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Abstract

We consider a new large-N limit, in which the ’t Hooft coupling grows with N . We

argue that a class of large-N equivalences, which is known to hold in the ’t Hooft limit,

can be extended to this very strongly coupled limit. Hence this limit may lead to a

new way of studying corrections to the ’t Hooft limit, while keeping nice properties of

the latter. As a concrete example, we describe large-N equivalences between the ABJM

theory and its orientifold projection. The equivalence implies that operators neutral

under the projection symmetry have the same correlation functions in two theories at

large-N . Usual field theory arguments are valid when ’t Hooft coupling λ ∼ N/k is fixed

and observables can be computed by using a planar diagrammatic expansion. With the

help of the AdS/CFT correspondence, we argue that the equivalence extends to stronger

coupling regions, N � k, including the M-theory region N � k5. We further argue

that the orbifold/orientifold equivalences between certain Yang-Mills theories can also be

generalized. Such equivalences can be tested both analytically and numerically. Based on

calculations of the free energy, we conjecture that the equivalences hold because planar

dominance persists beyond the ’t Hooft limit.
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1 Introduction and summary

The ’t Hooft large-N limit (planar limit) of gauge theories [1], in which the ’t Hooft

coupling is fixed, plays a prominent role in theoretical particle physics. The diagrammatic

1/N expansion of gauge theories in the ’t Hooft limit can be regarded as the genus

expansion of a string theory. It is then expected that the large-N limit of a gauge theory

provides a nonperturbative formulation of a string theory. Indeed the AdS/CFT duality

[2] (or more generally the gauge/gravity duality [3]) provide us with concrete realizations.

In the strict large-N limit, only planar diagrams survive. In the gravity language,

this corresponds to the classical string limit. Theories drastically simplify in this limit,

and surprising properties hold even in theories without a gravity dual. In particular,

seemingly very different theories become equivalent. The first examples are the Eguchi-

Kawai equivalence, which claims that certain gauge theories and matrix models become

equivalent [4], and the equivalence between pure Yang-Mills theories with U(N), O(2N)

and USp(2N) gauge groups [5]. Today these equivalences are understood as special cases

of the orbifold equivalence and orientifold equivalence [6], which were found soon after

the discovery of the AdS/CFT correspondence. The equivalences imply that, when one

considers two theories related by the orbifold or orientifold projection, operators neutral

under the projection symmetry have the same correlation functions in the two theories.

There are equivalences for theories with and without gravity duals [7, 8], and they also

have valuable applications in non-supersymmetric theories [9, 10, 11], including realistic

large-N QCD at finite density [12, 13, 14, 15]1 and confinement in pure Yang-Mills theory

[20, 21, 22]. Therefore it is important to understand these equivalences further. In

particular, it is interesting to see if equivalences can be generalized outside the ’t Hooft

limit. In this paper, we argue that such equivalences indeed can be valid even outside the

’t Hooft limit, in a regime where the ’t Hooft coupling grows with N , at least for a class

of theories.

The key observation comes from the N = 6 supersymmetric U(N) × U(N) Chern-

Simons-matter theory with level k, which has been proposed by Aharony, Bergman, Jaf-

feris and Maldacena (ABJM) as the theory of N M2 branes on a Zk orbifold [23]. When

N � k5 the ABJM theory was conjectured to have a holographic dual description in terms

of M-theory on AdS4×S7/Zk. Since the ’t Hooft coupling of the theory is λ = N/k, this is

1See also [16, 17] for earlier related works. Although a proof given in [12, 13] is applicable only to all

orders in perturbation theory, there is fairly good evidence that the equivalence holds nonperturbatively;

see [13, 14, 18]. For more recent work on this topic see [19].
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not the ’t Hooft limit2. On the other hand, at k � N � k5, which includes the ’t Hooft

limit (with an O(N0) but strong ’t Hooft coupling constant) the theory is dual to the

reduction of M-theory on the modded circle, type IIA superstring theory on AdS4×CP 3.

According to the ABJM proposal, the large-N behavior of the ABJM theory captures the

tree level properties of gravity, both in the type IIA and M-theory regions. It enables us

to make nontrivial statements on the ABJM theory via the AdS/CFT correspondence, by

studying the gravity side. In [25], it has been pointed out that there are orbifold equiv-

alences that can be seen on the gravity side [6] and that extend to the M-theory region

without any modification, and that a new orbifold equivalence exists in the M-theory

region, which relates U(kN)1 ×U(kN)−1 and U(N)k ×U(N)−k theories. Furthermore in

[27] it has been shown that this equivalence can naturally be derived on the field theory

side if we assume mirror symmetry, the equivalence can then be understood as the usual

type of orbifold equivalence but between the mirror theories.

In this paper we consider yet another equivalence, which is probably more familiar to

many of the readers: the equivalence between the U(2N)2k × U(2N)−2k ABJM theory

and its orientifold projection, O(2N)±2k × USp(2N)∓k (ABJ model) [28, 29],

U(2N)2k × U(2N)−2k → O(2N)±2k × USp(2N)∓k. (1.1)

As we will see in section 3, these theories are the low-energy fixed points of type IIB

brane configurations which are equivalent through the orientifold equivalence (Fig. 1). In

the ’t Hooft limit of the ABJM theory, where λ = N/k is fixed, the equivalence in the

four-dimensional theory (UV) guarantees the equivalence at the fixed points (IR), namely

between the ABJM and ABJ theories. The equivalence in the ’t Hooft limit immediately

follows from previously known field theory techniques, and can also be shown by using

the IIA superstring description, thanks to the AdS/CFT duality (Fig. 2). On the other

hand, when k is smaller than O(N1), the fixed point is outside the planar region of the

UV theory, and so it is not guaranteed a priori that the two four-dimensional theories will

flow to the IR fixed points related by the orientifold projection, but we know this should

be the case thanks to the explicit construction of the fixed points. (It is possible that the

large amount of symmetry helps to avoid possible corrections.) It strongly suggests that

the orientifold equivalence between ABJM and ABJ holds even in this region. Indeed, at

k � N � k5 and N � k5, we can use the IIA superstring and M-theory descriptions

to show the equivalence, along the lines of [25] (Fig. 2,Fig. 3)3. Then it is natural to

2Fixed-k large-N limit has also been studied in other theories. See [24].
3Here we assume a stronger version of the Maldacena conjecture, which claims the gravity description

is valid even outside the planar region as long as the stringy correction to the background metric is small,
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expect the equivalence to hold in the intermediate region N ∼ k5 (λ ∼ N4/5). Actually,

evidence for the equivalence can already be seen in the calculation of the free energy

[31, 32, 33, 34, 35] based on the localization method [36], it was found that there is no

singularity around N ∼ k5 and the free energy of the O(2N)2k×USp(2N)−k theory is half

of the free energy of the U(2N)2k ×U(2N)−2k theory, as expected from a Z2 projection4.

