncoll and the experimentally measured value
for Ncoll by rescaling our curves. Again we expect that some of the theoretical uncertainties, such as sensitivity to K
factors (which effectively incorporates the missing higher order corrections), will drop out in Rγ

p(d)A.

In Fig. 1 we show the nuclear modification factor for both pA and dA collisions at RHIC. This is to facilitate a
comparison of and to distinguish between the genuine saturation effects in the target nucleus from isospin effects
in the projectile deuteron. Clearly there is a large difference between a proton and a deuteron projectile as far as
prompt photon production is concerned. This difference is more pronounced in the forward rapidity region and at
high transverse momentum where one probes the quark content of the projectile. This is due to difference between
the up and down quark distributions of a proton (note that nuclear effects in the wave function of a deuteron
are ignored as they are known to be small). This is a well known effect, nevertheless, for sake of clarity and to
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FIG. 2: Nuclear modification factor for direct, fragmentation and inclusive prompt photon production in minimum-bias p(d)A

collisions at RHIC
√

S = 0.2 TeV (right) and the LHC
√

S = 4.4 TeV (left) energy at various rapidities. The curves are the
results obtained from Eq. (12) and the solution to rcBK equation with the initial saturation scale Q2

0p = 0.168 GeV2 for a
proton and Q2

0A = 3Q2
0p for a nucleus (gold), corresponding to set II in Eq. (18).

illustrate the difference between inclusive hadron production and QED probe namely prompt photon production,
we illustrate this in some detail. In case of photon production, the production cross section is weighed by the the
charged squared of a given quark flavor. For example (assuming only two flavor), for a proton projectile this is given
by e2q fq/p = (2/3)2 up + (1/3)2 dp where up, dp denote the distribution functions of up and down quarks in a proton.
Ignoring nuclear effects in a deuteron, we assume a deuteron is a system of free proton and a neutron in which case the
corresponding expression is e2q fq/d = (2/3)2 up+(1/3)2 dp+(2/3)2 un+(1/3)2 dn where un, dn denote the distribution
functions of up and down quarks in a neutron. Assuming isospin symmetry gives un = dp and dn = up which leads to
(5/9) [up + dp] for a deuteron. Comparing this expression with two times that of a proton, the relative contribution
of up quarks in a deuteron (5/9) is smaller than that of a twice a proton (8/9). Since there are more up quarks than
down quarks (by a factor of 2÷ 3 in this kinematics) in a proton, and their relative weight is smaller, this leads to a
further reduction of RdA as compared with RpA in prompt photon production, see Fig. 1. We note that in the absence
of the charged squared factor, which is the case for inclusive hadron production, one would get d = p+n = 2 p as one
should since possible nuclear effects in a deuteron are ignored here. At the LHC the isospin effect is absent since the
same projectile is used for the pp and pA collisions. This helps to understand the physics of QCD saturation more
clearly, as the suppression of the signal will not be contaminated with isospin effect.
In Fig. 2, we show the minimum-bias nuclear modification factor for the direct, fragmentation and the inclusive

prompt photon production at RHIC and the LHC energies
√
S = 0.2, 4.4 TeV at various rapidities η obtained from

Eqs. (12, 19) supplemented with rcBK solution Eq. (16) with the initial saturation scale for proton Q2
0p ≈ 0.168 GeV2

and nuclei Q2
0A = 3Q2

0p. It is seen that the nuclear modification Rγ
p(d)A for the fragmentation photon is bigger than
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FIG. 3: Nuclear modification factor for direct photon production in p(d)A collisions at various rapidities at RHIC
√

S = 0.2

TeV (right) and the LHC
√

S = 4.4 TeV energy (left). The curves are the results obtained from Eq. (12) and the solution to
rcBK equation using different initial saturation scales for a proton Q0p and a nucleus Q0A. The band shows our theoretical
uncertainties arising from allowing a variation of the initial saturation scale of the nucleus in a range consistent with previous
studies of DIS structure functions as well as particle production in minimum-bias pp, pA and AA collisions in the CGC
formalism, see the text for the details.

the direct and inclusive prompt photon. This is what we expected in our picture since direct photon cross-section in
Eq. (10) probes the target structure function at lower transverse momentum kt (and consequently lower x) than the
fragmentation part with transverse momentum kt/z and therefore is more sensitive to the suppression of structure
function and the saturation effect. However, as we increase the energy the enhancement of the fragmentation photon
Rγ

p(d)A at RHIC will be also replaced with suppression at the LHC, see Fig. 2 top panel. This is simply due to the

fact that both the fragmentation and the direct part Eq. (10) depend on the color dipole forward amplitude which
encodes the small-x dynamics and at higher energy, the small-x evolution leads to suppression of Rγ

p(d)A.

