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The quasiparticle model is extended to investigate the properties of strange quark matter in a strong magnetic
field at finite densities. For the density-dependent quark mass, self-consistent thermodynamic treatment is
obtained with an additional effective bag parameter, whichdepends not only on the density but also on the
magnetic field strength. The magnetic field makes strange quark matter more stable energetically when the
magnetic field strength is less than a critical value of the order 107 Gauss depending on the QCD scaleΛ.
Instead of being a monotonic function of the density for the QCD scale parameterΛ > 126 MeV, the effective
bag function has a maximum near 0.3 ∼ 0.4 fm−3. The influence of the magnetic field and the QCD scale
parameter on the stiffness of the equation of state of the magnetized strange quark matter and the possible
maximum mass of strange stars are discussed.

PACS numbers: 24.85.+p, 12.38.Mh, 21.65.Qr, 25.75.-q

I. INTRODUCTION

Since strange quark matter (SQM) was speculated by Witten asthe possible true ground state of strong interaction matter
[1], the properties of SQM in bulk, as well as in finite size, the so called strangelets, have been extensively studied in the past
decades [2–5]. The new form of matter is possibly produced byterrestrial relativistic heavy-ion collision experiments [6] or
exists in the interior of compact stars [7]. It was found thatthe stability of SQM is strongly affected in a strong magnetic field
[8]. The large magnetic fields in nature are normally associated with astrophysical objects, where the density is much higher
than the nuclear saturation. The typical strength could be of the order∼ 1012 G on the surface of pulsars [9]. Some magnetars
can have even larger magnetic fields, reaching the surface value as large as 1014∼ 1015 G [10]. In the interior of compact stars,
the maximum possible magnetic field strength is estimated ashigh as∼ 1018 G. The origin of the strong magnetic fields can be
understood in two ways. One is the amplification of the relatively small magnetic field during the star’s collapse with magnetic
flux conservation [11]. The other is the magnetohydrodynamic dynamo mechanism with large magnetic fields generated by
rotating plasma of a protoneutron star [12].

Because a strong magnetic field influences the single particle spectrum while all quarks are charged, SQM in the inner partof
a compact star may show specific properties. Specially, for example, the strong magnetic field leads to a more stable polarized
strange quark star (SQS)[13]. In heavy-ion collisions experiments, the magnitude of a magnetic field plays an importantrole in
studying the deconfinement and chiral phase transitions. Inthe LHC/CERN energy, it is possible to produce a field as largeas
5×1019 G [14].

With various phenomenological confinement models, many works on the properties of magnetized SQM have been done by a
lot of researchers. Based on the conventional MIT bag model,quark matter in a strong magnetic field was studied by Chakrabarty
[8], and significant effect on the equation of state had been found. Furthermore, the magnetized strangelets at finite temperature
is investigated by Felipeet. al. in their recent work [15, 16]. In Ref. [17], the effect of an external magnetic field on the chiral
dynamics and confining properties of SQM were discussed in the linear sigma model coupled to the Polyakov loops. The special
properties of magnetized SQM were also investigated with the Nambu-Jona-Lasinio (NJL) model [18–21]. The MIT bag model,
the two-flavor NJL model, and the chiral sigma model had also been compared in studying the magnetized SQM [22].

In literature, the quasiparticle model, where the effective quark mass varies with environment, was also successfullyemployed
by many authors to study the dense strange quark matter in theabsence of an external magnetic field [23–25]. The main advantage
of the quasiparticle model is that it can explicitly describe quark confinement and vacuum energy density for bulk matter[24] and
strangelets [26]. The aim of this article is to extend the quark quasiparticle model to studying the magnetized quark matter. We
find a density- and magnetic-field- dependent bag function. Accordingly, a self-consistent thermodynamic treatment isobtained
with the new version of the bag function. The effect of a magnetic field on the bag function and the stability of magnetized SQM
will be discussed. It is found that the magnetic field makes SQM more stable when the magnetic field strength is less than a
critical value of the order 107 G depending on the QCD scaleΛ.

This paper is organized as follows. In section 2, we derive the thermodynamic formulas in the quasiparticle model when
the magnetic field becomes rather important, and then demonstrate the effective bag function for the case of both constant and
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running coupling respectively. In section 3, the stabilityproperties of magnetized SQM, the effective bag function, and the
mass-radius relation of magnetized quark stars are investigated and discussions are shown about the effect of the magnetic field
and QCD scale parameter. The last section is a short summary.