We further argue that the combination of the mirror symmetry and planar orientifold

equivalence between mirrors provides us with other equivalences between more generic

quiver theories.

Figure 1: UV theories of the ABJM and ABJ theories are related by the orientifold

projection and are equivalent. They flow to IR fixed points, ABJM and ABJ theories,

which are again related by the orientifold projection. This suggests that the equivalence

between ABJM and ABJ, although this argument has a subtlety explained in section 3.

As a byproduct, we can reproduce a curious relation found in [28]; in the M-theory

region, in addition to the orbifold equivalence explained here, there is an equivalence

between two ABJM theories [25, 27]

U(2N)2k × U(2N)−2k → U(N)4k × U(N)−4k, (1.2)

as mentioned above, and by combining (1.1) and (1.2) one obtains

U(N)4k × U(N)−4k → O(2N)±2k × USp(2N)∓k. (1.3)

For k = 1, this equivalence (1.3) represents the quantum mechanical duality between the

U(N)4 × U(N)−4 ABJM theory and the ABJ theory as pointed out in [28] and can exist

is correct. There are several observations supporting this assumption, including the Monte Carlo data

from the D0-brane matrix quantum mechanics [26, 53] and exact calculation of BPS observables based

on the localization method [61, 36].
4Similar calculations [37] suggest that the Eguchi-Kawai equivalence for the supersymmetric Chern-

Simons-matter theories [38, 39] can be extended to the M-theory region.
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Figure 2: The orientifold equivalence in the IIA superstring region (k � N � k5).

The equivalence in the gravity side can be translated into the gauge theory side via the

AdS/CFT duality. In the planar limit (λ = N/k fixed) the equivalence can also be shown

directly in the gauge theory side, without referring to the gravity side. See section 4 for

details.

Figure 3: The orientifold equivalence in the M-theory region (k5 � N , N → ∞). The

equivalence in the gravity side can be translated into the gauge theory side via the

AdS/CFT duality. Usual proof for the ’t Hooft limit does not apply in the gauge theory

side. See section 4 for details.
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in the presence of discrete holonomy of the 3-form potential. Although the equivalence

(1.1) holds both in IIA and M regions, (1.2) holds only in the M-theory region and hence

the equivalence (1.3) as well.

At first sight, the equivalence (1.1) looks surprising from a string theory point of view;

it seems as if a nice property of the classical type IIA string (’t Hooft limit) survives

at quantum string level, after summing up the string loop corrections (1/N corrections)

to all orders. Probably, however, quantum string corrections do not play an important

role; actually, in the explicit solution to the ABJM free energy [31, 32, 33, 34, 35], which

is obtained by using the localization method, the higher genus terms (higher orders in

gst) do not involve higher enough powers of λ to compensate the suppression due to gst,

and hence only the planar diagrams survive even when λ grows with N . Indeed the free

energy takes the same form in IIA- and M-regions 5 . If this is really the case, the planar

large-N equivalence, and also other beautiful properties in the planar limit, can naturally

be generalized, which would make studies of the classical M-theory within reach.6 It is

very interesting to study whether this property holds in other theories. Although direct

test of the equivalence between supersymmetric Chern-Simons-matter theories would be

difficult except for BPS sector where the localization method is applicable, in § 6 we

argue that a similar equivalence can hold between certain Yang-Mills theories, for which

full numerical simulation is applicable.

The content of this paper is as follows: in § 2 we explain the orientifold projection from

the perspective of the ABJM field theory. In § 3 and § 4 we give the brane constructions

and gravity duals of the ABJM and ABJ theories, respectively, and show the orientifold

equivalence. In particular, in § 4.1 we show the equivalence for gauge groups with different

ranks. In § 5 we extend the equivalence to the mirror quiver theories. In § 6 we argue

the same equivalence can hold in certain Yang-Mills theories and their orbifold/orientifold

daughters.

5The leading part is
√
2π
3

N2
√
λ

in the IIA limit. Although there is a correction of the form∑∞
g=0 cg(N

2/λ2)1−g [34, 31, 33], where cg are constants, that gives at most a constant contribution

in the M-theory limit. Therefore the leading term remains the same,
√
2π
3

N2
√
λ

=
√
2π
3

√
kN3/2. This is

consistent with a prediction from the gravity side [23].
6This reminds us of the fact that the 1/N expansion makes sense in the strong coupling limit of the

lattice gauge theory [64]; note that this limit, in which the lattice coupling is sent to infinity for each

fixed N , is similar to our limit. In early days of the study of large-N , based on the observation at strong

coupling, quite a few people speculated that the planar calculation is valid even outside the ’t Hooft limit.

However at that time there was no explicitly calculable example. We thank H. Kawai for enlightening

comments on this point.
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2 Orientifold projection from ABJM to ABJ

We start by describing the orientifold projection of the ABJM theory with gauge group

U(2N)× U(2N) to the ABJ theory with O(2N)× USp(2N) group. The field content of

ABJM consists of two N = 2 U(2N) vector multiplets, an adjoint chiral multiplet for each

gauge group and four chiral multiplets in the bifundamental representation, that we will

denote as Aa, Ba, a = 1, 2. The action includes a Chern-Simons term for the gauge fields

and its supersymmetric completion and after integrating out the adjoint chiral multiplet,

a superpotential for the bifundamental multiplets [23, 29]

W =
2

k
tr(A1B1A2B2 − A1B2A2B1), (2.4)

where we absorbed the 2π factors in k compared with the normalization of [23]. Remem-

ber that this superpotential is obtained by using the similar method in [30] where the

superpotential is obtained via the RG flow of a d = 4 N = 2 gauge theory.

The orientifold projection acts differently on the two U(2N) gauge groups, projecting

one to an orthogonal O(2N) group and the other to a unitary symplectic group USp(2N).

