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Abstract

The eternally inflating multiverse provides a consistent framework to understand coinci-
dences and fine-tuning in the universe. As such, it provides the possibility of finding another
coincidence: if the amount of slow-roll inflation in our past was only slightly more than the
anthropic threshold, then spatial curvature might be measurable. We study this issue in detail,
particularly focusing on the question: “If future observations reveal nonzero curvature, what
can we conclude?” We find that whether an observable signal arises or not depends crucially
on three issues: the cosmic history just before the observable inflation, the measure adopted
to define probabilities in the eternally inflating spacetime, and the sign and strength of the
correlation between the tunneling and slow-roll parts of the potential. We find that if future
measurements find positive curvature at the level Ωk <∼ −10−4, then the framework of the eter-
nally inflating multiverse, as currently understood, is excluded with high significance. If the
measurements instead reveal negative curvature at the level Ωk >∼ 10−4, then we can conclude
that (1) diffusive (new or chaotic type) eternal inflation did not occur in our immediate past;
(2) our pocket universe was born by a bubble nucleation; (3) the probability measure does
not reward volume increase; and (4) the origin of the observed slow-roll inflation is an acci-
dental feature of the potential, presumably selected by anthropic conditions, and not due to
a theoretical mechanism ensuring the flatness of the potential. Discovery of Ωk >∼ 10−4 would
also give us nontrivial information about the correlation between the tunneling and slow-roll
parts of the potential; for example, a strong correlation favoring large N would be ruled out
in certain measures. We also address the question of whether the current constraint on Ωk

is consistent with multiverse expectations; we find the answer to be yes, except that current
observations, for many choices of measure, rule out the possibility of strong correlations in the
potential which favor small values of N . In the course of this work we were led to consider
vacuum decay branching ratios, and found that it is more likely than one might guess that the
decays are dominated by a single channel. Planned future measurements of spatial curvature
provide a valuable opportunity to explore the structure of the multiverse as well as the cosmic
history just before the observable inflation.



1 Introduction

Evidence for cosmic inflation in the early history of our universe is mounting. In addition to the

original motivation of explaining flatness and homogeneity of the observable universe [1], we now

have precision data from the cosmic microwave background (CMB) [2] that is in beautiful agreement

with the predictions of the simplest inflationary models [3]. The details of this cosmic inflation,

however, remain very uncertain. We do not know its energy scale, its duration, or the circumstances

that led to its onset.

In the last decade, we have been learning that many of the structures of our own universe may

be understood as a result of environmental, or anthropic, selection in the multiverse [4]. The most

successful outcome of this picture was the prediction of a nonzero cosmological constant, made

already in the 1980’s [5] and confirmed in 1998 by the discovery of an accelerating expansion of the

universe [6]. The picture of the multiverse is motivated theoretically by eternal inflation [7, 8, 9] and

the landscape [10] of string theory, which together provide a consistent framework for explaining

the nonzero cosmological constant and other examples of fine-tuning in the universe. The onset

of cosmic inflation itself can perhaps be understood in the same way: since excessive curvature

suppresses structure formation [11], it is possible that we are living in the aftermath of an era of

inflation because otherwise intelligent observers would not have evolved.

An interesting consequence of this picture is that the observable era of inflation—i.e., the last

N ≈ (40 – 60) e-folds of inflation, which are probed by the density perturbations in the CMB and

in the matter distribution—may have been “just so.” That is, the number of e-folds of the slow-roll

inflation may have been very close to the minimal number needed to ensure the flatness required

for the evolution of life. Such a coincidence would seem unlikely in a more conventional picture, in

which the flatness of the inflaton potential might be ensured, for example, by some approximate

symmetry. But in the context of the multiverse, such a coincidence is very plausible. This leads

to a number of potentially observable signatures, especially in structures at large scales, including

nonzero curvature of the universe [12, 13]. Studies along these lines have been performed, e.g., in

Refs. [14].

Whether an observable signal actually arises or not, however, depends on at least three issues:

1) What was the cosmic history just before the observable era of inflation; 2) What probability

“measure” is adopted to define probabilities in the eternally inflating spacetime, where anything

that can happen will happen an infinite number of times; and 3) In tunneling transitions from one

vacuum to another, how strong are the correlations between the tunneling rate and the properties

of any slow-roll inflation that might follow the tunneling? In this paper, we explore these issues,

focusing on the question: “If future observations reveal nonzero curvature, what can we conclude?”

We take a bottom-up approach—we consider a variety of possibilities for the pre-inflationary history

and the multiverse measure, which we think are reasonably exhaustive, and we consider both strong
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and weak tunneling rate correlations. For the pre-inflationary history, we consider four different

classes of models, characterized by the behavior of the inflaton field prior to the observable era of

inflation. For the multiverse measure, we consider various geometric cutoff measures [15] as well

as the recently proposed quantum measure [16], in which the probability is given by the quantum-

mechanical Born rule applied to the multiverse state. We will see that the observation of curvature

beyond the level of ∼ 10−4 can either exclude the multiverse framework itself (if it is positive) or

exclude certain pre-inflationary histories and classes of probability measures (if it is negative), as

well as constrain the nature and degree of correlation between the tunneling rate for a transition

and the ensuing slow-roll inflation.

In the next section, we carefully define the framework of our analysis. We begin by classifying

possible pre-inflationary histories, and then we discuss probability measures. Section 3 provides the

actual analysis. The meaning of the probability distribution for curvature in the context of bubble

universes is also elucidated there. We analyze all the possible scenarios for the pre-inflationary

histories as well as the probability measures. Our result for the probability distribution for curvature

(in the negative case) will be presented in Section 4. We finally conclude in Section 5, summarizing

what we can learn from a future observation of nonzero curvature of the universe. One appendix

discusses the effect of volume increase in the quantum measure, and a second appendix discusses

the possibility that vacuum decays might be dominated by a single channel.

While completing this paper we received Ref. [17], by Kleban and Schillo, which also discusses

the issue of spatial curvature and the cosmic history before the observable inflation. Our conclusions

about it are consistent with theirs. In fact our treatment of scenario (iv) in Section 2.1 is based on

private communication with Kleban [18].

2 Framework

The observable era of early-universe inflation—i.e., the last N ≈ (40 – 60) e-folds of inflation—was

the period during which currently observable scales went outside the Hubble horizon.1 Cosmic

history before this era, however, can leave its imprint on the present-day curvature contribution,

Ωk ≡ 1 − Ω0. The expected amount of curvature depends strongly on the cosmic history just

before the observable inflation, the measure used to define probabilities in the eternally inflating

spacetime, and the nature and degree of correlation between vacuum transition tunneling rates and

the ensuing slow-roll inflation. In this section, we consider a variety of assumptions on the first

two issues, establishing a framework for the analyses in later sections. The issue of the correlation

between tunneling and slow-roll will be discussed in Section 3.2, where it becomes relevant.

1We use the phrase “Hubble horizon” to denote the distance scale H−1, where H is the Hubble parameter,
although the actual causal horizon is vastly larger.
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2.1 History (just) before the observable inflation

Since the observable inflation occurred with energy densities much smaller than the Planckian

density, the cosmic history just before it must be describable using (semi-)classical gravity. Here

we consider four scenarios, which we think cover most of the realistic possibilities:

(i) Eternal New Inflation — By tracing history back in time, the inflaton field ϕ reaches a local

maximum of the potential, with an energy density significantly smaller than the Planck scale,

i.e. V0 ≪ M4
Pl ≡ (8πGN)

−2. Denoting this point as ϕ = 0 (which may be a saddle point in

multi-dimensional field space), the “initial conditions” are given by ϕ ≈ ϕ̇ ≈ 0. The question

of how these conditions arose need not concern us here, as the results for Ωk are insensitive to

how these conditions were prepared. The dynamics beginning with these initial conditions is

described by eternal inflation at ϕ ≈ 0 [8], followed by slow-roll inflation occurring near the

potential minimum that corresponds to our vacuum.

(ii) Eternal Chaotic Inflation — By tracing history back in time, the inflaton field climbs up

a hill in the potential energy diagram to the point where the quantum fluctuation in the

field ∆ϕqu ≈ H/2π (averaged over a Hubble volume during a Hubble time interval) becomes

so important that the global structure of spacetime is determined by ∆ϕqu, rather than by

classical evolution of the field. Here, H = (V/3M2
Pl)

1/2 is the Hubble parameter. The transition

point for quantum-fluctuation dominance is at a super-Planckian field value ϕ∗ ≫ MPl; for

example, for V = 1
2
m2ϕ2 it is at ϕ∗ ≈ M

3/2
Pl /m1/2, and for V = 1

4!
λϕ4 it is at ϕ∗ ≈ MPl/λ

1/6,

wherem ≪ MPl (or λ ≪ 1) to reproduce the observed magnitude of density perturbations. The

cosmic history before our big-bang universe is then described by eternal chaotic inflation [9]

followed by slow-roll chaotic inflation.

(iii) Eternal Old Inflation — By tracing history back in time, we hit a quantum tunneling event

before entering into an eternally inflating epoch. Our pocket universe then arose directly from

a bubble nucleation process [19], presumably occurring in an eternally inflating region in which

the inflaton field was in some local minimum of the potential [7]. The bubble nucleation is

followed by a brief curvature-dominated epoch, followed by non-eternal slow-roll inflation [20].

Slow-roll inflation begins when the vacuum energy starts to dominate over the curvature and

kinetic energies in determining the evolution of the bubble universe.

(iv) A Prior Episode of Inflation — By tracing history back in time, the dynamics of another

scalar field becomes important. This is the case, for example, in double-inflation [21] or in

hybrid inflation [22] if the waterfall field is fully responsible for the observable inflation. An

interesting feature of this scenario is that the density fluctuation spectrum shows a sharp spike

at the scale corresponding to the connection of the two inflationary periods [23]. The resulting

perturbation in Ωk can be either positive or negative, which is determined only stochastically.
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For each of the four cases above, we can estimate the probability distribution for Ωk under various

assumptions about the probability measure, the a priori probability distribution for parameters in

the inflaton potential, and (when relevant) the initial conditions after the tunneling event.

2.2 Measures in eternal inflation

In an eternally inflating multiverse, anything that can happen will happen infinitely many times.

This implies, among others, the following two statements. First, to define the relative likelihood

of different types of events, we need to regularize the infinities. Second, any prediction in the

multiverse will necessarily be statistical. Here we consider the first of these statements, leaving the

second to the next subsection.

Regularizing infinities in the multiverse has been an extensive area of research [15]. There have

been many proposals for “measures” that provide required regularizations, and thus prescriptions

for making predictions. Traditionally, these measures have been defined using “global” or “local”

geometric cutoffs (although this division is not always meaningful, since the same measure can often

be formulated using either a global or local description [24, 25]). Global-cutoff measures propose

that relative probabilities can be determined by the ratio of the number of events that occur prior

to a specified “equal-time” hypersurface, usually in the limit as the hypersurface is chosen at an

arbitrarily late time. Depending on the choice of hypersurfaces, different measures can be obtained.

Local-cutoff measures, on the other hand, count events inside a finite neighborhood of a single

timelike geodesic, and probabilities are computed after certain averaging procedures. Different

measures correspond to different choices for the neighborhood.

More recently, a framework for the eternally inflating multiverse has been proposed which does

not rely on a geometric cutoff [16]. In this framework, the entire multiverse is a single quantum

state as described from a single reference frame. It is in general a superposition of many quantum

states corresponding to well-defined semi-classical geometries, each of which is defined only in and

on the apparent horizon. (This restriction on spacetime, dictated by the principles of quantum

mechanics, provides the required regularization.) The well-defined probabilities are then given

by the simple Born rule extended to the whole spacetime. This framework allows us to use the

same probability formula for questions regarding global properties of the universe and outcomes of

particular experiments, thus providing complete unification of the eternally inflating multiverse and

the many-worlds interpretation of quantum mechanics.

Is there a general classification scheme that accommodates all these measures and is relevant for

our present purpose of discussing the curvature contribution to the universe? A useful classification

is obtained by considering how the measure does or does not reward the exponential increase in

volume that characterizes inflationary models. Here we discuss the following three classes, where

examples of each appear in the literature:
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(I) Measures rewarding any volume increase — These measures reward any volume increase in

the evolution of the multiverse. The simplest example is the so-called proper-time cutoff

measure [26], which defines probabilities in the global picture using hypersurfaces of equal

proper time, obtained through the congruence of geodesics orthogonal to some arbitrary initial

hypersurface. This class of measures, however, suffers from various difficulties. The most

serious one is probably the youngness paradox [27]: because of the rapid expansion of spatial

volume in the eternally inflating region, the population of pocket universes is extremely youth-

dominated. The probability of observing a universe that is old like ours (with TCMB ≃ 2.7 K)

becomes vanishingly small. Since this essentially excludes observationally the class of measures

described here, we will not consider it further.