In a collider experiment such as the LHC, the secondary photons coming from the decays of hadrons, overwhelm the
inclusive prompt photon measurements with order of magnitudes. In order to reject the background, isolation cuts
are imposed [37]. Contribution of fragmentation prompt photon is reduced by imposing an isolation cut2. A proper

2 If we assume that pc is the total transverse momentum of a fragmentation jet, the photon’s energy is then Eγ = zpc and the total
hadronic energy within the jet is Eh = (1− z)pc. By isolation cut criterion, the hadronic energy does not have to be more than ǫEγ in
the isolation cone. This gives the lower limit of z (or xq convolution) in Eq. (13) integral, namely zc = 1/(1 + ǫ) < z. Given that the
integrand of fragmented part is proportional to 1/z and dominated at lower limit of integrand, we expect that the isolation cut reduces
the fragmentation contribution more severely than the direct one.
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FIG. 4: Nuclear modification factor for direct photon (right) and inclusive prompt photon (left) production in pA collisions

at various rapidities a the LHC
√

S = 8.8 TeV energy. The band (CGC-rcBK-av) similar to Fig. 3 corresponds to the results
obtained from Eq. (12) and the solutions to the rcBK evolution equation using different initial saturation scales for a proton
Q0p and a nucleus Q0A, see the text for the details.

incorporation of the isolation cut criterion in our framework is beyond the scope of this paper. However, from Fig. 2
it is seen that at higher energy at forward collisions, Rγ

p(d)A for direct and single inclusive prompt photon becomes

remarkably similar, indicating that to a good approximation, one may assume that the nuclear modification factor
for direct and isolated prompt photon are equal.
In Fig. 3, we show the minimum-bias nuclear modification factor for the direct photon production at RHIC and the

LHC energies
√
S = 0.2, 4.4 TeV at various rapidities η obtained from rcBK solutions Eq. (16) with the initial proton

saturation scale Q2
0p ≈ 0.168 and 0.2GeV2 corresponding to parameter sets I and II in Eq. (18). For nuclear target

in minimum-bias collisions, we take two initial saturation scales for nuclei (gold and lead) Q2
0A = 3÷ 4Q2

0p which are
extracted from a fit to other experimental data on heavy nuclear target [5, 6, 30]. For a proton target, we have checked
that parameter sets II and III give similar results for Rγ

p(d)A with better than 10% accuracy. Therefore, in Fig. 3 we

only show results obtained from two parameter sets I and II in Eq. (18). The band in Fig. 3 shows our uncertainties
arising from a variation of the initial saturation scale of the nucleus in a range consistent with previous studies of DIS
structure functions as well as particle production in minimum-bias pp, pA and AA collisions in the CGC formalism.
One may therefore expect that the possible effects of fluctuations (of nucleons in a nucleus) on particle production is
effectively contained in our error band.
From Fig. 3, it is seen that the nuclear modification for direct photon production is very sensitive to the initial

saturation scale in proton and nuclei. However, this uncertainties will be reduced for more forward collisions at
higher energy at the LHC. The same effect has been observed for the inclusive hadron production in pA collisions [6].
This clearly indicates that the nuclear modification in p(d)A collisions is a sensitive probe of saturation effects and
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FIG. 5: Right: Nuclear modification factor for direct photon production at η = 3 in minimum-bias dA
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S = 0.2 TeV (RHIC)
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√

S = 4.4, 8.8 TeV (LHC) collisions. The curves are the results obtained from Eq. (12) and the solution to rcBK
equation with the initial saturation scale Q2

0p = 0.168 GeV2 for a proton and Q2
0A = 3Q2

0p for a nucleus. Left: Comparison of
the inclusive prompt photon nuclear modification factor predictions from the CGC (in this paper) and the standard collinear
factorization approach [12]. The band CGC-rcBK-av is the same as in Fig. 4.

Rγ
p(d)A measurements for direct photon and inclusive hadron provide crucial complementary information about initial

saturation scale and small-x evolution dynamics. In Fig. 3, it is seen that at a fixed rapidity and energy for a fixed
initial saturation scale for proton Q0p, a bigger initial saturation scale for nuclei Q0A leads to a bigger broadening
and consequently enhances the cross-section and Rγ

p(d)A if Ncoll is kept fixed.

