
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Supersymmetric holographic dual of a fractional topological
insulator

Martin Ammon and Michael Gutperle
Phys. Rev. D 86, 025018 — Published 16 July 2012

DOI: 10.1103/PhysRevD.86.025018

http://dx.doi.org/10.1103/PhysRevD.86.025018


A supersymmetric holographic dual of a fractional
topological insulator

Martin Ammon and Michael Gutperle

Department of Physics and Astronomy
University of California, Los Angeles, CA 90095, USA

ammon, gutperle@physics.ucla.edu;

Abstract

We construct a supersymmetric generalization of the holographic dual of a fractional
topological insulator found in [1]. This is accomplished by introducing a nontrivial gauge
field on the world volume of the probe D7 brane. The BPS equations are derived from
the κ-symmetry transformation of the probe brane. The BPS equations are shown to
reduce to two first oder nonlinear partial differential equations. Solutions of the BPS
equations correspond to a probe brane configuration which preserves four of the thirty-
two supersymmetries of the AdS5×S5 background. Solutions of the BPS equations which
correspond to a holographic fractional topological insulator are obtained numerically.



1 Introduction

The AdS/CFT correspondence, and more generally gauge/gravity dualities, provide a powerful

tool for studying strongly coupled field theories in states with finite density, and hence might

be useful in condensed matter physics (see [2, 3, 4] and references therein). For example,

superfluids [5, 6, 7] and Non-Fermi liquids [8] can be realized in bottom-up models within

this framework. Note that such bottom-up models are generically formulated in terms of four

or five dimensional gravity theories coupled to scalars and gauge fields. It might or might

not be possible to embed such models into string theory. Consequently, the dual field theory

formulation in terms of elementary fields and a Lagrangian is in general not known or might

even not exist. String theory embeddings of these bottom-up models can be realized by using

probe branes in the background of D3–branes. In this case the dual field theory is known

explicitly. For example p-wave superfluids [9, 10, 11], Fermi surfaces [12] and the gravity dual

of a Quantum Hall Plateau transition [13] were investigated.

In this paper we consider the dual gravity description of a fractional topological insulator.

A (conventional) topological insulator is a proposed new type of quantum matter which is

not adiabatically connected to an ordinary insulator. They are characterized by fully gapped

excitations in the bulk and gapless boundary modes, whose vanishing mass is protected by a

discrete symmetry. Topological insulators have been a very active field of research in the past

couple of years (see [14, 15, 16, 17] for reviews with references to the original literature).

A very simple model for a Z2 time reversal invariant topological insulator [18] is given by

a Dirac fermion in 3+1 dimensions with a spatially varying mass

L = ψ̄
(
i/∂ −m(x)

)
ψ. (1.1)

One considers an interface across which m(x) jumps from a positive to a negative real value.

For such an interface there is are massless localized fermionic degrees of freedom [19, 20],

realizing the gapless boundary mode of the topological insulator. The interface separates

topological trivial and nontrivial phases of a Z2 topological invariant of the electron system

(such as the θ term θE · B where θ = 0 corresponds to the trivial Z2 insulator while θ = π

corresponds to the Z2 non–trivial insulator).

By analogy to the relation of the integer and fractional quantum hall effect we can ask

whether it is possible to construct a time reversal invariant fractional topological insulator for

which θ is a non–integer fractional multiple of π. In three spatial dimensions such a realization

of a fractional topological insulator is known [21] (see also [22, 23]). The idea is that the charge

carriers, i.e. electrons, are made up of partons which carry fractional charge. To ensure that

the partons confine into electrons outside the topological insulator we have to add a statistical

gauge field which is deconfined inside a topological insulator.
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The structure of this paper is as follows. In section 2 we review the probe brane setup for

a fractional topological insulator following [1]. Such a system breaks all supersymmetries due

to the position dependent mass. In section 3 we present a field theory analysis that identifies a

counterterm which restores some of the broken supersymmetries of the topological insulator. It

is shown that the introduction of such a counterterm can be engineered by turning on a specific

gauge field on the D7 brane probe, emulating ideas which were used in the construction of

supersymmetric interface theories [24, 25, 26, 27]. In section 4 we construct the BPS equations

from the κ-symmetry transformations of the probe D7 brane. The conditions that four of

the thirty-two supersymmetries of the AdS5 × S5 vacuum are preserved reduce to two first

order nonlinear partial differential equations1. In section 5 we obtain solutions using various

techniques. The solution which has the right asymptotic behavior to describe a topological

insulator and is everywhere regular is obtained numerically. We discuss possible applications

and generalizations of our results in section 6. Conventions, review material and technical

details of the calculations are relegated to various appendices.

2 A holographic fractional topological insulator

In [21] (see also [22, 23]) the idea of a fractional topological insulator was introduced. In

this model the charge carriers fractionalize into partons with fractional charge. Consequently,

while the system is still time reversal invariant, the topological invariant does not have to be

Z2 valued any more. Additional degrees of freedom (i.e. a strongly interacting gauge field

coupled to the partons) ensure that outside the topological insulator the partons are confined

and only integer charged electrons appear.

A holographic realization of a fractional topological insulator was presented in [1, 28],

where the partons are realized by adding matter to a N = 4 SYM ”phonon” bath. We give

a brief review of this construction following [29]. The starting point is the intersection of D3

and D7 branes in ten dimensional flat spacetime (with coordinates X0, X1, . . . , X9).

0 1 2 3 4 5 6 7 8 9
D3 • • • •
D7 • • • • • • • •

Table 1: D3/D7 system. The bullets denote Neumann boundary conditions. The D7 brane
can be separated from the D3 in the 8-9 directions.

1Note that a supersymmetric probe D7 brane preserves at most sixteen of the thirty two supersymmetries
of the vacuum.
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Whe choose the Nc coincident D3 branes to be located at X4 = · · · = X7 = X8 = X9 = 0.

The massless modes in the D3-D3 string sector give rise to an N = 4 supersymmetric Yang-

Mills theory with gauge group SU(Nc). From the point of the fractional topological insulator,

these supersymmetric gauge theory degrees of freedom should be viewed as ”phonons”.

Moreover, we also add fundamental matter degrees of freedom to our setup by embedding

Nf coincident D7 branes. The D7 branes are aligned along the X0, X1, . . . , X7 direction.

