
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Gauge theory one-loop amplitudes and the Britto-Cachazo-
Feng-Witten recursion relations

Savan Kharel and George Siopsis
Phys. Rev. D 86, 025004 — Published  3 July 2012

DOI: 10.1103/PhysRevD.86.025004

http://dx.doi.org/10.1103/PhysRevD.86.025004


DL11181

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

UTHET-11-1002

Gauge theory one-loop amplitudes and the BCFW recursion relations

Savan Kharel∗ and George Siopsis†

Department of Physics and Astronomy, The University of Tennessee, Knoxville, TN 37996 - 1200, USA

We calculate gauge theory one-loop amplitudes with the aid of the complex shift used in the Britto-
Cachazo-Feng-Witten (BCFW) recursion relations of tree amplitudes. We apply the shift to the
integrand and show that the contribution from the limit of infinite shift vanishes after integrating
over the loop momentum, with a judicious choice of basis for polarization vectors. This enables
us to write the one-loop amplitude in terms of on-shell tree and lower-point one-loop amplitudes.
Some of the tree amplitudes are forward amplitudes. We show that their potential singularities do
not contribute and the BCFW recursion relations can be applied in such a way as to avoid these
singularities altogether. We calculate in detail n-point one-loop amplitudes for n = 2, 3, 4, and
outline the generalization of our method to n > 4.

PACS numbers: 11.10.Kk, 11.25.Tq, 04.50.Gh, 98.80.Qc

∗ skharel@tennessee.edu
† siopsis@tennessee.edu



2

I. INTRODUCTION

There are several reasons to improve on our understanding of scattering amplitudes in gauge theories, ranging
from the development of an efficient and accurate calculation of standard model processes that occur in high energy
accelerators such as the Large Hadron Collider (LHC), to formal developments, such as understanding the properties
of quantum field theory and quantum gravity.
In the last few years, there has been extraordinary progress in the study of scattering amplitudes. We learned that

the scattering amplitudes of gravity and gauge theories have more structure and symmetries than are manifest in the
Lagrangian. One of the first extraordinary properties of scattering amplitudes was discovered in the mid-eighties by
Parke and Taylor who found an extremely simple and compact expression for Maximally-Helicity-Violating (MHV)
amplitudes [1]. The modern renaissance in the study of scattering amplitudes was led by an important conceptual
development due to Witten [2] who observed that the structure of gauge theory scattering amplitudes is very simple
in twistor space. For recent reviews of scattering amplitudes, see, e.g., [3, 4].
Witten’s seminal work inspired an important contribution by Cachazo, Svrcek, and Witten [5] and its extension,

the Britto-Cachazo-Feng-Witten (BCFW) recursion relations [6]. In the BCFW prescription, a pair of the external
momenta in a tree amplitude are analytically continued into the complex plane, turning the amplitude into a mero-
morphic function. Thus, these amplitudes are shown to be determined by the residues of their poles. The BCFW
technique exploits this property in order to recursively construct physical amplitudes from irreducible three-point
amplitudes. However, in order to effectively use recursion relation, the residue of the pole at infinity must vanish.
This is the case in gauge theories and gravity, but not in generic field theories [7]. In the last few years much progress
has been realized in our understanding of scattering amplitudes based on the BCFW recursion relation. For example,
the BCFW recursion relations have been applied to amplitudes involving gravitons [8–11], string theory [12–14], and
anti-de Sitter (AdS) space [15].
The extension of the BCFW recursion relations to loop amplitudes is not straightforward. Loop amplitudes receive,

in general, a non-vanishing contribution from the pole at infinity. They also possess cuts, in addition to poles, which
makes the application of Cauchy’s theorem more cumbersome. In the mid-nineties, powerful on-shell unitarity methods
were developed for the calculation of scattering amplitudes [16, 17] (for a review, see [18]). A generalization of the
BCFW recursion relations and the unitarity method to loop amplitudes was then considered [19–22]. An alternative
approach, in which one applies the BCFW recursion relations to the integrand of the loop amplitude, was recently
discussed [23]. In the case of N = 4 super Yang-Mills gauge theory, all loop amplitudes were thus obtained in the
planar limit [24].
In this paper, we re-visit the application of BCFW recursion relations to the integrand of gauge-theory loop am-

plitudes. We concentrate on one-loop amplitudes, although our results can be generalized to higher loop order. We
show that the contribution of the pole at infinite complex shift can be made to vanish, after integrating over the loop
momentum, by a judicious choice of basis for the polarization vectors. This enables us to express one-loop amplitudes
in terms of tree amplitudes and lower-point one-loop amplitudes. The tree amplitudes include forward amplitudes
which are plagued by divergences, in general. We show that these potential divergences do not contribute and dis-
cuss how the BCFW recursion relations can be applied so as to avoid the divergences, thus reducing the one-loop
amplitudes to three-point tree amplitudes.
We perform the calculation in detail for two-point (section II), three-point (section III), and four-point (section IV)

one-loop amplitudes. In section V, we outline the generalization of our method to one-loop amplitudes with n > 4.
In section VI, we summarize our conclusions. We work with color ordered amplitudes throughout, to simplify the
discussion.