(II) Measures rewarding volume increase only in the slow-roll regime — In these measures the vol-

ume increase during the eternally inflating regime is not rewarded, so the youngness paradox

does not arise. To model the behavior of these measures, suppose that the probability density

for the onset of an episode of inflation of N e-folds is given by some function f(N). That is,

f(N) dN is the probability that the number of inflationary e-folds that will follow a randomly

selected onset of inflation will lie between N and N + dN . f(N) would in principle be deter-

mined by the probability distributions for inflaton potential parameters and for the inflaton

field in the multiverse. While we do not know enough to compute f(N), we will argue later

that we can estimate its behavior under a variety of assumptions. Once inflation begins, the

volume of the inflated region is multiplied by e3N , so the probability density P (N) of finding

oneself in a region that has undergone N e-folds of slow-roll inflation can be written as

P (N) ∼ f(N)e3N , (1)

where e3N is the dominant factor. While the class of measures considered here has issues

that need to be addressed [28, 29], it is not clear if these measures are excluded [30, 31]. We

therefore keep these measures in our consideration. An important example of this class of

measures is given by the so-called pocket-based measure [32].

(III) Measures not rewarding volume increase — These measures do not reward volume increase due

to any form of inflation. Naively, this may sound rather counter-intuitive: how can a larger

spatial volume avoid giving more observers, leading to a larger weight? This picture, however,

can arise naturally in several different ways. For example, we could count events along a

geodesic randomly chosen on an initial spacelike hypersurface, we could measure spacetime

according to its comoving volume, or we could use a global time cutoff based on the total

amount of expansion (i.e., scale-factor time). The probability distribution for finding oneself

in a region that has undergone N e-folds of slow-roll inflation is then simply

P (N) ∼ f(N) . (2)
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The fact that volume increase is not rewarded in the final probability distribution makes it

rather easy to avoid the problems encountered by measures of type (I) and (II). Two examples

of geometric cutoff measures in this class are the causal patch measure [33, 25] and the scale-

factor cutoff measure [34]. The recently proposed quantum-mechanical measure [16] also falls

in this class, as discussed in Appendix A.

Equations (1) and (2) can be summarized by writing

P (N) ∼ f(N)Mm(N) , (3)

where the dependence on the measure m is described by the factor Mm(N). In this paper we are

assuming that the measure is adequately described by specifying that it belongs to class (II) or class

(III) above, so

Mm(N) ≈
{

e3N if m ∈ (II)
1 if m ∈ (III) .

(4)

It is, in principle, possible to consider hybrids of these classes. For example, in the stationary

measure of Ref. [35] features of both (I) and (II) coexist. We will also comment on these hybrid

possibilities when we discuss the probability distribution of Ωk later.

2.3 Probability distributions for current and future measurements

In order to discuss implications of a future measurement of curvature by our civilization, we can

study the multiverse probability distribution for Ωk as a conditional probability density, given the

set of observed values of the physical parameters {Q1, Q2, . . .} that have already been measured.

These parameters {Qi} include cosmological parameters such as the primordial density fluctuation

amplitude δρ/ρ, the scalar spectral index ns, and the vacuum energy density ρΛ, as well as particle

physics parameters such as the electron mass me, the proton mass mp, the fine structure constant

α, etc. The conditional probability density fcond(Ωk|{Qi = Qi,obs}) is proportional to the full

probability density function f(Ωk, {Qi}) evaluated at the measured values of the parameters:

fcond(Ωk|{Qi = Qi,obs}) ∝ f(Ωk, {Qi,obs}) , (5)

where the constant of proportionality depends on {Qi,obs}, but not on Ωk. Here fcond and f refer

to probability densities for the onset of inflation. This conditional probability approach does not

address the question of whether these values Qi,obs are in fact typical in the multiverse, i.e. whether

the multiverse hypothesis is fully consistent with the current observations. To study this question, we

would need to estimate the relevant anthropic constraints on these parameters and see if the observed

values are indeed consistent with possible underlying multiverse distributions. The two approaches

are complementary, addressing different questions. For Ωk, we will take both approaches—we will
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study the implications of a multiverse distribution on future measurements assuming our current

knowledge, and we will also ask if the predicted distribution is consistent with our current knowledge.

The present-day curvature contribution Ωk is related to the number of e-folds of deterministic

(non-diffusive) slow-roll inflation N . We can thus study the probability distribution for Ωk by

analyzing that for N . The relation between the two depends on the details of how the deterministic

slow-roll era begins, but to a good approximation we can write

Ωk ∝ 1

e2N
, (6)

provided that Ωk is in the relevant parameter region, where Ωk is smaller than 1 but larger than

the contribution induced by density fluctuations, Ωk >∼ δρ/ρ ≈ 10−5. The probability of observing

N in the interval between N and N + dN in future measurements, given our current knowledge,

can then be written as

Pobs(N) dN ∝ f(N, {Qi,obs})Mm(N)C(N)n(N) dN . (7)

Here f(N, {Qi}) is the multiversal joint probability density for N and the set of Qi, analogous to

f(Ωk, {Qi}). (f(N, {Qi}) and f(Ωk, {Qi}) are of course different functions with different arguments,

but we use the same symbol f because they have the same verbal description, as the joint proba-

bility density for a randomly chosen onset of inflation in the multiverse to be characterized by the

arguments of f .) f(N, {Qi}) is in principle determined by the statistical properties of the inflaton

field and its potential in the multiverse. C(N) encodes our current knowledge about N , and n(N)

is the anthropic weighting factor. If any quantity Qi is subject to a non-negligible observational

error, then we need to integrate that parameter over the observationally allowed range.

For C(N), we know from cosmological observations that N must be larger than a certain value

Nobs,min, corresponding to the maximum curvature allowed observationally, Ωk,max ≃ 0.01 [2]. Thus,

we can take C(N) ≈ θ(N − Nobs,min). The value of Nobs,min depends on the history of our pocket

universe, especially on the reheating temperature TR, but is generically around 40 – 60. Any extra

e-folds of inflation suppress Ωk further as described by Eq. (6), so

Ωk ≈
Ωk,max

e2(N−Nobs,min)
+O(10−5) . (8)

The anthropic factor n(N) can be chosen to be the expected number of observers per unit volume,

summed over all time within the life of the pocket universe. For fixed values of the parameters Qi,

we expect that n(N) approaches some constant n∞ at large N , since the evolution of life will not be

affected by very small spatial curvature. As smaller values of N are considered, at some point |Ωk|
will suddenly become large, growing by a factor of about e2 ≈ 7.4 each time N decreases by 1. The

probability for observers to evolve presumably decreases quickly as |Ωk| becomes large, so we will
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also approximate this function by a step function: n(N) ≈ n∞ θ(N − Nanthropic). Since obviously

Nobs,min > Nanthropic, we find

Pobs(N) ∝ f(N, {Qi,obs})Mm(N) θ(N −Nobs,min) . (9)

To discuss the consistency of our current measurements of Ωk with the predictions of the multi-

verse hypothesis, we need to consider the predicted probability distribution Pobs, 6Ωk
(N), defined as

the conditional probability density given all of our current knowledge except for our measurements

of Ωk. When expressed in terms of N instead of Ωk, this probability distribution is obtained from

Eq. (7) by omitting the factor C(N). Given our approximation for n(N), we find

Pobs, 6Ωk
(N) ∝ f(N, {Qi,obs})Mm(N) θ(N −Nanthropic) . (10)

Using this probability distribution, we can check whether the probability of obtaining N > Nobs,min

is indeed reasonable or not.

3 Statistical Distributions for the Number of e-folds

To use Eq. (9) to estimate the probability distribution for future measurements of N , we need to

know f(N, {Qi,obs}), the underlying multiversal joint probability density for the onset of N e-folds

of inflation with the measured values Qi,obs of physical parameters. This quantity depends crucially

on the history of our pocket universe just before the observable inflation. In this section we discuss

f(N, {Qi,obs}) for each of the four scenarios, (i) – (iv), described in Section 2.1.

3.1 f(N, {Qi,obs}) for scenarios (i) or (ii): new or chaotic eternal infla-
tion

Suppose that the past history of our pocket universe was either scenario (i) or (ii); i.e., suppose that

the observable era of deterministic slow-roll inflation was smoothly connected to a prior era of new

or chaotic eternal inflation. In this case we find that f(N, {Qi,obs}) is strongly peaked at very large

N , so that the residual curvature contribution in the present universe is completely negligible.

The qualitative reason for this result is very simple. At the transition point between eternal

and non-eternal inflation, ϕ ≡ ϕ∗, the amplitude for the scalar perturbations exiting the Hubble

horizon is of order unity: Q
(

k(ϕ∗)
)

≈ 1. On the other hand, when the current horizon scale exits the

Hubble horizon at ϕ ≡ ϕ0, the perturbation amplitude is very small: Q
(

k(ϕ0)
)

≈ 10−5. Since the

perturbation amplitude changes rather slowly with k, this large change in Q implies that there must

have been a large number ∆N of e-folds of slow-roll inflation between the end of eternal inflation

and the time when the current horizon scale exited the Hubble horizon. We will first show this in

two simple examples, and then present a general argument.
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We first consider an example of scenario (i), using the following inflaton potential:

V = V0 −
1

2
µ2ϕ2 + δV (ϕ) (V0, µ

2 > 0), (11)

where µ2 <∼ H2
I ≡ V0/3M

2
Pl to have a flat potential at small ϕ. We also assume, for simplicity, that

before the current horizon scale exits the Hubble horizon we can take V ≈ V0 and V ′ ≈ −µ2ϕ. δV (ϕ)

is assumed to be negligible during this period, although later it controls the ending of inflation.

With the initial conditions ϕ ≈ ϕ̇ ≈ 0, the potential of Eq. (11) leads to eternal inflation for

0 < |ϕ| < ϕ∗, where ϕ∗ is determined by the condition that ∆ϕqu is comparable to the classical

motion of ϕ during a Hubble time, or

∆ϕqu ≈ H

2π
≈ |ϕ̇classical|H−1 ≈ |V ′|

3H2
. (12)

For the potential of Eq. (11), this gives

ϕ∗ ≈
3

2π

H3
I

µ2
. (13)

For |ϕ| > ϕ∗, the evolution of ϕ is described by the classical equation of motion, which in this

approximation gives ϕ(t) ∝ exp
{

µ2

3HI
t
}

. The scalar perturbation amplitude for single-field slow-roll

inflation is given by [36]

Q(k) ≡ 2

5
∆R(k) ≈

1√
75πM3

Pl

V 3/2

|V ′| , (14)

where V (ϕ) is evaluated at the value of ϕ when the scale k exits the Hubble horizon. For the

present case, one finds Q(k) ≈ (3/5π)(H3
I /µ

2ϕ). Observationally, the perturbation amplitude at

the current horizon scale Q0 ≡ Q(k = H0) ≃ 2× 10−5 [2], so

ϕ0 ≈
3

5π

H3
I

µ2Q0

≃ 9.5× 103
H3

I

µ2
. (15)

Note that our approximation V ≈ V0 requires that 1
2
µ2ϕ2

0 ≪ V0, which leads to the parameter

restriction µ2 ≫ H4
I /(Q

2
0M

2
Pl). This is consistent with the upper bound on µ2 provided that HI ≪

Q0MPl ≈ 5× 1013 GeV. The scalar spectral index ns (defined by Q2 ∝ kns−1) is given by [37]

1− ns = 6ǫ− 2η , (16)

where the slow-roll parameters ǫ and η are defined by

ǫ ≡ M2
Pl

2

(

V ′

V

)2

, (17)

η ≡ M2
Pl

V ′′

V
. (18)
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For the current system, one finds 1 − ns = 2µ2/3H2
I . Since observation gives (1 − ns)obs ≃ 0.04 ±

0.01 [2], we have
µ2

H2
I

≃ 0.06± 0.01. (19)

Thus, in this model the number of e-folds of slow-roll inflation before the exit of the current horizon

scale is given by

∆N ≡ N(ϕ∗)−N(ϕ0) =
3H2

I

µ2
ln

ϕ0

ϕ∗
≈ 500 . (20)

Note that ∆N is a fixed, and large, number. This implies that, in the present scenario, we would

not have any possibility of observing a residual curvature contribution in the current universe.