The world volume coordinates xa (a ∈ {0, 1, . . . , 7}) can therefore be identified with Xa,

i.e. xa = Xa. If the D7 branes are located at X8 = X9 = 0, the lowest energy excitations

of the D3-D7 strings describe massless matter. The symmetries of this configuration are

SO(4) = SU(2)R × SU(2)L rotations in the X4-X7 space and SO(2) = U(1)R rotations in

the X8 −X9 plane. The massless modes in the D3-D7 string sector can be written in terms

N = 2 hypermultiplets where the SU(2)R×U(1)R rotations correspond to the superconformal

R-symmetry. Moving the location of D7 brane away from X8 = X9 = 0 breaks the U(1)R
symmetry and introduces mass terms for the hypermultiplets.

In the large Nc limit, for λ = Ncg
2
YM � 1, the Nc coincident D3 branes can be replaced

by the AdS5 × S5 geometry, which is conveniently expressed as follows

ds2 =
r2 + ρ2

R2
(−dt2 +

3∑
i=1

dx2i ) +
R2

r2 + ρ2

(
dx24 + dx25 + dx26 + dx27 + dX2

8 + dX2
9 ), (2.2)

where

r2 = x24 + x25 + x26 + x27, ρ2 = X2
8 +X2

9 . (2.3)

In these coordinates the AdS5 boundary is located at r → ∞. R is the curvature radius of

AdS5 and is given by R4 = λα′ 2. From now on we will set R = 1 and therefore α′ −2 = λ.

Let us now embed the Nf coincident D7 branes. In the present paper we will only consider

the the probe limit (i.e Nf � Nc), where the back-reaction of the D7 brane can be neglected.

Then the flavor degrees of freedom are described by embedding the D7 brane world volume

along an (asymptotically) AdS5 × S3 subspace inside the AdS5 × S5, with world volume

coordinates xa.

Without loss of generality, let us single out the field theory direction x3 and consider a non-

trivial profile m(x3) for the mass of the hypermultiplets. On the gravity side, this corresponds

to a non-trivial embedding of the D7 branes in the transverse (X8, X9) space of the form

X8 = X8(r, x3), X9 = 0. (2.4)

Since X8 6= 0, the U(1)R symmetry is broken. In principle, X8 can be any function of xa with

a ∈ {0, . . . , 7}. In order to preserve the SO(4) = SU(2)L × SU(2)R symmetry X8 depends
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only on r and not on xa with a ∈ {4, 5, 6, 7} explicitly. The mass m(x3) can be read off from

the boundary behavior of X8(r, x3)

lim
r→∞

X8(r, x3) = m(x3) +O
(

1

r2

)
. (2.5)

Besides the scalar functions X8,9 there are also gauge fields living on the D7 branes. In case of

Nf coincident D-branes the gauge fields are valued in U(Nf ). The dynamics of Nf coincident

D7 branes is given in terms of a Dirac-Born-Infeld (DBI) term, as well as a Wess-Zumino

(WZ) term. As we will be interested only in the U(1) part of the U(Nf ) world-volume gauge

fields and scalars, the relevant part of their action reads

SD7 = SDBI + SWZ (2.6)

with

SDBI = −Nfµ7

∫
d8x
√
− det (Gab + Fab), (2.7)

where Fab is the Abelian field strength tensor2 and Gab is the induced metric defined by3

Gab =
∂Xµ

∂xa
∂Xν

∂xb
gµν . (2.8)

The Wess-Zumino part of the D7 brane action, SWZ , is given by

SWZ = Nfµ7

∫
P [
∑
p

C(p)] ∧ eF , (2.9)

where P [C(p)] denotes the pull back of the background p-form field C(p) and eF = 1 + F +

1/2F ∧ F + . . . . The integral in (2.9) singles out the correct p-form, i.e. in our case a 8-form

with legs along the world volume coordinates.

For the embedding considered in (2.4) with all field strength tensors Fab = 0, the WZ

action does not contribute and the DBI action SDBI = −Nfµ7 vol(S3)
∫
d4x drL reads

L =
√
−det(Gab) = r3

√
1 + (∂rX8)2 +

1

(r2 +X2
8 )2

(∂x3X8)2. (2.10)

A holographic topological insulator is given by a solution of the equations of motion fol-

lowing from the Lagrangian (2.10) with the following boundary condition in the asymptotic

AdS region

lim
r→∞

X8(r, x3) = M0
x3
|x3|

+O
(

1

r2

)
. (2.11)

2In order to restore the correct 2πα′ factors in the DBI and WZ action we have to rescale F → 2πα′F

3We do not distinguish between xa and xa, i.e. xa = xa.
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Since X8 is interpreted as the mass of the flavor degrees of freedom is can be identified

with the position dependent mass m(x) for the fermions (and their superpartners) in (1.1).

The equations of motion are quite complicated and an exact solution with these boundary

conditions is not known at present since. In [1] numerical solutions of the equations of motion

were found using the heat method.

3 Ansatz for a supersymmetric topological insulator

In this section we show that the position dependent mass of the field theoretic topological

insulator model presented in the previous section breaks all supersymmetries. However adding

a localized counterterm can restore some of the supersymmetries. This argument motivates

the modification of the holographic model by introducing a nontrivial gauge field on the probe

D7 brane.

3.1 Field theory analysis

The low energy theory of the D3/D7 brane intersection considered in the previous section

is given by N = 4 supersymmetric Yang-Mills theory with gauge group SU(Nc) coupled to

Nf N = 2 supersymmetric hypermultiplets. The N = 4 supersymmetric vector multiplet –

describing the low energy theory of strings ending on the Nc D3-branes – can be decomposed

into oneN = 1 vector multiplet Vµ and threeN = 1 chiral multiplets called Φ1,Φ2 and Φ3. The

lowest components of the chiral multiplets, i.e. the scalar fields φ1, φ2 and φ3 can be identified

with the six coordinates X4, X5, . . . , X9 transverse to the D3-branes: φ1 ∼ X4 + iX5, φ2 ∼
X6 + iX7 and φ3 ∼ X8 + iX9.

The low energy theory of the strings connecting the Nc D3-branes and the Nf D7 branes

are given in terms of Nf N = 2 supersymmetric hypermultiplets. For simplicity, we restrict

ourselves to the case Nf = 1 in the following discussion. An N = 2 supersymmetric hyper-

multiplet contains four fermionic and four bosonic degrees of freedom. It can be decomposed

into an N = 1 chiral multiplet Q and an N = 1 anti-chiral multiplet Q̃†, or equivalently into

two N = 1 chiral multiplets Q and Q̃. The scalar fields of these chiral multiplets are denoted

by q and q̃, respectively, while the fermions are denoted by ψ and ψ̃.