Denoting the gauge field of O(2N) by Aµ, the gauge field of USp(2N) by Ãµ, and the

scalar components of the bifundamental fields by Φα = (B̄2, A1, A2, B̄1), the projected

fields satisfy the relations

Aµ = −ATµ , Ãµ = −JÃTµJ−1, Φ̄α = (Cα
βJΦT

β ), (2.5)

where J is the antisymmetric invariant tensor of USp(2N) which satisfies J2 = −1. The

antisymmetric tensor Cα
β is defined as iσ2⊗1. The projection of the fermionic components

is similar to that of scalars Φα. The condition on the scalars can also be expressed as

A1 = BT
2 J, A2 = −BT

1 J. (2.6)

The action for the fields in the projected theory is obtained directly by projecting the

original ABJM action [23]. After the projection the superpotential becomes

W =
2

k
tr(A1JA

T
1A2JA

T
2 − A1JA

T
2A2JA

T
1 ). (2.7)

The kinetic term for the gauge fields is a Chern-Simons term, originally with opposite

levels k and −k for the two U(2N) gauge groups. Using (A.49), the Chern-Simons action

for the O(2N) group becomes

k

2
εµνρtr

(
Aµ∂νAρ +

2

3
AµAνAρ

)
=
k

2
εµνρtr

(
Aµ∂νAρ +

1

3
Aµ[Aν , Aρ]

)
=
kC(G)

2
εµνρ

(
Aaµ∂νA

a
ρ +

i

3
fabcAaµA

b
νA

c
ρ

)
. (2.8)
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And similarly for the USp(2N) group. Our conventions regarding group theory factors

C(G) are explained in Appendix A. After the orientifold projection, the normalization

(A.54) is such that the level of the O(2N) group coincides with the normalization of

U(2N) for large values of N . However, for the USp(2N) group the normalization (A.56)

implies that the level is halved. The covariant derivative of matter fields is also changed

by the projection. Using (2.5),

DµΦ̄α = JCα
β(DµΦβ)T . (2.9)

Comparing the projected expression with the ABJ O(2N)× USp(2N) action in [29] one

can check that both agree. Therefore, the projection we have described indeed corresponds

to (1.1). Note that USp(2N)×O(2N) theory has N = 5 supersymmetry and an SO(5)R

R-symmetry group that can be seen as a subgroup of the SU(4)R × U(1)b R-symmetry

of the original ABJM theory. The orientifold projection removes the U(1)b baryonic

symmetry.

The large-N equivalence can be proven in the ’t Hooft limit N → ∞ and λ = N/k

fixed by using standard field theory methods [7, 8].

3 Type IIB brane construction

Figure 4: (a) Type IIB elliptic brane configuration realizing the ABJM theory with gauge

groups U(2N)2k×U(2N)−2k. (b) Type IIB elliptic brane configuration realizing the ABJ

theory with gauge groups O(2N)±2k ×USp(2N)∓k. N D3-branes are physical D3-branes

and 5-branes are half 5-branes with their own images.

The brane construction of the U(2N)2k × U(2N)−2k ABJM theory is obtained by

including 2N D3-branes winding around a circle, intersecting with an NS5 and a (1, 2k)5-

brane at specific angles [40, 41]7. The O(2N)±2k×USp(2N)∓k ABJ theory is constructed

7These 5-branes are linked with D3-branes in the context of the brane creation effect [42].
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by adding to the ABJM construction O3± planes winding around a circle, in addition to

the D3-branes and the two 5-branes (see Figure. 4). The 2N D3-branes become N physical

branes plus their images, and 5-branes become half-branes with their own images also set

on the top of the orientifold. Depending on the orientifold plane, there is a different

gauge group living on the D3-branes. For O3−, O3+, Õ3−, and Õ3+ the gauge groups

are O(2N), USp(2N), O(2N + 1), and USp(2N), respectively [44, 45]. These four types

of O3-planes are related by the SL(2,Z) duality of Type IIB string theory, that also acts

on (p, q)5-branes.

In the ABJ construction there is a half NS5-brane and a half (1, 2k)5-brane intersecting

with the orientifold 3-plane. When the orientifolds cross a half NS5-brane they change

their type, O3− changes to O3+ and O3+ changes to O3−. Therefore, we have gauge

groups O(2N) × USp(2N) on the D3 branes. Note that since the number of the half

D5-branes is an even number 2k, crossing them does not change the kind of O3 plane.

One can change the relative rank of the groups by adding additional branes suspended

between two 5-branes.

The number of D5 branes also determines the number of fundamental fields (flavors)

that live on the D3 branes. Those are massive and can be integrated out, introducing

a Chern-Simons term with a level proportional to the number of flavors. The O(2N)

Chern-Simons term has level ±2k, and the USp(2N) Chern-Simons term has level ∓k.

At low energies the Chern-Simons interaction dominates the dynamics and the theory

flows to a fixed point.

From the perspective of the type IIB brane configurations, the equivalence between

ABJM and ABJ theories can be seen as an ordinary orientifold equivalence between the

four-dimensional theories living on the D3 branes, where the orientifold projection is due to

the O3 planes. The equivalence is valid in the ’t Hooft limit of the four-dimensional theory

(not to be confused with the ’t Hooft limit of the three-dimensional theory), when N →∞
and the four-dimensional ’t Hooft coupling g2YMN is fixed. At energies much below the

size of the circle, the theory on the D3 branes becomes effectively three-dimensional. This

three-dimensional theory flows to a fixed point at E � g2YMk ∼ k/N . In the ’t Hooft limit

of the ABJM theory, where λ = N/k is fixed, the fixed point can be in the planar region

of the effective three-dimensional theory8. Therefore it is natural to expect that IR fixed

points of two theories are related by the planar orbifold equivalence of the UV theory.

On the other hand, when k is smaller than O(N1), the fixed point is outside the planar

8Note that the three-dimensional gauge coupling g23d has a dimension of mass. Therefore the planar

scaling is realized when the dimensionless combination g23dN/E, where E is the energy scale under

consideration, is of order one.

9



region of the UV theory, and so it is not guaranteed a priori that the two four-dimensional

theories will flow to the IR fixed points related by the orientifold projection, but we know

this should be the case thanks to the explicit construction of the fixed points. It is

plausible that the large amount of symmetry helps to avoid possible corrections. Because

both UV and IR theories are related by the orientifold projection, it is natural to expect

the orientifold equivalence survives to IR, even when λ = N/k is not of order one. Below

we give argument supporting it.

4 Orientifold equivalence in the gravity dual

From the brane configurations it is likely that the ABJM and ABJ theories are equivalent,

since they can be seen as the low energy limit of two theories that are equivalent in the

UV, and furthermore they are related by the same orientifold projection. We now provide

stronger evidence, by showing how the gravity duals of the ABJM and ABJ fixed points

[23, 28] are related in both eleven-dimensional supergravity and ten-dimensional type IIA

supergravity [28]. The AdS/CFT duality maps the equivalence in the gravity side to the

gauge theory side (Fig. 2 and Fig. 3).