In Fig. 4, we show our predictions for RpA for direct photon (right) and inclusive prompt photon (left) production

in pA collisions at various rapidities a the LHC
√
S = 8.8 TeV energy. The band (CGC-rcBK-av) similar to Fig. 3

corresponds to the results obtained from Eq. (12) with the solutions of the rcBK evolution equation (16).

In Fig. 5 (right), we compare Rγ
p(d)A for direct photon at η = 3 for RHIC energy

√
S = 0.2 TeV and the LHC

energies 4.4, 8.8 TeV. It is seen that the suppression of Rγ
pA at the LHC is larger compared to RdA at RHIC and

persists at higher transverse momentum. This larger suppression is even more impressive given that fact that a good
amount of the observed suppression of RdA at RHIC is due to the projectile being a deuteron rather than a proton.
In Fig. 5 (left), we compare the CGC prediction (CGC-rcBK-av) obtained here with the collinear factorization result
(EPS09) [12] for inclusive prompt photon Rγ

pA at η = 3 at the LHC. It is seen that the LHC measurements of the

inclusive prompt photon at forward rapidities can discriminate between the collinear (standard parton model) and
the CGC approach.
Some words of caution are in order here. Strictly speaking our formalism is less reliable for collisions at around

mid-rapidities and high transverse momenta. This is due to the fact that our formula is valid for asymmetric collisions
like pA or pp collisions at forward rapidities when a projectile can be treated in the standard collinear approximation
while for the target we systematically incorporated the small-x re-summation (at the leading log approximation)
effects. Note however, for the case of pp collisions (our reference for Rγ

dA) at RHIC, the saturation scale of target
proton is rather small, and it is not clear that the CGC formulation will be applicable. Moreover, our parameter sets
in Eq. (18) was obtained from a fit to HERA data at small-x x < 0.01 and for virtualities Q2 ∈ [0.25, 40]GeV2 [29].
Therefore, our predictions are less reliable at high-kt (kt > 6÷ 7 GeV).
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FIG. 6: The relative azimuthal correlation P (∆θ) defined in Eq. (20) for minimum-bias p(d)A and pp collisions at RHIC
√

S = 0.2 TeV (upper) and the LHC
√

S = 4.4 TeV energy (lower) obtained from the rcBK solutions with different initial
saturation scales.

B. Prompt photon-hadron correlations at RHIC and the LHC; the signature of saturation

We now focus on azimuthal angle ∆θ correlations of the prompt photon-hadron spectrum, where the angle ∆θ
is the difference between the azimuthal angle of the measured hadron and single prompt photon. We present our
predictions for semi-inclusive prompt photon-hadron (for hadron we consider only neutral pion here) production at
RHIC and the LHC in pp and p(d)A collisions in terms of P (∆θ) defined as follows,

P (∆θ) =
dσp(d) T→h(q) γ(k)X

d2~bt dk2t dq
2
t dyγ dyl dθ

[∆θ]/
dσp(d) T→h(q) γ(k)X

d2~bt dk2t dq
2
t dyγ dyl dθ

[∆θ = ∆θc], (20)

where the prompt photon-hadron cross-section in above expression is given in Eq. (6). This definition has a simple
meaning of the probability of, the single semi-inclusive prompt photon-hadron production at a certain kinematics and
angle ∆θ given the production with the same kinematics at a fixed reference angle ∆θc. We take ∆θc = π/2. As
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FIG. 7: The relative azimuthal correlation P (∆θ) defined in Eq. (20) for minimum-bias dA collisions at RHIC
√

S = 0.2 TeV
for two different windows of kinematics of transverse momentum of produced prompt photon kt and hadron (neutral pion) qt
at fixed rapidity ηh = ηγ = 3. The curves are the results obtained from the rcBK equation solution with the initial saturation
scale Q2

0p = 0.168 GeV2 for proton and Q2
0A = 3Q2

0p for a nuclei.