In the N = 1 language, the interactions of the vector and hypermultiplets are specified by

the superpotential W

W = εijktr (ΦiΦjΦk) + Q̃(m+ Φ3)Q. (3.1)

In the following only the superpotential term involving the mass of the quarks, m, will be

important. Although not obvious in the N = 1 superspace language, the field theory is

N = 2 supersymmetric and has a SU(2)R R symmetry as well as a global SU(2)L symmetry.
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Note that both symmetries are also present in the brane intersection giving rise to the SO(4) =

SU(2)L×SU(2)R rotational invariance in the (X4, X5, X6, X7) space. Note that the pair (q, q̃?)

transforms as (0, 1/2) under SU(2)L × SU(2)R while the fermions (ψ, ψ̃†) are singlets under

SU(2)L × SU(2)R.

The realization of the topological insulator makes the mass of the fermions dependent

on one of the spatial coordinates, where we choose x3 without loss of generality. This can

be achieved by replacing m by m(x3) in the superpotential (3.1), introducing a position

dependent masses for both the fermions and the scalar superpartners. It was shown [30] that

position dependent couplings in the superpotential break all of the supersymmetries since the

supersymmetric variation of the Lagrangian is no longer a total derivative.

In [30] is was also shown that half of the original supersymmmetries can be restored by

adding a counter-term to the action of the form (we give a review of the argument in appendix

B)

L → L+ ∆L, (3.2)

where ∆L is given by

∆L = −2 Im

(
∂m

∂x3

δW

δm(x3)

)
(3.3)

= i
∂m

∂x3

{(
δW

δm(x3)

)
−
(

δW

δm(x3)

)∗}
.

In the last step of equation (3.3) we assumed that m(x3) is real. Note that if the position

dependence is of the form (2.11), i.e. m(x3) = M0 x3/|x3|, the counterterm (3.3) will be

delta-function localized at the interface location x3 = 0. For a real mass m(x3) and for the

superpotential (3.1) the counterterm (3.3) becomes

∆L = i
∂m

∂x3

(
QQ̃−Q?Q̃?

)
. (3.4)

Let us compose the scalar fields q and q̃ into a vector q̂ (whose components are denoted by

q̂m with m = 1, 2)

q̂ =

(
q
q̃?

)
. (3.5)

We can write the part of the counterterm quadratic in the scalar fields q and q̃ as

∆L = i
∂m

∂x3
(q̃q − q?q̃?)

= i
∂m

∂x3
q̂†σ2q + . . . , (3.6)
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where q̂† = q̂? T = (q?, q̃) and σI are the Pauli matrices. The terms represented by . . . in

equation (3.6) are quadratic in the fermions ψ and ψ̃.

Recall that field theory has SU(2)L×SU(2)R symmetry for a massive hypermultiplet and q̂

transforms under (0, 1/2). Hence the counterterm (3.6) has the following important properties:

It has scaling dimension ∆ = 2 and transforms as (0, 1) under the SU(2)L×SU(2)R symmetry.

The two components of the four N = 1 supersymmetry which is preserved by the ad-

dition of the counterterm is given by (B.6). Since our field theory model is really N = 2

supersymmetric the counterterm preserves four supersymmetries.

3.2 Modified holographic ansatz

The field theory analysis showed that in order to restore some supersymmetry a counterterm

has to be introduced. In this section we present an ansatz for the holographic realization of

such a counterterm. We need to identify a world volume field which can reproduce (3.3) at

the AdS boundary. The counterterm corresponds to an operator of dimension ∆ = 2 and it

transforms under the SU(2)L×SU(2)R symmetry in the spin (0, 1) representation. In [31] the

excitation spectrum on the probe D7 brane was analyzed in detail. It was shown an operator

with these properties is dual to a KK excitation of the gauge field called φ−I . In the following

we give an explicit realization of that particular gauge field excitation.

As we shall show the counterterm can be realized by turning on a world volume gauge field

A which gives rise to a non-vanishing field strength tensor with components Fab = ∂aAb−∂bAa.
The ansatz for the gauge field we choose is given by

A =


A4

A5

A6

A7

 =
f(x3, r)

r2


x5
−x4
−x7
x6

 =
f(x3, r)

r2


y4
y5
y6
y7

 . (3.7)

In the second equality we have defined a second set of coordinates yi will be useful in the

calculation of the BPS projectors later on. Note that the dependence of A on the coordinates

xa, a = 4, 5, 6, 7 breaks the SO(4) = SU(2)L × SU(2)R down to SU(2)L.

The relevant parts of the D7 brane action are given by

SD7 = −Nfµ7

∫
d8x

√
−det(gab + Fab) +

1

2
Nfµ7

∫
P [C(4)] ∧ F ∧ F, (3.8)

where C(4) is given by

C4 = (r2 +X2
8 +X2

9 )2dt ∧ dx1 ∧ dx2 ∧ dx3 + . . . (3.9)
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The . . . represent terms in C(4) which do not have legs along t, x1, x2, x3 but have to be present

in order to guarantee the self-duality condition F(5) = ?F(5) for the field strength F(5) = dC(4).

For the gauge field ansatz (3.7) the Wess Zumino term of the D7 brane action reads

SWZ = −2µ7 vol(S3)

∫
d4xdr (r2 +X2

8 )2f∂rf. (3.10)

The DBI term of the D7 brane is not illuminating and will be evaluated later in (4.9) and in

(4.10).