II. TWO-POINT LOOP AMPLITUDE

In this section, we consider a two-point one-loop amplitude. Ignoring group theory factors, it can be written as an
integral over the loop momentum,

A
1−loop
2 (k1, ǫ1;−k1, ǫ2) =

∫

d2ωl

(4π)2ω
A1−loop

2 (k1, ǫ1;−k1, ǫ2) , (1)

where ω is a dimensional regularization parameter, and the two polarization vectors are null, with ǫ1 ·k1 = ǫ2 ·k1 = 0.
The momentum k1 is off shell.
To apply the BCFW recursion relations, we shift k1 7→ k1 + zǫ1. Consequently, we shift the second polarization

vector,

ǫ2 7→ ǫ′2 ≡ ǫ2 − z
ǫ2 · ǫ1
k21

k1 . (2)
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We will use the background gauge [25] in order to compute this amplitude. There is only one diagram that contributes

k1 + zǫ1

−k1 − zǫ1

l

FIG. 1. Diagram contributing to the two-point one-loop amplitude.

to this amplitude (figure 1).
At large z, the integrand behaves as

A1−loop
2 =

1

2

ǫ1 · ǫ2
l2

+
5

2

ǫ1 · ǫ2
k21

k1 · l

l2
+O

(

1

z

)

. (3)

Upon integration over the loop momentum, the leading O(1) term becomes a linear combination of tadpole tensor
integrals,

Iµ1µ2... =

∫

d2ωl

(4π)2ω
lµ1

lµ2
· · ·

l2
, (4)

which vanish. Therefore, we have no contribution from z → ∞ and the entire contribution to the two-point diagram
comes from the residue of the pole of the integrand at

z = z1 =
(l − k1)

2

2ǫ1 · l
(5)

From Cauchy’s theorem, we obtain for the integrand

A1−loop
2

∣

∣

∣

z=0
= −

1

z1
Resz→z1A

1−loop
2 + . . . (6)

where the dots represent contributions that vanish upon integration over the loop momentum. Explicitly, for the
integral we obtain

A
1−loop
2 = +5ǫµ1 ǫ

ν
2Iµν(k1) +

5

2
ǫ1 · ǫ2k

2
1I(k1)− ǫ1.ǫ2k

µ
1 Iµ(k1) (7)

in terms of the two-point tensor integrals,

Iµ1µ2...(k1) =

∫

d2ωl

(4π)2ω
lµ1

lµ2
· · ·

l2(l − k1)2
, (8)

which is in agreement with the result of a direct calculation of the loop integral. Evidently, the residue contributing
to the loop amplitude is a four-point tree diagram contributing to the forward amplitude (see figure 2),

Atree
4 (k′1, ǫ1;−k′1, ǫ

′
2; l

′, ǫ3;−l′, ǫ4) (9)

where ǫ′2 is given by (2) with z = z1 (defined in (5)), and we have defined

k′1 = k1 + z1ǫ1 , l′ = l − k1 − z1ǫ1 , (10)

to simplify the notation. Two legs are on-shell, since (l′)2 = 0. For the two-point loop amplitude, we expect

A
1−loop
2 =

∫

d2ωl

(4π)2ω
1

(l − k1)2

∑

ǫ3

Atree
4

∣

∣

∣

ǫ4=ǫ∗
3

(11)
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However, the forward amplitude is singular. To regulate it, introduce a small momentum pµ orthogonal to the
polarization vector ǫ′2,

p · ǫ′2 = 0 (12)

and consider the amplitude

Atree
4 (k′1, ǫ1;−k′1 − p, ǫ′2; l

′ + p, ǫ3;−l′, ǫ4) (13)

in the limit pµ → 0.
Since we are working with color-ordered amplitudes, to avoid ordering the legs carrying the loop momentum, we

shall average over this amplitude and the one obtained by interchanging the two legs carrying the loop momentum.
The contribution of diagram (a) of figure 2 is regular. In the limit pµ → 0, we obtain

∑

ǫ3

A
tree , (a)
4

∣

∣

∣

ǫ4=ǫ∗
3

=
ǫ1 · ǫ′2(

5
2k

2
1 + k′1 · l

′) + 5ǫ1 · l′ǫ′2 · l
′ + 5

2ǫ1.k
′
1ǫ

′
2.l

′

l2
(14)

The contribution of the diagram (b) of figure 2 is singular,

∑

ǫ3

A
tree , (b)
4

∣

∣

∣

ǫ4=ǫ∗
3

=
ǫ1 · ǫ′2(

3
2p

2 + 3p · k′1 − 3p · l′ − 6k′1 · l
′)− 3ǫ1 · l′ǫ′2 · p

p2
(15)

Finally, the contribution of diagram (c) is regular,

∑

ǫ3

A
tree , (c)
3

∣

∣

∣

ǫ4=ǫ∗
3

= −
3

2
ǫ1 · ǫ

′
2 (16)

The singular contribution is easily seen to vanish after removing the color ordering on the legs carrying the loop
momentum. This is done by averaging with the expression obtained by replacing l′ → −l′ + p (or, equivalently,
replacing l 7→ 1

2p in (15)). Then the numerator on the right-hand side of (15) vanishes after using (12).
We obtain the finite forward tree amplitude

∑

ǫ3

Atree
4

∣

∣

∣

ǫ4=ǫ∗
3

=
−5ǫ1 · ǫ2ǫ1 · l

k1·l
k2
1

z1 + ǫ1 · ǫ2ǫ1 · lz1 +
3
2ǫ1 · ǫ2k

2
1 + ǫ1 · ǫ2k1 · l + 5ǫ1 · lǫ2 · l

l2
(17)

Substituting this expression in (11), we recover our earlier result (7) for the two-point one-loop amplitude.

q4

q1

q3

q2

l

(a)

q4

q1

q3

q2

p

(b)

q4

q1

q3

q2

(c)

FIG. 2. Four-point tree diagrams contributing to a two-point one-loop diagram. The external momenta are q1 = k′
1 + p,

q2 = −k′
1, q3 = −l′, q4 = l′ − p. pµ is a momentum regulator.

