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Abstract

We consider a simplified version of supersymmetric smooth hybrid inflation which
contains a single ultraviolet cutoff mP = 2.4 × 1018 GeV, instead of the two cutoffs mP

and M∗ ∼ few ×1017 GeV that are normally employed. With global supersymmetry
the scalar spectral index ns ≃ 0.97, which is in very good agreement with the WMAP
observations. With a non-minimal Kähler potential, the supergravity version of the model
is compatible with the current central values of ns and also yields potentially observable
gravity waves (tensor to scalar ratio r . 0.02).

Supersymmetric (SUSY) hybrid inflation models [1, 2], provide an interesting possibility of
realizing inflation in the grand unified theories (GUTs) of particle physics [3]-[9]. Among its
attractive feature are the solution of eta problem, adequately suppressed supergravity (SUGRA)
corrections and consistency with the recent WMAP7 data [10]. In the standard version of susy
hybrid inflation, gauge symmetry is usually broken at the end of inflation. This implies that the
topological defects (such as monopoles), if present, are produced after the inflation and their
presence is in contradiction with the experimental observations. In order to solve this problem
of topological defects, various extensions of susy hybrid inflation have been proposed. Among
all these variants, shifted [5] and smooth [11] hybrid inflation models are the simplest ones. In
these models inflation occurs along the ‘shifted’ tracks where gauge symmetry is broken during
inflation. This then solves the problem of topological defects by inflating them away and by
reducing their density under the observational limits. However, in contrast to shifted hybrid
inflation, in the smooth hybrid inflation scenario inflation ends smoothly without any water
fall effect.

In this brief report we will consider a simplified version of smooth hybrid inflation model. By
simplified we mean that the ultraviolet (UV) cutoff scale of the underlying theory is identified
with the reduced Planck mass mP ≃ 2.4 × 1018 GeV. As we will show, the potential for
smooth hybrid inflation based on a minimal Kähler potential does not realize inflation with
sub-Planckian values of the field. However, by employing a non-minimal Kähler potential, one
can realize inflation with predictions that are consistent with the WMAP7 data. We obtain
in this case a scalar spectral index ns within the WMAP7 1-σ bounds, and a large tensor to
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scalar ratio (canonical measure of gravity waves) r . 0.02. The parameter region explored in
this report is expected to be tested soon by the Planck surveyor.

The simplified smooth inflation is defined by the superpotential W ,

W = S

(

µ2 − (ΦΦ)2

m2
P

)

, (1)

where S is a gauge singlet superfield, Φ and Φ are a conjugate pair of superfields transforming
as nontrivial representations of some gauge group G, and µ is a superheavy mass. Note that
in the expression for W the UV cutoff mP (reduced Planck mass) has replaced the cutoff
M∗ normally employed in smooth hybrid inflation models. Both W and S carry the same
R-charge, while the combination ΦΦ is neutral under U(1)R. In addition, W respects a Z2

symmetry under which S is even and the combination ΦΦ is odd. Thus, W is the most general
superpotential with leading order non-renormalizable term which is consistent with the R, Z2

and gauge symmetries.
The SUGRA scalar potential is given by

VF = eK/m2

P

(

K−1
ij DZi

WDZ∗

j
W ∗ − 3m−2

P |W |2
)
∣

∣

∣

Zi=zi
, (2)

with zi ∈ {s, φ, φ, · · · } being the bosonic components of the superfields Zi ∈ {S, Φ, Φ, · · · },
and we have defined

DZi
W ≡ ∂W

∂Zi
+m−2

P

∂K

∂Zi
W, Kij ≡

∂2K

∂Zi∂Z∗
j

,

DZ∗

i
W ∗ = (DZi

W )∗. The minimal Kähler potential can be expanded as

K = |S|2 + |Φ|2 + |Φ|2. (3)

In the D-flat direction (φ
∗
= φ), and using Eqs. (1, 3) in Eq. (2), we obtain

V = µ4

[

(

1− |φ|4
M4

)2

+ 8
|s|2 |φ|6
M8

+ · · ·
]

, (4)

where M =
√
µmP is the vacuum expectation value (vev) of φ at the global SUSY minimum

(s = 0, 〈φ〉 = M). This potential is displayed in Fig. 1 which shows two valleys of minima
y±(x) given in the large x limit by

y± ≡ ±
√

√

1 + (3 x2)2 − 3 x2 ≈ ± 1√
6x

, (5)

where y ≡ |φ|/M and x ≡ |s|/M .
During inflation (y = y+ and x ≫ 1), and excluding SUGRA corrections, the potential is

given by,

V ≃ µ4

(

1− 1

54 x4

)

. (6)
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Figure 1: The scalar potential V of global susy smooth hybrid inflation as a function of φ and
s.