Let us first study study the effects of the gauge field ansatz (3.7) and in particular determine

the conformal dimension of the dual operator. Therefore we study the linearized equation of

the gauge field for a D7 brane located at X8 = L,X9 = 0. With the ansatz (3.7) the term

quadratic in f of the action for the Born-Infeld part is given by (converting to polar coordinates

which introduces a r3 term in the integration measure)

SDBI,quad = −Nfµ7 vol(S3)

∫
d4xdr

{2

r
(L2+r2)2f 2+

1

2
r(∂µf)2+

1

2
r(L2+r2)2(∂rf)2

}
, (3.11)

while the WZ term (3.10) gives

SWZ = −Nfµ7 vol(S3)

∫
d4xdr 2(L2 + r2)2f∂rf

= −Nfµ7 vol(S3)

∫
d4xdr (L2 + r2)2∂r(f

2)

= 4Nfµ7 vol(S3)

∫
d4xdr r(L2 + r2)f 2. (3.12)

The equation of motion of f for the action SDBI,quad + SWZ becomes

1

r
∂r
(
r(r2 + L2)2∂rf

)
+ (∂µf)2 − 4

(r2 + L2)2

r2
f + 8(r2 + L2)f = 0. (3.13)

Near the AdS boundary the asymptotic behavior of f is given by

lim
r→∞

f(r) = c+(x)
1

r2
+ c−(x)

log r

r2
+O

(
(r−4

)
. (3.14)

By the standard holographic dictionary, turning on c+(x) corresponds to turning on a source

for a operator of dimension ∆ = 2.

We conclude that the gauge field ansatz (3.7) transforms as (0, 1) under SU(2)L×SU(2)R
and has conformal dimension ∆ = 2. Since it is the only type of fluctuation with these

properties, c+(x) as defined by equation (3.14) sources the counterterm (3.6).
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3.3 Equations of motion

The gauge field (3.7) is clearly not the most general form and one has to check that our

ansatz is consistent. This means that the equations of motion for the gauge fields allow for

all other components to be set to zero consistently. This is equivalent to the statement that

all components of∫
d8x
{
∂a

(√
−det(G+ F )

(
G+ F

)[ab])
+
(
∂a(r

2 +X2
8 )2
)
εacdb∂cAd

}
δAb = 0 (3.15)

can be reduced to a single partial differential equation for f(r, x3). One can indeed show that

the b = 3 component of the bracket in (3.15) is identically satisfied, whereas the a = 4, 5, 6, 7

components are given by

F
(
f,X8, ∂f, ∂X8, ∂

2f, ∂2X8)y
a = 0, (3.16)

where ya is defined in (3.7). The function F is a scalar function which is invariant under

SO(4) rotations in the x4, x5, x6, x7 space. Furthermore it depends only on f,X8 and their

derivatives with respect to r and x3. If one expands the variation δAa in terms of spherical

harmonics, all of them vanish but the one proportional to (3.7). This implies that there is no

linear coupling of (3.7) to other spherical harmonics in the action4 and hence the truncation

is consistent.

Both the equation of motion for X8 and f are highly nonlinear coupled second order partial

differential equations whose form is very complicated and not very illuminating. We will not

display their explicit form in this paper but they can be easily derived from the action (3.8).

4 κ-symmetry for the D7 brane probe

The κ-symmetry transformation on the world volume of the D7 brane takes the form

δΘ = (1 + Γ)κ (4.1)

and is responsible for gauging away half the spinor degrees of freedom ensuring space time

supersymmetry. The condition for an unbroken supersymmetry for the D7 brane probe is

given by

(1− Γ)ε = 0, (4.2)

where ε are Killing spinors generating the 32 supersymmetries in the AdS5 × S5 background

[32]. It was shown in [33] (see also [34]) that for the AdS5 × S5 space parameterized by (2.2)

16 of the supersymmetries the AdS Killing spinors can be written in terms of constant spinor

4Such a statement can also be derived from purely group theoretical arguments.
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ε = (r2 + ρ2)
− 1

4 ε0, (4.3)

where ε is a doublet of ten dimensional Majorana Weyl spinors which satisfy

iσ2 ⊗ Γ0123 ε0 = ε0. (4.4)

The spinor (4.3) generates the sixteen Poincare supersymmetries. In addition there are sixteen

superconformal supersymmetries. For an embedding with nonzero X8 conformal invariance is

broken and we only need to consider the Poincare supersymmetries. Since the r dependence

of (4.3) is an overall factor, we can drop the overall factor in (4.3) and work with a constant

spinor instead.

The form of the κ-symmetry projector for the D-brane probe is given by [32].

Γ =
1√

−det(G+ F )

∞∑
n=0

1

2nn!
γi1j1i2j2···injnFi1j1Fi2j2 · · ·FinjnJ

(n)
7 , (4.5)

where

J
(n)
7 = (−1)n(σ3)

n iσ2 ⊗ γ01234567. (4.6)

The gamma matrices γi are the pull-backs of the tangent space gamma matrices on the world

volume and given by

γi = EA
µ ∂iX

µΓA. (4.7)

The explicit expressions for γi can be found in appendix C. For the case of the D7 brane and

a gauge field ansatz (3.7) the expansion of the projector in the field strength terminates at

quadratic order. The κ-symmetry projector (4.5) can be expressed in terms of three prices

Γn=k, k = 0, 1, 2 with zero, one and two powers of the gauge fields respectively.

Γ = Γn=0 + Γn=1 + Γn=2

=
1√

−det(G+ F )

[
iσ2 ⊗ γ01234567 −

(
γ3aF3a +

1

2
γabFab

)
σ1 ⊗ γ01234567

+

(
1

2
γ3abcF3aFbc +

1

8
γabcdFabFcd

)
iσ2 ⊗ γ01234567

]
. (4.8)

The determinant −det(G+F ) contains the metric determinant of the three sphere which can

be extracted, where we define

−det(G+ F ) = D (4.9)

and D is given by

D =

(
r4 + 4f 2(r2 +X2

8 )2
)

r6

{( r2

(r2 +X2
8 )2

+ (∂rf)2
)

(∂3X8)
2 +

(
r2 + (∂3f)2

)
(∂rX8)

2

−2∂3f∂rf∂rX8∂3X8 +
(
r2 + (∂3f)2 + (r2 +X2

8 )2(∂rf)2
)}

. (4.10)
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4.1 Projection conditions on the spinors

In order to simplify the form of the κ-symmetry projector and solve the conditions for the

existence of unbroken supersymmetries we will impose three projection conditions on the

infinitesimal supersymmetry transformation parameter ε.

iσ2 ⊗ Γ0123ε = ε, (4.11)

12 ⊗ Γ4567ε = ε, (4.12)

σ3 ⊗ Γ38Γ45ε = ε. (4.13)

Note that the first projection (4.11) was already imposed by singling out the Poincare super-

symmetries (4.4).