The space transverse to the N M2-branes where the ABJM and ABJ theories live is

C4/Z2k and C4/D̂k, respectively, where D̂k is a diehdral group with 4k elements. The

dihedral group can be decomposed in a Z2k action, that also appears in the ABJM case,

and an additional Z2 action, that we can identify with the orientifold projection. When N

is large, the M2 branes backreact on the geometries and in the near horizon limit there is

a dual description of the M2 branes as M-theory on the orbifold geometries AdS4×S7/Z2k

and AdS4 × S7/D̂k, respectively. The M-theory description is valid at N � k5, where

the size of the M-theory circle is larger than the eleven dimensional Planck scale. At

k � N � k5, the systems are well described by the type IIA supergravity on the orbifold

geometries AdS4 × CP3 and AdS4 × CP3/Z2, respectively.

Let us parametrize the space transverse to the M2 branes by the complex coordinates

zi (i = 1, 2, 3, 4). The Z2k action of the orbifold is

zi → ei
π
k zi. (4.10)

To describe the additional Z2 action in D̂k, we should write the C4/Z2k space as a product

of two Taub-NUT geometries. These are hyper-Kähler manifolds and the center of each

Taub-NUT geometry is locally a flat C2. We consider the following unit sphere in the R3
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space that is the base of the Taub-NUT geometry:

f : C2 → S2, (4.11)

f(z1, z2) = (2<(z1z
∗
2), 2=(z1z

∗
2), |z1|2 − |z2|2), (4.12)

and we can define a similar unit sphere for the other Taub-NUT factor. Recall that

orientifolds in string theory reverse the sign of the coordinates in R3 when described in

terms of the type IIB theory. Thus, the Z2 action operates as the antipodal map on the

S2 inside the C2 at the center of each Taub-NUT and can be lifted to the action on z1, z2

and z3, z4. The action is

z1 → iz∗2 , z2 → −iz∗1 , z3 → iz∗4 , z4 → −iz∗3 . (4.13)

To connect with the geometry that we use in the AdS/CFT duality, we write C4/D̂k as

the cone over S7/D̂k. Here, S7/D̂k is embedded in zi satsifying
∑4

i=1 |zi|2 = 1 as follows:9

z1 = cos ξ cos
θ1
2
ei
χ1+ϕ1

2 , z2 = cos ξ sin
θ1
2
ei
χ1−ϕ1

2 ,

z3 = sin ξ cos
θ2
2
ei
χ2+ϕ2

2 , z4 = sin ξ sin
θ2
2
ei
χ2−ϕ2

2 , (4.14)

where the ranges of the angular variables are 0 ≤ ξ < π
2
, 0 ≤ χi < 4π, 0 ≤ ϕi < 2π and

0 ≤ θi < π. The Z2k orbifold action is taken along the y-direction as y ∼ y + π
k
, where

the new coordinate y is defined by

χ1 = 2y + ψ , χ2 = 2y − ψ . (4.15)

In addition, the Z2 action is operated on the angular variables as follows:

θi → π − θi, ϕi → ϕi + π, χi → −χi. (4.16)

When the backreaction of the M2-branes is considered, the gravitatinal solution has F4

flux and the geometry is changed to AdS4×S7/D̂k, where the compact part of the geometry

should be identified with the original base of the cone.

In the absence of an orbifold Z2k, y is replaced by a circle y′ and the gravity side is

AdS4 × S7:

ds211D = R2

4
(ds2AdS4

+ 4ds2S7), ds2S7 = (dy′ + A)2 + ds2CP3 , (4.17)

N ′ = 1
(2π`p)6

∫
S7 ∗F4, F4 = 3

8
R3volAdS4 , (4.18)

6R6vol(S7) = 2π4R6 = (2π`p)
6N ′, (4.19)

9We follow the notation in [43].
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where using the coordinate (4.14), the gauge potential and the metric of CP3 is given by

A =
1

2
(cos2 ξ − sin2 ξ)dψ +

1

2
cos2 ξ cos θ1dϕ1 +

1

2
sin2 ξ cos θ2dϕ2 . (4.20)

ds2CP3 = dξ2 + cos ξ2 sin2 ξ

(
dψ +

cos θ1
2

dϕ1 −
cos θ2

2
dϕ2

)2

+
1

4
cos2 ξ

(
dθ21 + sin2 θ1dϕ

2
1

)
+

1

4
sin2 ξ(dθ22 + sin2 θ2dϕ

2
2). (4.21)

Here N ′ = 2Nk. When the orbifold is introduced, the Z2k quotient is performed over

(4.19) and the Z2 action (4.16) operates on the angular variables. That is, rewriting

y′ → y′/(2k) with y′ ∼ y′ + π, the metric can be rewritten as

ds2S7/Zk =
1

(4k)2
(dy′ + 2kA)2 + ds2CP3 . (4.22)

From the volume formula (4.19), replacing vol(S7) with vol(S7/D̂k), it can be shown that

R/lp = (27π2kN)1/6. Here, remember that there is a tadpole cancellation between each

O3±-branes and so we do not need to take into account the O3±-charges. In order for

the classical M-theory description to be valid, size of the orbifolded M-theory circle must

be larger than the eleven-dimensional Planck length, (R/lp)/2k ∼ (kN)1/6/k � 1, and

hence N � k5 is required.

Now let us consider the type IIA reduction. The radius of the CP3 metric in (4.22) is

large if kN � 1. However, the radius of ϕ is of the order of R/k ∝ (Nk)1/6/k. So, the

weakly coupled Type IIA theory description requires k5 � N . Using the ansatz of the

dimensional reduction,

ds211D = G11
MN(xµ)dxMdxN

= e−
2
3
φG10

µνdx
µdxν + e

4
3
φ(dy′ + 2kA)2, (4.23)

the IIA string frame metric gives the AdS4 × CP3 IIA background and the background

flux:

ds2st = L2(ds2AdS4
+ 4ds2CP3),

e2φ = R3/(2k)3, L2 = R3/(8k) = π

√
2N

k
,

F2 = 2k
L2ω , F̃4(≡ F4 − C1 ∧H3) = −3

8
R3εAdS4 , H3 = 0 . (4.24)

where φ is the dilaton field and ω is the Kähler form of CP3. There is also an additional

Z2 orientifold action relative to the original ABJM dual geometry. Note that the F4
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flux becomes N = (
∫
CP3/Z2

∗F4/(2π)5), consistent with the brane configuration where we

normalize the flux to be an integer using the volumes of CP1 and CP310

Vol(CP1) = 4πL2, Vol(CP3) =
32

3
π3L6. (4.25)

(in this paper we always work with the string frame metric setting α′ = 1). The RR

2-form F (2) = 2kdA in the Type IIA theory (we sometimes call this a D6-brane flux) is

explicitly given as follows

F (2) = 2k
(
− cos ξ sin ξdξ ∧ (2dψ + cos θ1dϕ1 − cos θ2dϕ2)

−1

2
cos2 ξ sin θ1dθ1 ∧ dϕ1 −

1

2
sin2 ξ sin θ2dθ2 ∧ dϕ2

)
. (4.26)

We can show that the physical D6-brane flux becomes k consistent with the brane con-

figuration.

