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I. INTRODUCTION

Testing Einstein’s theory of general relativity in the strong-field regime by directly detecting the gravitational waves
(GWs) emitted by black hole (BH) binaries of extreme mass-ratio has revived interest in a fundamental problem in
general relativity: that of the gravitational self-force acting on a mass particle that moves in the background of a more
massive BH. The gravitational self-force arises as a result of the back reaction between the small compact object and
its own gravitational field, which, at linear order in mass-ratio, corresponds to a linear perturbation of the central BH
geometry. Theoretical work in this field has been making steady progress since the seminal contributions of Dirac on
the electromagnetic self-force in flat spacetime [2], and the extension of this analysis to curved spacetime by DeWitt
an Brehme [3]. The generalization of these early studies to the case of the gravitational self-force was accomplished
independently by Quinn and Wald [4] and Mino, Sasaki and Tanaka [5]. More recent developments have introduced
mathematical rigor in the theoretical derivation of the gravitational self-force, and have relaxed previous assumptions
with regard to the internal structure of the small compact object, i.e, it can now be a small Kerr BH or a small
compact object made up of ordinary matter [6, 7].
Likewise, the actual computation of the gravitational self-force has evolved from simplified scalar-field models [8], to

more sophisticated solutions that involve electromagnetic and gravitational problems in the context of Schwarzschild
circular orbits. At present, the self-force program has succeeded in developing numerical codes to compute the
gravitational self-force along generic orbits around a Schwarzschild BH, and actually implementing these computations
to develop an accurate waveform model that describes the inspiral evolution of non-spinning stellar mass BHs onto
supermassive non-spinning BHs [9]. The development of numerical algorithms to compute the self-force on a scalar
charge moving along an eccentric-equatorial orbit of a Kerr BH has also been accomplished [9]. The extension of this
algorithm to compute the gravitational self-force for Kerr inspirals is under development [10, 11].
The fact that the self-force program has focused on the computation of the self-force for spinless particles that

inspiral into more massive BHs has a physical rationale. It is not just that such a problem would be more difficult to
solve. It has also been shown that in the context of extreme-mass ratio inspirals (EMRIs), with typical mass-ratios
1:106, the inclusion of small-body spin corrections in search templates will not allow us to measure the small body
spin parameter with good accuracy [12]. Hence, from a data analysis perspective, the inclusion of small body spin
effects is not necessary. Additionally, before attempting to compute the self-force for spinning particles, one may
need to address a more pressing modeling issue for spinless particles: it has been shown that including conservative
self-force corrections in the orbital phase of EMRIs may not be necessary for source detection, but they may still
be necessary for accurate parameter reconstruction. Additionally, second order radiative corrections may contribute
to the phase evolution at the same level as first-order conservative corrections [13, 14]. This then suggests that a
waveform template that aims to provide an accurate description of the inspiral evolution of EMRIs may have to
include both first-order conservative corrections, and second-order radiative corrections, as pointed out in [9].
In sharp contrast, modeling BH binaries with intermediate mass ratio, i.e., 1:10-1:1000, (IMRIs) presents new

challenges that can be neglected in the EMRI arena. In the absence of fully general relativistic gravitational self-force
corrections in this mass-ratio regime, some studies have assessed the importance of including post-Newtonian self-
force corrections in search templates for spinning BHs of intermediate-mass that inspiral into supermassive Kerr BHs.
This work has shown that the implementation of first-order post-Newtonian self-force corrections for spin-spin and
spin-orbit couplings is essential to ensure the reliability of parameter estimation results [15]. These studies suggest
that the computation and implementation of gravitational self-force corrections for spinning binaries is a pressing,
important problem both from a theoretical and data analysis perspective.
In this article we shed light on the importance of including gravitational self-force corrections in search templates

for non-spinning stellar mass BHs that inspiral into Schwarzschild BHs of intermediate-mass. As, at present, we have
no access to accurate self-force calculations in this mass-ratio regime, it is important to shed light on the regime in
which current self-force corrections do not render an accurate dynamical evolution of GW sources, and explore the
range of applicability of the information we have at hand to develop accurate waveform templates in that mass-ratio
regime. This study is particularly important in view of the ongoing upgrade of the LIGO detector [16]. Once advanced
LIGO (aLIGO) begins observations, it will be possible to target the inspirals of neutron stars (NSs) and stellar-mass
BHs into intermediate-mass BHs with masses ∼ 50M⊙− 350M⊙ [17] —events which may take place in core-collapsed
globular clusters [18, 19]. To perform this study we will make use of the recently developed effective-one-body (EOB)
model that has been calibrated using numerical relativity (NR) simulations for non-spinning BH binaries of mass-ratio
q = m1/m2 = 1, 2, 3, 4 and 6 [1]. It is worth pointing out that the actual calibration of this EOBNRv2 (EOBNR
version two) model reproduces with great accuracy the features of true inspirals, and hence we will use this model as a
benchmark to explore the form of the self-force in the intermediate-mass ratio regime. By construction, the EOBNRv2
model reproduces results in the test-mass particle limit, and also encodes self-force corrections that have been derived
for small mass-ratios. In our analysis we will explicitly show these important modeling ingredients when we compare
the predictions made by the EOBNRv2 and those obtained through black hole perturbation theory (BHPT).
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Finally, we will make use of the EOBNRv2 model and pertubative results to present a new prescription for the orbital
frequency shift at the innermost stable circular orbit (ISCO), originally derived in [20] in the context of EMRIs. Our
prescription reproduces exactly the self-force prediction for extreme-mass ratios and provides an accurate prediction
in the intermediate and comparable-mass ratio regimes.
This paper is organized as follows. In Section II we present a succinct description of the EOBNRv2 model. In

Section III we derive an IMRI waveform model that accurately captures the features of true inspirals, as compared
with the EOBNRv2 model. The derivation of this model will enable us to explore what the form of the self-force
should be in the intermediate-mass-ratio regime so as to accurately reproduce the orbital dynamics obtained through
NR simulations. In Section IV we derive a new prescription for the gravitational self-force correction to the orbital
frequency at the ISCO that encodes results from the extreme, intermediate and comparable-mass ratio regimes.
Finally, we summarize our results in Section V.

II. EFFECTIVE ONE BODY MODEL

The Effective One Body (EOB) model was recently calibrated for non-spinning BH binaries of mass ratios q =
m1/m2 = 1, 2, 3, 4 and 6 by comparison to NR simulations [1]. In this Section we briefly describe this model.