The forward tree amplitude can also be obtained by applying the BCFW recursion relations. In fact, by an
appropriate choice of complex momentum shifts, the singularity can be avoided and no need for a regulator arises.
Indeed, under the shift,

k′1 7→ k′1 + wǫ1 , −k′1 7→ −k′1 − wǫ1 , ǫ′2 7→ ǫ′′2 ≡ ǫ′2 − w
ǫ1 · ǫ2
k21

k′1 (18)
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the resulting amplitude vanishes as w → ∞, and we obtain a pole at

w = w1 = −
l2

2l · ǫ1
(19)

The residue of the pole yields the entire four-point forward tree amplitude,

Atree
4 =

1

l2

∑

ǫ3,ǫ′

Atree
3 (k′1 + w1ǫ1, ǫ1;−l′ − w1ǫ1, ǫ

′; l′, ǫ3)

×Atree
3 (−k′1 − w1ǫ1, ǫ

′′
2 ;−l′ + w1ǫ1, ǫ

∗
3; l

′ + w1ǫ1, ǫ
′∗) (20)

which is a finite expression. After some straightforward algebra, we obtain

Atree
4 =

ǫ1 · ǫ2
[

3
2w1ǫ1 · l −

7
2z1ǫ1 · l +

5
2k

2
1 − k1 · l + l2

]

− 5
2ǫ1 · lǫ

′′
2 · k1 + 5ǫ1 · lǫ′′2 · l

l2
(21)

Using the explicit expressions (5), (19), and (18) for z1, w1, and ǫ′′2 , respectively, we recover our earlier result (17),
which was obtained by a direct calculation using a regulator, up to terms which vanish upon integration over the loop
momentum.
Thus, we have shown that an application of the BCFW recursion relations reduces the two-point loop amplitude

to three-point tree amplitudes. Even though there are potential singularities from forward amplitudes, these were
avoided by a judicious choice of complex momentum shifts.

III. THREE-POINT LOOP AMPLITUDE

Next we consider a three-point one-loop color-ordered amplitude

A
1−loop
3 (k1, ǫ1; k2, ǫ2; k3, ǫ3) =

∫

d2ωl

(4π)2ω
A1−loop

3 (k1, ǫ1; k2, ǫ2; k3, ǫ3) , (22)

with k1 + k2 + k3 = 0. Two of the momenta, k1 and k2, will be on-shell. We shall keep the third momentum k3 off
shell to facilitate explicit calculations. This is necessary also for kinematical reasons, but k23 = 0 is allowed if momenta
are complex, which is a case that will be useful for the calculation of higher-point amplitudes.
For the polarization vectors, we choose ǫ1 and ǫ2 such that ǫ1 · ki = 0 and ǫ2 · ki = 0, where i = 1, 2, 3. This is

always possible. Indeed, if ǫ1 · k2 6= 0, then we may shift ǫ1 7→ ǫ1 −
ǫ1·k2

k1·k2
k1, and the new polarization vector satisfies

ǫ1 · ki = 0. Similarly, we arrange ǫ2 · ki = 0. For the third polarization vector, since k3 is off-shell, there are three
independent polarizations. Notice that, since ǫ3 · (k1 + k2) = 0, they can be chosen as the set {ǫ1, ǫ2, k1 − k2}.
To apply the BCFW recursion relations, we shift

k2 7→ k2 + zǫ2 , k3 7→ k3 − zǫ2 , ǫ3 7→ ǫ3 + z
ǫ2 · ǫ3
k23

k3 . (23)

There are two diagrams that contribute to the amplitude (figure 3) and we discuss them separately.
First we evaluate the triangle diagram (a) in figure 3 using the background gauge. After the shift (23), the large z

behavior of the integrand is of the form

A
1−loop , (a)
3 =

1

l2(l + k1)2

[

−4zǫ1 · ǫ2ǫ2 · ǫ3 +
16ǫ1 · lǫ2 · ǫ3k2 · l

k23
−

4ǫ1 · ǫ2ǫ2 · ǫ3k2 · l

ǫ2 · l
−

4ǫ1 · ǫ2ǫ2 · ǫ3l · k3
ǫ2 · l

+
2ǫ1 · ǫ2ǫ2 · ǫ3

ǫ2 · l
+ 4ǫ1 · ǫ2ǫ3 · k1

]

+O

(

1

z

)

(24)

Evidently, it does not vanish, in general, as z → ∞. Upon closer inspection, when ǫ3 = ǫ2, or ǫ3 = k1 − k2, all terms
except the last one at leading order (O(1)) in the above expression vanish. The last term vanishes after integration
over the loop momentum, because it is proportional to a two-point tensor integral (8) with k21 = 0. Therefore, in the
limit z → ∞, there is no contribution.
If ǫ3 = ǫ1, we need to interchange legs 1 and 2 before shifting the external momenta as in (23).
It turns out that the choices ǫ3 = ǫ1 and ǫ3 = ǫ2 yield vanishing amplitudes, so we shall concentrate on the

polarization

ǫ3 = k1 − k2 (25)
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k3 − zǫ2

k2 + zǫ2

k1

l

(a)

k3 − zǫ2

k2 + zǫ2

k1

l

(b)

FIG. 3. Diagrams contributing to a three-point color-ordered one-loop amplitude.

for which, as we just showed, there is no contribution to the diagram from the pole at z → ∞.
It follows that the entire contribution to this diagram comes from the pole at

z = z1 ≡ −
(l − k3)

2

2ǫ2 · l
(26)

Explicitly, for the integral we obtain

A
1−loop , (a)
3

∣

∣

∣

z=0
= −8ǫ1 ·ǫ2ǫ3 ·k1k3 ·I(k1, k2)+4ǫ1 ·ǫ2ǫ3 ·k1I

µ
µ (k1, k2)−4k23ǫ1 ·ǫ2ǫ3 ·I(k1, k2)+16ǫµ1ǫ

ν
2ǫ

λ
3Iµνλ(k1, k2) (27)

in terms of three-point tensor integrals,

Iµ1µ2... =

∫

d2ωl

(2π)2ω
lµ1

lµ2
· · ·

l2(l + k1)2(l + k1 + k2)2
(28)

After standard manipulations, we arrive at

A
1−loop , (a)
3 =

1

16π2
ǫ1 · ǫ2ǫ3 · k1

(

−
20

3(2− ω)
+

40

3
+O(2 − ω)

)

. (29)

Next we compute diagram (b) in figure 3 using the background gauge for the loop and the Gervais-Neveu gauge for
the tree part of the diagram.
At large z, we obtain

A
1−loop , (b)
3 = ǫ1 · ǫ2ǫ2 · ǫ3

[

−
16k2 · l

k3
4l2

z −
16k1 · lk2 · l

k43l
2ǫ2 · l

−
16k2 · lk3 · l

k43l
2ǫ2 · l

+
4k2 · l

k23l
2ǫ2 · l

+
k2 · l

k43ǫ2 · l

]

+
8ǫ1 · ǫ2ǫ3 · l

k3
2l2

+O

(

1

z

)

.