Since the three matrices on the left hand side all commute, the three projectors are com-

patible and reduce the 32 supersymmetries of the AdS5 × S5 background to 4. The expres-

sions for Γn=0,1,2 are evaluated in detail in appendix D, where the final form of the projector

Γ = Γn=0+Γn=1+Γn=2 can be found in (D.18). We display this result again for the convenience

of the reader:

Γ ε =
1√
D

{
1 +

∂rX8

r
∂3f −

2

r3
(r2 +X2

8 )2f∂rf − ∂3X8

(2f

r2
+
∂rf

r

)}
12 ⊗ 1 ε

+
(r2 +X2

8 )√
D

{ −∂3X8

(r2 +X2
8 )2
−
(2f

r2
+
∂rf

r

)
+

2f

r3
(
∂rf∂3X8 − ∂3f∂rX8

)}
12 ⊗ Γ38 ε

+
2(r2 +X2

8 )f

r3
√
D

{∂3f
r
− ∂rX8

}
12 ⊗ xdΓd3 ε+

1√
D

1

r

{∂3f
r
− ∂rX8

}
12 ⊗ xdΓd8 ε.

(4.14)

It is remarkable after employing the conditions (4.11)-(4.13) the complete projector can be

written as the sum of four terms involving only four linearly independent combinations of

gamma matrices. The conditions (4.11)-(4.13) reduce the Poincare supersymmetry from 32 to

4. Consequently the κ-symmetry projector (4.2) should not reduce the number of unbroken

supersymmetries further.

It follows that Γ has to be equal to the unit operator. This implies that the term in (4.14)

proportional to 12 ⊗ 1 has to be equal to one, or equivalently

1 +
∂rX8

r
∂3f −

2

r3
(r2 +X2

8 )2f∂rf − ∂3X8

(2f

r2
+
∂rf

r

)
=
√
D, (4.15)

where D is given by (4.10). Furthermore, the linearly independent terms proportional to

12 ⊗ Γ38, 12 ⊗ xdΓd3 and 12 ⊗ xdΓd8 have to vanish separately, Note that the vanishing of

terms proportional to 12 ⊗ xdΓd3 and 12 ⊗ xdΓd8 give the same condition, hence we have two

additional BPS equations

12



∂3f

r
− ∂rX8 = 0, (4.16)

− ∂3X8

(r2 +X2
8 )2
−
(2f

r2
+
∂rf

r

)
+

2f

r3
(
∂rf∂3X8 − ∂3f∂rX8

)
= 0. (4.17)

A lengthy calculation shows that if (4.16) and (4.17) are satisfied then both (4.15), as well

as the equations of motion, are automatically satisfied. Hence finding a D7 brane embedding

which preserves four supersymmetries boils down to finding solutions two BPS equations (4.16)

and (4.17).

5 Solutions of the BPS equations

The main result from the last section was the the there are four unbroken supersymmetries

if the BPS equations (4.16) and (4.17) are satisfied. The two equations are considerably

simpler than the equations of motion, since they involve only first derivatives. They are

however still nonlinear partial differential equations and hence not easy to solve. In the

following we will present some solutions to the BPS equations using a variety of methods.

The solution corresponding to a supersymmetric holographic topological insulator will be

obtained numerically.

5.1 A solution using scaling symmetry

The two BPS equations (4.16) and (4.17) are invariant under the following scaling transfor-

mation (which generalizes the scaling transformation of [1]).

r → ξr, x3 →
1

ξ
x3, X8 → ξX8, f → f. (5.1)

One can use the scaling symmetry to obtain an ansatz for the fields which only depend on the

scaling invariant combination y = x3r

X8 = r h(y), f = f(y). (5.2)

The BPS equations become

y h′ + h− f ′ = 0,

h′

(1 + h2)2
+ 2f + (y + 2f h)f ′ = 0. (5.3)

13



Figure 1: (a) numerical solution for f(y), (b) Plot of f(r, x3), (c) Plot of X8(r, x3)

The first equation can be integrated and determines h

h =
c1
y

+
f

y
. (5.4)

The second equation of (5.3) then takes the following form

f ′ = −
y

(
− c1
y2
− f

y2
+ 2f

(
1 + (c1+f)2

y2

)2)
1 +

(
y2 + 2f(c1 + f)

)(
1 + (c1+f)2

y2

)2 . (5.5)

While this ordinary differential equation does not seem to have an explicit solution in terms

of known functions, it can be easily integrated numerically. Note that if one imposes the initial

condition f(y)|y=0 6= 0 the solution indeed satisfies ∂rX8|r=0 = 0 which is equivalent to the

condition that the 3-sphere closes off smoothly at r = 0. In figure 1 we display an example

for c1 = 0 and f(y)|y=0 = 2.

Note that this solution does not correspond to a topological insulator. This follows from

the fact that limx3→±∞X8 = 0 which means that the fermion mass cannot behave as in (2.11).

5.2 Perturbation theory

In this section we will give a perturbative solutions of the BPS equations (4.16) and (4.17).

First, we redefine f = rf̃ such that the BPS equation (4.16) becomes

∂3f̃ = ∂rX8 (5.6)

while the second BPS equation (4.17) reads

∂rf̃ +
3

r
f̃ +

∂3X8

(r2 +X2
8 )2

+
2f̃

r2

(
r∂3f̃∂rX8 − ∂3X8(f̃ + r∂rf̃)

)
= 0. (5.7)
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Equation (5.6) can be solved by

f̃ = ∂rh+ ∂3h̃, X8 = ∂3h− ∂rh̃, (5.8)

where h̃ can is a harmonic function satisfying(
∂23 + ∂2r

)
h̃ = 0. (5.9)

We should consider h̃ as a fluctuation on top of the embedding. Since we are only interested

in the embedding, we set h̃ = 0 from now on and plug equation (5.9) into the second BPS

equation (5.7). This leads to a complicated partial differential equation for the function h

∂23h

(r2 + (∂3h)2)2
+

3∂rh

r
+

2∂23h (∂rh)2

r2
+

2∂rh(∂r∂3h)2

r
− 2∂23h ∂

2
rh ∂rh

r
+ ∂2rh = 0. (5.10)

Unfortunately, we were not able to solve equation (5.10) analytically. Following [1] we take

the ansatz for the perturbation expansion for h as follows

h = ε
1

r
h1(rx3) + ε3

1

r3
h3(rx3) + · · · =

∑
n=1

( ε
r

)2n−1
hn(rx3). (5.11)