II. THERMODYNAMIC TREATMENT IN A STRONG MAGNETIC FIELD

The important feature of the quasiparticle model is the medium dependence of quark masses in describing QCD nonperturba-
tive properties. The quasiparticle quark mass is derived atthe zero-momentum limit of the dispersion relations from aneffective
quark propagator by resuming one-loop self-energy diagrams in the hard dense loop (HDL) approximation. In this paper, the
effective quark mass is adopted as [24, 27, 28],

mi(µi) =
mi0

2
+

√

m2
i0

4
+

g2µ2
i

6π2 , (1)

wheremi0 andµi are, respectively, the quark current mass and chemical potential of the quark flavori. The constantg is the
strong interaction coupling. One can also use a running coupling constantg(Q/Λ) in the equations of state of strange matter
instead of a constantg [29]. In our recent work by using phenomenological running coupling [26], the quark masses were
demonstrated to decrease with increasing densities at a proper region.

Here we assume theg value is in the range of(0,0.5), as done in the previous work [24]. The current mass can be neglected
for up and down quarks, while the strange quark current mass is taken to be 120 MeV in the present calculations. Because of the
vanishing current mass is assumed for up and down quarks, Eq.(1) is reduced to the simple form

mi =
gµi√
6π

. (2)

Instead of inserting the effective massmi directly into the Fermi gas expression, we will derive the expressions from the self-
consistency requirement of thermodynamics. The quasiparticle contribution of the flavori to the total thermodynamic potential
density can be written as

Ωi = − diT
(2π)3

∫ ∞

0

{

ln
[

1+ e−(εi,p−µi)/T
]

+ ln
[

1+ e−(εi,p+µi)/T
]}

d3~p, (3)

whereT is the system temperature anddi is the degeneracy factor (di = 3(color) for quarks anddi = 1 for electrons). All the
thermodynamic quantities can be derived from the characteristic function by obeying the self-consistent relation [30].

To definitely describe the magnetic field of a compact star, weassume a constant magnetic field (Bm,z = Bm) along thez
axis. Due to the quantization of orbital motion of charged particles in the presence of a strong magnetic field, known as Landau
diamagnetism, the single particle energy spectrum is [31]

εi =
√

p2
z +m2

i + eiBm(2n+ s+1), (4)

wherepz is the component of particle momentum along the direction ofthe magnetic fieldBm, ei is the absolute value of the
electronic charge (e.g.,ei = 2/3 for the u quark and 1/3 for the d and s quarks),n = 0,1,2, ..., are the principal quantum numbers
for the allowed Landau levels, ands =±1 refers to quark spin up and down state, respectively. For the sake of convenience, we
set 2ν = 2n+ s+1, whereν = 0,1,2, .... The single particle energy then becomes [8]

εi =
√

p2
z +m2

i +2νeiBm. (5)

On application of the quantized energy levels, the integration overd pxd py in Eq. (3) is replaced by the rule,
∫ +∞

−∞

∫ +∞

−∞
d pxd py → 2πeiBm ∑

s=±1
∑
n
. (6)

Because there is the single degenerate state forν = 0 and the double degenerate state forν 6= 0, we assign the spin degeneracy
factor (2−δν0) to the indexν Landau level. The thermodynamic potential density of Eq.(3) in the presence of a strong field can
thus be written as

Ωi(T,mi,µi) =−T
dieiBm

2π2 ∑
v=0

(2− δν0)
∫ ∞

0

{

ln[1+exp(
µi − εi

T
)]+ ln[1+exp(

−µi − εi

T
)]
}

d pz. (7)
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At zero temperature, Eq. (7) is simplified to give

Ωi(mi,µi) = −dieiBm

2π2 ∑
v=0

(2− δν0)
∫

√

µ2
i −M(i)2

ν

0
(µi − εi)d pz

= −dieiBm

2π2

νmax

∑
v=0

(2− δν0)
{1

2
µi

√

µ2
i −M(i)2

ν − 1
2

M(i)2
ν ln(

µi +(µ2
i −M(i)2

ν )1/2

M(i)
ν

)
}

, (8)

whereM(i)
ν =

√

m2
i +2νeiBm is the quark effective mass in the presence of a magnetic field. In the case of zero temperature, the

upper limitνmax of the summation indexν can be understood from the positive value requirement on thelogarithm and square
root function in Eq. (8). So we have

ν ≤ νmax ≡ int[
µ2

i −m2
i

2eiBm
], (9)

where int means the number before the decimal point.
Accordingly, the pressureP, the energy densityE, and the free energy densityF for SQM at zero temperature read [32]

P = −Ω f −B∗, (10)

E = F = Ω f +∑
i

µini +B∗. (11)

HereΩ f = ∑i Ωi is the free quasiparticle contribution with the summation index going over all flavors considered. The notation
B∗ denotes the effective bag function and it can be divided intotwo parts:µi-dependent part and the definite integral constant
part, i.e.,B∗ = ∑i Bi(µi)+B0 (i = u, d, ands) whereB0 is similar to the conventional bag constant andBi(µi) is the chemical
potential dependent function to be determined.