A similar analysis can also be performed for scenario (ii), for which we choose the sample

potential

V =
1

2
m2ϕ2 (m2 > 0). (21)

The field values corresponding to Eqs. (13) and (15) are now

ϕ∗ ≈
√

4π
√
6
M3

Pl

m
(22)

and

ϕ0 ≈
√

10π
√
6Q0

M3
Pl

m
. (23)

The parameters are then determined uniquely by the value of ns, since for this potential ǫ = η =

2M2
Pl/ϕ

2 and therefore 1 − ns,0 = 8M2
Pl/ϕ

2
0. Using the observed values of ns,0 and Q0, one has

ϕ0 ≈ 14MPl ≃ 3.4 × 1019 GeV, m ≈ 7.7 × 10−6MPl ≃ 1.9 × 1013 GeV, and ϕ∗ ≈ 2.0 × 103MPl ≃
4.9× 1021 GeV. As in the previous case, the large difference between ϕ∗ and ϕ0 implies that there

must have been a large number ∆N of e-folds of inflation between the end of eternal inflation

and the Hubble horizon exit of the current horizon scale. To find ∆N we note that, in slow-roll

approximation, this potential energy function gives

dϕ2

dN
= − 1

H

dϕ2

dt
≈ 2ϕ

H

V ′

3H
≈ 4M2

Pl , (24)

so

∆N ≈ 1

4M2
Pl

(

ϕ2
∗ − ϕ2

0

)

≈ 1.0× 106 . (25)

For this case, the number of e-folds of inflation is even much larger than the previous case, so again

there is no possibility that curvature could be observed.

Having seen that ∆N is very large for two special cases, we can now give a general argument

that ∆N is always very large for scenarios (i) and (ii). By comparing Eqs. (12) and (14), one sees

that the condition for the onset of eternal inflation, ϕ ≡ ϕ∗, is equivalent to Q
(

k(ϕ∗)
)

≈ 2/5. If
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Q(k) varies slowly, then there must be many e-folds of inflation between the point where Q ≈ 2/5

and the point where Q = Q0 ≃ 2 × 10−5. And Q(k) does vary slowly, since Q2(k) ∝ kns−1, and

observationally ns ≃ 0.96, which is near to the scale-invariant value of ns = 1. To quantitatively

relate a change in Q to the number of e-folds over which it occurs, we recall that k ∝ e−N , where

N is the number of e-folds of inflation that have not yet occurred when the wave number k exits

the Hubble horizon. Thus Q2 ∝ e(1−ns)N , so

dN ≈ 2

1− ns

d lnQ . (26)

Thus for ϕ ≈ ϕ0 we have

dN ≈ 50 d lnQ . (27)

This implies that even a fractional change in Q of O(1) around ϕ = ϕ0 leads to a large number of

e-folds. Since lnQ changes by about 10 as ϕ varies from ϕ∗ to ϕ0, the resulting ∆N is very large.

The argument described above shows that in scenario (i) or (ii), ∆N must be very large, i.e. the

probability density f(N, {Qi,obs}) is peaked at values of N much larger than N(ϕ0). Note that this

conclusion does not depend on the measure adopted. Therefore, if our past history is either scenario

(i) or (ii), the probability of observing curvature in future measurements is completely negligible.

To turn the argument around, if future measurements find a curvature contribution (beyond the

10−5 level), then we would learn that diffusive (new or chaotic type) eternal inflation did not occur

in our “immediate” past.

3.2 f(N, {Qi,obs}) for scenario (iii): quantum tunneling after eternal
old inflation

We now start discussion of scenario (iii): eternal old inflation. While the previous cases could be

understood solely in terms of the dynamics of density perturbations, for this case we will need

to consider the description of probabilities in the multiverse. Consider a diagram showing the

local neighborhood of our own vacuum in the landscape, as depicted schematically in Fig. 1. The

diagram shows a single scalar field, but it symbolically represents a field moving in a space with

many dimensions. We are interested in the situation where our pocket universe was born by a

quantum tunneling event [19], in which the scalar field ϕ tunneled out from a local minimum, which

we call our parent vacuum. The pocket universe then experienced a period of slow-roll inflation

which ended with the scalar field rolling into the local minimum of our vacuum, which in this context

we call a child vacuum.

We note that the transition from one vacuum to another does not always occur through a

quantum tunneling event; if the potential barrier separating the two is very broad, then the field ϕ

climbs up the barrier [38], rather than tunnels through it. If the transition from our parent to child

11



Figure 1: A local neighborhood of our own vacuum in the landscape.

vacua occurred in this way, however, the field ϕ started rolling into our vacuum from the top of the

very broad barrier. Therefore, in this case the situation is reduced to the one already discussed in

the previous subsection [39].

3.2.1 The meaning of the statistical distribution for N

In the setup considered here, what exactly do we mean by f(N, {Qi,obs}), which we recall was

described as the multiversal joint probability density for N and Qi? In fact, if we focus our attention

on a particular region of the landscape containing only one pair of parent-child vacua, as in Fig. 1,

then the number of e-folds N of slow-roll inflation is just a fixed number, determined by the shape

of the potential. Since the point where fields appear after the tunneling is determined uniquely

(at least in the semi-classical limit), there is no “statistical distribution” for N .2 Nonetheless, we

of course do not know the value of N , so we will describe it in terms of an estimated probability

distribution, which includes uncertainties arising from at least two sources.

First, it is possible that the landscape includes many parent-child pairs that could be our pocket

universe and its parent. We would in fact expect that the landscape contains a large number of

vacua in which the low-energy physical laws, including the values of the parameters, are consistent

with what we know about our own universe. Any one of these vacua would be a candidate for our

local vacuum, and we would have no way of knowing in which one we live. There would be perhaps

an even larger set of vacua which tunnel to one of the local vacuum candidates, and we would have

no way of knowing which of these was the parent of our pocket universe. Since any one of these

parent-child transitions could have been the transition that produced our pocket universe, the value

of N can acquire a statistical distribution.

Even if there are many parent-child pairs that could be ours, however, it will not lead to an actual

spread in values of N unless more than one of them occurs with significant probability. Whether or

not that is the case depends on branching ratios in the landscape, which is a topic about which little

is known. We discuss these branching ratios in Appendix B. We do not reach a definite conclusion,

but we find that it is not implausible that the decay rates in the landscape are so diverse that the

decay of any given vacuum, especially a long-lived one, is overwhelmingly dominated by a single

channel.

The fastest decays are most likely the least diverse, so one plausible scenario is that a significant

2If the potential contains a (quasi-)flat direction around this point, quantum fluctuation can give a distribution
for N . We ignore this effect below since it is not generic.
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Figure 2: A schematic picture for a landscape leading to probability distributions for inflaton
potentials and initial values.

Figure 3: A schematic picture for a landscape in which various vacuum decay chains have enormously
different probabilities.

fraction of the multiverse evolves through one or more short-lived Planck-scale vacua, which decay

into a large number of “second generation” vacua with nonnegligible branching ratios. Then, even if

the subsequent decays are each dominated by a single channel, the large number of second generation

vacua could lead to many vacua which are compatible with ours, all occurring with comparable

probabilities. This situation is illustrated in Fig. 2. It leads to a probability distribution in N

because pocket universes entirely consistent with what we know about ours are produced by many

different parent to child transitions, each with its own value of N .

On the other hand, we can also imagine that estimates of the spread of decay rates in the

landscape, like the ones in our preliminary discussion in Appendix B, will show that absolutely every

decay in the landscape is almost certainly dominated by a single channel. In that case, of all the

vacua that are compatible with ours, we would expect one to completely dominate the probability.

Furthermore, the appearance of this vacuum would be completely dominated by the decay of a single

type of parent vacuum. In this situation N would have a unique value, so the previous discussion of

a probability distribution does not apply. This brings us to the second source of uncertainty, which

is ignorance. Even if we conclude that single paths dominate the evolution of the multiverse, we

will still not be capable of identifying the vacuum and parent that dominate the probability. We

would therefore parameterize our ignorance about the most likely path in the form of a probability

distribution for N . This situation is illustrated in Fig. 3. Note that this is a different concept from

the probability distribution of the physical realization of different values of N in the multiverse—in

fact, it is closer to the concept of probability used in conventional arguments for naturalness in a

single vacuum theory. If we have no precise knowledge about the vacuum population mechanism,

we are limited to making plausible assumptions about the probability distribution for N .

In either of the cases discussed above, the implications for future measurements of Ωk are encoded

in the probability distribution f(N, {Qi,obs}), as in Eq. (9). This distribution corresponds to the

multiversal joint probability distribution for the onset of N e-folds of slow-roll inflation, and the

measured parameters Qi = Qi,obs, introduced in section 2.2. We will estimate it in the next two

subsections. Our estimate does not depend much on the origin of this probability, whether it

represents physical realizations in the multiverse or the parameterization of our ignorance. We

therefore conclude that even if nonzero curvature is someday measured, this measurement will not

tell us whether different values of N are actually realized with nonnegligible probabilities in the

13



multiverse.

3.2.2 Probability distribution for the inflaton potential and the starting point of slow-
roll inflation

Our goal is to evaluate f(N, {Qi,obs}) for scenario (iii), where slow-roll inflation follows a quantum

tunneling event. We have in mind a potential of the form of Fig. 1, the form of which leads

immediately to an important issue. The tunneling rate for a given transition depends on the

properties of the potential function in the region of the barrier, while the number N of e-folds of

slow-roll inflation depends on the properties of the potential in the slow-roll part of the potential

energy curve. We do not know to what extent these two parts of the potential are correlated, but

it is conceivable that the statistics of the slow-roll part of the potential could be strongly affected

by the fact that some shapes are more likely to occur with a barrier that gives faster tunneling.

If the correlation is strong, then it is potentially a large effect, since the tunneling rate depends

exponentially on the parameters.

Since we do not know how to calculate the correlations, we consider two extreme possibilities.

If these regions are only weakly correlated, then the tunneling rate will have no significant effect on

f(N, {Qi,obs}). If, however, the correlation is strong, then it could have a large effect, the nature of

which we will discuss in the following section.

For now we write f(N, {Qi,obs}) as the product of two factors,

f(N, {Qi,obs}) = f0(N, {Qi,obs})B(N, {Qi,obs}) , (28)

where f0(N, {Qi,obs}) is the answer that we would expect in the absence of correlations, and

B(N, {Qi,obs}) is the correction factor caused by the bias toward slow-roll potentials that correspond

to faster decay rates. f0(N, {Qi,obs}) can be called the vacuum statistics probability distribution,

and it can be defined more precisely by imagining that we first make a list of all the parent vacua

Pα that occur in the multiverse. To weight each vacuum according to its relevance to the evolu-

tion of the multiverse, we imagine assigning each vacuum Pα a weight Wα, which we take to be

proportional to the relative number of nucleation events in which bubbles of Pα are produced (as

determined according to the measure of choice). The precise choice of this weighting will not affect

our estimates, since we will assume that the decay properties of Pα are not correlated with the

properties of its production, but we will see in the next section that this specification for Wα is

particularly useful. We further imagine that we can determine all the possible transitions by which

each parent vacuum Pα can decay to each child vacuum Cj. These transitions will presumably have

a huge range of decay rates, but f0(N, {Qi}) is defined as the joint probability density for N and

{Qi} computed with all these transitions counted equally, weighted only by Wα:

f0(N, {Qi}) ∝
∑

α,j

Wα δ
(

N −N(α, j)
)

∏

i

δ
(

Qi −Qi(α, j)
)

, (29)
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where α and j are summed over all parent-child pairs, and N(α, j) and Qi(α, j) are the values of

the number N of slow-roll e-folds and the value of measurable quantity Qi associated with this

parent-child combination. The constant of proportionality is determined by requiring f0(N, {Qi})
to be normalized, and f(N, {Qi,obs}) is obtained by setting each Qi to its observed value Qi,obs.

In this section we will estimate f0(N, {Qi,obs}), leaving the discussion of B(N, {Qi,obs}) until the
next section.

Following the approach of Freivogel, Kleban, Mart́ınez, and Susskind [13] (hereafter called

FKMS), we develop a toy model for the slow-roll part of the potential energy curve and for the value

of the inflaton field at the start of the slow-roll period.3 While FKMS used the observed value of

the density perturbation amplitude Q0 as a condition, we will use both it and the observed value of

the scalar spectral index ns. We seek only a crude approximation—which is the best we can do—so

we make the simplest possible assumptions. We assume therefore that the inflaton potential, during

the era of slow-roll inflation, is approximated by

V = V0 + Aϕ+
1

2
µ2ϕ2 . (30)

We further assume that slow-roll inflation starts at ϕ = ∆ (> 0) and ends at ϕ = 0 (so we take

∂V/∂ϕ > 0 for 0 ≤ ϕ ≤ ∆, which implies A > 0). In this section we will pursue the hypothesis that

the parameters V0, A, µ
2, and ∆ “scan” in the landscape, in the sense that they can be assumed to

vary in the multiverse according to some smooth probability distribution function h0(V0, A, µ
2,∆).

Here h0(V0, A, µ
2,∆) is defined, like f0(N, {Qi,obs}), as a vacuum statistics probability density. That

is, it is defined by weighting transitions by the weight Wα of the parent vacuum, but not by the

decay rate, so that correlations with the tunneling part of the potential play no role. We then study

the resulting probability distribution for N , the number of e-folds of slow-roll inflation. When we

consider a specific example, we will choose an h0 that is flat.