It is interesting to note that a similar form of the potential is obtained in D-brane inflation
model [12].

Using (leading order) slow-roll approximation, the scalar spectral index ns, the tensor to
scalar ratio r, and the running of the scalar spectral index dns/d ln k are given by

ns ≃ 1 + 2 η − 6 ǫ ≃ 1− 5

3N0

(7)

r ≃ 16 ǫ ≃ 8(2π∆R)
2/5

27N2
0

(8)

dns

d ln k
≃ 16 ǫ η − 24 ǫ2 − 2 ξ2 ≃ − 5

3N2
0

. (9)

Here,

ǫ =
1

4

(mP

M

)2
(

V ′

V

)2

, η =
1

2

(mP

M

)2
(

V ′′

V

)

, ξ2 =
1

4

(mP

M

)4
(

V ′V ′′′

V 2

)

, (10)

N0 is the number of e-folds during inflation,

N0 = 2

(

M

mP

)2 ∫ x0

xe

(

V

V ′

)

dx, (11)

and the amplitude of the curvature perturbation is given by

∆2
R =

1

24 π2

(

V/m4
P

ǫ

)
∣

∣

∣

∣

x=x0

, (12)
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where ∆2
R = (2.43± 0.11)× 10−9 is the WMAP7 normalization at k0 = 0.002Mpc−1 [10]. The

quantity x0 denotes the field value at the pivot scale k0, and xe is the field value at the end
of inflation, defined by |η(xe)| = 1. For N0 = 50, we obtain ns ≃ 0.968, r ≃ 3 × 10−6 and
dns/d ln k ≃ −7× 10−4, with x0 ≃ 5 and M ≃ 6× 1016 GeV.

Including SUGRA corrections [13, 14] with minimal (canonical) Kähler potential modifies
the above potential,

VSUGRA ≃ µ4

(

1− 1

54 x4
+

(

M

mP

)2
8

54 x2
+

(

M

mP

)4
x4

2

)

. (13)

Taking values of x0 and M extracted from the global susy potential one easily checks that
the sugra corrections dominate the global susy part. Thus, sugra corrections can be expected
to significantly alter the predictions of ns and r found earlier. In ‘simplified smooth hybrid
inflation’ (M∗ = mP ) with minimal (canonical) Kähler potential, these sugra corrections require
transplanckian field values corresponding to 50-60 e-folds of inflation. However, this requirement
invalidates the sugra expansion itself. This is in contrast to ‘standard smooth hybrid inflation’
where the cutoff scale M∗ is allowed to vary below mP . Thus by suppressing sugra corrections
somewhat we can obtain values of ns just inside the WMAP7 2-σ bounds, although with tiny
values of r.

In order to obtain WMAP7 consistent red-tilted spectrum (ns ≃ 0.97) with observable
values of r in the simplified smooth hybrid inflation, we consider, following Refs. [15, 16], a
non-minimal Kähler potential. [For ‘regular and standard smooth hybrid inflation’ with non-
minimal Kähler potential see Refs. [19, 20]]. The Kähler potential with non-minimal terms is
given by,

K = |S|2 + |Φ|2 + |Φ|2

+κS
|S|4
4m2

P

+ κΦ

|Φ|4
4m2

P

+ κΦ

|Φ|4
4m2

P

+ κSΦ
|S|2|Φ|2
m2

P

+ κSΦ

|S|2|Φ|2
m2

P

+ κΦΦ

|Φ|2|Φ|2
m2

P

+κSS
|S|6
6m4

P

+ · · · . (14)

The corresponding scalar potential takes the following form,

V ≃ µ4

(

1− 1

54 x4
+

(

−κS x
2 +

8 + 3 κS

54 x2

)(

M

mP

)2

+ γS

(

M

mP

)4
x4

2

)

, (15)

where γS = 1 − 7κS

2
+ 2κ2

S − 3κSS. We have suppressed radiative corrections in the above
potential since there is no direct renormalizable coupling of the inflaton with the other fields.
We have also ignored the soft susy breaking terms as their contribution will be negligible in the
parameter range consistent with the WMAP7 (2σ) bounds [17, 18].