The derivative of the thermodynamic potential densityΩi with respect to the quark effective massmi has an analytical expres-
sion, i.e.,

∂Ωi

∂mi
=

∂Ωi

∂M(i)
ν

∂M(i)
ν

∂mi
=

dieiBm

2π2

νmax

∑
v=0

(2− δν0)mi ln[
µi +(µ2

i −M(i)2
ν )1/2

M(i)
ν

]. (12)

The quark particle number density of the componenti is given as

ni =
dieiBm

2π2

νmax

∑
ν=0

(2− δν0)

√

µ2
i −M(i)2

ν . (13)

In literature, there are three methods to construct a consistent set of thermodynamical functions with the effective quark
masses. One is applied in the quark mass density-dependent model in Refs.[33, 34], where all thermodynamic quantities are
derived by direct explicit function and implicit function dependent relations. The second is the treatment in NJL model, where
the dynamical quark masses are solutions of gap equation coupling the quark condensates [21, 35]. The energy and pressure
functions are modified accordingly. The third method is to get a self-consistent thermodynamical treatment with an effective bag
constant to describe the residual interaction [36]. The effective bag constant acts as a part of a modified pressure function. Here
we employ the third method. The following requirement is introduced and applied as in Refs. [24, 37],

(

∂P
∂mi

)

µi

= 0. (14)

From physical viewpoint, the constraint can make the formula of particle number function consistent with standard statistical
mechanics. From Eqs. (10) and (11), it can be understood thatthe effective bag constant leads an additional term in the
modification in the energy and pressure functions.

Considering Eq.(14), we have the vacuum energy densityBi(µi) through the following differential equation,

dBi(µi)

dµi

dµi

dmi
=−∂Ω f

∂mi
. (15)
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If we assume the vanishing current quark mass, one can integrate Eq. (15) under the conditionBi(µi = 0) = 0 and have

Bi(µi) = −
∫ µi

0

∂Ω f

∂m∗
i

∣

∣

∣

∣

T=0,µi

dmi

dµi
dµi

= −dieiBm

2π2

νmax

∑
ν=0

(2− δν0)

∫ µi

µc
i

α2µi ln(
µi +

√

µ2
i −M(i)2

ν

M(i)
ν

)dµi, (16)

where the lower limit of the integration overµi is different from that in Ref. [24]. Its critical valueµc
i should satisfy

µc2
i −m2

i −2νeiBm ≥ 0 (17)

To reflect the asymptotic freedom of QCD, the calculation must be changed by including the running coupling constant. The
approximate expression for the running quantityg(µ) reads [38],

g2(T = 0,µ) =
48π2

29

[

ln(
0.8µ2

Λ2 )

]−1

, (18)

whereΛ is the QCD scale parameter, the only free parameter in the theory determined by experiments. The magnitude ofΛ
controls the rate at which QCD coupling constant runs as a function of exchanged momentumQ2 (see Ref. [29]). After applying
the running coupling constant (18), the effective bag function in Eq. (16) is changed into,

Bi(µi) = −
∫ µi

0

∂Ω f

∂m∗
i

∣

∣

∣

∣

T=0,µi

dmi

dµi
dµi

= −dieiBm

2π2

νmax

∑
ν=0

(2− δν0)

∫ µi

µc
i

mi ln(
µi +

√

µ2
i −M(i)2

ν

M(i)
ν

)
dmi(µi,g(µi))

dµi
dµi, (19)

where the lower limit of the integrationµc
i satisfiesBi(µc

i = 0). Differently from the constant coupling case, the criticalvalue
µc

i can be obtained by inserting the running coupling constant in Eq. (18) into the condition (17). The value ofµc
i depends not

only on the chemical potential of quarks but also on the Landau energy level.