Keeping in mind that we seek only a crude approximation, we assume that the parameters of

the potential satisfy

V0 ≫ A∆ , V0 ≫ |µ2|∆2 , and A ≫ |µ2|∆ . (31)

The total number of e-folds is then given by

N =

∫ ∆

0

V

M2
PlV

′
dϕ ≈ V0∆

AM2
Pl

. (32)

Under these approximations the density perturbation amplitude Q0 and the spectral index ns are

constant through the slow-roll period, given by

Q0,obs =
1√

75πM3
Pl

V 3/2

|V ′| ≈ V
3/2
0√

75πAM3
Pl

(33)

3FKMS did not discuss the possibility of correlations between the tunneling and slow-roll parts of the potential,
so their P (N) corresponds to our f0(N, {Qi,obs}).
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and

1− ns,obs = (6ǫ− 2η) ≈ M2
Pl

(

3A2

V 2
0

− 2µ2

V0

)

. (34)

The joint probability density f0 for N , Q0,obs, and ns,obs is then given by

f0(N,Q0,obs, ns,obs) =

∫∫∫∫

dV0 dA dµ2 d∆ δ

(

N − V0∆

AM2
Pl

)

δ

(

Q0,obs −
V

3/2
0√

75 π AM3
Pl

)

× δ

(

(1− ns,obs)−M2
Pl

[

3A2

V 2
0

− 2µ2

V0

])

h0(V0, A, µ
2,∆) (35)

=
(75π2)3M2

PlQ
5
0,obs

N8

∫

d∆∆7 h0

(

75π2Q2
0,obs∆

2M2
Pl

N2
,
75π2Q2

0,obs∆
3

N3
,

75π2Q2
0,obs∆

2

2N2

[

3∆2

N2M2
Pl

− (1− ns,obs)

]

,∆

)

. (36)

As a simple example, we assume that the distribution h0(V0, A, µ
2,∆) is constant in the range

0 < V0 < V0,max, 0 < A < Amax, µ
2
min < µ2 < µ2

max, and 0 < ∆ < ∆max, where µ2
min < 0. The

approximations described by Eq. (31) are not really valid throughout this range, but in the spirit

of our crude approximation we will ignore this problem. Then the integral in Eq. (36) depends on

N only through the limit of integration: that is, if N is sufficiently small, then one of the first three

arguments of h0 can reach its upper limit before ∆ reaches ∆max. In this case the upper limit of

integration becomes proportional to N , resulting in a factor of N8, canceling the prefactor. Thus

f0(N,Q0,obs, ns,obs) ∝







1

N8
if N > Nmin ,

const. if N < Nmin ,
(37)

where

Nmin = max











√
75πMPlQ0,obs∆max

√

V0,max

,

(

75π2Q2
0,obs

Amax

)1/3

∆max ,

(

6
√
75πQ0,obs∆

2
max

MPl

[

√

[√
75πMPlQ0,obs(1− ns)

]2
+ 24µ2

max +
√
75πMPlQ0,obs(1− ns)

]

)1/2











. (38)

The arguments of the max function in the above expression are the values of N for which each of

the first three arguments of h0, in Eq. (36), will reach its maximum value before ∆ reaches ∆max.
4

4To be complete, there is one further complication that could occur, but which we assume does not occur. For
small ∆, the µ2 argument (i.e, the 3rd argument) of h in Eq. (36) can be negative, so the integration can be limited
by µ2

min
, the smallest allowed value of µ2. We will assume, however, that µ2

min
is chosen to be sufficiently negative

to prevent this from happening. The minimum possible value for this argument is −75π2M2

Pl
(1− ns,obs)

2Q2

0,obs/24,

which is small because Q0,obs ≃ 2× 10−5, so one can easily choose µ2

min
to avoid this complication.
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Equation (38) is very complicated, but fortunately all we really need to know is that Nmin is

generically small. For sample values we can take all the integration limits to be at the Planck scale:

i.e., V0,max = M4
Pl, Amax = M3

Pl, µ
2
max = −µ2

min = M2
Pl, and ∆max = MPl. Then with the measured

values of Q0,obs and ns,obs, the three arguments in Eq. (38) become 0.00054, 0.0067, and 0.026,

respectively. Thus, for all interesting values of N , this example gives f0(N,Q0,obs, ns,obs) ∝ 1/N8.

There are many variants of this analysis, however, so we do not claim that there is any particular

significance to the power 8. If we had not conditioned on ns,obs, whether or not we included the

µ2 term in the potential, we would have found f0(N,Q0,obs) ∝ 1/N6. (In this case Nmin would be

larger than before, based on the first two arguments of h0, but it would still be less than 1 for the

Planck-scale sample values.) We might also consider omitting the µ2 term from the potential, but

conditioning on ns,obs nonetheless. In that case the power counting gives a probability density that

is flat, but one also finds that the arguments of h0 become crucial. The value of ∆ will be forced

outside the allowed range unless N < Nmax, where

Nmax =

√
3∆max

MPl

√

1− ns,obs

. (39)

For the Planck-scale sample values this gives Nmax = 8.7, although it can be moved up to the

interesting range if we allow ∆max to be a few times larger than MPl.

FKMS used a different parameterization of the potential,

V (ϕ) = V0(1− xϕ/∆) . (40)

Assuming a flat probability distribution for V0, x, and ∆, and by conditioning on Q0,obs but not

ns,obs, they found that f0(N,Q0,obs) ∝ 1/N4. They did not specify a range of validity for this result,

but we find that it is valid for N > Nmin, where

Nmin = max

(√
75πMPlQ0,obs∆max

√

V0,max

,
∆2

max

M2
Pl xmax

)

. (41)

For Planck-scale sample values, with xmax = 1 as used by FKMS, this gives Nmin = 1, coming from

the second argument of the max function. While these estimates give Nmin ≪ 40, for the FKMS

parameterization it is not unreasonable to consider values of ∆max and xmax for which Nmin might

be larger than 60. In that case f0(N,Q0,obs) would fall as 1/N3/2 in the range of interest.

If one conditions on both Q0,obs and ns,obs, using Eq. (40) and a flat probability density for V0, x,

and ∆, one finds f0(N,Q0,obs, ns,obs) ∝ N for N < Nmax, but f0(N,Q0,obs, ns,obs) = 0 for N > Nmax,

where

Nmax = min

(

3xmax

1− ns,obs

,

√
3∆max

MPl

√

1− ns,obs

)

. (42)
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As with Eq. (39), for Planck-scale sample values this gives Nmax = 8.7, from the second argument

of the min function. Again it can be increased if we allow ∆max to be larger than MPl.

One can also consider adding a 1
2
µ2ϕ2 term to the potential of Eq. (40), assigning a flat proba-

bility density to µ2 along with the other parameters. If one does not condition on ns,obs, then with

our approximations the addition of the µ2 term has no effect on f0(N,Q0,obs). If one does condition

on ns,obs, then f0(N,Q0,obs, ns,obs) ∝ 1/N6, provided that N > Nmin, where Nmin is the max of both

arguments in Eq. (41) and the last argument of Eq. (38).

The details of these results are of course not to be trusted, since they are based on ad hoc as-

sumptions about the probability distribution for potential functions in the multiverse. Nonetheless,

we believe that we can reasonably infer that the function f0(N, {Qi,obs}), as defined by Eq. (29),

can be taken as

f0(N, {Qi,obs}) ∝
1

Np
(43)

for some (small) power p > 0. Here, the positivity of p represents the improbability of finding an

inflaton potential that supports many e-folds of evolution with a value of Q0 as small as 2× 10−5.

This result is mostly in agreement with FKMS, who find f(N,Q0,obs) ∝ 1/N4, except that we allow

for the possibility that there might be a significant correction factor B(N, {Qi,obs}), as in Eq. (28),

caused by correlations with the tunneling rate.

Equation (43) is the generic behavior, but there is a plausible exception. Suppose there is a

mechanism which ensures the flatness of the inflaton potential in the vicinity of our (child) vacua:

for example, a (softly broken) shift symmetry acting on the inflaton field ϕ. In terms of the model

potential of Eq. (30), such a mechanism would assure that A is very small. By combining Eqs. (32)

and (33), the number of e-folds of inflation can be written as

N(A,∆) =

(

75π2Q2
0,obs

A

)1/3

∆ , (44)

which shows how large values of N result from small values of A. In most situations the probability

of finding large values of N is suppressed by the need to find unusually small values of A, but a

mechanism such as a shift symmetry can avoid that problem. If the mechanism makes it probable to

find values of A so small that N(A,∆) >∼ 60 for ∆ < ∆max, then we would expect the suppression of

large N would be removed. The results we obtained in Eqs. (37) and (38) verify these expectations,

if we describe the mechanism as one that enforces a very small value of Amax. By comparing Eq. (44)

with the second argument of Eq. (38), we see that if Amax is small enough to allow 60 e-folds of

inflation, then Nmin ≥ 60, and then Eq. (37) implies that we are on the flat part of the probability

density curve. Thus, a mechanism to assure the flatness of the potential can lead to

f0(N, {Qi,obs}) ∼ const. (45)
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for the relevant range of N , so the preference to shorter inflation in Eq. (43) does not arise. In fact,

the consideration here can be used to discriminate if the observable inflation arose “accidentally,”

which leads to Eq. (43), or due to some mechanism: if nonzero curvature is measured, this would

be strong evidence against a mechanism that ensures a flat potential.

Finally, although it is not needed for the main arguments presented in this paper, it is interesting

to use the probability distributions that have been modeled in this section to ask what is the absolute

probability of finding instances of inflation like the one that apparently began our pocket universe.

Specifically, we can use the models discussed in this section to calculate the probability P̄1 that a

given instance of inflation will satisfy N > N̄ , Q0 < Q̄0, and |1 − ns| < ∆n̄s. Here we set the bias

correction factor B(N, {Qi,obs}) = 1; in the following section we will see that B can decrease P̄1, but

for most choices of measure it cannot increase it. For the model used in Eq. (36), we can assume

that N̄ > Nmin, and then the integration extends to ∆ = ∆max, giving a factor ∆8
max/8. Using a

normalized flat probability density for h0(V0, A, µ
2,∆), the probability described above is given by

P̄1 =

∫ ∞

N̄

dN

∫ Q̄0

0

dQ0

∫ 1+∆n̄s

1−∆n̄s

dns f0(N,Q0, ns)

=
(75π2)3M2

Pl∆
8
max

8V0,maxAmax∆max(µ2
max − µ2

min)

∫ ∞

N̄

dN

∫ Q̄0

0

dQ0

∫ 1+∆n̄s

1−∆n̄s

dns
Q5

0

N8

=
(75π2)3M2

Pl∆
7
maxQ̄

6
0∆n̄s

168V0,maxAmax(µ2
max − µ2

min)N̄
7
. (46)

If we take N̄ = 60, Q̄0 = Q0,obs = 2 × 10−5, ∆n̄s = 0.04, and Planck-scale parameters for the

probability distribution, we find P̄1 = 1.1×10−36. If instead we ask for the probability that N > N̄

and Q0 < Q̄0, without specifying ns, then we find

P̄2 =
(75π2)2M2

Pl∆
5
maxQ̄

4
0

60V0,maxAmaxN̄5
, (47)

which is valid whether or not the 1
2
µ2ϕ2 term is included in the potential. For the parameters

specified above, this gives P̄2 = 1.9× 10−24.

For comparison, the same questions can be answered using the FKMS parameterization, and the

associated flat probability distribution in V0, x, ∆, and possibly µ2. If we include the 1
2
µ2ϕ2 term

and ask for the probability P̄ ′
1 that a given instance will satisfy N > N̄ , Q0 < Q̄0, and |1−ns| < ∆n̄s,

we find

P̄ ′
1 =

(75π2)2∆6
maxQ̄

4
0∆n̄s

70V0,maxxmax(µ2
max − µ2

min)N̄
5
. (48)

For the numbers used above, this evaluates to P̄ ′
1 = 3.2 × 10−26. If instead we exclude the 1

2
µ2ϕ2

term and ask for the probability P̄ ′
2 that N > N̄ and Q0 < Q̄0, without specifying ns, then we find

P̄ ′
2 =

75π2Q̄2
0∆

4
max

15V0,maxxmaxN̄3
, (49)
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which, for the numbers used here, is equal to P̄ ′
2 = 9.1× 10−14.