(30)
All O(z) and O(1) terms except the last one in the above expression vanish for the choice of polarization (25). The
last O(1) term also vanishes after integration over the loop momentum (being proportional to a tadpole tensor integral
(4)).
Proceeding as with the triangle diagram, we find that the residue of the pole at z = z1 (26) is the sole contribution.

We obtain

A
1−loop , (b)
3 =

4ǫ1 · ǫ2ǫ
µ
3

k23

[

−2k23k1µI(k3)− 4k1
νIµν(k3)− 4k3

νIµν(k3) + 2I ν
µν (k3) + k23Iµ(k3)

]

(31)

written in terms of two-point tensor integrals (8).
After integrating over the loop momentum, we arrive at

A
1−loop , (b)
3 =

1

16π2
ǫ1 · ǫ2ǫ3 · k1

(

20

3(2− ω)
− 12 +O(2 − ω)

)

. (32)
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Adding the contributions of the two diagrams, (29) and (32), we obtain a finite three-point one-loop amplitude,

A
1−loop
3 = A

1−loop , (a)
3 +A

1−loop , (b)
3 =

1

12π2
ǫ1 · ǫ2ǫ3 · k1 , (33)

as expected [26].
Recall that this is valid for a choice of polarization vectors ǫ1 and ǫ2 obeying ǫ1 · ki = ǫ2 · ki = 0 (i = 1, 2, 3). It is

easily generalized to arbitrary polarization vectors,

A
1−loop
3 = A

1−loop , (a)
3 +A

1−loop , (b)
3 =

1

12π2
Atree

3 , Atree
3 = ǫ1 · ǫ2ǫ3 · k1 + ǫ2 · ǫ3ǫ1 · k2 + ǫ3 · ǫ1ǫ2 · k3 . (34)

This form is also valid in the limit in which all three legs are on shell (k2i = 0, i = 1, 2, 3), which is kinematically
allowed if the momenta are complex, and will be useful in the calculation of higher-order diagrams. On shell k3 has
two polarizations which can be chosen as the set of null vectors {k1 − k2 , ǫ2 · k1ǫ1 − ǫ1 · k2ǫ2 − ǫ1 · ǫ2

k1−k2

2 }. Once
again, only polarizations that have non-vanishing components along ǫ3 = k1 − k2 give non-vanishing amplitudes.
Evidently, the residue contributing to the loop amplitude consists of two five-point tree diagrams contributing to

the forward amplitude (diagrams (a) and (b) in figure 4),

Atree
5 (k2 + z1ǫ2, ǫ2; k1, ǫ1; k3 − z1ǫ2, ǫ3; l− k3 + z1ǫ2, ǫ4;−l+ k3 − z1ǫ2, ǫ5) (35)

with z1 given by (26). All legs are on-shell, but we shall keep the momentum k3 off shell for convenience, taking the

limit k23 → 0 at the end of the day. The contributions of the first two diagrams in figure 4, A
tree , (a)
5 and A

tree , (b)
5 ,

respectively, match our earlier result after we identify ǫ5 = ǫ∗4 and sum over the polarization vectors ǫ4. We conclude

A
1−loop
3 =

∫

d2ωl

(4π)2ω
1

(l − k3)2

∑

ǫ4

(

A
tree , (a)
5 +A

tree , (b)
5

)∣

∣

∣

ǫ5=ǫ∗
4

(36)

l − k3 + z1ǫ2 − p

k3 − z1ǫ2 + p

−l + k3 − z1ǫ2

k2 + z1ǫ2k1

(a)

l − k3 + z1ǫ2 − p

k3 − z1ǫ2 + p

k2 + z1ǫ2

k1

−l + k3 − z1ǫ2

(b)

p

k3 − z1ǫ2 + p

k1

l − k3 + z1ǫ2 − p

−l + k3 − z1ǫ2k2 + z1ǫ2

(c)

k2 + z1ǫ2 − p

k3 − z1ǫ2 + p

k1

−l + k3 − z1ǫ2

k2 + z1ǫ2

l − k3 + z1ǫ2 − p

(d)

FIG. 4. Some of the five-point tree diagrams contributing to a three-point color-ordered one-loop amplitude. pµ is a momentum
regulator.