III. PROPERTIES OF MAGNETIZED STRANGE QUARK MATTER

In this section, the properties of magnetized SQM are studied with the new version of the quasiparticle model in the presence
of a strong magnetic field. We will investigate the properties with a density- and magnetic-field- dependent bag function. Then
we discuss the effect of QCD scale parameter and the strong magnetic field on the effective bag function and strange quark stars.

A. The stability property of bulk magnetized SQM

As usually done, the SQM is treated as a mixture ofu-, d-, s- quarks and electrons with neutrinos entering and leaving the
system freely. To obtain the equation of states (EoS) of magnetized SQM, a set of equilibrium conditions: the weak equilibrium,
baryon number conservation, and electric charge neutrality, should be considered by the following relations [8, 15, 39–41]:

µu + µe = µd = µs, (20)

nu + nd + ns = 3nB, (21)
2
3

nu −
1
3

nd −
1
3

ns − ne = 0. (22)

Eq. (20) is the chemical equilibrium condition maintained by the weak-interaction processes such ass + u → u + d and
s → u+ e+ ν̄e etc., Eq. (21) is from the definition of the baryon number density nB, and Eq. (22) is the charge neutrality
condition. For a given baryon number densitynB, we can obtain the four chemical potentialsµu, µd , µs, andµe by solving the
four equations in (20)-(22). Other thermodynamic quantities, such as the energy density and pressure, can then be calculated
from the formulae derived in the previous section II. A little difference is that the Maxwell contribution have been included in
our numerical calculations, i.e., the quasiparticle contributionΩ f is replaced by [42–44]

Ω = Ω f +
B2

m

2
, (23)
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where the second term is the pure Maxwell contribution of themagnetic field itself.
In Fig. 1, the energy per baryon of magnetized SQM is shown as functions of the density for severalg values. For comparison

purpose, we have also plotted the previous results in Ref. [26] by settingBm = 0. The solid curves are for magnetized SQM,
while the dotted ones are for the corresponding non-magnetized SQM. The two groups of curves have apparently the similar
density behavior. Obviously, however, the magnetized SQM has lower energies than the non-magnetized SQM. To show the
effect of different coupling constants, we adopt three values ofg.
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FIG. 1: The energy per baryon versus the density at fixed coupling constantg = 2,3,4 for magnetic field strength Bm = 1017G. Compared
with the non-magnetized strange quark matter (the dotted curves withBm = 0), the magnetized case has a lower energy per baryon.

In the quasiparticle model, the parameterg stands for the coupling strength and it is related to the strong interaction coupling
constantαs by g =

√
4παs. Therefore, the g value has a large effect on the stability ofSQM [45]. To satisfy the requirement of

QCD asymptotic freedom, the running property of the coupling parametrization should be considered. In Fig. 2, we show the
running coupling constant as functions of the baryon numberdensitynB. The three lines are obtained with different values of
Λ. It is very obvious from Fig. 2 that the running couplingg is a decreasing function of the density. With a biggerΛ value, the
couplingg is also bigger at any fixed density.
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FIG. 2: The running coupling constantg versus the baryon number density at differentΛ values with the magnetic field Bm = 1017G. The
upper lines correspond to larger values ofΛ.

In Fig. 3, we show the same quantities as in Fig, 1 with the running coupling constant, respectively for the two values of the
different magnetic field 1017 G (dashed lines) and 1018G (solid lines). It is clearly seen that the energy per baryonincreases with
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FIG. 3: The energy per baryonE/nB of stable MSQM versus the number density at differentΛ values with the corresponding critical magnetic
field strength Bcm.

increasing the QCD scale parameterΛ, i.e. SQM has a lower energy per baryon with smallerΛ value at a fixed strong magnetic
field. This effect of the QCD scale parameter is consistent with the constant coupling case in Fig. 1, because largerΛ means
bigger coupling as indicated by Eq. (18).

An obvious observation from Fig. 3 is that there is a minimum energy per baryon for each pair of the parametersΛ andBm. In
Fig. 4, therefore, we show how the minimum energy of MSQM varies with the magnetic field strength. The QCD scale parameter
is taken to be 180 MeV (the upper dashed curve) and 120 MeV (thelower solid curve) respectively. It is found on each curve
that there is another minimum value corresponding to a critical magnetic field strengthBc

m. For the values ofΛ = 120 MeV and
180 MeV, the correspondingBc

m equals to 2.15×1017 G and 2.34×1017 G respectively. When the magnetic field strength is less
thanBc

m, the minimum energy per baryon decreases with increasing the strength of the magnetic field. When the magnetic field
strength exceedsBc