The detailed answers here depend very much on the ad hoc assumptions, and are not to be

trusted, but the thrust of the answers is clear. First, in this picture the probability of seeing an

episode of inflation that is suitable to begin our pocket universe is very small. The key point is that

60 e-folds is large compared to one e-fold, and Q0,obs ≃ 2 × 10−5 is small compared to one. But

we have assumed probability distributions that in no way favor large numbers of e-folds or small

Q0,obs, so the required values are found only in a small corner of the probability space. This feature

could be changed dramatically if the underlying theory incorporated some mechanism to favor the

right kind of potential, as we discussed at Eq. (45). Nonetheless, it is certainly not clear that any

such probability enhancement is needed for the picture to be viable, because with 10500 or more

vacua estimated to exist in the landscape, probabilities like 10−36 are very large. We would expect

the landscape to contain a colossal number of possibilities for inflation to occur in exactly the right

way to produce our pocket universe. One then argues that there are selection effects that explain

why we would expect to find ourselves living in such a pocket universe. FKMS argue that at least

59.5 e-folds of inflation are necessary to explain the evolution of structure even at only the level of

dwarf galaxies, and that with this condition the probability of having at least 62 e-folds, which is

enough to explain the observed homogeneity and flatness, is high: about 88%. We will examine this

question in Section 4, finding similar results.

3.2.3 The role of nucleation rates in the statistical distribution of N

In Eq. (28) we expressed f(N, {Qi,obs})—the joint probability density for the number N of e-folds

of slow-roll inflation and the measured parameters {Qi} for a bubble universe consistent with our

observations and arising from a randomly selected quantum tunneling event—as the product of

two factors, f0(N, {Qi,obs}) and B(N, {Qi,obs}). f0(N, {Qi,obs}) is the vacuum statistics probability

density, given by Eq. (29), defined so that correlations between N and the tunneling rate are

irrelevant. B(N, {Qi,obs}) is the factor that corrects for any bias caused by the correlations with

the tunneling rate, and it is the purpose of this section to estimate this factor.

As described at the beginning of the previous section, we are not aware of any way of estimating

the strength of the correlations between the tunneling region of the potential and the slow-roll

region, so we are allowing for the two extreme possibilities. If these correlations are very weak,

then B = 1. The rest of this section will be concerned with estimating B when the correlations are

strong.

A transition can be described by specifying the parent Pα and the child Cj. For each such

transition there is a nucleation rate λjα, the number of tunneling events per physical spacetime

volume. To understand the bias factor B, we need to understand the relation between λjα and the

probability pjα that a randomly chosen quantum tunneling event is of the type Pα → Cj .
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Whether pjα indeed depends on the nucleation rate λjα is a measure-dependent question. Here

we argue that for the measures in classes (II) and (III), which are the ones that we consider most

plausible, the probability pjα is unchanged by any overall change in the decay rates from Pα, but is

proportional to the branching ratio of the decay of Pα to Cj. We first explain this result, and then

discuss its consequences.

We begin with the measure of Ref. [32], an example of measures in class (II). This measure

adopts the method of comoving horizon cutoff, where the probabilities are defined by the ratios of

the number of bubbles whose comoving sizes are greater than some small number ǫ (→ 0). The

relative probability pjα is then

pjα ∝ Hq
ακjαsα , (50)

where Hα is the Hubble parameter in the parent vacuum Pα, κjα ≡ (4π/3)λjαH
−4
α is the dimension-

less nucleation rate, and q and sα are given by the asymptotic behavior of the fraction of comoving

volume occupied by a (non-terminal) vacuum X at time t:

fX(t) → sXe
−qt . (51)

In the above equations, we have adopted the expressions that apply when we take t to be the scale

factor time, although the final result does not depend on the choice of the time variable. The

asymptotic behavior of Eq. (51) is obtained by solving the rate equation

dfX
dt

=
∑

Y

MXY fY , MXY = κXY − δXY

∑

Z

κZX , (52)

where κXY = (4π/3)λXYH
−4
Y , and X , Y and Z run over all the vacua in the landscape. All nonzero

eigenvalues of MXY have negative real parts, and the eigenvalue with the smallest (by magnitude)

real part is pure real, and is denoted by −q. This eigenvalue controls the asymptotic behavior of fX

and appears in Eq. (51). The vector sX is proportional to the eigenvector of MXY corresponding to

the eigenvalue −q, and is determined by

(

∑

Y

κY X − q
)

sX =
∑

Z

κXZsZ . (53)

Equation (50) shows formally that pjα ∝ κjα, but we need to be careful, because sα is itself

determined by the nucleation rates. We will use Eq. (53) to understand the dependence of sα on

the κjα. We first note that the positivity of sX implies that q is smaller than the decay rate of

the slowest decaying vacuum, called the dominant vacuum D: q ≤ minX(
∑

Y κY X) ≡ κD. In fact,

assuming that upward transitions have very small rates, q ≈ κD to a very good approximation (and

sX ≈ δXD at the leading order) [40]. (Ref. [41] points out that the dominant vacuum could in fact

be replaced by a closely spaced system of vacuum states, but that does not affect the conclusions
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here.) Since bubble nucleation rates are exponentially sensitive to the parameters of the potential,

we expect that the −q term in Eq. (53) is negligible except for X = D:

∑

Y

κY XsX =
∑

Z

κXZsZ for X 6= D . (54)

Note that we can regard κY XsX as a “probability current” associated with the transition X → Y ,

and then this equation is simply a statement of current conservation, where X = D acts as a source

and terminal vacua T , defined by
∑

Y κY T = 0, as sinks.

To determine the dependence of sα on the κiα, we can rewrite Eq. (54) with a relabeling of the

indices:

καsα =
∑

Z

καZsZ , (55)

where κα =
∑

j κjα. In both situations discussed in Section 3.2.1, Figs. 2 and 3, it is reasonable

to expect that the history leading to various parent vacua α is statistically independent with that

afterwards, e.g. how fast those vacua decay: κα. Under this assumption, the right-hand side of

Eq. (55) can be taken to be independent of κα (at least in the sense that there is no statistical

correlation between the right-hand side of Eq. (55) and κα), leading to sα ∝ κ−1
α . Inserting this

result into Eq. (50), we see that

pjα ∝ κjα

κα
, (56)

which says simply that the probability of observing a transition from parent Pα to child Cj is

proportional to the branching ratio for this transition, but is unaffected by the absolute decay rate

of the parent Pα. (Note that the right-hand side of Eq. (55) is proportional to Wα as defined above

Eq. (29), so we have found that pjα ∝ Wα × branching ratio, motivating the weighting used in

Eq. (29).)

The dependence of pjα on branching ratios, but not on absolute decay rates, can also be shown

for other measures. For the scale factor cutoff measure, an example of measures in class (III),

a calculation of pjα has been performed in Ref. [41], giving pjα ∝∼ κjαsα where sα again satisfies

Eq. (53). Equation (56) follows immediately by the same argument. Scale factor measure can

also be analyzed by recasting it as a local “fat geodesic” measure, as described in Ref. [24], and

then the relative numbers of different transitions are clearly determined only by branching ratios

that are encountered as the fat geodesic is followed into the future. The same result can be seen

for the causal patch measure, also in class (III), using a local formulation analogous to the fat

geodesic formulation. Specifically, Bousso [33] has shown that the probabilities pjα in the causal

patch measure can be computed by following a single geodesic, so they are determined directly from

the branching ratios. The quantum measure of Ref. [16] also gives Eq. (56) (see Appendix A).

Thus, for a wide class of measures, the probabilities pjα depend on the branching ratios of

decays, but not on the decay rates themselves, which depend exponentially on the parameters of
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the potential energy function. What does this tell us about the dependence of f(N, {Qi,obs}) on N?

As we said at the start of this section, if the correlation between the tunneling region and the

slow-role region of the potential is very weak, then B = 1. But if the correlation is strong, there

are two possibilities: faster tunneling rates can correlate with smaller values of N , or larger values.

Consider first the case in which faster tunneling rates correlate with smaller values of N , thereby

exerting pressure toward smaller N . We do not know how to estimate the strength of the correlation,

but we can bound the effect by considering the most extreme possibility. Suppose, therefore, that

for any given parent Pα we identify the nearest neighbors in the landscape, and assume that the

decay rates to any other states are negligible. We let K be the number of such neighbors, and for

simplicity we will assume that K is the same for all vacua, with a value of perhaps several hundred.

For the strongest possible correlations, we can assume that the fastest decay will correspond to the

smallest value of N , the second fastest decay will correspond to the second smallest value of N , etc.,

through the list of all K decay modes. To maximize the magnitude of the effect, we will further

assume that the decays are dominated by the fastest, so that all other decay rates are negligible.

(In Appendix B we find that this situation is actually quite plausible.) Since the fastest decay is

also the one with smallest N , we find that, for any parent Pα, the branching ratio is 1 for the decay

with the smallest value of N , and all other branching ratios can be approximated as zero.

If we now look at the transitions Pα → Cj that contribute to f0(N, {Qi,obs}), as described by

Eq. (29), we see that the final distribution f(N, {Qi,obs}) is obtained by examining each pair (α, j)

and applying a test: if the transition gives the smallest value of N of all K decays of Pα, then its

branching ratio is 1, and it is kept. If, however, the value of N for the transition is not the smallest

of all decays of Pα, the branching ratio is zero, and it is dropped. Thus, we can obtain an equation

for f(N, {Qi,obs}) by multiplying each term in Eq. (29) by the probability that the term corresponds

to the lowest value of N out of K choices, and then renormalizing. But the new factor is just the

probability that the other K − 1 values of N are larger, so for this case

B(N, {Qi,obs}) = B1(N, {Qi,obs}) ∝
[
∫ ∞

N

dN f0(N, {Qi,obs})
]K−1

. (57)

If f0(N, {Qi,obs}) ∝ 1/Np, then B(N, {Qi,obs}) ∝ 1/N (K−1)(p−1), which is a huge suppression for

large N . This was of course calculated as the maximum possible effect. Since we do not know how

to assess the degree of correlation between tunneling rates and N , we could imagine suppression by

any power of N from zero up to (K − 1)(p− 1).

Now consider the alternative extreme, in which faster tunneling rates correlate with larger values

of N , thereby exerting pressure toward larger N . The logic is all the same, but the result is very

different. Eq. (57) is replaced by

B(N, {Qi,obs}) = B2(N, {Qi,obs}) ∝
[
∫ N

0

dN f0(N, {Qi,obs})
]K−1

. (58)
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Only the limits integration are different, but because of the fact that f0(N, {Qi,obs}) strongly favors

small N , the quantity in square brackets now has a value very close to 1 for interesting values of N .

Raising it to a large power does not produce a big effect. In fact, if we use Eq. (37) as an example,

and choose N = 60 and K = 300, we find B(N, {Qi,obs}) = 1 to better than 20 decimal places!

For those measures for which only the branching ratios are relevant, correlations between tunneling

rates and N cannot drive N to larger values. The reason is simply that if N is near 60, it is almost

certainly the largest N among all the decays of the parent, so requiring it to be the largest has no

effect.

While it is plausible that a given vacuum can have significant decay rates to only a few hundred

nearest neighbors, we would like to also allow for the possibility that this is wrong, and that maybe

a significant fraction of the landscape is available as a potentially significant decay channel. In that

case we should take K to be 10 to the power of several hundred, and the whole picture changes.

Then the powers in Eqs. (57) and (58) become enormous, and the factors in square brackets become

completely controlling. As we will see in Appendix B, if we choose the largest or smallest element

out of ∼ 10500 tries, from a normal distribution, the result is expected to be 48 standard deviations

away from the mean. If there is a perfect correlation between N and the tunneling rate, as we

assumed in the extreme example above, then N would be driven effectively to 0 or infinity, and the

situation would have already been ruled out (if N is driven to 0), or else N would be essentially

infinite. More realistically, however, we only know that choosing the fastest decay out of something

like 10500 possibilities will result in a decay rate with an action that is of order 50 standard deviations

smaller than the mean, but the strength of the correlation with N is unknown. The probability

distribution for N could, therefore, be biased in either direction, and the bias might be weak or

strong.

While measures of classes (II) and (III) generically lead to probabilities that depend only on

branching ratios, as in Eq. (56), not quite all measures of interest fit this description. In particular,

the stationary measure of Ref. [35] does not really fit into our classifications; it has many properties

of class (I), while at the same time avoiding the youngness paradox. For measures in classes (II) and

(III) we have seen that the factor of κjα appearing in Eq. (50) is accompanied by sα ∝ κ−1
α , but that

happens only when the abundances of the potential parent vacua Pα are determined primarily by

their decay rates. In measures of class (I) it is the production rate of a given vacuum that primarily

determines its abundance, while the decay rate of Pα has almost no effect on its abundance. Then

there is no factor of κ−1
α accompanying κjα, and the probability of observing a transition from any

parent Pα to any child Ci is proportional to κjα. Since decay rates behave exponentially in the

parameters of the potential function, for the stationary measure we expect that B(N, {Qi,obs}) can
be written as

B(N, {Qi,obs}) = eβ(N,{Qi,obs}) , (59)
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where β(N, {Qi,obs}) is a mild, non-exponential function of N . Thus, f(N, {Qi,obs}) can have an

exponential sensitivity to N . As in the class (II) and (III) cases, however, we could conjecture that

the tunneling rates are only very weakly correlated with the slow-roll part of the potential, in which

case we have B = 1, or equivalently β = 0, as before. In any case, the final probability P (N) for

stationary measure certainly has the slow-roll volume increase factor e3N , i.e. Eq. (1). We are not

aware of any measure in which f(N) takes the form of Eq. (59) while P (N) does not depend on the

slow-roll volume increase factor, e3N .