A. EOB dynamics

The EOB is a scheme that maps the dynamics of the two body problem in general relativity to that of one object
moving in the background of an effective metric. In the non-spinning limit this metric takes the form

ds2eff = −A(r) dt2 +
D(r)

A(r)
dr2 + r2

(
dΘ2 + sin2 Θ dΦ2

)
, (1)

where (r,Φ) stand for the dimensionless radial and polar coordinates, respectively. The conjugate momenta of these
quantities is given by (pr, pΦ). Since pr diverges near the horizon, it is convenient to replace it by the momentum
conjugate to the EOB tortoise radial coordinate r∗, i.e.,

dr∗
dr

=

√
D(r)

A(r)
. (2)

Using this coordinate transformation, the effective EOB Hamiltonian can be written as [1]

Heff(r, pr∗ , pΦ) ≡ µ Ĥeff(r, pr∗ , pΦ) = µ

√
p2r∗ +A(r)

[
1 +

p2Φ
r2

+ 2(4− 3η) η
p4r∗
r2

]
, (3)

where µ = m1m2/(m1 +m2), M = m1 +m2 and η = µ/M stand for the reduced and total mass of the system, and
the symmetric-mass ratio, respectively. Additionally, the real EOB Hamiltonian is given by [1]

Hreal(r, pr∗ , pΦ) ≡ µĤreal(r, pr∗ , pΦ) = M

√
1 + 2η

(
Heff − µ

µ

)
−M . (4)

Furthermore, to ensure the existence and η-continuity of a last stable orbit (ISCO) as well as the existence and
η-continuity of an η-deformed analog of the light-ring (the last stable orbit of a massless particle), these metric
coefficients must be Padé resummed. At present these coefficients are available at (pseudo) 5PN and 3PN order for
A(r) and D(r), respectively,

D(r) =
r3

(52 η − 6 η2) + 6 η r + r3
, (5)

and



4

A(r) =
Num(A)

Den(A)
, (6)

with

Num(A) = r4
[
−64 + 12 a4 + 4 a5 + a6 + 64η − 4η2

]

+ r5 [32− 4 a4 − a5 − 24η] , (7)

and

Den(A) = 4 a24 + 4 a4 a5 + a25 − a4 a6 + 16 a6 + (32 a4

+16 a5 − 8 a6) η + 4 a4 η
2 + 32 η3 + r

[
4 a24 + a4 a5

+16 a5 + 8 a6 + (32 a4 − 2 a6) η + 32 η2 + 8 η3
]

+r2
[
16 a4 + 8 a5 + 4 a6 + (8 a4 + 2 a5) η + 32 η2

]

+r3
[
8 a4 + 4 a5 + 2 a6 + 32 η − 8 η2

]

+r4
[
4 a4 + 2 a5 + a6 + 16 η − 4 η2

]

+r5 [32− 4 a4 − a5 − 24 η] , (8)

where a4 = [94/3 − (41/32)π2] η, and a5, a6 are adjustable parameters which were determined by minimizing the
inspiral phase difference between the NR and EOB (2,2) modes in [1].
The EOB equations of motion that describe the orbital dynamics of the BH binary are given by [21]

dr

dt̂
=

A(r)√
D(r)

∂Ĥreal

∂pr∗
(r, pr∗ , pΦ) , (9a)

dΦ

dt̂
=

∂Ĥreal

∂pΦ
(r, pr∗ , pΦ) , (9b)

dpr∗
dt̂

= − A(r)√
D(r)

∂Ĥreal

∂r
(r, pr∗ , pΦ) +

nKF̂Φ
pr∗
pΦ

, (9c)

dpΦ

dt̂
= nKF̂Φ , (9d)

where t̂ ≡ t/M , Ω̂ ≡ dΦ/dt̂ ≡ MΩ and the radiation-reaction force nKF̂Φ is given by [1]

nKF̂Φ = − 1

η v3Ω

dE

dt
, (10)

with vΩ ≡ Ω̂1/3. An important improvement in the EOB formalism over models that used Padé resummation of
Taylor approximants to the energy flux is the implementation of a resummed energy flux of the form

dE

dt
=

v6Ω
8π

8∑

ℓ=2

ℓ∑

m=1

m2

∣∣∣∣
R
M

hℓm

∣∣∣∣
2

, (11)

whereR is the distance to the source and hlm’s represent the multipoles of the waveform, defined through the following
relation

h+ − ih× =
M

R

∞∑

l=2

m=l∑

m=−l

Y lm
−2 hlm, (12)

where Y lm
−2 represent the spin weighted -2 spherical harmonics and h+ and h× stand for the two gravitational wave

polarizations. Since the numerical relativity simulations used to calibrate the EOB model were found to satisfy the
condition hℓm = (−1)ℓ h∗

ℓ−m with great accuracy, where ∗ denotes complex conjugate, one can also assume that the
analytical modes that enter the sum in Eq. 11 also satisfy this property. Furthermore, because |hℓ,m| = |hℓ,−m|, the
sum in Eq. 11 extends only over positive m modes.
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B. Modelling of the inspiral and plunge evolution

In the EOB scheme, the inspiral and plunge phases are described by the product of several factors, namely,

hinsp−plunge
ℓm = hF

ℓmNℓm , (13)

where the function Nℓm is introduced to ensure that the EOB model reproduces: a) the shape of the NR amplitudes
|hℓm| near their maxima; and b) the timelag between the maxima of the |hℓm| and the maxima of |h22|, obtained from
NR data. On the other hand, the factorized resummed modes hF

ℓm are given by

hF
ℓm = h

(N,ǫ)
ℓm Ŝ

(ǫ)
eff Tℓm eiδℓm (ρℓm)

ℓ
, (14)

where ǫ stands for the parity of hℓm, i.e., ǫ = 1 if ℓ+m is even, and ǫ = 0 for odd ℓ+m.

The factor h
(N,ǫ)
ℓm stands for the Newtonian contribution, defined in Eqs.(15)-(18) of [1]. The remaining terms ĥ

(ǫ)
ℓm =

Ŝ
(ǫ)
eff Tℓm eiδℓm (ρℓm)

ℓ
represent a resummed version of all PN corrections, which have the structure ĥ

(ǫ)
ℓm = 1 + O(x),

where x is the gauge-invariant object x = Ω̂2/3.

Regarding the structure of the Ŝ
(ǫ)
eff factor, we note that in the even parity case, which corresponds to mass moments,

the leading order source of GW radiation is given by the energy density. Therefore, the source factor can be defined

as Ŝ
(ǫ=0)
eff = Ĥeff(r, pr∗ , pΦ) [22]. On the other hand, in the odd-parity case, which is associated to current modes, the

angular momentum L̂eff turns out to be a factor in the Regee-Wheeler-Zerilli odd-parity multipoles in the limit of

small mass-ratio η [22]. Hence, one can define Ŝ
(ǫ=1)
eff = L̂eff = pΦ vΩ [1].