will show the P (∆θ) defined in this way has a non-trivial structure and can probe the physics of small-x and gluon
saturation. In principle, one is free to chose a different reference angle ∆θc, however any value ∆θc << π will only
change the normalization rather than the main picture. The advantage of the above definition for the azimuthal
correlations is that it is experimentally easier to measure as it does not require a different experimental setup and
run for the trigger or reference. Moreover, in dA collisions at RHIC, the isospin effect in P (∆θ) will drop out via
normalization3 and this facilitates to single out the importance of the saturation effect at forward rapidities in contrast
to the nuclear modification factor Rγ

dA.
In this approach a fast valence quark from the projectile proton radiates a photon before and after multiply

scattering on the color glass condensate target, see Fig. 9. In this picture, the projectile is treated in the collinear
factorization, and therefore the photon radiation from quark at this level has the standard features of pQCD, including
the back-to-back correlation in the transverse momentum. As a result of multiple scatterings, the quark acquires a
transverse momentum comparable with the saturation scale, the only relevant scale in the system, and the intrinsic
angular correlations are washed way.
In Fig. 6, we show P (∆θ) at forward rapidity ηh = ηγ = 3 for qh = kt = 2 GeV at RHIC and qh = kt = 6 GeV at

3 We checked that numerically the isospin effect brings less than 2% contribution to the azimuthal correlation defined via Eq. (20).
Therefore, due to our particular definition of P (∆θ) in Eq. (20), the differences between a deuteron and a proton projectile are negligible
unlike the prompt photon production case.
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the LHC for two different initial saturation scale for proton Q2
0p = 0.168, 0.2GeV2 and nuclei Q2

0A = 3 ÷ 4Q2
0p. For

such low pt’s we are most likely probing the saturation region of the nuclear wave function due to the small values
of xg. It is clear that the away-side prompt photon-hadron cross-section (at ∆θ ≈ π) is suppressed for the bigger
saturation scale (corresponding to a denser system). It is also seen from Fig. 6 that P (∆θ) is very sensitive to the
initial saturation scale. Unfortunately, this bring rather large theoretical uncertainties. However, as we will show
in the following the suppression of the way-side correlations seems to be a robust feature of our results and it less
depends on our theoretical uncertainties.
In Fig. 7 we show the relative azimuthal correlations obtained from the rcBK solution for a fixed initial saturation

scale Q2
0s = 0.168GeV2 and Q2

0A = 3Q2
0p at forward rapidities ηh = ηγ = 3 at RHIC

√
S = 0.2 TeV for two different

kinematics windows of transverse momenta: We show in top panel, the results with a fix transverse momentum of
prompt photon qt = 5 GeV at different transverse momentum of produced hadron, and in down panel, with a fixed
transverse momentum of hadron kt = 5 GeV but at various transverse momentum of the produced prompt photon.
It is seen, the relative azimuthal correlation is suppressed at ∆θ = π as the transverse momentum of the produced
hadron or prompt photon decreases and becomes comparable to the actual saturation scale of the system. This is the
case regardless which of two transverse momenta of the hadron or prompt photon decreases. In Fig. 7 lower panel, it is
seen that when the prompt photon transverse momentum becomes comparable with the saturation effect the away-side
azimuthal angular correlation of photon-hadron completely washes away. The same effect happens at lower transverse
momentum of the produced hadron. This is simply because of fragmentation effect namely the transverse momentum
of the produced parton (that should be compared with the saturation scale) is higher than the transverse momentum
of the fragmented hadron. Again, the suppression of away-side correlations is clearly due to the saturation effect since
as we lower the transverse momentum of the produced particle, the system of hadron-photon become more sensitive to
the small-x gluon saturation. Note that the hadron-photon cross-section in Eq. (6) has collinear singularity. Therefore
for a proper investigation of the correlations at ∆θ ≈ 0, in principle, one should first extract the collinear singularity
in a same fashion as demonstrated in section II by introducing the quark-photon fragmentation function. Therefore,
our results at near-side ∆θ ≈ 0 should be less reliable. Nevertheless, we expect that the sensitivity to the collinear
singularity effect should drop out in the correlation defined in Eq. (20) via normalization. We checked that contrary
to the away-side correlations, the near-side peak is not sensitive to the saturation physics as the correlations does not
change with varying the density of the system, see also Fig. 6.
In order to further understand the relative sensitivity of the away side peak to saturation dynamics, in Fig. 8,

P (∆θ) we compare at various energies at RHIC and the LHC for a fixed transverse momentum of the produced
prompt photon kt = 5 GeV and hadron qt = 3 GeV at rapidity ηh = ηγ = 3. It is clear that the away side peak
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goes away as one increases the energy. Again this is due to the fact that as we increase the energy, the gluon density
increases and non-linear gluon recombination or the saturation effect becomes important. From Fig. 8, it is obvious
that at the LHC the away-side azimuthal correlations of photon-hadron will be strongly suppressed.
We conclude that the suppression of the away-side azimuthal photon-hadron correlations defined via Eq. (20),

with decreasing the transverse momentum of the produced prompt photon or hadron, or increasing the energy, or
increasing the size/density of system, all uniquely can be explained within the universal picture of gluon saturation
without invoking any new parameters or ingredients to our model.