3.2.4 f(N, {Qi,obs}) for scenario (iii), quantum tunneling: summary of results

We now summarize what we have learned about the probability distribution of N in a bubble

universe. According to the discussions in the previous two subsections, the probability density

f(N, {Qi,obs}) for the onset of an episode of slow-roll inflation that is compatible with our observa-

tions {Qi,obs} can be written generically as

f(N, {Qi,obs}) ∝
1

Np
eβ(N) . (60)

If the slow-roll part of the potential is correlated with the part controlling the tunneling, and if the

correlation favors small values of N , then we might generically expect

p ≫ 1 . (61)

The effects of correlations between the slow-roll and tunneling parts of the potential for some

measures depend crucially on how many significant decay channels compete in the decay of a given

vacuum. Perhaps only a few hundred nearest neighbors in the landscape are relevant (small K

option), or perhaps a substantial fraction of the landscape is relevant (large K option). If there

is only weak correlation between the slow-roll part of the potential and the part controlling the

tunneling, or if the correlation favors large values of N and we are considering the small K option,

then the power p is determined purely by the statistics for the slow-roll part of the potential; then

the analysis of Section 3.2.2 gives

p

{

> 0
= 0

if the observable inflation occurs

{

accidentally
due to some mechanism .

(62)

With the large K option, correlations in the potential that favor large N can be very significant;

they need not have a power-law behavior.

The exponent β(N) has the possibility of being nonzero only for measures, such as the stationary

measure, which have the property that the probability of observing a transition from Pα to Cj

depends on the tunneling rate for the transition, and not just the branching ratio. For measures of

this type, β(N) can arise due to correlations between the slow-roll part of the potential and the part
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controlling the tunneling; if those correlations are weak, then β(N) ≈ 0. But if the correlations are

strong, then β(N) can be very significant. Since we know very little about β(N), we can use the

fact that we are interested in only a small range of N about Nobs,min to expand β(N) in a Taylor

series: β(N) ≈ β(Nobs,min) + {∂β/∂N(Nobs,min)}(N − Nobs,min) + O(N − Nobs,min)
2. The constant

term does not affect the dependence on N , so we can drop it and replace β(N) in Eq. (60) by

β(N) → β ′N , (63)

where β ′ ≡ ∂β/∂N(Nobs,min) is a constant that does not depend on N , which can take either sign

depending on details of the landscape potential. The magnitude of β ′ can be as small as zero, but

to estimate how large it might be, we recall that it arises from the correlation between N and the

tunneling rate Γ ∼ e−S of the parent-to-child vacuum decay, where S is the bounce action associated

with the decay. Suppose the potential barrier separating the parent from child vacuum is charac-

terized by a field distance ∆ϕ, a barrier height ∆Vh, and an energy density difference ∆Vdiff . Then,

the bounce action generically scales as the thin wall limit expression S ≈ 27π2

2
∆ϕ4∆V 2

h /∆V 3
diff [42].

If the amount of slow-roll inflation N is strongly correlated with the part of the potential energy

function relevant for the tunneling, then we might estimate |β ′| ∼ O(S/Nobs,min):

|β ′| ∼ O

(

27π2

2

∆ϕ4 ∆V 2
h

Nobs,min∆V 3
diff

)

, (64)

which can easily be much larger than 1, depending on parameters. In our estimation |β ′| can lie

anywhere from zero up to a number of the order shown above, and it can have either sign.

The probability density Pobs(N) of finding ourselves in a region that has undergone N e-folds

of slow-roll inflation is then given by Eq. (9), where Mm(N) (defined by Eq. (4)) depends on

whether the measure rewards volume increase by slow-roll inflation (class (II)) or not (class (III)).

We therefore obtain

Pobs(N) ∝ 1

Np
eqN θ(N −Nobs,min) , (65)

where p is given by Eq. (61) or (62), and q = 3+β ′ for class (II) measures while q = β ′ for class (III)

measures; these values for p and q are summarized in Table 1. This is the expression we will use in

our phenomenological analysis in Section 4.

3.3 f(N, {Qi,obs}) for scenario (iv): inflation preceded by a prior episode

of inflation

We finally consider scenario (iv), the case where there is another episode of inflation just before

our last cosmic inflation. In this case, the power spectrum of density fluctuations, P(k), can show

a sharp spike as a function of the momentum scale k. One might, therefore, think that this can
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Class (II) measures: rewarding slow-roll volume increase

Measures not depending
on decay rates

Measures depending
on decay rates

Weak correlation
between slow-roll and tunneling

p ≥ 0; q = 3 p ≥ 0; q ≃ 3

Strong positive correlation
between slow-roll and tunneling

p ≥ 0; q = 3
p ≥ 0; q = 3 + β ′

β ′ >∼ O(1)

Strong negative correlation
between slow-roll and tunneling

p ≫ 1; q = 3
p ≫ 1; q = 3 + β ′

−β ′ >∼ O(1)

Class (III) measures: not rewarding volume increase

Measures not depending
on decay rates

Measures depending
on decay rates

Weak correlation
between slow-roll and tunneling

p ≥ 0; q = 0 p ≥ 0; |q| ≪ 1

Strong positive correlation
between slow-roll and tunneling

p ≥ 0; q = 0
p ≥ 0; q = β ′

β ′ >∼ O(1)

Strong negative correlation
between slow-roll and tunneling

p ≫ 1; q = 0
p ≫ 1; q = β ′

−β ′ >∼ O(1)

Table 1: Expected values of p and q in Eq. (65) for class (II) and (III) measures. They depend
on whether the slow-roll and tunneling parts of the potential are weakly or strongly correlated,
and on whether the correlation is positive (favoring large values of N) or negative (favoring small
values of N). They also depend on whether the measure predicts that the probability of observing a
particular transition depends only on its branching ratio (middle column), or depends on the decay
rate (right column). The table is constructed for the small K option (see the text). The large K
option would change the behavior of strong positive correlations for measures not depending on
decay rates, giving a strong push toward large N which is not necessarily a power law.

provide a nonzero curvature over the visible universe, either positive or negative, by having large

fluctuations at a length scale beyond the current horizon. This is, however, not the case. Since low

multipoles of CMB temperature fluctuations are sensitive to density fluctuations at scales larger

than the horizon (Grishchuk-Zel’dovich effect [43]), the observed size of these low multipoles ≈ 10−5

does not allow the curvature to extend much beyond |Ωk| ≈ O(10−5) [18].

Therefore, even if the past history of our pocket universe is complicated so that P(k) has a

nontrivial structure, we do not expect to see curvature coming from density fluctuations at a level,

e.g., beyond |Ωk| ≈ 10−4.5 Since we know of no other way that positive curvature can be generated

5While completing this paper, Ref. [17] has appeared which quantitatively analyzes this issue, finding that the
probability of obtaining |Ωk| > 10−4 from superhorizon density fluctuations in a model consistent with the CMB is
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in a multiverse model, we conclude that a future measurement of positive curvature at a level of

Ωk <∼ −10−4 would exclude the entire framework considered here. Any observation of negative

curvature at Ωk >∼ 10−4 would have to be attributed to Coleman-De Luccia tunneling.

4 Expectations for the Number of e-folds and Curvature

We now discuss implications of the probability distribution in Eq. (65) for current and future

measurements of curvature. Recall that Nobs,min denotes the minimum amount of slow-roll inflation

required to satisfy the current observational constraint, Ωk
<∼ 0.01. (In this section we consider

only Ωk > 0.) Its value depends on the detailed history of our own pocket universe, especially on

the reheating temperature, but is in the range Nobs,min ≈ (40 – 60). Following FKMS, we assume

that the requirement of structure formation provides an anthropic lower bound on the amount of

slow-roll inflation:

Nanthropic ≃ Nobs,min − 3.0 . (66)

(Here, we have assumed only the weak requirement that dwarf galaxies form. If we require that

typical galaxies form, then 3.0 is replaced by 1.9.) To test the consistency of the current constraint

on Ωk with multiverse probabilities, we use Eqs. (10) with f(N, {Qi,obs})Mm(N) = eqN/Np (see

Eq. (65)) to express the probability Pcurrent that a pocket universe which has undergone Nanthropic

e-folds of slow-roll inflation will go on to undergo at least Nobs,min e-folds of inflation:

Pcurrent =

∫ ∞

Nobs,min

dN Pobs, 6Ωk
(N)

=

∫ ∞

Nobs,min

dN
eqN

Np

/

∫ ∞

Nanthropic

dN
eqN

Np
. (67)

Figure 4(a) shows which regions of the p-q plane are excluded by yielding low values of Pcurrent, at

various levels of confidence, using Nobs,min = 60.

Figure 4(a) shows that q > 0 is always allowed, but we should keep in mind that this is based

on an idealization that is not reliable. It arises from the fact that the probability distribution

P (N) ∝ eqN/Np diverges at large N for any q > 0, for any value of p. But if q is positive and small,

and p is positive and large, then the divergent behavior will not occur until N is very large, at

which point the linear approximation that we introduced in Eq. (63) will no longer be valid. Thus,

for small positive q and large positive p, a more sophisticated analysis would be needed.

If we assume that there is only a weak correlation between the tunneling and slow-roll parts of the

potential function, then measures of class (II), which reward slow-roll volume increases, are clearly

allowed by Fig. 4(a). As shown in Table 1, these measures give q = 3 or at least q ≃ 3. Measures of

less than ≈ 10−6.
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Figure 4: The diagram on the left shows the consistency of the current bound Ωk
<∼ 0.01 with

multiverse probabilities. Assuming a probability distribution for the number N of e-folds of slow-
roll inflation given by P (N) ∝ eqN/Np, we calculate the probability that a pocket universe which
has undergone Nanthropic = 57 e-folds of inflation will experience at least Nobs,min = 60 e-folds.
The hypothesis that our pocket universe was drawn from such a probability distribution would
be excluded at the 1σ, 2σ, 3σ, or 4σ level if this probability is less than 31.7%, 4.6%, 0.27%, or
0.0063%, respectively. The diagram shows the excluded regions in the p-q plane. Under the same
assumptions, the diagram on the right shows the probability that our pocket universe has Ωk > 10−4.
More precisely, it shows the probability that a pocket universe which has undergone 60 e-folds of
slow-roll inflation will not inflate by more than another factor of 10 (thereby suppressing Ωk by no
more than another factor of 100).

class (III), which do not reward slow-roll volume increases, are also consistent with Pcurrent. These

measures give q = 0 or very small, so the graph shows that the hypothesis is excluded at the 1σ

level only if p >∼ 23. By contrast, in Section 3.2.2 we found that values in the range of p = 0 to

p = 8 seemed plausible.

If there is a strong, positive correlation (i.e., favoring large N) between the tunneling and slow-

roll parts of the potential function, then all the measures shown in Table 1 are again consistent

with Pcurrent. For measures that do not depend on decay rates, for the small K option (as defined

in Section 3.2.4), the situation is identical to that described in the previous paragraph; for the large

K option, the pressure toward large N improves the consistency. For those measures that depend

on decay rates, q is given a positive contribution β ′ of order 1, which pushes an already acceptable

(p, q) combination further from the excluded regions.

If, however, there is a strong negative correlation (i.e., favoring small N) between the tunneling

and slow-roll parts of the potential function, then measures of class (III) (not rewarding volume

increases) are very likely excluded, depending on exactly how strong the correlations are. The

correlations cause p to become large, and for measures depending on decay rates, q to become

negative as well. Only the mildest range of “strong” negative correlations would be consistent.

Measures of class (II), which reward slow-roll volume in increase, would still be allowed if they do

not depend on decay rates, since they would have q = 3. But for those that do depend on decay

rates, q = 3 + β ′, where β ′ < 0, so it could be allowed or not, depending on the magnitude of β ′.

To discuss future measurements, we note that our pocket universe will have a curvature beyond

Ωk if the amount of slow-roll inflation satisfies

N < Nobs,min +
1

2
ln

Ωk,max

Ωk

≡ N(Ωk) , (68)

where Ωk,max ≃ 0.01 is the maximum curvature allowed by the current observation. Recalling

Eq. (65) for the probability density for the number N of e-folds of slow-roll inflation experienced
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Figure 5: The probabilities of finding nonzero curvature in future measurements at the level of
Ωk = 10−3 (dashed) and 10−4 (solid) for the multiverse distribution P (N) ∝ 1/Np. The probabili-
ties depend on the amount of slow-roll inflation Nobs,min corresponding to the maximum curvature
allowed by the current observation, Ωk,max ≃ 0.01.

by our pocket universe, the probability that N < N(Ωk) is given by

Pfuture(Ωk) =

∫ N(Ωk)

0

dN Pobs(N)

=

∫ N(Ωk)

Nobs,min

dN
eqN

Np

/

∫ ∞

Nobs,min

dN
eqN

Np
. (69)

In Fig. 4(b), we show contours in the p-q plane for Pfuture(10
−4), using Nobs,min = 60. In Fig. 5,

we plot the probability for future measurements to find Ωk > 10−3 (dashed) and 10−4 (solid) as a

function of p, with q = 0, for Nobs,min = 60 and 40. We find that for relatively large p >∼ a few, there

is a reasonable chance that we can observe nonzero curvature larger than Ωk >∼ 10−4. For p ≃ 10,

the probability can be as high as ≈ 40% for Nobs,min = 40, which corresponds to the case of a (very)

low reheating temperature.