Then, the curvature radius (= 25/2π
√
N/k) should be large so that the supergravity

description is valid. Note that curvature radius of the AdS4 × CP3 in type IIA theory

becomes the same form R2
string = 25/2π

√
N ′/k′ if we substitute N = 2N ′ and k = 2k′.

Here, ’t Hooft coupling of the ABJ theory is defined by λ = N/k. As a result, the type

IIA description is valid in the regime

k � N � k5. (4.27)

The orientifold action Z2 maps ω → −ω on CP3 and the orientation of CP3 is reversed.

The orientifold also flips the sign of the RR 1-form C1 and the NSNS 2-form B, while RR

3-form is invariant under this action.

From this analysis it is clear that the dual geometry to the ABJ fixed point is simply

related to the ABJM one by the additional Z2 action in the D̂k orbifold, that in the

type IIA limit becomes the orientifold action. The equivalence can be formulated for any

observable that is invariant under the Z2 projection, its value computed using classical

supergravity or other classical objects like the DBI action in string theory should give

the same results in both geometries. A similar statement can be made between ABJM

theories with different orbifold actions [25, 27].

4.1 Orientifold theories with fractional branes

We can extend the arguments of the previous section to cases where the rank of the

gauge groups in the ABJM and ABJ theory are not equal, the difference coming from the

introduction of fractional branes [28].

10Also note that the volume of the unit S7 is Vol(S7) = π4

3 .
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Figure 5: The Type IIB elliptic brane configuration of the ABJ theory with the gauge

group U(2N + l0)2k × U(2N)−2k.

The type IIB brane construction of the ABJM theory includes 2N D3-branes winding

around a circle, intersecting an NS5 and a (1, 2k)5-brane at specific angles [40, 41]. A

U(2N + l0)2k × U(2N)−2k theory is obtained if l0 D3-branes are suspended between the

NS5-brane and the (1, 2k)5 on one side of the circle. See Figure. 5. In this construction,

the classical moduli space is identical to the moduli space of the U(2N)2k × U(2N)−2k

corresponding to the motion of the 2N free D3-branes, there is no moduli space associated

with l0 locked D3-branes.

Performing a T -duality transformation on the type IIB brane configuration with l0

fractional branes and lifting to M-theory, one obtains a configuration with N M2-branes on

a cone C4/Z2k plus l0 fractional M2-branes at the orbifold singularity. Here, the fractional

M2-branes correspond to the discrete torsion [48] realized by a discrete holonomy of the

3-form potential exp(i
∫
S3/Z2k

C3) ∈ Z2k. This discrete holonomy implies that 2k wrapped

fractional M2-branes are equivalent to none. After including the backreaction of 2N

branes and taking the near horizon limit, we obtain the metric AdS4 × S7/Z2k with

discrete torsion:

ds211D = R2

4
(ds2AdS4

+ 4ds2S7/Z2k
), R/lp = (27π2kN)1/6. (4.28)

The Kaluza-Klein reduction to type IIA is performed in the same way as in the l0 = 0

case. Recall that the type IIA theory description is valid for N1/5 � k � N . The

AdS4 × CP3 background metric is

ds2st = L2(ds2AdS4
+ 4ds2CP3), L2 = R3/(8k) = π

√
2N

k
. (4.29)

The dual of a U2k(2N + l0)× U−2k(2N) theory should have a background 2-form flux B2

associated to the discrete torsion. The M-theory 3-form reduces to the 2-form B2, which

gives a non-trivial holonomy on CP1 in CP3, b2 =
∫
CP1 B2/(2π)2 = l0

2k
− 1

2
, where a shift

of 1/2 is included in fluxes of B2 as found in [49]. Then, B2 is quantized in units of 1/2k.
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Figure 6: The Type IIB elliptic brane configuration of the ABJ theory with orientifold

planes. There are 4 classes of orientifold theories. We set l0 = 2l compared with Figure.

5.

There are also 2k units of flux F2 on CP1. This flux changes the Bianchi identity of

F̃4 to dF̃4 = −F2 ∧ H3 = −d(F2 ∧ B2). Such identity implies that the conserved flux is

not
∫
F4 but

∫
F̃4/(2π)3 = 2kb2.

We now introduce the orientifold 3-planes in the original type IIB setup. Remember

that there are 4 orientifold planes O3−, O3+, Õ3
−
, Õ3

+
. Considering the SL(2,Z) duality

of type IIB string theory, we can find four classes of orientifold theories in Figure. 6.

Here, we introduced l0 = 2l fractional branes which are consistent with the Z2 orientifold.

The gauge symmetry of these theories are given by

(1) : O(2N + 2l + 1)2k × USp(2N)−k (0 ≤ l < k),

(2) : USp(2N + 2l)k ×O(2N + 1)−2k (0 ≤ l < k),

(3) : O(2N + 2l)2k × USp(2N)−k (0 ≤ l < k + 1),

(4) : USp(2N + 2l)k ×O(2N)−2k (0 ≤ l < k − 1). (4.30)

As seen in the case without fractional branes, the matter content is determined by using

the orientifold projection of U(2N)2k × U(2(N + l))−2k bifundamental fields

Φ̄α = (Cα
βJΦT

β ), (4.31)

where J and the antisymmetric tensor Cα
β were given in (2.5). The superpotential of the

U(2N)2k × U(2(N + l))−2k theory is projected in the same way as in the case without

fractional branes. The restriction for the number of fractional branes is can be checked

from the s-rule and the brane creation [41, 42, 45]: In total, there are 4k different theories.

In the gravity dual for the orientifold theory the S7/Z2k factor of the geometry

is replaced by S7/D̂k. There is a 3-cycle in S7/D̂k with discrete holonomy given by
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exp(i
∫
3−cycleC3) = Z4k where l = 0, ..., 4k − 1. Thus, there are 4k different theories

classified by H3(S
7/D̂k,Z) = Z4k consistent with the Type IIB brane configurations.

Considering the backreaction of M2-branes and taking the near horizon limit, we obtain

the gravity theory on AdS4 × D̂k with discrete holonomy, the metric is

ds211D = R2

4
(ds2AdS4

+ 4ds2
S7/D̂k

), R/lp = (27π2kN)1/6. (4.32)

Remember that the AdS radius does not change in the presence of the holonomy, this

implies that there is a large-N equivalence between theories with different l. In the M-

theory regime this is in agreement with our expectations, since l� N .