IV. SUMMARY

We have investigated prompt photon production and prompt photon-hadron azimuthal angular correlations in
proton-proton and proton-nucleus collisions using the Color Glass Condensate formalism. We have provided predic-
tions in the kinematic regions appropriate to RHIC and the LHC experiments. We have shown that single inclusive
and direct prompt photon production cross section in p(d)A collisions at forward rapidities at both RHIC and the
LHC is suppressed, as compared to normalized production cross section in proton-proton collisions. At RHIC, a good
portion of the predicted suppression is due to the projectile being a deuteron rather than a proton. This suppression is
larger at the LHC compared to RHIC which is even more impressive given that the projectile at the LHC is a proton.
We showed that direct photon production is most affected by gluon saturation effects in the target nucleus than the
fragmentation photons. However, at the LHC energies at forward rapidities the nuclear modification suppression for
direct, fragmentation and inclusive prompt photon production is rather similar. We showed that the nuclear modi-
fication factor Rγ

p(d)A for inclusive prompt photon production at RHIC and the LHC is a sensitive probe of small-x

dynamics. We note that our results based on gluon saturation dynamics and using the Color Glass Condensate for-
malism are different from those coming from the collinear factorization [12]. Therefore, Rγ

p(d)A measurement at RHIC

and the LHC is a crucial test of different factorization schemes, see also Refs. [6, 38, 39] for other observables.
We have also studied prompt photon-hadron azimuthal angular correlations in kinematic regions which can be

probed by RHIC and the LHC experiments. It is shown that the away side peak in photon-hadron angular correlation
goes away as one lowers the final state particle’s momenta, very similarly to the disappearance of the away side peak
in di-hadron correlations in forward rapidity dA collisions at RHIC. At fixed transverse momenta, the suppression of
the away side peak gets stronger as one goes to larger rapidities (more forward) or higher energy or denser system
as expected, due to stronger saturation effects in the target nucleus. Presently, we are not aware of any alternative
approach which leads to this novel phenomenon. Note that in contrast to the nuclear modification factor for prompt
photon, the prompt photon-hadron azimuthal angular correlation defined via Eq. (20) is free from the isospin effect,
and can be considered as a cleaner probe of saturation effect. Finally, we emphasize that prompt photon-hadron
azimuthal angular correlations suffers from much less theoretical uncertainties as compared to di-hadron azimuthal
angular correlations and thus a measurement of this correlation would go a long way toward establishing the dominance
of gluon saturation effects at small xg .
It will be interesting to see what the predictions of pQCD-motivated models [13] are for photon-hadron azimuthal

angular correlations. In these models one usually needs to combine models of higher twist shadowing, the Cronin
effect and cold matter energy loss in order to describe the data on single inclusive hadron production and di-hadron
azimuthal angular correlations. The advantage of the CGC formalism is that the same framework can be used to
describe nuclear shadowing of structure functions [40] at small x and includes transverse momentum broadening (the
Cronin effect) [41]. It does not however include cold matter energy loss due to longitudinal momentum transfer
between the projectile and the target which may be important at the very forward rapidities. It is not clear at the
moment how to calculate this effect from first principles QCD. Even though this energy loss itself is small, due to
steepness of the production cross section at forward rapidity, it can suppress the cross section significantly.

Appendix A

The purpose of this appendix is to define the kinematics and derive the needed relations between various light-cone
energy fractions which appear in the production cross sections used. This is slightly different from the standard
relations used in production cross sections based on collinear factorization theorems of pQCD. We first consider
scattering of a quark on the target where a photon and a quark are produced, depicted in Fig. 1,

q(p)A(pA) → γ(k) q(l)X, (A1)

where A is a label for the multi-gluon state, described by a classical field representing a proton or nucleus target. In
the standard pQCD (leading twist) kinematics, only one parton from the target interacts. This is not the case here
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FIG. 9: The diagrams (at leading log approximation) contributing to the prompt photon+hadron production within the color
glass condensate picture. The crossed white blob denotes the interaction of the projectile quark to all orders with the strong
background field of the target nucleus A. The black blob represent the quark-hadron fragmentation process.