The order ε contribution to (5.10) is given by, renaming rx3 = y

h1(y)− yh′1(y)− (1 + y2)h′′1(y) = 0, (5.12)

which has the most general solution

h1(y) = M0(1 + y2)1/2 + c1y. (5.13)

In the following we set c1 = 0 since it corresponds to a constant mass term. In this case the

order ε3 contribution to (5.10) has the form

h′′2(y)− 3y

1 + y2
h′2 +

3

1 + y2
h2 = 2M3

0

(y2 − 1)

(1 + y2)7/2
. (5.14)

This equation can be integrated and one gets

h2(y) = −M3
0

1

6(1 + y2)3/2

(
1+6y2+4y4

)
+c2,1y+c2,2

(
3y arcsinh(y)+

√
1 + y2(y2−2)

)
, (5.15)

where the second and third terms are solutions to the homogeneous part of the (5.14). We

note that the term of order ε1 is dominant near the boundary, i.e. as r →∞ one obtains from

(5.13) and (5.8)

lim
r→∞

X8 = lim
r→∞

M0
x3r√

1 + (x3r)2
+O

(
1

r2

)
= M0

x3
|x3|

+O
(

1

r2

)
. (5.16)
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Figure 2: (a) numerical solution for X8(r, x3), (b) Plot of f(r, x3)
for large τ .

It is in principle possible to find the higher orders of the perturbation series (5.11), which

are all sub-leading in powers of r. However the perturbative solution shares the same problem

as [1]. For the leading term in ε one has

lim
r→0

∂rX8 = M0x3 + · · · (5.17)

One can easily convince oneself that the non vanishing of ∂rX8 at r = 0 is a general feature

of the perturbation series (stemming from the scaling symmetry of section 5.1). However

∂rX8 has to vanish at r = 0 for the sphere to close off smoothly. Consequently, while the

perturbation expansion has a reasonable behavior at r →∞, the behavior as r → 0 does not

correspond to a smooth solution.

5.3 Numerical solution of the BPS equations

In this section we solve the BPS equation (5.10) numerically by using a heat method. This

method was also used to obtain solutions for the non-supersymmetric setup of [1].

In particular we make h(r, x3) dependent on an imaginary time τ . The derivative with

respect to τ is given by the left-hand side of equation (5.10) multiplied by r2.

∂h(r, x3, τ)

∂τ
=

r2∂23h

(r2 + (∂3h)2)2
+ r2∂2rh+ 3r ∂rh+ 2∂23h (∂rh)2

+2r ∂rh(∂r∂3h)2 − 2r ∂23h ∂
2
rh ∂rh. (5.18)
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After a sufficiently long time τ the field configuration approaches a solution of the right

hand side equation. We solved this equation for a spatial region x3 = [−xmax, xmax] and

r ∈ [0, rmax]. As a good initial function h at time τ = 0 we use the first order solution (5.13)

(with c1 = 0) which we can trust for large r. At the boundaries of the spatial regions, we impose

Neumann boundary conditions for h at r = 0 and Dirichlet boundary conditions (given by the

first order solution). The numerical solution of the equations was obtained using Mathematica

and unlike the perturbative solution the numerical solution has the correct behavior both in

the r = 0 region and in the large r region.

6 Discussion

Making coupling constants dependent on space time coordinates generically breaks all the

supersymmetries of a supersymmetric field theory. Examples are Janus solutions [35] and

the holographic topological insulator solutions constructed in [1]. Turning on a world volume

gauge field allowed us to preserve four of the sixteen supersymmetries of the probe D7 brane.

On the field theory side this corresponds to turning on localized counterterms as expected

from the weak coupling analysis. A supersymmetric generalization of the topological insulator

might be interesting in its own right from a theoretical perspective.

The BPS equations we have found are considerably simpler than the equations of motion,

since they are first order instead of second order partial differential equations. Utilizing the

scaling symmetry we have been able to generate exact smooth solutions. These solutions do

however not have the boundary behavior which describes topological insulators. We have been

unable so far to obtain closed form solutions corresponding to holographic topological insula-

tors. Instead we had to resort to other methods such as perturbation theory and numerical

methods. A closed form solution would be very useful as it is possible to study fluctuations

about the solution and calculate correlation functions and transport quantities.

It is an interesting open problem to determine whether the difficulty of obtaining closed

form solutions is a fundamental problem due to the small amount of preserved supersymmetry

or simply due to the lack of ingenuity on the authors’ side5.

Even with the numerical solutions it might be feasible to extract observable quantities, like

transport quantities from the numerical solutions. We leave such questions for future work.

5Note that in the case of supersymmetric Janus solutions [24] the original form of the BPS equations looked
too complicated to be solved. Only a sequence of clever variable changes made a solution possible.
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A Conventions

We will briefly review our conventions for the IIB supergravity and ten dimensional gamma

matrices which follow [32]. The supersymmetry transformation parameters ε of type IIB

supergravity can be written as a doublet

ε =

(
ε1
ε2

)
. (A.1)

The flat space gamma matrices Γi are 32×32 matrices and the spinors εi, i = 1, 2 are Majorana-

Weyl spinors

Γ11εi = εi, i = 1, 2. (A.2)

The matrices in the κ-symmetry projectors are of the form

σi ⊗ Γi1i2...in , (A.3)

where Γi1i2·in = Γi1Γi2 . . .Γin and the Pauli matrices σi act on the doublet (A.1)

B Supersymmetry and counter-terms

In this appendix we review and adapt the results given in [30] for the field theory description

of the topological insulator discussed in the body of the paper.

The theory is most conveniently formulated in terms in N = 1 chiral multiplets, where

only the N = 1 supersymmetry is manifest. We consider n chiral multiplets denotes Φi with

the field content.