The predictions for the various inflationary parameters are obtained by employing the slow-
roll approximation and are displayed in Figs. (2-4). To achieve better precision in the numerical
results, we have also included the next-to-leading order corrections [21, 22] in the slow roll
expansion for the quantities ns, r, dns/d ln k, and ∆R. We require (|κS|, |κSS|) ≤ 1 and
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Figure 2: r (left panel) and µ (right panel) vs ns with N0 = 50. The WMAP7 1-σ and 2-σ
bounds are shown in the dark and light red regions respectively. The upper and lower boundary
curves for r and µ represent the |s0| = mP and κSS = −1 constraints, respectively.

|s0| ≤ mP . It is important to note that with |κS| ∼ 1 the slow-roll parameter η becomes large
and inflation ends quickly without having enough number of e-folds. However, as discussed
below, the WMAP data in our case favors the smaller values of |κS| . 0.04. For a discussion
of η problem with |κS| & 1, see Ref. [25], where these uncertainties of Kähler potential become
insensitive, since inflation is driven near the inflection point.

In Fig. (2) we have presented the behavior of r and µ with respect to ns along with the
WMAP7 1-σ and 2-σ bounds. The upper bound on r comes from the constraint |s0| ≤ mP ,
whereas the lower boundary curve represents the κSS = −1 constraint. These plots show that
with the help of non-minimal Kähler potential, r can be increased by up to four orders of
magnitudes as compared to its value from the global susy potential. The large r solutions,
however, require values of M larger than the grand unified theory (GUT) scale ∼ 2× 1016 (see
Fig. (3)). From Eq. (12) and the definition M ≡ √

µmP , one finds the following approximate
relation,

r ≃
(

2

3 π2∆2
R

)(

M

mP

)8

=

(

M

3.35× 1016GeV

)4(

M

mP

)4

. (16)

This relation provides a reasonable estimate of the otherwise more accurately calculated nu-
merical result displayed in Fig. (3). However, this relation alone is insufficient to explain the
upper bound on the values of r which is discussed below in some detail. Furthermore, the
values of dns/d ln k shown in the right panel of Fig. (3) are reasonably small and in accord with
the WMAP7 data assumptions.

In Fig. (4), left panel, we show how r varies with respect to κS, while the right panel shows
the relationship between κSS and γS to κS. As anticipated, the minimal case with (κS, κSS) =
(0, 0) is not consistent with the WMAP7 1-σ and 2-σ bounds. Moreover, in agreement with
earlier observations (Refs. [15, 16, 23]), large (observable) r solutions are obtained with the
potential form, V/µ4 ≃ 1+ quadratic - quartic, with (κS, γS) < (0, 0), as shown in the right
panel of Fig. (4). This behavior can be explained with the requirements V ′(x0) > 0 and
V ′′(x0) < 0 (or ns < 1), with ǫ(x0) ≪ η(x0) at the pivot scale. Consider the following
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Figure 3: Behavior of r with respect to M (left panel) and d lnns/dk (right panel) for N0 = 50.
The WMAP7 1-σ and 2-σ bounds are shown in the dark and light red regions respectively.
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Figure 4: r, γS and κSS as a function of κS with N0 = 50. The WMAP7 1-σ and 2-σ bounds
are shown in the dark and light red regions respectively.

approximate form of ǫ and η,

ǫ ≃ f 2

(

(M/mP )
4

27 f 6
− κS + γS f

2

)2

, η ≃ 5 (M/mP )
4

27 f 6
− κS + 3 γS f

2, (17)

where, f ≡ |s|/mP . In the large r limit, the contribution from the global susy part of the
potential is negligible at the pivot scale, and it becomes important only near the end of inflation.
After neglecting this contribution, one can check that the choice (κS, γS) < (0, 0) is the only
possibility which is consistent with large values of r and a red-tilted spectrum ns < 1.