Furthermore, considering a Schwarzschild background of mass MADM = Hreal, the tail term Tℓm is a resummed
version of an infinite number of logarithmic terms that enter the transfer function between the near-zone and far-zone
waveforms. Since this complex object only resums the leading logarithms of tail effects, one needs to introduce an

additional dephasing factor δℓm, which is related to subleading logarithms. The final building block is given by (ρℓm)
ℓ
,

which was introduced to enhance the agreement of the EOB model with NR in the strong-field regime. The explicit
expressions for these various quantities can be found in Eqs. (19)-(21) and Appendix B of [1].
Having described the building blocks of the EOB model, we will now describe how to go about in the actual

construction of the EOB model using NR simulations. The first step in the calibration of the EOBNR model consists
of aligning the waveforms at low frequency, following the procedure outlined in [1]. This approach is used to minimize
the phase difference between the NR and EOB (ℓ,m) modes using the prescription

Υ (∆t,∆φ) =

∫ t2

t1

(
φEOB(t+∆t) + ∆φ− φNR(t)

)2
dt, (15)

where ∆t/∆φ are time/phase shifts, respectively, over which the minimization is performed. The time window (t1, t2)
is chosen so as to maximize the length of the NR waveform, but making sure that junk radiation does not contaminate
the numerical data.
The numerical h22 is usually called the leading multipolar waveform because, compared to all the other multipoles,

it provides the leading contribution to the amplitude of the full waveform h(t). Additionally, once the NR and EOB
(ℓ,m) = (2, 2) modes are aligned using the prescription given by Eq. (15), the peak of the numerical h22 takes place

at the same time the orbital frequency Ω̂ reaches its peak. Put in different words, the time at which the numerical h22

reaches its maximum and the EOB light-ring time (innermost circular orbit for a massless particle) are coincident.
To calibrate the EOB dynamics, determined by Eqs. (9a)-(9d), one minimizes the phase difference between the

leading NR and EOB (ℓ,m) = (2, 2) modes during the inspiral phase. This phase minimization procedure enables
us to constrain the value of the doublet (a5, a6). As pointed out in [1], the calibration of the adjustable parameters
(a5, a6) is not unique. For instance, [1] and [23] provide different values for the doublet (a5, a6) which reproduce
with great accuracy NR simulations for equal and comparable-mass non-spinning BH binaries. Even if the calibration
of these parameters is degenerate, one can instill some physics in the way (a5, a6) are determined. In [1], these
parameters are modeled as smooth functions of η, such that they reproduce the self-force prediction of the orbital
frequency shift at the ISCO in the test-mass particle limit η → 0, i.e., for a6(η → 0)/η and a5(η → 0)/η the EOB
model reproduces the result [20]

MΩISCO =
1

6
√
6

(
1 + 1.2512η +O(η2)

)
. (16)
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It is worth pointing out that in contrast with the model developed in [24], the development of the EOBNRv2 model
did not require the computation of higher-order PN corrections in the adjustable parameters ρ22 and δ22. The actual
expression for these two parameters had already been determined analytically in previous studies [23].
Having determined the EOB dynamics, the N22 coefficients are computed and implemented in the energy flux

resummed prescription given by Eq. (11), one can determine the rest of the EOB adjustable parameters, namely,
higher-order PN corrections in ρℓm/δℓm for (ℓ,m) 6= (2, 2), by minimizing the amplitude/phase difference between
the remaining numerical and EOB multipolar waveforms used in the calibration. These higher-order corrections for
(ℓ,m) 6= (2, 2) are included in the inspiral waveform prescription, Eq. (13), but not in the energy flux, Eq. (11).

C. Merger and ring-down calibration of the EOB model

The merger of two non spinning BHs generates a distorted Kerr BH whose gravitational radiation can be modeled
using a superposition of quasi normal modes (QNMs), which are described by the indices (ℓ, m, n), where (ℓ, m)
denote the mode and n specifies the tone. Each of these modes has a complex frequency σℓmn given by

σℓmn = ωℓmn − i/τℓmn, (17)

where the real/imaginary part ωℓmn/τ
−1
ℓmn corresponds to the frequency/inverse damping time of each QNM. These two

observables are uniquely determined by the mass and spin of the Kerr BH formed after merger [25]. The prescription
used to compute these quantities is given by [1]

Mf

M
= 1 +

(√
8

9
− 1

)
η − 0.4333η2 − 0.4392η3, (18a)

af
Mf

=
√
12η − 3.871η2 + 4.028η3. (18b)

It is worth pointing out that a mode (ℓ,m) always consists of a superposition of two different frequencies/damping
times. These ‘twin modes’ are given by ω′

ℓmn = −ωℓ−mn and τ ′ℓmn = τℓ−mn. However, when considering two initially
non-spinning BHs, the mirror solutions are degenerate in the modulus of the frequency and damping time, and hence
one has that ωℓmn > 0 and τℓmn > 0.
Following [1], the merger-ringdown waveform may be written as follows

hmerger−RD
ℓm (t) =

N−1∑

n=0

Aℓmn e
−iσℓmn(t−tℓm

match
), (19)

where N is the number of overtones included in the model, i.e., N = 8, and Aℓmn are complex amplitudes which will
be determined by smoothly matching the inspiral-plunge waveform (Eq. (13)) with its merger ring-down counterpart
(Eq. (19)).
To determine the complex amplitudes Aℓmn, one defines t

ℓm
match as the time at the amplitude maximum of the hEOB

ℓm
mode, namely, tℓmmatch = tΩmax +∆tℓmmax, and demand continuity of the waveform at N − 2 points sampled in the time
range [tℓmmatch −∆tℓmmatch, t

ℓm
match], and ensure the continuity and differentiability of the waveforms at tℓmmatch −∆tℓmmatch

and tℓmmatch (see Eqs. (36a)-(36c) in [1]).
Finally, the full waveform can be written as

hℓm = hinsp−plunge
ℓm H(tℓmmatch − t) + hmerger−RD

ℓm H(t− tℓmmatch) . (20)

where H(t) is the Heaviside step function.
This is the model we shall use in the following Section to develop an IMRI waveform model to explore the form of

the self-force in the intermediate-mass ratio regime. We will consider three different systems with mass ratios 17:100,
10:100 and 1:100. We have chosen these systems because: a) the EOBNRv2 model was calibrated by comparison
to NR simulations for events with mass-ratio 1:1-1:6, and hence systems with component masses 17:100 should be
accurately modeled using EOBNRv2; b) the actual construction of the EOB model is such that it reproduces the
expected dynamics of systems with small mass-ratio, e.g., ∼ 1:100. This modeling statement will not be taken for
granted in our subsequent analysis. We will show in the following Section that this is indeed the case by comparing
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results between EOBNRv2 and those obtained using Teukolsky data; c) we will explore an additional case, 1:10, for
which the EOBNRv2 is the best model currently available to shed light on the form that self-force corrections should
have so as to reproduce the dynamical evolution of these type of GW sources. Studying these type of sources is also
important to try to bridge the gap in the parameter space covered by current waveform models.

III. SELF-FORCE CORRECTIONS IN THE INTERMEDIATE-MASS-RATIO REGIME

In the previous Section, we described the model we shall now use to build a waveform model for intermediate-mass-
ratio inspirals (IMRIs). Using this IMRI model we will explore whether the inclusion of available self-force corrections,
which have been computed in the extreme-mass-ratio regime [20, 26, 27], are able to reproduce the inspiral evolution
of intermediate-mass-ratio binary black holes.