However, the forward tree amplitude is singular. To regulate it, introduce a small momentum pµ and consider the
amplitude with shifted legs k3 − z1ǫ2 7→ k3 − z1ǫ2 + p, l− k3 + z1ǫ2 7→ l− k3 + z1ǫ2 − p (figure 4), in the limit pµ → 0.
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As with the two-point loop amplitude, it can be checked that the singular terms do not contribute after integration
over the loop momentum. We conclude

A
1−loop
3 =

∫

d2ωl

(4π)2ω
1

(l − k3)2

∑

ǫ4

Atree
5

∣

∣

∣

ǫ5=ǫ∗
4

(37)

The calculation of the forward amplitude Atree
5 can be done by applying the BCFW recursion relations. By appropriate

shifts of momenta, it can thus be reduced to three-point tree amplitudes avoiding the singularities. Indeed, let us
shift

k1 7→ k1 + wǫ2 , k2 + z1ǫ2 7→ k2 + z1ǫ2 − wǫ2 (38)

The contribution from w → ∞ is easily seen to vanish. There is a pole at

w = w1 = −
(l + k1)

2

2l · ǫ2
. (39)

Its residue gives the entire five-point tree amplitude (35),

Resw→w1

w1
=
∑

ǫ4

Atree
5

∣

∣

∣

ǫ5=ǫ∗
4

=
1

(l + k1)2

∑

ǫ4,ǫ′

Atree
3 (−l + k3 − z1ǫ2, ǫ4; k2 + z1ǫ2 − w1ǫ2, ǫ2; l + k1 + w1ǫ2, ǫ)

×Atree
4 (l − k3 + z1ǫ2, ǫ4

∗; k3 − z1ǫ2, ǫ3; k1 + w1ǫ2, ǫ1;−l− k1 − w1ǫ2, ǫ
∗). (40)

The four point amplitude in the above expression is a forward amplitude. It can be reduced to a finite expression
involving three-point tree amplitudes, as before (see discussion in the case of the two-point loop amplitude leading to
eq. (20)). After some straightforward algebra, we arrive at the finite expression

∑

ǫ4

Atree
5

∣

∣

∣

ǫ5=ǫ∗
4

=
4N

l2(l + k1)2(l − k3)2
(41)

where

N =
4ǫ1 · ǫ2ǫ3 · l(l+ k1)

2k2 · l

k23
−2ǫ1 · ǫ2ǫ3 ·k1(l−k3)

2+k23ǫ1 · ǫ2ǫ3 · (l+k1)−2ǫ1 · ǫ2ǫ3 ·k1(l+k1)
2l−4ǫ1 · lǫ2 · lǫ3 · l (42)

which indeed yields the sum of (27) and (31) (via (37)), and therefore the correct (finite) value of the three-point loop
amplitude (33).

IV. FOUR-POINT LOOP AMPLITUDE

In this section, we consider the four-point color-ordered one-loop amplitude,

A
1−loop
4 (k1, ǫ1; k2, ǫ2; k3, ǫ3; k4, ǫ4) =

∫

d2ωl

(4π)2ω
A1−loop

4 (k1, ǫ1; k2, ǫ2; k3, ǫ3; k4, ǫ4) (43)

where k1 + k2 + k3 + k4 = 0 and all momenta are on shell (k21 = k22 = k23 = k24 = 0).
It suffices to consider amplitudes in which

ǫ1 = ǫ2 (44)

This is because they form a basis: all amplitudes can be expressed as linear combinations of amplitudes with two
identical polarization vectors. To see this, first recall that for general momenta k1 and k2, the corresponding polariza-
tion vectors can be chosen to be common to both. Indeed, if ǫ1 · k2 6= 0, then by shifting ǫ1 7→ ǫ1 −

ǫ1·k2

k1·k2
k2, we satisfy

ǫ1 · k2 = 0 (in addition to ǫ1 · k1 = 0). There are two linearly independent choices for ǫ1 obeying ǫ1 · k2 = ǫ1 · k1 = 0.
Similarly, we have two linearly independent choices of ǫ3 such that ǫ3 ·k2 = ǫ3 ·k3 = 0. Then a basis for the polarization
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vector ǫ2 can be {ǫ1, ǫ3}. Thus, we need only consider amplitudes with ǫ2 = ǫ1 or ǫ2 = ǫ3. Without loss of generality,
we adopt (44).
To apply the BCFW recursion relations, we shall shift the two adjacent legs,

k1 7→ k1 + zǫ1 , k2 7→ k2 − zǫ1 . (45)

An explicit calculation shows that for polarization vectors obeying (44), the integrand of the four-point one-loop
amplitude (43) vanishes in the limit z → ∞,

A1−loop
4 (ǫ1, k1 + zǫ1; ǫ2, k2 − zǫ1; ǫ3, k3; ǫ4, k4) = O

(

1

z

)

(46)

Therefore, only the poles contribute to the amplitude. To calculate their residues, it is advantageous to consider the
basis for the remaining polarization vectors, ǫ3 and ǫ4,

ǫ3 =

{

ǫ1 −
k3 · ǫ1
k3 · k1

k1 , ǫ2 −
k3 · ǫ2
k3 · k2

k2

}

, ǫ4 =

{

ǫ1 −
k4 · ǫ1
k4 · k1

k1 , ǫ2 −
k4 · ǫ2
k4 · k2

k2

}

(47)

A. Choice (A) of polarization vectors

First, consider the case

(A) : ǫ3 = ǫ1 −
k3 · ǫ1
k3 · k1

k1 , ǫ4 = ǫ1 −
k4 · ǫ1
k4 · k1

k1 (48)

Notice that with this choice of polarization vectors, the corresponding four-point tree diagram vanishes.
The entire contribution to the box diagram in figure 5 comes from the pole at

z = z1 = −
l2

2ǫ1 · l
(49)

Explicitly,

A
1−loop , (a)
4

∣

∣

∣

z→z1

= 16ǫµ1 ǫ
ν
1 [α

ρσIµνρσ(k2, k3, k4) + βρIµνρ(k2, k3, k4)] (50)

written in terms of the four-point tensor integrals,

Iµ1µ2...(k2, k3, k4) =

∫

d2ωl

(2π)2ω
lµ1

lµ2
· · ·

l2(l + k2)2(l + k2 + k3)2(l + k2 + k3 + k4)2
(51)

where

αρσ = −ǫ
ρ
1ǫ

σ
1 +

ǫ1 · k3(k2 − k1) · k3ǫ
ρ
1k

σ
1 + (ǫ1 · k3)

2k
ρ
1k

σ
1

k1 · k3k2 · k3

βρ = ǫ1 · k3
k1 · k2
k1 · k3

ǫ
ρ
4 (52)