Φi : φi, ψi, F i, i = 1, 2, · · · , n, (B.1)

where φi is a complex scalar, ψi is a Majorana spinor and F i is an auxiliary field. In compo-

nents the Lagrangian density is given by

L = −∂µφi∂µφi∗ −
i

2
ψ̄iγµ∂µψ

i + F i∗F i − i

2

∂W

∂φi∂φj
ψ̄iP+ψ

j +
∂W

∂φi
F i + c.c, (B.2)
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where P+ = 1
2
(1 + γ5). The supersymmetry transformations are given by

δφi = i
√

2ψ̄iP+ε

δ(P+ψ
i) =

√
2P+ε F

i +
√

2γµP−ε ∂µφ
i

δF i = −i
√

2ε̄γµ∂µP+ψ
i. (B.3)

Here ε is a Majorana spinor parameter. W is the superpotential which parameterizes the

self interactions of the chiral superfields. It was shown [30] that couplings in the superpo-

tential which position dependent break all of the supersymmetries (B.3). Assuming that the

superpotential depends on one coupling constant g(x3), the supersymmetry variation of the

Lagrangian (B.2) is given by

δL = i
√

2
∂g

∂x3

∑
i

ε̄

(
P+γ

3ψi
∂

∂g

(
∂W

∂φi

)∗
+ P−γ

3ψi
∂

∂g

(
∂W

∂φi

))
(B.4)

is not a total derivative. Consequently, all supersymmetries are broken by the position de-

pendent mass. Furthermore it was shown in [30] that some - but not all - supersymmmetries

can be restored by adding a counter-term to the action of the form

L → L+ i
∂g

∂x3

{(
∂W

∂g

)
−
(
∂W

∂g

)∗}
. (B.5)

The supersymmetry which is preserved is given by

Πε = ε, Π =
1

2

(
1 + iγ5γ3

)
. (B.6)

For the theory discussed in section 3.1 the coupling g is identified with the mass m, the chiral

superfields Φ1,Φ2 are identified with Q, Q̃ the superpotantial is given by

W = m(x3)QQ̃ (B.7)

C D7 brane embedding

In this appendix we present the details of the D7 brane embedding for completeness. The

AdS5 × S5 background metric is given by

ds2 = gµνdx
µdxν = (r2 + ρ2)ηijdxidxj +

1

r2 + ρ2

(
7∑

a=4

dx2a + dX2
8 + dX2

9

)
, (C.1)

where

r2 = x24 + x25 + x26 + x27, ρ2 = X2
8 +X2

9 . (C.2)
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Note that we have introduced two different set of indices: i, j ∈ {0, 1, 2, 3} and a ∈ {4, 5, 6, 7}.
The corresponding coordinates xi and xa parametrize the field theory coordinates and the

internal coordinates, respectively. The D7 brane world volume coordinates ζ are identified

with xi(i = 0, 1, 2, 3) and xa(a = 4, 5, 6, 7). In order to embed the D7 brane into AdS5 × S5

we have to specify X8 and X9 as a function of the world volume coordinates. In this paper

we restrict ourselves to

X8 = X8(x3, r),

X9 = 0 . (C.3)

The induced metric on the world volume of the brane, with components Gab, is defined by

Gab = ∂aX
µ∂bX

νgµν (C.4)

and takes the following form

Gij = (r2 +X2
8 )ηij,

G33 = (r2 +X2
8 ) +

1

(r2 +X2
8 )
∂3X8∂3X8,

G3a =
1

r2 +X2
8

xa
r
∂3X8∂rX8,

Gab =
1

r2 +X2
8

(
δab + (∂rX8)

2xaxb
r2

)
, (C.5)

where i, j ∈ {0, 1, 2} and a, b ∈ {4, 5, 6, 7}. The non-vanishing components of the field strength

are, for a = 4, 5, 6, 7

F3a =
∂3f(r, x3)

f(r, x3)
Aa,

F45 = −2f(r, x3)

r2
− 1

r
∂r

(
f(r, x3)

r2

)
(x24 + x25),

F46 = −1

r
∂r

(
f(r, x3)

r2

)
(x4x7 + x5x6),

F47 =
1

r
∂r

(
f(r, x3)

r2

)
(x4x6 − x5x7),

F56 =
1

r
∂r

(
f(r, x3)

r2

)
(x4x6 − x5x7),

F57 =
1

r
∂r

(
f(r, x3)

r2

)
(x4x7 + x5x6),

F67 =
2f(r, x3)

r2
+

1

r
∂r

(
f(r, x3)

r2

)
(x26 + x27). (C.6)
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Note that F46 = −F57 and F47 = F56. The pull back of the gamma matrices on the world

volume (4.7) are given by

γi =
√
r2 +X2

8 Γi, i = 0, 1, 2,

γ3 =
√
r2 +X2

8 Γ3

(
1 +

∂3X8

r2 +X2
8

Γ38

)
,

γa =
1√

r2 +X2
8

(Γa +
∂rX8

r
xaΓ8) a = 4, 5, 6, 7. (C.7)

D Calculation of the κ-symmetry projector

In this appendix we will present the detailed calculation of Γn=0,Γn=1 and Γn=2. We use the

three projection conditions (4.11)-(4.13) as well as the properties of the world volume gauge

field to bring the projector in a minimal form.

D.1 Calculation of Γn=0

Using the expressions for the pulled back gamma matrices one get

Γn=0 =
1√

−det(G+ F )
iσ2 ⊗ γ01234567

=
1√
D
iσ2 ⊗ Γ01234567

[
1 +

1

(r2 +X2
8 )

Γ38∂3X8 +
∂rX8

r
(xaΓa)Γ8

]
. (D.1)

Employing the projectors (4.11) and (4.12) Γn=0 can be expressed as follows.

Γn=0 ε =
1√
D

[
12 ⊗ 1− ∂3X8

(r2 +X2
8 )

12 ⊗ Γ38 −
∂rX8

r
xd12 ⊗ Γd8

]
ε. (D.2)

D.2 Calculation of Γn=1

The contribution to Γ which is linear in the field strength is given by

Γn=1 = − 1√
D

(
γ3aF3a +

1

2
γabFab

)
σ1 ⊗ γ01234567

= +
1√
D

(
1

6
εabcdF3a σ1 ⊗ γ012bcd +

1

4
εabcdFab σ1 ⊗ γ0123cd

)
, (D.3)

where εabcd is the totally antisymmetric tensor in (4567) space normalized such that ε4567 = 1.
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We can use the formulae for the pull back of the gamma matrices (C.7) to determine

γ0123cd = (r2 +X2
8 )Γ0123cd + ∂3X8Γ0128cd + (r2 +X2

8 )
∂rX8

r
Γ0123(xdΓc8 − xcΓd8),

γ012bcd = Γ012bcd +
∂rX8

r
(xbΓ012cdΓ8 − xcΓ012bdΓ8 + xdΓ012bcΓ8) . (D.4)