m, or equivalently when the magnetic energy scale approachesthe QCD scale, i.e.,
√

eBm ∼ 76.9 MeV, the
field energy itself will have a considerable contribution tothe energy of SQM and hence the energy per baryon increases with
the magnetic field strength. In Fig. 3, the magnetic field strength is taken to be the corresponding critical value.
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FIG. 4: The energy of magnetized strange quark matter varieswith the magnitude of the strong magnetic field for the fixed QCD scale
parameterΛ = 180 MeV (the upper dashed curve) andΛ = 120 MeV (the lower solid curve) respectively. With decreasing the magnetic field
strength, the energy per baryon approaches gradually to thevalue without a magnetic field indicated by a horizontal dash-dotted line.

Because we study magnetized strange quark matter in the ”unpolarized” approximation, it is appropriate to estimate the
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maximum magnetic field strength when such an approximation can be reliable. To this end, in principle, we can investigatethe
polarized quarks with spin up (+) and down (-) by introducingthe polarization parameterξi as [13, 41]

ξi =
n(+)

i − n(−)
i

n(+)
i + n(−)

i

. (24)

wheren(+)
i andn(−)

i denote the number density of spin up and downi-type quarks. For the sake of simplicity, we assume a
common polarization rateξ for u-, d-, ands-quarks, i.e.,ξu = ξd = ξs = ξ . In Sec.II, the summation for fixed spins = +1 or
s =−1 should go over the principal quantum numbersn instead ofν. The degeneracy factor (2− δν0) in Eqs.(7), (8), (12) and
(13) should be deleted because the spin degeneracy disappears for polarized particles. The polarization parameter 0≤ ξ ≤ 1
will decrease with increasing the number density. Assuminglarger value of the polarizationξ = 0.6, the energy is enlarged by
4.5%. In fact, even for very larger magnetic fieldBm = 5×1018G , the parameterξ remains in the range (0.01∼ 0.02) when the
densitynB > 0.2 fm −3 [13]. We do the numerical calculation and find that the free energy per baryon will be enlarged by 0.8%
at ξ = 0.1. So the effect of the unpolarized approximation on the discussion of the stability of SQM is very small especially
when the magnetic strength is less than 1018G which is an estimated maximum possible strength of the interior magnetic field.

B. The effective bag function for magnetized SQM

The effective bag functionB∗ is generally used to represent the vacuum energy density fordense QCD matter [46]. Com-
paring it with the standard Statistical Mechanics, one can recover the thermodynamics consistency of system density and/or
temperature- dependent Hamiltonian with the extra termB∗. The meaning ofB∗ plays an important role in studying properties
of quark matter. The interpretation ofB∗ was first given by Gorenstein and Yang in Ref.[37]. In quasiparticle model, because the
dispersion relation is density and/or temperature dependent, B∗ is regarded as the system energy in the absence of quasi-particle
excitations, which cannot be discarded from the energy spectrum [47]. In this sense,B∗ acts as the bag energy or bag pressure
through the application in bag-like model. One can interpret the confinement mechanism consideringB∗ as the difference of
perturbative vacuum and physical vacuum.

In addition to the constant valueB0 of the bag model, the expression ofB∗ has been developed in several different forms. Li,
Bhalerao, and Bhaduri obtained the temperature dependent bag constant in the QCD sum-rule method [48]. Song obtained aµ-
andT - dependent bag constant by incorporating one-loop correction in imaginary time formulation of finite temperature field
theory [49],

B∗(µ ,T ) = B0− [
1

162π2 µ4+
1
9

µ2T 2+
7π
30

T 4]. (25)

In the work of Burgio [50], the Gaussian parametrization of density dependence ofB∗ is employed as,

B∗(nB) = B∞ +(B0−B∞)exp(−γ(nB/n0)
2), (26)

where the parametersB∞, γ, andn0 are given in Ref. [50]. The effective bag constants in these previous works are all monoton-
ically decreasing functions of the density and temperature[51]. In our present work, the effective bag functionB∗ is associated
with a magnetic field, and consequently has a different density behavior. We thus plot the effective bag functionB∗ versus the
baryon number density with differentΛ values in Fig. 5. The dashed lines are for the magnetic field strengthBm = 1017G, while
the solid lines are for a higher magnetic strengthBm = 1018G. The open circles indicate non-magnetized SQM. The numerical
results show an important property that the effective bag functionB∗ remains decreasing monotonously with increasing densities
for smallerΛ = 120 MeV. But for larger valueΛ = 180 or 200 MeV, the bag functionB∗ has a maximum value at about 2∼ 3
times the nuclear saturation density 0.16 fm−3. Generally, when the QCD scale parameter is bigger than the critical value 126
MeV, the effective bag function is not a monotonic function and reach a maximum valueB∗

max at the density range 0.3∼ 0.4
fm−3.