After we integrate over the loop momentum, we obtain a finite expression,

A
1−loop , (a)
4

∣

∣

∣

z→z1

= −
1

24π2

(ǫ1 · k3)4k1 · k2
k1 · k3(k2 · k3)2

. (53)

There is one more diagram that contributes to this amplitude (diagram (b) in figure 5). The other diagrams vanish
for the choice of polarization vectors under consideration (eqs. (44) and (48)).
Diagram (b) in fig. 5 has two poles, one given by (49), and a new pole at

z = z2 = −
k2 · k3
ǫ1 · k3

(54)
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l + zǫ1

k4

k1 + zǫ1

k3

k2 − zǫ1

(a)

l + zǫ1

k4

k1 + zǫ1

k3

k2 − zǫ1

(b)

k4

k1 + zǫ1

k3

k2 − zǫ1

(c)

k4

k1 + zǫ1

k3

k2 − zǫ1

(d)

k4

k1 + zǫ1

k3

k2 − zǫ1

(e)

k4

k1 + zǫ1

k3

k2 − zǫ1

(f)

k4

k1 + zǫ1

k3

k2 − zǫ1

(g)

k4

k1 + zǫ1

k3

k2 − zǫ1

(h)

FIG. 5. Diagrams contributing to a four-point color-ordered one-loop amplitude.

The residue of the pole (49) gives a contribution to the amplitude,

A
1−loop , (b)
4

∣

∣

∣

z→z1

= 16ǫµ1ǫ
ν
1 [α

ρσIµνρσ(k2, k3, k
′
4) + βρIµνρ(k2, k3, k

′
4)] (55)

where we introduced the on-shell momentum (it is easy to see that k′24 = 0),

k′4 =
k2 · k3
ǫ1 · k3

ǫ1 − k2 − k3 (56)

and the coefficients αρσ and βρ are as before (eq. (52)). It is easily seen to vanish (by a direct calculation, or, e.g., by
replacing k1 7→ z2ǫ1 in (53)),

A
1−loop , (b)
4

∣

∣

∣

z→z1

= 0 . (57)

Therefore (53) is the entire contribution of the pole (49).
Working as above with the second pole (54), after some straightforward algebra we find that the residue of the pole

(54) gives a finite contribution to the amplitude,

A
1−loop , (b)
4

∣

∣

∣

z→z2

=
(ǫ1 · k3)4(k1 · k2)2

24π2k1 · k3(k2 · k3)3
. (58)
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Notice that each pole contribution can be written as a single term and the two poles lead to different kinematical
expressions.
Combining the contribution of the two poles, (53) and (58), we obtain the four-point amplitude

A
1−loop
4 =

(ǫ1 · k3)4k1 · k2(k1 − k3) · k2
24π2k1 · k3(k2 · k3)3

, (59)

which is the same expression (with appropriate identifications) as in [27].
The residue at z = z1 (49) can be expressed in terms of a six-point forward tree amplitude. As in the case of a

three-point one-loop amplitude, we can introduce a momentum regulator pµ by shifting the legs l+z1ǫ1 7→ l+z1ǫ1−p,
k3 7→ k3+ p (see figure 6). An explicit calculation shows that singularities of the forward amplitude do not contribute
(in the limit pµ → 0) after integration over the loop momentum.

p

−l − z1ǫ1

l + z1ǫ1 − p

k1 + z1ǫ1

k4

k3 + pk2 − z1ǫ1

FIG. 6. A six-point tree diagram that contributes to the four-point color-ordered one-loop amplitude. pµ is a momentum
regulator.

Thus, the contribution to the pole at z = z1 can be written as

A
1−loop
4

∣

∣

∣

z→z1

=

∫

d2ωl

(4π)2ω
1

l2

∑

ǫ5

Atree
6

∣

∣

∣

ǫ6=ǫ∗
5

(60)

As with the five-point tree amplitude involved in the calculation of a three-point loop amplitude, the six-point
amplitude can be reduced to lower-point amplitudes by a judicious application of the BCFW recursion relations. It
is convenient to shift

k1 + z1ǫ1 7→ k1 + z1ǫ1 + wǫ4 , k4 7→ k4 − wǫ4 . (61)

There is no shift in the polarization vectors, because ǫ1 · ǫ4 = 0 because of (48). One can easily check that the
amplitude vanishes in the limit w → ∞. There is a pole at

w = w1 =
(l − k1)

2

2ǫ4 · l
(62)

The corresponding residue is given by

Resw→w1

w1
=
∑

ǫ5

Atree
6

∣

∣

∣

ǫ6=ǫ∗
5

=
1

(l − k1)2

∑

ǫ5,ǫ′

Atree
5 (l + z1ǫ1, ǫ

∗
5; k2 − z1ǫ1, ǫ1; k3, ǫ3; k4 − w1ǫ4, ǫ4;−l+ k1 + w1ǫ4, ǫ)

×Atree
3 (l − k1 − w1ǫ4, ǫ

′; k1 + z1ǫ1 + w1ǫ4, ǫ4;−l− z1ǫ1, ǫ5) (63)

The five-point tree amplitude is a forward amplitude containing potential singularities. However, it can be calculated
in the same way as the five-point forward amplitude encountered in the calculation of the three-point loop amplitude



12

(see eqs. (37) through (42)). Thus, by a repeated application of the BCFW recursion relations, it is reduced to on-shell
three-point amplitudes. After some algebra, and using (60), we obtain agreement with our earlier result (53), which
was obtained by a direct diagrammatic calculation.
Turning to the other pole that contributes to the amplitude, at z = z2, we obtain the residue

A1−loop
4

∣

∣

∣

z→z2

=
1

k2 · k3

∑

ǫ′

A
1−loop
3 (k2−z2ǫ1, ǫ1; k3, ǫ3;−k2−k3+z2ǫ1, ǫ

′)Atree
3 (k1+z2ǫ1, ǫ1;−k1−k4−z2ǫ1, ǫ

′; k4, ǫ4) .