A. IMRI self-force model

In this Section we introduce the key elements we need to build our IMRI model which is simple and flexible enough
to explore the form of the self-force in the intermediate-mass-ratio regime, and that, at the same time is able to
reproduce with great accuracy the binary’s dynamical evolution as predicted by EOBNRv2. In the following we
assume that EOBNRv2 dynamics provides a good description of the actual binary black hole dynamical evolution.
This is a reasonable assumption because, at present, EOBNRv2 is the best interface to translate NR simulations into
a waveform model that uses coordinates which can be related to physical units [28]. This desirable modeling approach
is obtained by comparing EOB gravitational waveforms to NR waveforms as seen by an observer at infinity [29].
The fact that this model has been calibrated to NR simulations of mass-ratios 1:1-1:6 also means that such a model
provides the adequate arena for the studies we want to carry out. Having said that, we now describe the approach
we shall follow to build our IMRI model:

1. We start with an ansatz for the orbital frequency evolution of our IMRI model which is inspired by recent studies
on the inclusion of linear order self-force corrections in the EOB approach [30]. We develop this prescription
so as to faithfully reproduce the EOBNRv2 orbital frequency evolution. An accurate modeling of the orbital
frequency is necessary to build the gauge-invariant object x = Ω̂2/3, which is a crucial element in our analysis.

2. We propose an ansatz to model the IMRI gravitational wave angular momentum flux which we calibrate so
as to faithfully reproduce its EOBNRv2 counterpart (see Figures 2 and 3). Note that the EOBNRv2 angular
momentum flux used for this calibration is constructed by summing over 35 leading and subleading waveform
multipoles hℓm, with 2 ≤ ℓ ≤ 8, 1 ≤ m ≤ ℓ. We include all these modes so as to model the radiative part of the
self-force in our IMRI model as accurately as possible.

3. Having derived an accurate prescription for the orbital frequency and the angular momentum flux, we make use
of a prescription for the angular momentum that goes beyond the test-mass particle limit and which includes
conservative self-force corrections. This expression for L̂z(x) encodes conservative self-force corrections in the
redshift observable zSF (see Eq. (29)).

4. Because the prescriptions for the orbital frequency and the flux of angular momentum of our IMRI model
reproduce their EOBNRv2 counterparts with great accuracy (see Figures 1 and 2), we can now use these

objects to constrain the form of the gauge-invariant expression of the angular momentum L̂z(x) in Eq. (27)
below by demanding internal consistency in our model, i.e., by reproducing faithfully the dynamical evolution
of the binary black hole as predicted by EOBNRv2. This is equivalent to exploring the form of the red-shift
observable zSF which reproduces the binary’s dynamical evolution as predicted by EOBNRv2. This calibration
procedure enable us to reproduce the expected inspiral evolution point to point to better than one part in a
thousand, as shown in Figures 4 and 5.

5. Having determined the form of zSF that reproduces the dynamical evolution of the systems considered in this
analysis, we compare the gauge-invariant expression of L̂z(x) using our results and self-force corrections obtained
in the context of EMRIs. We show that available self-force corrections do not reproduce the late inspiral evolution
for systems with mass-ratio 1:6 and 1:10, but that they provide a fair description for systems with mass-ratio
1:100. This result is to be expected because these available self-force corrections were derived in the small
mass-ratio limit.
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Having described the approach to be followed, we start off by describing the ansatz we use to model the orbital
frequency. To do this, we follow [23] and [31], and use the following prescription

Ω =
A

Ĥ

pφ
r2

. (21)

Furthermore, assuming circular orbits, we can simplify Eq. (21) using the following relations for the conservative

Hamiltonian Ĥ

Ĥ =
√
A(u) (1 + j20u

2), with pφ = j0 , and j20 = − A′(u)

(u2A(u))
′ , (22)

where u = 1/r and ′ denotes d/du. Using a prescription similar to that introduced in [30], we shall use the following
ansatz for the potential A(u)

Aansatz(u) = 1− 2u+ η

(√
1− 3ukfit − u

(
1 +

1− 4u√
1− 3u

))
, with kfit = 2u

1 + a1u+ a2u
2

1 + a3u+ a4u2 + a5u3
. (23)

Under these assumptions, the prescription for the orbital frequency takes the simple form

Ω(u)ansatz = u3/2

√
−A′

ansatz(u)

2
. (24)

The values of the ai parameters in the function kfit are given in Table I. It is worth pointing out that this prescription
captures accurately the orbital phase evolution of the sources described above all the way down to ISCO and slightly
beyond at a much lesser computational complexity than EOBNRv2. The actual comparison between this scheme
and the EONBRv2 model is shown in Figure 1. Notice that our IMRI model does pretty well from large r to the
fast-motion strong-field regime in all three cases shown. Notice that we are modeling the potential Aansatz(u) using
the coordinate u and not M/x as done in [30]. The rationale for doing this is to use a simple, yet accurate, prescription
for the orbital frequency that captures faithfully the EOBNRv2 orbital frequency evolution. We could have also used
a different prescription for this object, i.e., a PN series [13], a Padé resummed expression, etc. The purpose this object
serves at this stage in the analysis is to reproduce accurately the orbital evolution predicted by EOBNRv2 with lesser
computational complexity.

η a1 a2 a3 a4 a5

1700

13689
-7.458 15.0179 -7.208 12.152 6.103

10

121
-8.037 17.059 -7.826 14.589 5.393

100

10201
-9.535 22.984 -9.456 21.862 3.085

TABLE I. Ωansatz fit coefficients

Having derived a prescription for the orbital evolution, we require a prescription to generate the inspiralling trajec-
tory of the stellar mass compact object. The first step to achieve this consists of deriving a consistent model for the
flux of angular momentum. The model for the flux of angular momentum that we introduce in the following Section
sums up the effect of including all the dominant and subdominant modes currently available in the literature, i.e.,
2 ≤ ℓ ≤ 8, 1 ≤ m ≤ ℓ, with the advantage that the inclusion of extra modes does not impact the computational cost
of generating the IMRI waveform.

B. Radial evolution prescription

An important component of the IMRI waveform model is the prescription used for the fluxes of energy and angular
momentum. Deriving an accurate expression for these quantities is essential to capture the main features of true
inspirals, as shown in [32] in the context of EMRIs.
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FIG. 1. The panels show the orbital frequency, as a function of the radial coordinate r, obtained using the fit described in
the text (solid red line), and the orbital frequency predicted by the EOB model. The systems shown in the panels correspond
to binaries of component masses 17M⊙ + 100M⊙ (top-left panel), 10M⊙ + 100M⊙ (top-right) and 1M⊙ + 100M⊙ (bottom-
left panel). The bottom-right panel demonstrates the accuracy with which our IMRI model reproduces the orbital frequency
predicted by the EOBNRv2 for the systems 17:100 (dashed blue), 10:100 (dashed-dot red) and 1:100 (solid black). Note that
the spikes are due to artifacts in the interpolation function used to plot the EOBNRv2 orbital frequency and the numerical
fit used to reproduce it. Also notice that the discrepancy between the data and the fit is always smaller than one part in a
thousand.