We now perform the Kaluza-Klein reduction to type IIA theory. It is similar to the case

without orientifold planes except for the Z2 orbifolding. The metric of the ten-dimensional

Type IIA theory is given by

ds2st = L2(ds2AdS4
+ 4ds2CP3/Z2

), L2 = R3/(8k) = π

√
2N

k
. (4.33)

Remember that the orientifold action does not flip the sign of C3 but flips the sign of C1

and B2, while in addition makes a tensor transformation of these fields. To include the

fractional D2-brane flux that makes the rank of two gauge groups different, we define the

discrete holonomy b ≡
∫
CP1/Z2

B2/(2π)2 = l
4k

. Here, a shift of 1/2 needs to be included

in the fluxes of B2 as seen in the original type IIB setup. The discrete torsion is then

reduced to
∫
CP2 F̃4 = 4kb and there are 4k possible discrete holonomy in terms of the

NSNS 2-form. Since the metric is unaffected by the discrete torsion, there is also a Z2

equivalence in the type IIA regime between the 4k classes of ABJM theory with gauge

group U(2N)2k × U(2(N + l))−2k and the corresponding ABJ theory obtained through

the orientifold projection.

5 Mirror brane configurations

In this section we combine the orbifold equivalence with mirror symmetry, in this way one

can derive other nontrivial equivalences. Note that mirror symmetry is a consequence of

S-duality in the type IIB D-brane construction that describes the UV theory, so it takes a

theory with coupling gYM to a theory with coupling 1/gYM . This also gives an indication

that orbifold equivalences extend beyond the planar limit, since in the regime g2YM ∼ N

the UV theory can be mapped to a theory in the ’t Hooft limit where the equivalence

can be proved by the usual means. The main caveats concern the low energy limit of the

theories, either when k � N is small and the IR fixed points are at very low energies
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Figure 7: (A) shows the elliptic D3-brane configuration before the S-duality. N physical

D3-branes are placed on any intervals of the circle. A large dot describes a half NS5-brane

and a vertical line describes a half D5-brane. (B) shows the mirror configuration of (A).

N physical D3-branes are placed on any intervals of the circle.

E/λ3d ∼ 1/N or when k ∼ N and there is a large number of massless states in the mirror

theory.

In terms of string theory, the mirror symmetry is the S-duality in type IIB brane

configurations. The mirror dual of the U(2N)2k × U(2N)−2k ABJM theory has been

considered in [68] and used in [27] to study the M-theory region. At low energy the

mirror is a (U(2N)×U(2N))k quiver gauge theory with four fundamental hyper multiplets

(Figure. 8).

In order to obtain the mirror to the O(2N)2k×USp(2N)−k ABJ theory, we start from

the brane construction [28], that we described at the beginning of section 3, where D3

branes and O3± planes are along 0126 directions, NS5-branes along 012345 directions and

D5-branes along 012349 directions (Figure. 7(A)). Note that the O3-plane also changes

its type crossing either D5-brane or NS5-brane for above brane configurations. This is

because forgetting the NS5-brane once and considering our D3/D5 system, the discrete

charge of D5-brane changes when O3-plane crosses the D5-brane. The same analysis can

be applied if we consider the D3/NS5 system forgetting the D5-brane.

We perform an S-duality and obtain a configuration with 2k half NS5-branes along

012578 directions and two half D5-branes along 012789 directions (Figure. 7(B)). We

consider the cross configuration where each half D5-brane is on top of a single half NS5-

brane [46, 47]. This configuration preserves d = 3 N = 2 supersymmetry and for a
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single half NS5-brane, there are two copies of a fundamental half hypermultiplet for the

two gauge groups via the flavor doubling. There also appears two global flavor symmetry

associated with these hypermultiplets. Remember that in general, two 5-branes are linked

if there is only a transverse direction to both the D5-brane and the NS5-brane. Since the

half D5-brane is not linked with the half NS5-brane in our case, there is not the brane

creation by definition.

Note however that O3+(Õ3+) turns to O3−(Õ3−) when it crosses the (half-)NS5-

brane and vice versa. In addition, O3−(O3+) turns to Õ3+(Õ3−) when it crosses a half

D5-brane on top of a half NS5-brane and vice versa, so we obtain a chain of gauge groups

(O(2N)×USp(2N))k−1×O(2N+1)×USp(2N), where a gauge group of N D3-branes on

Õ3− becomes O(2N+1) instead of O(2N). See Figure. 8. It can be shown that this change

is consistent with the S-duality of O3-planes which transforms O3−, O3+, Õ3−, Õ3+ into

O3−, Õ3−, O3+, Õ3+, respectively.

Figure 8: Quiver diagram of the mirror side of ABJM and ABJ. The mirror of ABJM is

a (U(2N) × U(2N))k quiver gauge theory with four fundamental hyper multiplets. The

nodes (yellow disks) represents the U(2N) groups and links connecting the nodes represent

the bifundamental matters as usual. Each green box represents a global flavor group, and

links connecting the nodes and the boxes are the fundamental hyper multiplets. For ABJ,

nodes labeled by the odd number and the even number describe the gauge group O(2N),

USp(2N), respectively. Here, the third node describes O(2N + 1) instead of O(2N).

We can obtain the same quiver by doing the orientifold projection of (U(2N) ×
U(2N))k, which is the mirror to U(2N)2k × U(2N)−2k. Before the orientifold projection

Ω1 = Ω(−1)FLγ345789, the matter content consists of 2k chiral multiplets in the adjoint Yi,

2k hypermultiplets transforming in the bifundamental representation of (i, i + 1) groups

(Ai,i+1, Bi+1,i), two chiral multiplets transforming in the fundamental representation un-

der the first and second gauge group D1, U2, and two chiral multiplets transforming in the

anti-fundamental Ũ1, D̃2. There are also four (anti-)fundamental chiral multiplets from
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the j-th and (j + 1)-th gauge group Dj, Uj+1, Ũj, D̃j+1, where subscripts of these fields

describe the corresponding gauge group factor. We choose D3, U4,Ũ3, D̃4 for j = 3 to

realize the quiver diagram 8.11

The orientifold projection Ω1, imposes the following conditions on the fieldsBi+1,i = JATi,i+1, for i odd,

Bi+1,i = −ATi,i+1J, for i even,
(5.34)

and

D̃i = UT
i , Di+1 = −JŨi+1, D̃i+1 = UT

i+1J, Di = ŨT
i , (i = 1, 3) (5.35)

where we take the convention that if i is odd, the i-th gauge group is O(2N) (the third

gauge group is O(2N + 1)) and if i is even, it is USp(2N). We summarize the field

content in the quiver diagram in Figure. 8. There is the N = 2 superpotential with 2

cubic interaction terms before the orientifold action as follows:

W0 =
∑

i=1,3

[
ŨiAi,i+1Ui+1 − D̃i+1Bi+1,iDi

]
. (5.36)