(64)
It is already written in terms of on-shell amplitudes with no singularities. Using our earlier results on three-point
amplitudes, and integrating over the loop momentum, after some algebra, one can show that the contribution of the
second pole (64) agrees with our earlier result (58) obtained by a direct diagrammatic calculation.
Thus, we have shown that the four-point one-loop amplitude with the choice of polarization vectors (48) can be

expressed in terms of three-point on-shell tree-amplitudes and a three-point one-loop on-shell amplitude (34). The
latter also reduces to three-point tree-amplitudes, as was shown in the previous section.

B. Choice (B) of polarization vectors

Next, we consider the case of polarization vectors

(B) : ǫ3 = ǫ1 −
k3 · ǫ1
k3 · k1

k1 , ǫ4 = ǫ2 −
k4 · ǫ2
k4 · k2

k2 (65)

Unlike with the previous choice (48), the corresponding four-point tree diagram is non-vanishing,

A
tree , (B)
4 = −

(ǫ1 · k3)4k1 · k2
(k1 · k3)2k2 · k3

. (66)

One obtains a simple expression because only the t-channel contributes to the color-ordered amplitude.
For the loop amplitude, we obtain eight non vanishing graphs which contribute for our choice of basis (65) shown

in figure 5. A direct calculation shows that the pole at z = z2 (54) gives a vanishing contribution. This is confirmed
by an application of the BCFW recursion relations (eq. (64)). Therefore, the amplitude is determined solely by the
pole at z = z1 (49). A calculation of the residue of the pole, using diagrams as before, leads to an expression which is
in agreement with the one obtained by a direct diagrammatic calculation. After integrating over the loop momentum,
we obtain a divergent expression,

A
1−loop
4 =

1

8π2
A

tree , (B)
4

Γ2(ω − 1)Γ(3− ω)

Γ(2ω − 3)

(

4πµ2

s

)2−ω

×

[

−
2

(2− ω)2
−

1

2− ω

(

11

3
− 2 ln

t

s

)

+
11

6
ln

µ2t

s2
+

π2

2
−

32

9
+O(2 − ω)

]

, (67)

where s = 2k1 · k2, t = 2k2 · k3. This expression agrees with the ones derived in [27] (see also [28]) with appropriate
kinematical identifications, after setting the arbitrary momentum scale Q2 = s.
The contribution to the pole at z = z1 can be written in terms of a six-point forward tree amplitude as in (60). The

latter can be reduced to lower-point amplitudes by a judicious application of the BCFW recursion relations (avoiding
the potential singularities). To this end, instead of the shift (61), it is convenient to shift

k3 7→ k3 + wq , k4 7→ k4 − wq , q = ǫ1 −
ǫ1 · k3
k1 · k3

(k1 + k3) . (68)

There is no shift in the polarization vectors, because ǫ3 · q = ǫ4 · q = 0, where we used (44) and (65). In fact ǫi − q is
along the direction of the corresponding momentum ki (i = 3, 4). Since the amplitude is on shell, we could replace
both polarization vectors ǫ3 and ǫ4 by q, to simplify the calculation.
One can easily check that the amplitude vanishes in the limit w → ∞. There is a pole at

w = w1 = −
(l+ k2 + k3)

2

2q · (l + k2)
(69)
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The corresponding residue is given by

Resw→w1

w1
=
∑

ǫ5

Atree
6

∣

∣

∣

ǫ6=ǫ∗
5

=
1

2(l + k2) · q

∑

ǫ5,ǫ′

Atree
4 (l + z1ǫ1, ǫ

∗
5; k2 − z1ǫ1, ǫ1; k3 + wq, q;−l − k2 − k3 − wq, ǫ′∗)

×Atree
4 (l + k2 + k3 + wq, ǫ′; k4 − wq, q; k1 + z1ǫ1, ǫ1;−l − z1ǫ1, ǫ5) (70)

The two four-point tree amplitudes are on-shell amplitudes and can be reduced to three-point amplitudes by an
application of the BCFW recursion relations. Thus, by a repeated application of the BCFW recursion relations, the
six-point amplitude is reduced to on-shell three-point amplitudes. After some algebra, and using (60), we obtain
agreement with our earlier result (67), which was obtained by a direct diagrammatic calculation.
The remaining two choices of polarization vectors can be tackled similarly and will not be discussed explicitly here.
Summarizing, we have shown that four-point one-loop amplitudes can be expressed in terms of three-point on-shell

tree-amplitudes.

V. HIGHER-POINT LOOP AMPLITUDES

The calculation of the four-point color-ordered one-loop amplidute can be straightforwardly generalized to high-
point amplitudes,

A1−loop
n ({ki, ǫi}) =

∫

d2ωl

(4π)2ω
A1−loop

n ({ki, ǫi}) (71)

As explained in section IV, it suffices to consider amplitudes with two identical polarization vectors. Without loss of
generality, we shall choose (44) for the adjacent legs with momenta k1, k2.
To apply the BCFW recursion relations, we shift the momenta k1, k2 as in (45). Using the Ward identity,

A1−loop
n (k1 + zǫ1, k1 + zǫ1; . . . ) = 0 (72)

we deduce

A1−loop
n (k1 + zǫ1, ǫ1; k2 − zǫ1, ǫ1; k3, ǫ3; . . . ; kn, ǫn) = −

1

z
A1−loop

n (k1 + zǫ1, k1; k2 − zǫ1, ǫ1; k3, ǫ3; . . . ; kn, ǫn) (73)

It is easy to see that the amplitude on the right-hand side of (73) has a finite limit as z → ∞. Indeed, e.g., diagram
(a) in figure 7, is a rational function of z. There are two O(z) vertices that contribute to the numerator, and one
O(z) propagator that contributes to the denominator. The O(z) contribution is the leading term,