As discussed in Section II, in the EOBNRv2 model the flux of energy is constructed using the prescription given
by Eq. (11), which is obtained by summing over the modes (hℓm) with 2 ≤ ℓ ≤ 8, 1 ≤ m ≤ ℓ. Using this prescription
as input data and the fact that in the EOB formalism the following relation is fulfilled [30]

Ė = ΩL̇z, (25)

we derive a prescription for the gravitational-wave angular momentum flux which is valid from early inspiral all the
way to the ISCO and slightly beyond. This prescription, which encapsulates the contribution from 35 dominant and
subdominant modes, is inspired by the modeling of accurate EMRI waveform models introduced in [32], i.e.,

(
L̇z

)
fit

= −32

5

µ2

M

1

r7/2

[
1− 1247

336

1

r
+ 4π

1

r3/2
− 44711

9072

1

r2
+

1

r5/2

(
c12.5 + c23

1

r1/2
+ c33.5

1

r

)]
, (26)
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and the coefficients in Eq. (26) are given in Table II.

η c12.5 c23 c33.5
1700

13689
-121.903 551.141 -694.699

10

121
-110.657 360.261 -156.016

100

10201
-75.255 333.449 -363.505

TABLE II. L̇z fit coefficients

Figures 2 and 3 present the comparison between the EOBNRv2 flux, which includes all currently known dominant

and subdominant modes, and the calibrated angular momentum flux
(
L̇z

)
. Notice that this computationally inex-

pensive scheme does pretty well from large r all the way to the ISCO and slightly beyond. Hence, this approach
will enable us to capture the main features of the inspiral evolution of the systems under consideration in the regime
of interest with good accuracy. Modelling the prescription of the flux of angular momentum in our IMRI waveform
using all the dominant and subdominant modes in the EOBNRv2 model is equivalent to modeling the radiative part
of the self-force with the best information currently available in literature.
In Figure 3 we present a comparison between the flux of angular momentum predicted by the EOBNRv2 model and

the fit to Teukolsky data proposed in [32] for extreme-mass-ratio inspirals. Note the remarkable agreement between
both formalisms all the way down to the ISCO. This comparison also confirms that the construction of the EOBNRv2
captures the main features of inspirals with small mass-ratios which are modeled using black hole perturbation theory.
This comparison also shows that the EOBNRv2 model encodes fairly well the radiative part of the self-force for systems
with small mass-ratio.
Having found a prescription for the angular momentum that captures the dynamics of IMRIs, we can now use it

to generate the inspiral trajectory of the stellar mass compact object that inspirals into an IMBH using the relation

dr

dt
=

dLz

dt

dr

dLz
. (27)

The first term on the right hand side of Eq. (27) can be obtained from Eq. (26). With regard to the derivative of the
angular momentum with respect to the radial coordinate, we need to use a prescription for the angular momentum
that goes beyond the test-mass particle limit, as conservative self-force corrections play a more significant role in this
regime. Hence, we use the relation derived by Barausse et al in [30] which includes conservative self-force corrections,
i.e.,

L̂z(x) =
Lz

µM
=

1√
x(1 − 3x)

+ η

(
− 1

3
√
x
z′SF(x) +

1

6
√
x

4− 15x

(1− 3x)3/2

)
+O(η2), (28)

where x = (MΩ)2/3 and ′ stands for d/dx. Furthermore,

zSF(x) = 2x
1 + b1x+ b2x

2

1 + b3x+ b4x2 + b5x3
, (29)

and the various coefficients bi were derived in [30] using available self-force data. In this section we derive the
coefficients in Eq. (29) that reproduce the actual inspiral evolution all the way down to the ISCO. Note that in
Eq. (27) we have in place a prescription for the angular momentum flux which faithfully reproduces the expected
loss of angular momentum even beyond the ISCO, as compared to the EOBNRv2 model. Hence, the only ingredient
that needs to be tuned to reproduce the expected inspiral evolution is contained in Eq. (28). We have followed this

approach to explore the form that L̂z(x) should have. Put in different words, the form that the self-force redshift
observable zSF(x) should have to reproduce an inspiral trajectory consistent with EOBNRv2 all the way down to the
ISCO. The various coefficients of Eq. (29) that generate such an inspiral orbit are given in Table III.
In Figure 4 we show that this prescription captures with great accuracy the features of EOBNRv2 inspirals. To recap,

the IMRI model incorporates both first-order conservative corrections –through the construction of the gauge invariant
expression of the angular momentum in Eq. (28)— and first-order radiative-corrections through the construction of
the flux of angular momentum in Eq. (26). Notice that the latter object encodes the best information currently
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FIG. 2. We compare the calibrated flux of angular momentum described in Eq. (26) against the prediction of the EOBNRv2
model for binaries of component masses 17M⊙ +100M⊙ (top left panel), 10M⊙ +100M⊙ (top right panel), and 1M⊙ +100M⊙

(bottom-left panel). The bottom-right panel shows the accuracy with which the IMRI model reproduces the EOBNRv2 angular

momentum flux, L̇ = dLz/dt, for the systems: 17:100 (dashed blue), 10:100 (dashed-dot red) and 1:100 (solid black). The
spikes in the bottom-right panel are due to numerical artifacts of the interpolating function used to plot the EOBNRv2 angular
momentum flux and the numerical fit to reproduce it. The fit is such that its discrepancy to the EOBNRv2 is always smaller
than one part in a thousand.

η b1 b2 b3 b4 b5
1700

13689
-3.062 0.760 -3.261 0.550 -6.000

10

121
-3.260 0.892 -3.475 0.600 -6.829

100

10201
-3.370 1.570 -3.730 0.970 -7.280

TABLE III. zSF(x) fit coefficients

available in the literature, since it includes the contribution from 35 dominant and subdominant (ℓ,m) modes of the
multipolar waveform to the angular momentum flux. Using this IMRI model, we have been able to constrain the form
of the angular momentum Lz(x) that reproduces the inspiral evolution predicted by the EOBNRv2 model.

In order to show the importance of increasing our knowledge of the self-force in the intermediate-mass-ratio regime,
we present in Figure 6 three different curves which describe the time evolution of three binary systems during late
inspiral. These plots show that if we use a waveform model (unfitted) that includes: a) an accurate prescription for
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FIG. 3. The left panel shows the angular momentum flux for binaries of mass ratio 1:100 computed using the EOBNRv2 model
and the fit to Teukolsky data introduced in [32]. Both formalisms present a remarkable agreement all the way down to the
ISCO. Note that the angular momentum flux fit to Teukolsky data is valid only from early inspiral until the ISCO. The right
panel shows the relative difference between the two prescriptions for the angular momentum flux L̇ = dLz/dt.