Next we turn our attention to the explanation of the upper bound on r. It might be tempting
to justify the observed upper limit on r through the well known bound [24],

r . 0.006

(

50

N0

)2(

∆s

mP

)2

, (18)

which is derived with the assumption of a monotonically increasing ǫ during inflation. With
N0 = 50 and s0 = mP , the bound in eq. (18) predicts r . 0.006, which is in apparent
contradiction with our result r . 0.02. Actually, the assumption of monotonically increasing
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Figure 5: ǫ(x) and η(x) as function of N(x) for r = 10−2 (left panel) and r = 10−6 (right panel),
with ns = 0.968 and N0 = 50.

ǫ breaks down for the large r solutions, as shown explicitly in Fig. (5) for the central value of
the scalar spectral index ns = 0.968. (Also, see Refs. [26, 27] for large r solutions with small
field excursions in the context of this bound.).

Let us consider the following relation for the variation of ǫ,

ǫ′(x) = 2

(

M

mP

)√
ǫ (η − 2 ǫ). (19)

During inflation η remains dominant over ǫ and controls the evolution of ǫ. For large r solutions
inflation starts and ends with η < 0 (recall that η(x0) < 0 is required for red-tilted spectrum
and η(xe) = −1), while passing through the inflection point η = 0. The change in the sign of η
actually introduces the non-monotonic behavior of ǫ as shown in Fig. (5). Therefore, Eq. (18)
underestimates the upper bound on r in this case.

It is interesting to note that the small r solutions do exhibit a monotonic behavior of ǫ
(see the right panel of Fig. (5)). This comes from the fact that the small r solutions favor
(κS, γS) > (0, 0), since large values of the field generate a blue-tilted spectrum ns > 1 caused
by positive values of η(x0) > ǫ(x0) > 0. Therefore, during inflation the quartic term remains
sub-dominant and this makes η negative and ǫ monotonically increasing.

In order to provide a semi-analytical estimate for the upper bound on r, we employ Eqs. (16-
17) with f0 = 1 to approximate the number of e-folds,

N0 ≃
1

−6 κS
ln

[

27

20

(

mP

3.35× 1016GeV

)2 −κ3
S

(−κS + γS)
4

]

, (20)

with,

γS ≃ −
(

1− ns − 4 κS

6

)

, r ≃ 16 (−κS + γS)
2. (21)

Now, for a given value of ns and N0, one can calculate the values of κS, γS and r. For
ns = 0.968 we obtain κS ≃ −0.047, γS ≃ −0.026 and r ≃ 0.011, which is in good agreement
with our numerical results.
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Before summarizing our results, a few remarks regarding the validity of the slow-roll ap-
proximation, for the large r solutions, are in order. As already shown in Fig. 5, the first
two slow-roll parameters ǫ and η are reasonable small during inflation. The only higher order
slow-roll parameters, relevant for the present discussion, are ξ2 and σ3,

ξ2 ≃
√
ǫ

(

30 (M/mP )
4

27 f 7
+ 6 γS f

)

, σ3 ≃ ǫ

(−70 (M/mP )
4

9 f 8
+ 6 γS

)

. (22)

As mentioned above, the contribution from the global susy part of the potential is negligible
during inflation and becomes important only near the end of inflation. Therefore, in our case the
slow-roll parameters ξ2 ≃ 6

√
ǫ γS f ≪ 1 and σ3 ≃ 6 ǫ γS f ≪ 1 are suppressed during inflation.

This implies that the power law form of the primordial power spectra, as employed in the
WMAP data analysis, is still a good approximation with negligible higher order contributions,
for example from the running of dns/d ln k etc.

To summarize, we have considered a simplified version of smooth hybrid inflation with
a single UV cutoff mP . With minimal Kähler potential, the presence of sugra corrections
invalidates the otherwise successful inflation obtained with the global susy part of the potential.
However, with a non-minimal extension of the Kähler potential we obtain a red-tilted spectrum
consistent with the WMAP7 data, and we also achieve up to four orders of magnitude increase
in the value of r(∼ 0.02), compared to the global susy result r ∼ 10−6. These large r solutions
can be expected to be observed by the PLANCK satellite.
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