since the target is described by a classical gluon field representing a multi-gluon state with intrinsic momentum rather
than an individual gluon with a well defined energy fraction xg and zero transverse momentum. Nevertheless, since
most of the gluons in the target wave function have momentum of order Qs, one can think of the state describing the
target as being labeled by a (four) momentum pA. In this sense, the gluons in the target collectively carry fraction
xg of the target energy and have intrinsic transverse momentum denoted pA,t. This also means that there is no
integration over xg in our case unlike the collinearly factorized cross sections in pQCD (this basically corresponds to
setting xg equal to the lower limit of xg integration in pQCD cross sections). We thus have

pµ =
(

p− = xq

√

S/2, p+ = 0, pt = 0
)

,

Pµ =
(

P− =
√

S/2, P+ = 0, Pt = 0
)

,

pµA =
(

p−A = 0, p+A = xg

√

S/2, pA,t

)

,

Pµ
A =

(

P−
A = 0, P+

A =
√

S/2, PA,t = 0
)

,

lµ =
(

l−, l+ = l2t /2l
−, lt

)

,

qµ =
(

q− = zf l
−, q+ = q2t /2q

−, qt = zf lt
)

,

kµ =
(

k−, k+ = k2t /2k
−, kt

)

, (A2)

where Pµ, Pµ
A, q

µ are the momenta of the incoming projectile, target and the produced hadron respectively. (Pseudo)-
rapidities of the produced quark and photon are related to their energies via

l− =
lt√
2
eηh , k− =

kt√
2
eηγ , (A3)

Imposing energy-momentum conservation at the partonic level via δ4(p+ pA − l − k) and using Eq. (A2) leads to

p− = k− + l−, (A4)

p+A = k+ + l+, (A5)

~pA,t = ~kt +~lt. (A6)

The above relations and Eq. (A2) (and the on mass shell condition) can be used to derive the following expressions
for the energy fractions xq, xg. We obtain,

xq = xq̄ =
1√
S

(

kt e
ηγ +

qt
zf

eηh

)

, (A7)

xg =
1√
S

(

kt e
−ηγ +

qt
zf

e−ηh

)

, (A8)

where the final hadron transverse momentum and rapidity are denoted by qt and ηh, and we used zf = qt/lt. Note
that light-cone momentum fraction xg appears in the dipole forward scattering amplitude NF (bt, rt, xg) whereas xq is
the fraction of the projectile proton (deuteron) carried by the incident quark, see Eq. (A2). To derive an expression
for the lower limit of zf integration in Eq. (6), we note that 0 ≤ xq ≤ 1. Using the relation between the minus
components of the four momenta given above, we get

xq

√

S/2 = k− +
q−

zf
. (A9)
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The minimum value of zf occurs when xq is maximum, i.e., xq = 1. We then have

zmin
f =

q−
√

S/2− k−
, (A10)

which can be written in terms of the transverse momenta and rapidities of the final state hadron and photon as

zmin
f =

qt√
S

eηh

1− kt√
S
eηγ

. (A11)

We now consider the kinematics of single inclusive photon production cross section. The cross section is obtained
from Eq. (1) by integrating over the final state quark momenta. This requires some care as we have now explicitly
separated direct and fragmentation photons in Eq. (10). Again using Eqs. (A2, A3, A4), we obtain the following
relation,

xg =
1√
S

(

kt e
−ηγ +

l2t
l̄
√
2

)

, (A12)

where opposite to Eq. (A8), we avoided to introduce ηh and zf . One can use the energy-momentum delta functions
in Eq. (A4) to obtain the following relation

l̄ = xq

√

S/2− kt/
√
2e−ηγ . (A13)

Now using the above relation and Eq. (A12), we obtain

xg =
1

xq S

[

k2t
z

+
l2t

1− z

]

, (A14)

where the parameter z is the fraction of energy of parton carried away by photon and it is defined as follows,

z ≡ k−

p−
=

kt

xq

√
S
eηγ . (A15)

In case of direct photons with transverse momentum kt, one should shift momentum ~lt → ~lt − ~kt in Eq. (A14) (this
is how we obtained the expersion Eq. (10)). Assuming that lt << kt, we get

x̄g =
1

xq S

k2t
z(1− z)

, (A16)

where we have now used x̄g to denote the light cone momentum fraction of the target carried by gluons for production
of direct photons so as to distinguish it from the momentum fraction involved in production of fragmentation photons.
In the later case, the integration variable lt has been shifted twice. Implementing the shifts in Eq. (A14) and noting
that the lt integration in the fragmentation photon production cross section is dominated by its singularity at lt → 0
we get, for fragmentation photons,

xg =
k2

z2xqS
. (A17)
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