the orbital frequency Ω̂; b) a prescription for the flux of angular momentum that incorporates the contribution from
all dominant and subdominant (ℓ,m) modes; c) an invariant expression for the angular momentum using the object

x = Ω̂2/3 (see Eq. (28)), and; d) available self-force corrections to constrain the coefficients bi [30], then such a model
would generate an inspiral trajectory that deviates from the expected orbital evolution, in particular near the ISCO.
Figure 6 also shows that our model actually predicts the expected orbital evolution all the way down to the ISCO,

in agreement with the EOBNRv2 model, and requires a different set of coefficients bi in the redshift observable zSF(x),
as compared with results in the extreme-mass-ratio limit quoted in [30]. Notice that this is not only a modeling issue.
It is an indication that implementing available self-force data into IMRI waveform models will not render the correct
inspiral evolution, at the very least for the cases we have considered. This is an important result of this paper. In
order to substantiate this statement, in the following Section we will compute the value of the gauge invariant angular
momentum Lz(x) at the ISCO within both the self-force formalism and our IMRI model. We will also show that the
evolution of Lz(x) is consistent between both formalisms during early inspiral, but that the form of this object differs
as we near the ISCO.
One may also expect that for binaries with small mass-ratios, available self-force corrections may provide a fairly

good description of the inspiral evolution. This is what we actually see in the bottom panel of Figure 6. We will
also show in the following Section that the evolution of Lz(x) for binaries with mass-ratio 1:100 is pretty consistent
from early inspiral to the ISCO with EOBNRv2. This may not be surprising, since current self-force data have been
obtained in the context of EMRIs and the EOBNRv2 has been calibrated so as to reproduce the dynamical evolution
of binary black holes of small mass-ratio [22, 33–35]. This exercise then suggests that it may be necessary to go beyond
first-order conservative corrections to reproduce accurately the expected dynamical evolution of intermediate-mass
ratio systems with η ∼ 10−2 − 10−1.
To carry out the analysis described above in the following Section, we will start by using the EOBNRv2 model

to compute the orbital frequency ISCO shift for binaries of mass ratio 1:1, 1:2, 1:3, 1:4, 1:5, 1:6, 1:10 and 1:100,
along with perturbative results in the context of extreme-mass-ratio inspirals. We will use this expression for the
orbital frequency ISCO shift to evaluate the gauge-invariant object x and then compute the value of the angular
momentum at the ISCO using Eq. (28). We should also acknowledge the fact that EOB has not yet been calibrated
using NR simulations of systems with mass-ratio 1:100. It is expected that EOBNRv2 provides a fair description of
the dynamical evolution of these types of sources, and we show in the following section that both EOBNRv2 and
perturbative calculations provide a very consistent modeling of the gauge-invariant angular momentum L̂z from early
inspiral to the ISCO for binaries with mass-ratio 1:100. However, this study should be compared to accurate NR
simulations of mass-ratio 1:100 [36] once these are generated with several gravitational waveform cycles before merger.
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FIG. 6. The panels show the radial evolution using the EOBNRv2 model, the IMRI model described in the text, and a model
(Unfitted) which is the same as the IMRI model described in text except for the fact that the coefficients used in Eq. (29) for the
function zSF(x) were derived using available self-force data from extreme-mass ratio calculations [30]. The plots correspond to
binaries of component masses 17M⊙+100M⊙ (top-left panel), 10M⊙+100M⊙ (top-right panel) and 1M⊙+100M⊙ (bottom-left
panel). The bottom-right panel shows that the orbital evolution predicted by a model that incorporates self-force corrections
from extreme-mass-ratio inspirals (EMRIs) deviates from the orbital evolution predicted by the EOBNRv2 model at late
inspiral. This discrepancy is more noticeable for systems with mass-ratios 17:100 (dashed blue) and 10:100 (dashed-dot red).
Furthermore, for smaller mass-ratios, 1:100 (solid black), the discrepancy becomes comparatively smaller, as expected.
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IV. ISCO SHIFT: CONNECTING THE EXTREME, INTERMEDIATE AND COMPARABLE-MASS

RATIO REGIMES

In the previous Sections we have mentioned that during the inspiral of a stellar mass compact object of mass m2

into a supermassive BH of mass m1, the radiative part of the self-force drives the inspiral evolution of the small object,
whereas its conservative part has a cumulative effect on the orbital phase evolution [37]. These two effects have been
considered in the development of EMRI waveform templates [32, 38–43].
We shall now consider a novel effect that was explored by Barack & Sago [20]. They have shown that the self-force

also introduces shifts in the innermost stable circular orbit radius and frequency. For a test-mass particle, these two
quantities are given by

rISCO = 6m1, m1ΩISCO =
1

6
√
6
, (30)

whereas, for finite η, in the Lorenz gauge, these two quantities take the form [20]

∆rISCO = −3.269(±3× 10−3)m2,
∆ΩISCO

ΩISCO
= 0.4870(±6× 10−4)

m2

m1
. (31)

Since Barack & Sago carried out these calculations in Lorenz gauge, it was necessary to translate these results
into coordinates that are commonly used for GW observations, i.e., asymptotically flat coordinates. This exercise
has been done for the orbital frequency, which is a gauge invariant object, and hence can be compared to results
obtained in alternative formalisms, such as PN theory or the EOB approach. In [26] and [28], the authors derive
the ‘renormalization’ factor that translates results of Lorenz-gauge calculations into physical units. Applying this
renormalization technique, one finds that the ISCO frequency is given by

MΩISCO =
1

6
√
6

(
1 + 1.2512η +O(η2)

)
, (32)

with M = m1+m2. This prediction can be compared with PN–based ISCO calculations at different orders of accuracy
[44]

MΩ2PN
ISCO =

1

6
√
6

(
1 +

7

12
η +O(η2)

)
, (33)

MΩ3PN
ISCO =

1

6
√
6

(
1 +

(
565

288
− 41

768
π2

)
η +O(η2)

)
.

The EOB approach has also been used to describe the orbital frequency shift at ISCO. Damour suggested in [28] that
a fit for the ISCO orbital frequency shift that incorporates results from the gravitational self-force and NR simulations
may be a quadratic polynomial in η of the form [28]

MΩDamour
ISCO =

1

6
√
6

(
1 + 1.25η + 1.87η2

)
. (34)

In this paper we build up on this analysis and update this estimate using results from the self-force program, and
making use of the EOBNRv2 model, which has been calibrated to NR simulations [1]. The prescription for the orbital
frequency ISCO shift that we propose below reproduces accurately the results predicted by the self-force program
for EMRIs, and also reproduces the best data currently available for intermediate and comparable-mass systems. To
compute the ISCO orbital frequency shift within the EOB formalism, we use the equation derived in [28], namely,

2A(u)A′(u) + 4u (A′(u))
2 − 2uA(u)A′′(u) = 0, (35)

where u = 1/r and ′ stands for d/du. This ISCO condition can be rewritten in terms of the radial coordinate as [44]
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rA(r)A′′(r) − 2r (A′(r))
2
+ 3A(r)A′(r) = 0, (36)

where ′ = d/dr. We shall use the metric coefficient A(r) quoted in [1], which includes the Padé expression for A(r)
at 5PN order. Having obtained the value for risco using Eq. (36), we evaluate the angular orbital frequency MΩISCO

at this fiducial value using Eq. (10b) of [1] with pr = 0.
Using a variety of events, including extreme, η ∼ 10−5, and intermediate, η ∼ 10−2− 10−1, mass ratio inspirals, we

derive a quadratic polynomial fit in η for the ISCO orbital frequency shift for these types of events, namely