In addition we need the following relation involving the field strength

εabcdFabxcΓd ε = −4f

r2
ydΓd ε, (D.5)

where the coordinates yi were defined in (3.7). There are three additional identities involving

the field strength, which we need in the following

εabcdFabΓcdε =
(1

2
εabcdFab − Fcd

)
Γcdε =

(
4
f

r2
+

2∂rf

r

)(
Γ45 − Γ67

)
ε, (D.6)

as well as

εabcdF3axbΓcd8ε = −∂3f
(

Γ45 − Γ67

)
Γ8 ε (D.7)

and

εabcdF3aΓbcd ε =
6

r2
∂3fy

dΓd ε, (D.8)

where we used the projection condition (4.12) to simplify the expressions above. Employing

these identities together (D.3) can be expressed as follows

Γn=1 ε =
[ 2√

D
(r2 +X2

8 )
∂rX8

r

f

r2
ydσ1 ⊗ Γ0123Γd8 +

1√
D

(r2 +X2
8 )
( f
r2

+
∂rf

2r

)
σ1 ⊗ Γ0123(Γ45 − Γ67)

+
1√
D
∂3X8

( f
r2

+
∂rf

2r

)
σ1 ⊗ Γ0128(Γ45 − Γ67) +

1√
D

1

r2
∂3fy

dσ1 ⊗ Γ012d

− 1√
D

1

2

∂rX8

r
∂3fσ1 ⊗ Γ0128(Γ45 − Γ67)

]
ε. (D.9)

This can be simplified by using (4.11),

Γn=1 ε =
[ 2√

D
(r2 +X2

8 )
∂rX8

r

f

r2
σ3 ⊗ ydΓd8 +

1√
D

(r2 +X2
8 )
( f
r2

+
∂rf

2r

)
σ3 ⊗ (Γ45 − Γ67)

− 1√
D
∂3X8

( f
r2

+
∂rf

2r

)
σ3 ⊗ Γ38(Γ45 − Γ67)−

1√
D

1

r2
∂3fy

dσ3 ⊗ Γ3d

+
1√
D

1

2

∂rX8

r
∂3fσ3 ⊗ Γ38(Γ45 − Γ67)

]
ε. (D.10)
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The dependence on the yi can be removed by employing (4.13) from which the following

identities can be derived

ydΓdΓ45ε = xdΓdε,

σ3 ⊗ ydΓd8ε = −xd 12 ⊗ Γd3ε,

σ3 ⊗ ydΓd3ε = +xd 12 ⊗ Γd8ε,

σ3 ⊗ (Γ45 − Γ67)ε = −2 12 ⊗ Γ38ε,

σ3 ⊗ Γ38(Γ45 − Γ67)ε = 2 12 ⊗ 1ε. (D.11)

Then the Γn=1 projector becomes

Γn=1 ε =
[
− 2√

D
(r2 +X2

8 )
∂rX8

r

f

r2
xd 12 ⊗ Γd3 −

1√
D

(r2 +X2
8 )
(2f

r2
+
∂rf

r

)
12 ⊗ Γ38

− 1√
D
∂3X8

(2f

r2
+
∂rf

r

)
12 ⊗ 1 +

1√
D

1

r2
∂3f

d 12 ⊗ Γd8

+
1√
D

∂rX8

r
∂3f 12 ⊗ 1

]
ε. (D.12)

D.3 Calculation of Γn=2

The part of the projector which is quadratic in the field strength is given by

Γn=2 =
1√
D

(1

2
γ3abcF3aFbc +

1

8
γabcdFabFcd

)
iσ2 ⊗ γ01234567

=
1√
D

(1

2
εabcdF3aFbciσ2 ⊗ γ012d +

1

8
εabcdFabFcdiσ2 ⊗ γ0123

)
. (D.13)

Expressing the world volume gamma matrices in terms of flat space ones gives

γ0123 = (r2 +X2
8 )2Γ0123 + (r2 +X2

8 )∂3X8Γ0128,

γ012d = (r2 +X2
8 )
(

Γ012d +
∂rX8

r
xdΓ0128

)
(D.14)

and using the following relations which follow from the explicit ansatz for the gauge field (3.7)

1

8
εabcdFabFcd = − 2

r3
f∂rf,

1

2
εabcdF3aFbcΓd = +

2

r4
f∂3f x

dΓd,

1

2
εabcdF3aFbcxd = +

2

r2
f∂3f, (D.15)
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we obtain

Γn=2 ε =
1√
D

{
− 2

r3
(r2 +X2

8 )2f∂rf iσ2 ⊗ Γ0123 −
2

r3
(r2 +X2

8 )f∂rf∂3X8 iσ2 ⊗ Γ0128

+
2

r4
(r2 +X2

8 )f∂3f x
d iσ2 ⊗ Γ012d +

2

r3
(r2 +X2

8 )f∂3f ∂rX8 iσ2 ⊗ Γ0128

}
ε.

(D.16)

Using the projector (4.11) the expression can be simplified further to give

Γn=2 ε =
1√
D

{
− 2

r3
(r2 +X2

8 )2f∂rf 12 ⊗ 1 +
2

r3
(r2 +X2

8 )f∂rf∂3X8 12 ⊗ Γ38

+
2

r4
(r2 +X2

8 )f∂3f x
d 12 ⊗ Γd3 −

2

r3
(r2 +X2

8 )f∂3f ∂rX8 12 ⊗ Γ38

}
ε.

(D.17)

D.4 Final form of the Γ projector

The expressions for Γn=0,1,2 in are evaluated in append D. The final result for the projector

Γ = Γn=0 + Γn=1 + Γn=2 from (D.2), (D.12) and (D.17) one gets the final form of the Γ

projector.

Γ ε =
1√
D

{
1 +

∂rX8

r
∂3f −

2

r3
(r2 +X2

8 )2f∂rf − ∂3X8

(2f

r2
+
∂rf

r

)}
12 ⊗ 1 ε

+
(r2 +X2

8 )√
D

{ −∂3X8

(r2 +X2
8 )2
−
(2f

r2
+
∂rf

r

)
+

2f

r3
(
∂rf∂3X8 − ∂3f∂rX8

)}
12 ⊗ Γ38 ε

+
2(r2 +X2

8 )f

r3
√
D

{∂3f
r
− ∂rX8

}
12 ⊗ xdΓd3 ε+

1√
D

1

r

{∂3f
r
− ∂rX8

}
12 ⊗ xdΓd8 ε.

(D.18)
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