The N = 2 superpotential of the orientifold theory is then projected into 1 cubic interac-

tion term as follows:

W = 2
∑

i=1,3 ŨiAi,i+1Ui+1. (5.37)

The quiver theory in the mirror side can also be obtained from an orbifold pro-

jection. We start with U(2kN) × U(2kN) theory with 4 hypermultiplets where k is

an odd integer. The matter content consists of 2 chiral multiplets in the adjoint Yi,

2 hypermultiplets transforming in the bifundamental representation of (i, i + 1) groups

(Ai,i+1, Bi+1,i), four chiral multiplets transforming in the fundamental representation un-

der the first and second gauge group D(a)1, U(a)2, and four chiral multiplets transforming

in the anti-fundamental Ũ(a)1, D̃(a)2 where a = 1, 2. The N = 2 superpotential becomes

S =
2∑

a=1

[
Ũ(a)1A1,2U(a)2 − D̃(a)2B2,1D(a)1

]
. (5.38)

Recall that in terms of the fields in the ABJ theory, the bifundamental matter is rep-

resented by (A1,2, B2,1) = (A1, B2) and (A2,1, B1,2) = (B1, A2). There is an enhanced

(U(1)× U(1))2 global symmetry.

11The case for D2, U3, Ũ2, D̃3 (j = 2) is also interesting since it corresponds to the configuration where

the D5-branes are aligned adjacently.
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The Zk orbifold projection is obtained from the element of each gauge group U(2kN)

and spans a Zk subgroup as follows:

γ = diag(12N, ω12N, ω
212N, ... , ω

k−112N), (5.39)

where 12N is the 2N × 2N identity matrix and we have defined the phase ω = e2πi/k. k

should be odd since for even k, the quiver diagram is separated into two parts as also

observed in the case of orbifolds of the ABJM theory [52].

We consider the orientifold action ZN+Ω1ZN where the orientifold Ω1 = Ω(−1)FLγ345789

is defined in (5.34) and (5.35) [47]. The quiver gauge theory is obtained from the

U(2kN) × U(2kN) theory by keeping the components that are invariant under the fol-

lowing projection:

Vi → γViγ
−1, Yi → γYiγ

−1, (5.40)

Ai,i+1 → ωγAi,i+1γ
−1, Bi+1,i → ω−1γBi+1,iγ

−1, (5.41)

Ũ(a)1 → ω2a−2Ũ(a)1γ
−1, U(a)2 → ω1−2aγU(a)2, (a = 1, 2), (5.42)

D̃(a)2 → ω2a−1D̃(a)2γ
−1, D(a)1 → ω2−2aγD(a)1, (a = 1, 2), (5.43)

If we apply now the orientifold action Ω1, we obtain the quiver gauge theory of the gauge

group (O(2N)×USp(2N))k−1×O(2N + 1)×USp(2N). The other quiver gauge theories

with flavors coupling with different nodes are obtained by using the different orbifold

condition and by coupling the flavors with A2,1, B1,2. We can summarize the orbifold

projections in the mirror theories as:

U(2kN)× U(2kN) + 4 hypermultiplets (5.44)

↓ Orbifold projection

(U(2N)× U(2N))k + 4 hypermultiplets (5.45)

↓ Orientifold projection

(O(2N)× USp(2N))k−1 ×O(2N + 1)× USp(2N) + 4 half hypermultiplets

l Mirror

O(2N)× USp(2N) + 4k half hypermultiplets,

↑ Orientifold

U(2N)× U(2N) + 4k half hypermultiplets.

The flow to the IR fixed point described by ABJM theory is not directly given by the

brane configurations we have considered. The field content is the same, but one should
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add a mass deformation for the fields in the fundamental representation in the original

theory O(2N)×USp(2N). As seen in [27], in the mirror theory (O(2N)×USp(2N))k−1×
O(2N + 1)× USp(2N), the mass deformation maps to some non-local deformation such

as the monopole operator.

6 Equivalences between Yang-Mills theories

So far we have studied examples involving supersymmetric Chern-Simons theories in the

large-N limit. Do similar equivalences beyond the ’t Hooft limit exist in Yang-Mills

theories?

As a concrete example, let us consider the three-dimensional N = 8 U(kN) super

Yang-Mills theory (SYM), the low energy description of kN D2 branes at the origin of

the moduli space. This is the UV description of the U(kN)1×U(kN)−1 ABJM theory. In

this theory the coupling constant g2YM , and hence the ’t Hooft coupling λYM = g2YMN , has

the dimension of mass, and it sets an energy scale of the theory. The planar description

is valid when λYM/E = O(1), where E is the energy scale under consideration. At very

long distance, E � g2YM , the ABJM theory should give a good description. Obviously,

this limit is different from the ’t Hooft limit.

Let us consider Zk orbifold projections of this theory, which utilizes the SO(7) R-

symmetry. For simplicity we consider the ones which are obtained from the familiar

projections in four-dimensional N = 4 super Yang-Mills theory considered in [6, 50], that

is, we consider a Zk transformation of the form

Z1 → e2πin1/kZ1, Z2 → e2πin2/kZ2, Z3 → e2πin3/kZ3, (6.46)

where Z1,2,3 are complex scalars which describe six of seven transverse coordinates to

the D2 branes. According to a stronger version of the gauge/gravity conjecture, the IIA

supergravity description is expected to be valid at 1 � λ/E � N4/5 [3], although the

relationship between the 1/N expansion and gstring expansion is not clear unless λ/E is

of order N0. By assuming it, one can easily see the orbifold equivalence in this region. At

further lower energy it is natural to expect that the IR fixed point of this orbifold daughter

is described by M-theory on an orbifold of AdS4×S7.12 Similarly to the example discussed

above, this projection should give the equivalence in the M-theory region. Then we have

12It is not clear whether the IR fixed point is described by an orbifold projection of the U(kN)1 ×
U(kN)−1 ABJM theory, which has been considered in [51, 52]; actually a usual logic [50], combined

with the quantization of the level, seems to require the parent’s level is multiple of k, in order for the

daughter to admit a usual interpretation of the moduli space as a multiple M2-branes on top of the
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the Zk orbifold equivalence of three-dimensional SYM in the UV region (which is just the

usual orbifold equivalence) and deep IR (which lies outside the ’t Hooft limit). It strongly

suggests that this equivalence holds at any energy scale.