MΩfit
ISCO =

1

6
√
6

(
1 + 1.05786η+ 2.12991η2

)
. (37)

We found that at second order in η, this numerical fit does not reproduce accurately the orbital frequency ISCO shift
for small-mass ratios [20]. We can fix these problems using a prescription of the form

MΩfit
ISCO =

1

6
√
6

(
1 + 1.2512η− 0.0553751η2 + 5.78557η3

)
. (38)

At this level of accuracy we exactly reproduce the prediction for EMRIs for small η, as well as the most-up-to-date
results for binaries modeled using the EOBNRv2 scheme. We compare the range of applicability of this numerical
expression, along the other various approximations mentioned above, in Figure 7.
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FIG. 7. ISCO shift using various approximations as described in the text. The ‘Numerical Data’ has been obtained using
calculations in the extreme-mass ratio regime [20] and the EOBNRv2. The prescription that encapsulates results from the
extreme, intermediate and comparable mass-ratio regime is labeled as ‘Numerical Fit’ and is given by Eq. (38) in the main
text.

With our prescription for MΩISCO, we can evaluate the value of the gauge-invariant angular momentum flux at
the ISCO. To do so, we compute the value of the angular momentum, see Eq. (28), using available self-force data
(SF Fit), i.e., we use Eq. (32) to compute the shift in the orbital frequency at the ISCO, and then use Eq. (28) in
conjunction with the values for the bi coefficients of Eq. (29) quoted in [30], i.e., self-force corrections derived in the
extreme-mass-ratio limit. We also present results for an ‘incomplete model’, in which we use Eq. (38) to evaluate
the value of the orbital frequency at the ISCO, and then use Eq. (28) with the set of bi coefficients quoted in [30].
Finally, the IMRI model encodes all the results derived in this paper, namely, we use the prescription for the shift
of the orbital frequency at the ISCO in Eq. (38), and the prescription for the angular momentum (Eq. (28)) using
the corrections quoted in Table III. Table IV shows that, in accord with Figure 6, for binaries with symmetric mass-
ratio η ∼ 0.01, the value of the angular momentum evaluated at ISCO is fairly consistent between the two models.
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However, the predicted value of the angular momentum at ISCO becomes more discrepant for binaries with η ∼ 0.1.
This then suggests that the evolution of intermediate-mass ratio inspirals cannot be fully captured by using self-force
calculations from extreme-mass ratio inspirals. This can be better visualized in Figure 8 where we show the angular
momentum during inspiral all the way down to the ISCO using two formalism, namely, the IMRI prescription and a
model that includes available self-force corrections, which is labeled as ‘Self Force’.

Lz(xISCO)

η SF Fit Incomplete IMRI
1700

13689
3.3389 3.3522 3.2918

10

121
3.3876 3.3878 3.3254

100

10201
3.4561 3.4561 3.4429

TABLE IV. The Table shows the value of the angular momentum Lz as a function of the gauge invariant object x = (MΩ)2/3

evaluated at the ISCO radius (see Eq. (28)). The SF (self-force) values are computed using the prescription given in Eq. (32)
to compute the orbital frequency shift, and Eq. (28) with the coefficients bi quoted in [30], i.e., evaluated in the context of
extreme-mass-ratio inspirals. Incomplete stands for a prescription in which we use the prescription for the orbital frequency
given by Eq. (38), and the angular momentum prescription given by Eq. (28) with the coefficients bi quoted in [30]. The
bi values of the IMRI model are obtained using a model that reproduces the dynamical evolution of intermediate-mass-ratio
inspirals, as compared with the EOBNRv2 model, and for which we have derived a new prescription for the red-shift observable
zSF(x) which actually reproduces the features of true inspirals.

Table IV and Figures 6, 8 show that as the mass-ratio increases, the discrepancy between a model that incorporates
available self-force corrections [27] and one that has been calibrated to NR simulations becomes more pronounced.
For events with mass-ratio 1:10 this difference looks slightly larger than for those of mass-ratio 17:100. Part of the
reason for this behavior may be the fact that the model we have used to perform this analysis, EOBNRv2, provides
the best prescription currently available for the inspiral evolution of sources with mass-ratios 1:1-1:6. It is expected
that the model provides a good description of the inspiral evolution of sources with mass-ratio 1:10, and hence we
have extended its realm of applicability to shed light on the form that the self-force is expected to have so as to
reproduce the inspiral evolution of these type of sources. Thus, a conservative conclusion we can draw at this stage
is that, using the best waveform model currently available in the literature, we have shown that one may not be able
to accurately model the dynamics of sources with mass-ratio 1:10 using available self-force calculations. This trend
is also present in the case of events with mass-ratio 17:100 and the results in this case are more conclusive. We have
shown that a waveform model that includes available self-force corrections will not be able to capture faithfully the
inspiral evolution of these GW sources. These results suggest that one may need to include higher-order corrections
in the self-force to capture the behavior of true inspirals in the intermediate-mass-ratio regime. Finally, our work is
also a consistency check on the internal structure of the EOB model, since we have shown that the EOBNRv2 renders
a good prescription for the inspiral evolution via the flux of angular momentum and that the angular momentum
prescription is consistent with results obtained from perturbative calculations.
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FIG. 8. The panels show the invariant angular momentum Lz(x), with x = (MΩ)2/3, from early inspiral to the ISCO using two
different prescriptions. The ‘IMRI’ prescription reproduces accurately the expected inspiral evolution, as compared with results
from the EOBNRv2 model —which has been calibrated to NR simulations. The ‘Self-Force’ prescription encapsulates self-force
corrections derived in the context of EMRIs [27, 30]. Note that for the three binary systems studied, 17M⊙ + 100M⊙ (top-left
panel), 10M⊙ + 100M⊙ (top-right panel), and 1M⊙ + 100M⊙ (bottom-left panel), the ‘Self Force’ prescription for the angular
momentum presents a deviation from its expected value that becomes more noticeable near the ISCO. The bottom-right panel
shows the fractional accuracy between the two different prescriptions for the angular momentum for the systems 17:100 (dashed
blue), 10:100 (dashed-dot red) and 1:100 (solid black). Notice also that, as expected, for binaries with small mass-ratio the
‘Self Force’ and ‘IMRI’ prescriptions are fairly consistent all the way down to the ISCO. As in the previous plots, the spikes in
the bottom-right panel are due to numerical artifacts.
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V. CONCLUSIONS