A1−loop , (a)
n

∣

∣

∣

ǫ1=k1

=
· · · kµ1

1 [−ηρνǫ1µ1
− 2ηνµ1

ǫ1ρ + 2ηµ1ρǫ1ν ] η
ρσǫ

µ2

1 [−ησλǫ1µ2
+ 2ηλµ2

ǫ1σ − 2ηµ2σǫ1λ] · · ·

2ǫ1 · l
z +O(1)

(74)
Evidently, the numerator of the leading O(z) term vanishes, showing that the contribution of this diagram is O(1).
Similarly, one can show that the O(z) terms in all other diagrams, such as (b) and (c) in figure 7 vanish, therefore all
diagrams contributing to the amplitude on the right-hand side of (73) (with ǫ1 = k1) are finite in the limit z → ∞,
and the amplitude we are interested in (left-hand side of (73)) is

A1−loop
n (k1 + zǫ1, ǫ1; k2 − zǫ1, ǫ1; k3, ǫ3; . . . ; kn, ǫn) = O

(

1

z

)

(75)

Thus, only poles contribute to the integrand. The pole in the one-particle irreducible part of the amplitude has
a residue which is a forward tree amplitude with n + 2 legs. The extra two legs have momenta ±(l + z1ǫ1) and
corresponding polarization vectors ǫn+1 and ǫn+2, with ǫn+2 = ǫ∗n+1 and we need to sum over ǫn+1. Additional poles
exist on propagators which lead to a factorized amplitude when cut. Putting these together, we obtain for the loop
amplitude

A1−loop
n =

∫

d2ωl

(2π)2ω
1

l2

∑

ǫn+1

Atree
n+2

∣

∣

∣

ǫn+2=ǫ∗
n+1

+
∑

I

1

(
∑

i∈I ki)
2

∑

ǫ

A1−loop
m

(

{ki, ǫi}i∈I ;−
∑

i∈I

ki, ǫ
′

)

Atree
n−m



−
∑

j∈J

kj , ǫ
′∗; {kj, ǫj}j∈J



 (76)
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l + zǫ1

k1 + zǫ1

k2 − zǫ1

(a)

k1 + zǫ1

k2 − zǫ1

(b)

k1 + zǫ1

k2 − zǫ1

(c)

FIG. 7. Diagrams contributing to higher-point amplitudes.

where the second term consists of the contributions of the residues of the poles z = zI , where

zI =
K2

2ǫ1 ·K
, K =

∑

i∈I

ki , (77)

and we sum over all poles, i.e., all possible partitions of the set of external momenta, I and J with m and n − m
elements, respectively (I ∪ J = {k1 + zIǫ1, k2 − zIǫ1, k3, . . . , kn}), and k1 + zIǫ1 ∈ I, k2 − zIǫ1 ∈ J .
All amplitudes are on shell, however, the tree amplitude in the first term is a forward amplitude and care must be

exercised in calculating it. The method we applied in the case of n = 4 can be generalized to n ≥ 4 straightforwardly.
Thus, we can reduce the amplitude to three-point amplitudes by a judicious application of the BCFW recursion
relations avoiding the singularities. The contribution of the singularities can also be seen to vanish after integration
over the loop momentum by a direct calculation, after introducing a momentum regulator.
To define appropriate complex momentum shifts, choose the basis for the polarization vector ǫn,

ǫn ∈

{

ǫ1 −
ǫ1 · kn
k1 · kn

k1 , ǫn−1 −
ǫn−1 · kn
kn−1 · kn

kn−1

}

. (78)

For the choice ǫn = ǫ1 −
ǫ1·kn

k1·kn

k1, shift

k1 + z1ǫ1 7→ k1 + z1ǫ1 + wǫn , kn 7→ kn − wǫn , (79)

whereas for the choice ǫn = ǫn−1 −
ǫn−1·kn

kn−1·kn

kn−1, shift

kn−1 7→ kn−1 + wǫn , kn 7→ kn − wǫn . (80)

Notice that there is no need to shift polarization vectors, because ǫn · ǫ1 = 0, and ǫn · ǫn−1 = 0, respectively. The
contribution from w → ∞ vanishes in both cases and only poles contribute. Thus the n + 2-point tree amplitude is
reduced to lower-point on-shell tree amplitudes. A repetition of this step leads to a reduction to on-shell three-point
tree amplitudes.
The final expression (before integrating over the loop momentum) is finite. It should be emphasized that the above

reduction process works, and the potential singularity of the forward amplitude is absent, because of the contraction
of polarizations of the collinear legs (eq. (76)), without which the forward amplitude would be singular.

VI. CONCLUSION

We discussed the applicability of the BCFW recursion relations to the integrand of loop amplitudes in gauge theories.
Working with color-ordered amplitudes, we showed that, with an appropriate choice of basis for the polarization
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vectors, the contribution from an infinite complex shift can be made to vanish. Thus, only poles contribute to the
loop amplitude. Their residues can be factorized into products of on-shell lower-point loop amplitudes and tree
amplitudes. By repeatedly applying the BCFW recursion relations, one thus reduces the loop amplitude to on-shell
three-point tree amplitudes.
An obstruction to this reduction procedure is due to one of the poles whose residue is given in terms of a forward

amplitude which, in general, contrains singularities. We showed explicitly that the singularities do not contribute
to the amplitude, after integrating over the loop momentum. Moreover, by a judicious application of the BCFW
recursion relations that we described, potential singularities can be completely avoided. The resulting contribution
to the loop amplitude is then written entirely in terms of on-shell three-point tree amplitudes.
It would be interesting to see if our results can be generalized to higher-loop gauge theory amplitudes as well as

supergravity. Work in this direction is in progress.
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