The same can hold in other gauge theories. For four-dimensional N = 4 SYM and

its orbifold/orientifold daughters, the IIB supergravity description is expected to be valid

at 1 � λ � N [3], and hence planar equivalence should extend to that region. It is

possible that the equivalence can be generalized to λ� N by using S-duality. The same

argument applies to theories in 0 + 1 and 1 + 1 dimensions as well. Simple tests in the

BPS sector should be possible by using the localization method (see e.g. [61, 62]). A

possible equivalence can also be tested by Monte Carlo simulation.13 In fact there is

an observation which supports the equivalence: in the one-dimensional theory (D0-brane

quantum mechanics), a class of two-point functions seems to agree with the predictions

from IIA supergravity, even in the M-theory region [53], and hence the orbifold equivalence

will hold as well.

Although we have focused on supersymmetric theories, it will also be interesting to

consider nonsupersymmetric theories. Probably the simplest setup for a check of orbifold

equivalences is the two-dimensional pure Yang-Mills with SU(2N), SO(2N) and USp(2N)

gauge groups, which can be studied both analytically [65, 66]14 and numerically. We

believe it would be very interesting to pursue this direction further.

orbifold singularity [52]. Hence the projection becomes like

U(kN)kl × U(kN)−kl −→ (U(N)l × U(N)−l)
k
, (6.47)

where l is integer, which prevents us from starting with U(kN)1 × U(kN)−1. Still it is plausible that

the IR fixed point admits a gravitational description, and that is the only assumption needed for our

discussion. We thank F. Yagi for a very useful discussion on this issue.
13In (0 + 1)-dimension, because simulation cost is not very expensive, detailed simulation can be

performed (see [54] and following works). In (1 + 1)-dimension, lattice formulations keeping a few exact

supersymmetries [55] turned out to be free from the parameter fine tuning even nonperturbatively [56]

and hence test of the equivalence is within reach. (Actually two-dimensional lattice has already been used

to learn about very interesting physics, namely the string theory in D1-brane background [57].) (1 + 2)-

and (1 + 3)-dimensional maximally supersymmetric theories can be studied by utilizing a fine-tuning

free formulation utilizing fuzzy spheres [58] [59], although it is not easy to go to larger matrix size with

current numerical resources. Lattice formulation may also work, as suggested in [60], because a number

of fine-tunings can be small. (Also the Eguchi-Kawai approach [63] might work if it is valid outside the

’t Hooft limit as suggested in [37].)
14Calculation of the free energy of the dimensionally reduced model [67] suggests the validity of the

Eguchi-Kawai reduction outside the planar limit in this case.
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7 Discussion and outlook

There are many posible future directions one can pursue. First of all, it is important to

understand under which conditions the equivalence can be extended beyond the ’t Hooft

limit. In the case of the ABJM theory we could show the equivalence at any strong

coupling because the orientifold in the string theory region naturally lifts to an orbifold in

the M-theory region. In many other theories, however, the orbifold/orientifold projections

in the gravity duals do not have such natural lifts, and then the equivalences could be

justified only in the string theory region15. However, the existence of such lifts could

just be a sufficient condition, and the equivalence might still extend outside the string

region. One natural possibility is that the equivalence holds unless a phase transition

separates the ’t Hooft limit and the very strongly coupled region. It would be interesting

to construct such examples with and without a phase transition, in order to test this

scenario. It is also interesting to see whether the equivalence outside the planar limit can

hold in nonsupersymmetric theories. For that purpose, two-dimensional pure Yang-Mills

should be a good laboratory. Also it is important to test the simplest scenario: planar

dominance outside the planar large-N limit. For that purpose, numerical checks of the

factorization in pure Yang-Mills would be the easiest approach. If this simple scenario

is correct, other nice properties of the planar limit, for example the integrability, might

be generalized to the new large-N limit. It would be fascinating because it might enable

us to study the M-theoretic aspects of the AdS/CFT correspondence. The equivalence

between supersymmetric Chern-Simons theories itself is also important to pursue further,

because it might be useful to gain insights into condensed matter systems; by turning the

table around, it might provide an ‘experimental test’ of the orbifold equivalence, if theories

related by the orbifold equivalence can be realized in a laboratory. Supersymmetric Chern-

Simons theories which are constructed by the low energy limit of the type IIB brane

configurations and have the gravity dual [69, 70, 71] are probably the easiest examples to

study. In the paper [52], Zn orbifolds of the ABJM theory are studied and the M2-brane

theories on a C4/Zkn × Zn singurality are proposed. The AdS4 × S7/(Zkn × Zn) gravity

dual of this orbifolded theory is also studied in [72]. So, it implies that we can propose

the orbifold equivalence between the U(nN)nk ×U(nN)−nk ABJM theory and the quiver

CSM type with the product gauge group (U(N)k × U(N)−k)
n. It is also interesting to

study the orbifold equivalence between d = 3 N = 3 quiver Chern-Simons-matter theories

including flavors which have the corresponding gravity dual [73, 74, 75, 76]16.

15Note however that the string region already contains a part of the very strongly coupled limit.
16See also [78], although an existence of an M-theory description is not clear.
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A Group theory conventions

We use a basis of generators normalized as17

tr(tart
b
r) = C(r)δab, (A.48)

where C(r) describes a constant for each representation r. Above the equation and the

commutation relation [tar , t
b
r] = ifabctcr gives the following representation of the structure

constants:

fabc = − i

C(r)
tr{[tar , tbr]tcr}. (A.49)

This formula shows that fabc is totally antisymmetric.

The product of tar summed over the index a is proportional to the unit matrix

tart
a
r = C2(r) · 1, (A.50)

where 1 is the d(r) × d(r) unit matrix and C2(r) describes the quadratic Casimir for

each representation. If we contract (A.49) with δab and calculate the left-hand side using

(A.50), we find

d(r)C2(r) = d(G)C(r). (A.51)

17We follow the notation of Peskin’s textbook.
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A convention of C(r) is C(N) = η/2 for the generators of SU(N). For the fundamental

representation N and N̄ , C2(N) is derived from (A.51)

C2(N) =
N2 − 1

N
C(N). (A.52)

To compute the Casimir for the adjoint representation, the product of the N and N̄

representations is used. For SU(N),

C2(G) = C(G) = 2NC(N). (A.53)

Symmetric and antisymmetric tensors form irreducible representations of SU(N). The

direct sum of these representations is the product representation N ×N . The relation of

such traces between antisymmetric, symmetric representation is

trA(tatb) = (N − 2)C(N)δab, trS(tatb) = (N + 2)C(N)δab. (A.54)

For SO(N), normalizing differently in terms of C(N) = η [77],

C2(N) = (N − 1)C(N)/2 C(G) = C2(G) = (N − 2)C(N). (A.55)

For USp(2N), using the same normalization of C(2N) = η/2 as SU(N)

C2(N) =
1

2
C(N)(2N + 1), C(G) = C2(G) = 2C(N)(N + 1). (A.56)

In the main section, we should set η = 1/(2N) in (2.8) to be consistent with the normal-

ization in the brane configurations.
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