In this paper we have developed a code to reproduce the analysis presented in [1]. Using this code we generated the
inspiral evolution of three different systems to perform an exploratory study of the importance of including accurate
self-force corrections in search templates that aim to detect non-spinning intermediate-mass ratio inspirals. The
choice of the systems to perform this study reflects the knowledge we have at present on the dynamical evolution of
non-spinning BH binaries (17M⊙ + 100M⊙), what we want to know (10M⊙ + 100M⊙), and a special system that
provides reassurance that the dynamics of intermediate-mass-ratio inspirals with typical mass-ratios η ∼ 0.01 can be
captured using perturbative theory, as shown in [36, 45].
The EOBNRv2 model we have used as a benchmark to carry out this study has the advantage of encoding the

best information currently available of non-spinning BH binaries, is capable of reproducing the expected dynamics in
the test-mass particle limit, and also includes corrections taken from self-force corrections in the extreme-mass-ratio
limit. We have confirmed these statements for systems with η ∼ 0.01 by showing that the EOBNRv2 does predict
the expected form of the angular momentum flux, as compared to Teukolsky data, as well as the evolution of the
gauge-invariant angular momentum, as compared to self-force data.
In order to explore the form of the self-force in the intermediate-mass-ratio regime, we developed an IMRI model that

reproduces the inspiral evolution predicted by the EOBNRv2 model, and which enable us to explore the form that the
self-force should have in this mass-ratio regime so as to reproduce the binary’s dynamical evolution as predicted by the
best available interface to NR simulations. We have found that for systems with component masses 17M⊙ + 100M⊙,
available self-force corrections do not accurately reproduce the inspiral evolution. We have shown that there is a clear
deviation from the true inspiral trajectory near the ISCO. We have also explored this issue in greater detail by showing
that the gauge-invariant angular momentum does deviate from the current self-force prediction near the ISCO. When
we extend the realm of applicability of the EOBNRv2 to binaries of mass-ratio 1:10, we observe a similar behaviour.
This exploratory study then suggests that it may be necessary to extend conservative corrections beyond the linear
order to accurately capture the true inspiral evolution for sources with intermediate-mass-ratio. Furthermore, once
NR simulations of systems with mass-ratios 1:10, 1:15 and 1:100 have reached enough resolution near merger, we will
be in a good position to calibrate the EOB model so as to reproduce the true dynamical evolution for these type of
sources [36, 46, 47]. Such a model will enable us to further probe the parameter space to develop IMRI models, as
the one proposed in this paper, that capture the features of true inspirals at a very inexpensive computational cost.
We have also used our EOBNRv2 code to derive a prescription for the orbital frequency ISCO shift that encapsulates

results from the extreme, intermediate and comparable-mass ratio regimes. Our prescription is the first in the literature
that reproduces the self-force result in the appropriate limit. We have made use of this new prescription to estimate
the value of the angular momentum at the ISCO using our IMRI prescription and available self-force data. We have
found a clear discrepancy for systems with mass-ratios η ∼ 0.1, but have confirmed that for systems with small mass
ratios η ∼ 0.01 both predictions are fairly consistent.
This study has also shed light on a pressing issue that needs to be addressed before aLIGO begins observations,

namely, at present we use templates in searches for GW sources whose actual dynamics are currently unknown. For
instance, searches for BH binaries with total mass 25M⊙ − 200M⊙, and individual masses from 3M⊙ to 99M⊙ have
been carried out, but not a single model has been calibrated using high-resolution NR simulations for mass-ratios
smaller than 1:6. Hence, it is important that numerical relativists and search template developers interact more
closely so as to run NR simulations which cover regions in parameter space where future GW detectors may detect
GW sources. This meaningful interaction will be important from a theoretical perspective, as we will be able to
further our knowledge of the self-force, and from a data analysis perspective, as we will be in a stronger position to
develop accurate search templates for use in data analysis.
The approach we have outlined in this paper is the initial step to construct inspiral-merger-ringdown IMRI wave-

forms. Having derived a consistent prescription for the inspiral evolution, we can use a similar approach to that
described in [19, 48] to include merger and ring-down in a physically consistent way. Developing complete IMRI wave-
forms may be useful for aLIGO data analysis, as they will provide the accuracy of more complex waveform models at
an inexpensive computational cost.
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VI. APPENDIX

In this Section we show that the approach outlined in the main body of the paper can still be used to model
equal-mass (EM) binaries with great accuracy at an inexpensive computational cost. To do so we consider a system
with total mass 20M⊙. Following the method described in Section III, we start by deriving accurate prescriptions for

the orbital frequency Ωansatz and angular momentum flux L̇z. Thereafter we derive the corrections that should be
implemented in the gauge-invariant expression for the angular momentum (see Eq. (28)) to accurately reproduce the
inspiral evolution predicted by the EOBNRv2 model.
The prescriptions for the orbital frequency, angular momentum flux and angular momentum which reproduce the

inspiral evolution for the 10M⊙ + 10M⊙ binary system shown in Figure 9 require the following set of coefficients
(compare Tables I, II, III)

Ω(u)ansatz : a1 = −5.644, a2 = 11.003, a3 = −5.390, a4 = 8.794, a5 = 0.458 (39)

L̇z : c12.5 = −90.566, c23 = 304.941, c33.5 = −339.500

zSF : b1 = −5.803, b2 = 14.171, b3 = −7.074, b4 = 22.810, b5 = −25.580

Having shown that the approach outlined in the paper is still effective to model EM binaries, we consider worthwhile
developing a model that encapsulates the physics of binaries of comparable and intermediate-mass-ratio. In order
to extend our IMRI model into the comparable mass-ratio regime, we require to implement some improvements in
the model. First and foremost, we require expressions for the orbital frequency evolution (see Eq. (24)) and angular
momentum (see Eq. (28)) which incorporate conservative corrections at second-order in mass ratio η. We can draw
this conclusion by comparing the bottom-right panel of Figure 8 with the bottom panel of Figure 9. The former plot
shows that for IMRIs the prescription for the angular momentum deviates from the self-force prediction near the ISCO.
However, the latter plot shows that in the EM case the prescription for the angular momentum deviates considerably
from the self-force prediction even during the inspiral evolution, far away from the ISCO. Because the prescription
we have used for the angular momentum in both cases includes corrections at liner order in mass-ratio, this suggest
that to derive a model that unifies both regimes we require an expression for the angular momentum which includes
second-order conservative corrections. We can follow a similar strategy to encapsulate in a single prescription the
radiative piece of the self-force for comparable and intermediate mass-ratio systems by deriving second-order radiative
corrections in the prescription for the angular momentum flux.
Having derived expressions for Ωansatz, L̇z and Lz(x) which include corrections at second-order in mass-ratio, we

will be able to tune the coefficients of these objects and derive numerical fits for the coefficients in terms of the
mass-ratio η of the system. This approach will provide a unified description for the inspiral evolution of IMRIs and
comparable-mass systems. We will pursue these studies in the future.
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FIG. 9. The panels show the accuracy with which our model can reproduce the dynamics of an equal mass (EM) binary system
with masses ( 10M⊙ + 10M⊙), as compared with the EOBNRv2 model. The top panels show that our model can reproduce
the orbital angular evolution and the flux of angular momentum predicted by the EOBNRv2 model point to point with an
accuracy better than one part in a thousand. The middle panels show that our model can reproduce with a similar accuracy
the radial and azimuthal evolution of a 10M⊙ + 10M⊙ binary system. The bottom panel shows that the expression for the
gauge-invariant angular momentum Lz(x) for an EM mass deviates clearly from the EMRI prescription even before nearing
the ISCO.
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