In the future, the PLANCK satellite and SDSS will be able to probe Ωk to the level of ≈
0.005 [44]. The planned Subaru surveys also have the potential to reach a 0.3% level precision:

σ(Ωk) ≈ 0.003 [45]. In the longer run, a hypothetical cosmic variance-limited CMB experiment

together with a measurement of the baryonic acoustic oscillations at the precision expected from

the Square Kilometer Array will constrain curvature with a precision of about 5 × 10−4, which

can give weak evidence for nonzero curvature down to the level of Ωk ≈ 10−3 [46]. Furthermore,

a future square kilometer array optimized for 21 cm tomography could improve the sensitivity to

about σ(Ωk) ≈ 2 × 10−4 [47], approaching the fundamental limit with which one can probe the

geometry of the universe given Q ≈ 10−5 [46]. Therefore, if our own pocket universe was indeed

created by bubble nucleation in eternally inflating spacetime, then there is a reasonable chance (of

O(10%)) that we can see nonzero negative curvature in future measurements.

5 Conclusions

The eternally inflating multiverse provides a consistent framework for explaining coincidences and

fine-tuning in our universe. In particular, it provides the leading explanation for the observed

accelerating expansion of the universe: ΩΛ ∼ Ωmatter. Along similar lines, the framework also

provides the possibility that the present-day curvature contribution, Ωk, is not too far below the

leading contributions to the total energy budget. Although Ωk is suppressed exponentially by the
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deterministic, slow-roll inflation that has occurred in our past, Ωk ∼ e−2N , there is still a reasonable

possibility that Ωk is larger than ∼ 10−4, the level we could reach in future observations.

We have studied this possibility, particularly focusing on the question: “If future observations

reveal nonzero curvature, what can we conclude?” We have found that whether an observable

signal arises or not depends crucially on three issues: the cosmic history just before the observable

inflation, the measure adopted to define probabilities in the eternally inflating spacetime, and the

properties of the correlation between the tunneling and slow-roll parts of the potential. These strong

dependencies would allow us to draw some definite conclusions about these issues, if nonzero Ωk is

found in future experiments.

Our conclusions are as follows. If future measurements reveal positive curvature at the level

Ωk <∼ −10−4, then ...

• The framework of the eternally inflating multiverse, as currently understood, is excluded with

high significance. If no (currently unknown) mechanism can be found to explain a positively

curved pocket universe in an eternally inflating multiverse, then we would have to conclude

that our universe arose in a different way, e.g. directly by creation from “nothing” [48].

If future measurements instead reveal negative curvature Ωk
>∼ 10−4, then ...

• Diffusive (new or chaotic type) eternal inflation is excluded as a phenomenon in our immediate

past. In particular, within the context of the eternally inflating multiverse (as currently un-

derstood), our pocket universe must have been born by a bubble nucleation. In this paper we

justified this conclusion by examining the evolution of Q, the density perturbation amplitude,

from the end of diffusive eternal inflation to the time at which the wave numbers visible in the

CMB exited the Hubble horizon. We argued that this evolution required more than enough

e-folds to suppress any trace of curvature. This conclusion is strengthened further by the fact

that if the density perturbation amplitude was large (δρ/ρ ∼ 1) on the horizon scale at the

onset of inflation, then the Grishchuk-Zel’dovich effect requires the amount of inflation to be

large, N − Nobs,min
>∼ 6, completely diluting observable curvature effects [43, 49]. The bubble

nucleation process avoids this situation by producing, without violating causality, a highly

homogeneous space that is curvature dominated.

• Barring the unlikely possibility of a conspiracy between the slow-roll volume increase and

tunneling rate (β ′ ≃ −3; see Table 1), the probability measure must not reward the slow-roll

volume increase e3N . Examples of such measures include the causal patch measure [33], the

scale-factor cutoff measure [34], and the quantum measure [16].

• The origin of the observed slow-roll inflation—the last N ≈ (40 – 60) e-folds of inflation—must

be an accidental feature of the potential, selected by anthropic conditions. In particular, it

could not be due to a theoretical mechanism that ensures the flatness of the potential in the
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vicinity of our vacuum.

• We do not know how to predict the strength or even the sign of possible correlations between

the tunneling and slow-roll parts of the inflaton potential, so we considered all possibilities. We

found that a strong negative correlation, one that correlates small N with rapid transitions,

could have very strong effects which are already excluded by the fact that Ωk is smaller than

is required by anthropic considerations. If curvature is observed, then the possibility of strong

positive correlations (those which favor large N) would be ruled out for those measures, such

as the stationary measure, for which the probability of observing a transition depends on the

decay rate, and not just the branching ratio. For other measures, the consequence of strong

positive correlations depends on our estimate of the number of decay channels of our parent

vacuum that can potentially have a significant branching ratio. If the significant decays are

limited to a few hundred nearest neighbors in the landscape, then strong positive correlations

are allowed, and have no perceptible effects on curvature or anything else. On the other hand,

if a substantial fraction of the landscape is accessible with potentially significant rates, then a

strong positive correlation would drive a significant increase in N , which would be ruled out if

curvature were observed.

If future measurements do not find curvature, |Ωk| <∼ 10−4, then we would not learn much about

the structure of the multiverse; in particular, it does not support or disfavor the framework.

We also addressed the question of whether the current constraint on Ωk
<∼ 0.01 is consistent

with the predictions of the multiverse picture. We found that the present constraint is consistent,

except that for measures that do not reward volume increase, strong negative (favoring small N)

correlations between the slow-roll and tunneling part of the potential are ruled out.

In the course of these studies, we were led to consider the characteristics of vacuum decay

branching ratios, focusing on the question of whether decays are typically dominated by a single

channel. We found that for vacua that are sufficiently long-lived (S >∼ 103 if significant decays are

limited to several hundred, or S >∼ 106 if decays can access the landscape, where the decay rate

Γ ∼ e−S), it is plausible that a single channel can dominate the decay.

In the next decade or two, we expect to have new data from measurements of the CMB, baryonic

acoustic oscillations, 21 cm absorption, and so on, which will allow us to probe the curvature of

the universe down to the level of Ωk ∼ 10−4. If nonzero Ωk is found in these measurements, it

would reveal another coincidence in our universe: slow-roll inflation in our past did not last much

longer than needed to cross the anthropic threshold. This would provide further evidence for the

framework of the multiverse. Moreover, it would give us important information about the probability

measure, the cosmic history just before the observable inflation, and the correlations in the inflaton

potential function. In particular, it would strongly suggest that the probability measure does not

reward volume increase, and that we are living in a bubble universe formed in an eternally inflating
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spacetime.

Acknowledgments

We thank Asimina Arvanitaki, Savas Dimopoulos, Ben Freivogel, Jenny Guth, Larry Guth, and

Matthew Kleban for useful discussions. The work of A.G. was supported in part by the DOE

under contract No. DE-FG02-05ER41360. The work of Y.N. was supported in part by the Director,

Office of Science, Office of High Energy and Nuclear Physics, of the US Department of Energy under

Contract DE-AC02-05CH11231, and in part by the National Science Foundation under grants PHY-

0855653.

A Volume Increase in the Quantum Measure

In the framework of Ref. [16], the state of the multiverse is described in a fixed reference (local

Lorentz) frame associated with a fixed spatial point p. The Hilbert space corresponding to a fixed

semi-classical geometry M takes the form

HM = HM,bulk ⊗HM,horizon, (70)

where HM,bulk and HM,horizon represent Hilbert space factors associated with the degrees of freedom

inside and on the stretched apparent horizon ∂M. The entire Hilbert space for dynamical spacetime

is then given by the direct sum of the Hilbert spaces for different M’s:

H =
⊕

M

HM. (71)

The full Hilbert space for quantum gravity, HQG, also contains the states associated with spacetime

singularities, HQG = H ⊕ Hsing, but these states in Hsing do not play an important role in our

discussion here.

The multiverse state |Ψ(t)〉 is in general a superposition of elements in Hilbert space HQG,

and evolves deterministically and unitarily in this Hilbert space. (We take the Schrödinger picture

throughout.) The probabilities for any physical questions can then be given by the (extended) Born

rule [16]. For example, one can specify a certain “premeasurement” situation Apre (e.g. the configu-

ration of an experimental apparatus before measurement) as well as a “postmeasurement” situation

Apost (e.g. those after the measurement but without specifying outcome) as A = {Apre, Apost}, and
then ask the probability of a particular result B (specified, e.g., by a physical configuration of the

pointer of the apparatus in Apost) to be obtained. The relevant probability P (B|A) is then

P (B|A) =
∫∫

dt1dt2 〈Ψ(0)|U(0, t1)OApre U(t1, t2)OApost∩B U(t2, t1)OApre U(t1, 0) |Ψ(0)〉
∫∫

dt1dt2 〈Ψ(0)|U(0, t1)OApre U(t1, t2)OApost U(t2, t1)OApre U(t1, 0) |Ψ(0)〉 . (72)
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Here, U(t1, t2) = e−iH(t1−t2) is the time evolution operator (for a fixed time parameterization t), and

OX is the operator projecting onto states consistent with condition X . This formula can be used

to answer questions both regarding global properties of the universe and outcomes of particular

experiments, providing complete unification of the eternally inflating multiverse and the many-

worlds interpretation of quantum mechanics.

Now, suppose that the probability density for the onset of slow-roll inflation is given by f(N).

To figure out which class the quantum measure belongs, we want to know if the probability density

of finding an observer at a fixed location with respect to p has an extra factor e3N or not (see e.g. [50]

for relevant discussions). Since each component of |Ψ(t)〉 describes the system within the horizon

as viewed from p, however, it is obvious that this extra factor does not exist, i.e., how long a state

stays in the slow-roll inflation phase does not affect the probability defined by Eq. (72), as long

as the reheating temperature is fixed. This is because states corresponding to different N look

identical after the reheating, except for quantities that depend on initial conditions at the onset

of the slow-roll inflation. And since we are made out of baryons which are synthesized after the

reheating (i.e. whose density does not depend on the history before the reheating), the probability

density of us finding a universe with N e-folds of slow-roll inflation is simply f(N) in a region where

the anthropic factor is unity, N > Nanthropic (see Section 2.3). This implies that the measure belongs

to class (III), according to the classification in Section 2.2.6

A similar argument implies that the probability does not depend on the decay rate of a parent

vacuum either. The quantum measure, therefore, gives q = 0 in Eq. (65); see Table 1 in Section 3.2.4.

B Possibility of Single-Channel Dominance in Multiverse

Evolution7

When a metastable vacuum Pα decays, there are generically a very large number of decay modes.

One might assume that the decay products are dominated by vacua that are nearest neighbors to

Pα in the landscape, and that the other vacua in the landscape can be neglected. In that case, we

would expect perhaps several hundred possible decay modes. On the other hand, it is conceivable

that a substantial fraction of the vacua in the landscape have the possibility of being significant

decay channels for Pα, and then the number of relevant channels would be something like 10 to the

power of several hundred. We will call the number of relevant decay channels K, allowing K to

be anywhere from several hundred to 10 to the power of several hundred. In this appendix we will

explore the possibility that this large number of decays is dominated by a single channel, finding it

6Incidentally, if we were made out of relics left over from the era before the inflation, such as the grand unified
theory monopole, then the probability of us finding a universe with N e-folds of slow-roll inflation would be f(N)e−3N

(without taking into account the dynamics for clustering etc), since the density of such relics is diluted by the inflation.
7We particularly thank Larry Guth for his help with this appendix.
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much more plausible than one might naively guess, especially for long-lived vacua (i.e., vacua with

decay rates Γ ∼ e−S, where S >∼ 106 for large K, of S >∼ 103 for small K). This issue is relevant for

Section 3.2.1, in discussing the possibilities for a multiverse described by Fig. 2 or Fig. 3, and also

in Section 3.2.3, in estimating the influence of nucleation rates on the probability distribution for

N .

We have no real knowledge of the nucleation rates in the landscape, so we will pursue the simple

hypothesis that they follow (approximately) the normal distribution:

f(S) ≈ 1√
2π σ

e−
(S−S̄)2

2σ2 , (73)

where S̄ and σ are, respectively, the mean and the standard deviation. We will assume that S̄ ≫ σ,

so that we can ignore the statistically small possibility that the distribution gives a negative value

for S. Later we will briefly discuss the case where σ and S̄ are comparable.