Since the QCD scale parameterΛ plays a great role on the effective bag functionB∗, we plot the bag functionB∗ of stable
SQM, i.e.,P = 0, versusΛ on the left axis Fig, 6. If one requires that the bag functionB∗ should be a non-monotonic decreasing
function of the density, theΛ value should be bigger than the critical value 126 MeV. The corresponding baryon number density
nB marked by a dashed line on the right axis is also plotted. The bag functionB∗ and the baryon number densitynB all increase
with the QCD parameterΛ.

C. Mass-radius relation of magnetized strange quark stars

Strange quark stars (SQS), a family of compact stars consisting completely of deconfinedu, d, s quarks, have attracted a
lot of researchers. The gravitational mass (M) and radius (R) of compact stars are of special interests in astrophysics.The
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FIG. 5: The effective bag functionB∗ for magnetized SQM versus the baryon number density at different Λ values. Bm = 1017G and
Bm = 1018G are marked by dashed lines and solid line respectively. Only for largerΛ, theB∗ has a maximum valueB∗
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FIG. 6: Λ dependence of the bag functionB∗ (solid line) and baryon number density (dashed line) corresponding to the zero pressure. TheΛ
should be larger than the critical value 126 MeV to produce a non-monotonic behavior ofB∗.

strange quark stars were studied by many authors as self-bound stars different from neutron stars. It is pointed out thatthe
possible configuration of compact stars, such as the strangehadrons, hyperonic matter and quark matter core, can softenthe
equation of states of neutron stars [52–54]. In this section, we calculate the mass-radius relation of magnetized SQS together
with the effective quark mass scale. Using the EoS of magnetized SQM in the proceeding sections, we can obtain M and R by
numerically solving Tolman- Oppenheimer-Volkoff (TOV) equations when fixing a central pressurePc. Varying continuously
the central pressure we can obtain a mass-radius relationM(R) in Fig. 7. The stable branches of the curves must satisfy the
conditiondM/dPc > 0. In this way, we can find the maximum mass along the same curve, which is denoted by full dots in
Fig. 7. Other solutions, on the left side of the maximum mass,are unstable and collapsible.

It is seen from Fig. 7 that the maximum mass is bigger with a smaller Λ value and an extremely large magnetic field. However,
it is still not as big as the recently observed maximum mass ofPSR J1614-2230 [55]. This may mean that a simple ordinary
phase can not explain the large mass. Some new phases, e.g., the supperconductivity phase in dense matter [56–58], should be
further studied in the future.
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FIG. 7: The mass-radius relation of SQS at differentΛ values with different magnetic fields Bm = 1017G (dashed lines) and Bm = 1018G (solid
lines). The maximum masses on all curves are marked by full dots.

IV. SUMMARY

We have extended the quark quasiparticle model to study the properties of strange quark matter in a strong magnetic field at
finite density. The self-consistent thermodynamic treatment is obtained through an additional bag function. The bag function
depends not only on the quark chemical potentials but also onthe magnetic field strengthBm. By comparison with the non-
magnetized quark matter, we find that the magnetic field can enhance the stability of SQM when the magnetic field strength is
lower than a critical value of the order 1017 G. But when the magnitude of the magnetic field is larger than the critical valueBc

m,
the magnetic energy will have a considerable contribution to the energy of SQM. So the energy per baryon of MSQM increases
with increasing the field strength. Because the quark massesdepend on the corresponding chemical potential, an additional
effective bag function, which depends not only on the chemical potentials but also on the magnetic field strength, appearin both
the energy density and pressure. The effective bag functionhas a maximum at about 2∼ 3 times the saturation density when
the QCD scale parameter is larger than 126 MeV. Although an unpolarized approximation is assumed, we find the energy per
baryon would increase by 0.8% for the usual polarization parameter whennB > 0.2 fm−3.

On application of the new equation of state of the magnetizedstrange quark matter in ordinary phase to calculate the mass-
radius relation of a quark star, it is found that the maximum mass does not explain the the newly observed maximum mass of
about two time the solar mass. This means that other phases, e.g. supperconductivity and/or mixed phases, might be necessary
to explain the new astronomic observations, and further studies are needed.
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