We now ask: for a given Pα, what is the typical ratio of the fastest decay rate to the next fastest?

Since the number of possible decay modes is very large, one might naively think that this ratio is

close to unity; namely, whatever the fastest rate is, there would likely be many other possible decay

modes that would have very similar rates. This is, however, not obvious because, although the

density of the values for the decay rates is indeed huge near the peak in the distribution, we are

interested in the maximum transition rate and the rates that are very near the maximum. These

are in the tails of the distribution, so there is no guarantee that the naive thinking applies.

To estimate the minimum value of S, which we call S1, we define the cumulative probability

distribution function

Φ(x) ≡
∫ x

−∞

f(t) dt , (74)

which is the probability that a randomly chosen value of S is less than x. We estimate the value of

S1 by requiring

Φ(S1) =
1

K
; (75)

that is, we imagine drawing K random values {S(1), . . . , S(K)} from the probability distribution

f(S), and insist that the expectation value for the number of S(i)’s less than S1 is equal to one.

In the region of interest, (S̄ − S1)/σ ≫ 1, the left-hand side of Eq. (75) can be replaced by its

asymptotic expansion [51]

1√
2π

e−
(S̄−S1)

2

2σ2

(

σ

S̄ − S1

− σ3

(S̄ − S1)3
+ · · ·

)

=
1

K
, (76)

giving

S1 = S̄ −
√
2 lnK σ +O

(

ln
(
√
lnK

)

√
lnK

σ

)

, (77)
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and

f(S1) =

√
2 lnK

Kσ
+O

(

ln
(
√
lnK

)

K
√
lnK σ

)

. (78)

Note that Kf(S1) is the density of sample points at S1, so we can estimate a typical difference

∆S ≡ S2 − S1, where S2 is the second smallest action, as

∆S ≈ σ√
2 lnK

. (79)

The density grows arbitrarily large with K, but only as the square root of the logarithm! As we

will now see, for reasonable examples this is not nearly enough to allow the second fastest decay

mode to compete with the fastest one.

As an alternative estimate of ∆S, one could estimate S2 directly by setting Φ(S2) =
2
K
, which

has the effect of replacing K by 1
2
K in Eq. (77). The result for ∆S is then equal to the result in

Eq. (79) multiplied by ln 2.

It is hard to know what a typical tunneling action is, because various calculations have given

values over a huge range. Some of these calculations are summarized in Ref. [41]. For example, a

calculation of the decay of an uplifted anti de Sitter vacuum in Ref. [52] gives an action

S ∼ 8π2M2
Pl

m2
3/2

, (80)

which the authors estimate as S <∼ 1034 using m3/2
>∼ 102 GeV. Freivogel and Lippert [53] concluded

that any vacuum capable of supporting life must decay with an action

S <∼ 1040±20 (81)

to avoid overproducing Boltzmann Brains, and then showed that KKLT [54] vacua decay with

actions less than 1022. In Ref. [55], however, the authors argue that the vast majority of flux vacua

with small cosmological constant undergo rapid decay, with tunneling actions of order one.

As sample numbers to use here, we consider a transition for which the field excursion ∆ϕ is of

orderMPl, while the barrier height∆Vh and the energy density difference ∆Vdiff are each of O(M4
unif),

where Munif ≈ 1016 GeV is the (supersymmetric) unification scale. A small hierarchy between Munif

and MPl ensures that metastable minima of the potential are long-lived, since the natural size for

the action is given by S ≈ 27π2

2
∆ϕ4 ∆V 2

h /∆V 3
diff [42]. This estimate gives S ∼ O(1010), and we

choose a relatively small σ, σ ∼ O(108). (Such a narrow distribution of S might arise from a

structure of the landscape [56].) We begin by considering K ∼ O(10500), a number appropriate

for considering decays to a substantial fraction of the landscape. For actions near the peak of

the probability distribution, the density of sample points per unit of S would then be of order

K/σ ∼ O(10492), so for every decay channel there would typically be many more that would have
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the same action to hundreds of decimal places. Nonetheless, at the tail of the distribution where

the fastest two decays are to be found, the density of sample points is only
√
2 lnK/σ, and

√
2 lnK

is only ≃ 48. Thus, for our toy numbers the density of sample points in the tail is only ≈ 5× 10−7.

This means that the two smallest points for S are likely to be separated by ∆S ≈ 2 × 106, which

means that the leading nucleation rate dominates over the second place nucleation rate by a factor

of e∆S ∼ e2×106 . Of course if we used K of order a few hundred, the situation would become even

more extreme. For K ≃ 200, for example,
√
2 lnK ≈ 3.3, so the density of sample points in the tail

is only ≈ 3 × 10−8, and the leading nucleation rate will dominate over the second place rate by a

factor of about e∆S ∼ e3×107 .

An important caveat of this analysis is the arbitrariness of choosing a normal distribution for

the values of S. Something resembling a normal distribution is plausible, but the actual distribution

could be very different. Furthermore, the normal distribution clearly has to be modified for cases

where it predicts a negative value for S. For K ∼ O(10500), Eq. (77) implies that the dominating

value of S is about 48 standard deviations below the mean, so clearly the whole approach would

break down if S̄ − 48σ were not positive. Thus the approach is viable only if S̄ >∼ 50σ. To obtain

strong dominance of the leading decay we need σ/50 >∼ 102, so the argument presented here can

lead to the conclusion of single-channel dominance only if S̄ >∼ 106. For K ≃ O(200) this is less of

a problem, because we need only insist that S̄ − 3.3σ is positive, so a similar argument shows that

we need only require that S̄ >∼ 103.

If one is interested in parameters for which the normal distribution gives negative values of S,

one could explore the possibility of using a probability distribution which is positive by construction.

A probability distribution that is often used as a model for positive-definite quantities is the gamma

distribution,

fΓ(S) =
λp+1

Γ(p+ 1)
Spe−λS θ(S) , (82)

where p > 0 and λ > 0 are parameters to be chosen. Since we are interested only in the low-S tail,

we can explore a simpler distribution

fsimple(S) =
(p+ 1)Sp

Sp+1
max

θ(S) θ(Smax − S) , (83)

where p > 0 and Smax > 0 are to be chosen. Applying the same analysis as above, we find that the

density of sample points at S1, the lowest value of S out of K samples, is given by

Kfsimple(S1) ≈
p+ 1

Smax
K

1
p+1 . (84)

If we insist that Kfsimple(S1) <∼ 10−2 to lead to single-channel domination, then with K ≃ O(200)

we find that p = 2 allows Smax ∼ 1800, p = 3 allows Smax ∼ 1500, while p = 4 allows Smax ∼ 1450.

Thus, the new probability distribution does not allow us to extend the argument below S̄ ∼ 103,
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so we conclude that single-channel dominance is not likely to occur for actions this small. If

K ∼ O(10500), then this distribution will never give single-channel dominance.

In summary, these considerations suggest that decays of vacua for which the typical action is
>∼ 106 if K ∼ O(10500), or >∼ 103 if K ≃ O(200), are plausibly dominated by a single channel.

This allows for the possibility that the entire multiverse is dominated by a single channel. For

example, in the scale-factor cutoff measure, the spacetime volume is typically dominated by a very

slowly-decaying, presumably very low energy density vacuum, called the dominant vacuum. An

upward tunneling is required to access the high-energy part of the multiverse. In deciding whether

the upward tunneling is dominated by a single channel, one should keep in mind that most of the

action appearing in this calculation is associated with the initial state, and will apply to all final

states; so only a small part of the action is relevant for estimating the spread of the values for the

action. Nonetheless, it is conceivable that this upward tunneling is dominated by a single channel,

and that a single pathway of subsequent tunnelings dominates the multiverse, as depicted in Fig. 3.

It is also possible, however, that this is not the case, and that Fig. 2 is a more accurate description

of the multiverse.

References

[1] A. H. Guth, “The inflationary universe: a possible solution to the horizon and flatness prob-

lems,” Phys. Rev. D 23, 347 (1981);

A. D. Linde, “A new inflationary universe scenario: a possible solution of the horizon, flatness,

homogeneity, isotropy and primordial monopole problems,” Phys. Lett. B 108, 389 (1982);

A. Albrecht and P. J. Steinhardt, “Cosmology for grand unified theories with radiatively induced

symmetry breaking,” Phys. Rev. Lett. 48, 1220 (1982).

[2] E. Komatsu et al. [WMAP Collaboration], “Five-year Wilkinson Microwave Anisotropy Probe

(WMAP) observations: cosmological interpretation,” Astrophys. J. Suppl. 180, 330 (2009)

[arXiv:0803.0547 [astro-ph]]; “Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) ob-

servations: cosmological interpretation,” Astrophys. J. Suppl. 192, 18 (2011) [arXiv:1001.4538

[astro-ph.CO]].

[3] S. W. Hawking, “The development of irregularities in a single bubble inflationary universe,”

Phys. Lett. B 115, 295 (1982);

A. A. Starobinsky, “Dynamics of phase transition in the new inflationary universe scenario

and generation of perturbations,” Phys. Lett. B 117, 175 (1982);

A. H. Guth and S.-Y. Pi, “Fluctuations in the new inflationary universe,” Phys. Rev. Lett. 49,

1110 (1982);

38



J. M. Bardeen, P. J. Steinhardt and M. S. Turner, “Spontaneous creation of almost scale-free

density perturbations in an inflationary universe,” Phys. Rev. D 28, 679 (1983).

[4] See, e.g., C. J. Hogan, “Why the universe is just so,” Rev. Mod. Phys. 72, 1149 (2000) [astro-

ph/9909295];

L. J. Hall and Y. Nomura, “Evidence for the multiverse in the standard model and beyond,”

Phys. Rev. D 78, 035001 (2008) [arXiv:0712.2454 [hep-ph]].

[5] S. Weinberg, “Anthropic bound on the cosmological constant,” Phys. Rev. Lett. 59, 2607 (1987);

see also, T. Banks, “T C P, quantum gravity, the cosmological constant and all that...,” Nucl.

Phys. B 249, 332 (1985);

A. D. Linde, “The inflationary universe,” Rept. Prog. Phys. 47, 925 (1984).

[6] A. G. Riess et al. [Supernova Search Team Collaboration], “Observational evidence from super-

novae for an accelerating universe and a cosmological constant,” Astron. J. 116, 1009 (1998)

[arXiv:astro-ph/9805201];

S. Perlmutter et al. [Supernova Cosmology Project Collaboration], “Measurements of Ω and Λ

from 42 high-redshift supernovae,” Astrophys. J. 517, 565 (1999) [arXiv:astro-ph/9812133].

[7] A. H. Guth and E. J. Weinberg, “Could the universe have recovered from a slow first order

phase transition?,” Nucl. Phys. B 212, 321 (1983).

[8] A. Vilenkin, “The birth of inflationary universes,” Phys. Rev. D 27, 2848 (1983).

[9] A. D. Linde, “Eternally existing self-reproducing chaotic inflationary universe,” Phys. Lett. B

175, 395 (1986); “Eternal chaotic inflation,” Mod. Phys. Lett. A 1, 81 (1986).

[10] R. Bousso and J. Polchinski, “Quantization of four-form fluxes and dynamical neutralization

of the cosmological constant,” JHEP 06, 006 (2000) [arXiv:hep-th/0004134];

S. Kachru, R. Kallosh, A. Linde and S. P. Trivedi, “De Sitter vacua in string theory,” Phys.

Rev. D 68, 046005 (2003) [arXiv:hep-th/0301240];

L. Susskind, “The anthropic landscape of string theory,” arXiv:hep-th/0302219;

M. R. Douglas, “The statistics of string / M theory vacua,” JHEP 05, 046 (2003) [arXiv:hep-

th/0303194].

[11] A. Vilenkin and S. Winitzki, “Probability distribution for Ω in open universe inflation,” Phys.

Rev. D 55, 548 (1997) [arXiv:astro-ph/9605191].

[12] J. Garriga, T. Tanaka and A. Vilenkin, “The density parameter and the anthropic principle,”

Phys. Rev. D 60, 023501 (1999) [arXiv:astro-ph/9803268].

[13] B. Freivogel, M. Kleban, M. Rodriguez Martinez and L. Susskind, “Observational consequences

of a landscape,” JHEP 03, 039 (2006) [arXiv:hep-th/0505232].

39



[14] M. Tegmark, “What does inflation really predict?,” JCAP 04, 001 (2005) [arXiv:astro-

ph/0410281];

J. March-Russell and F. Riva, “Signals of inflation in a friendly string landscape,” JHEP 07,

033 (2006) [arXiv:astro-ph/0604254];

B. Bozek, A. Albrecht and D. Phillips, “Curvature constraints from the causal entropic princi-

ple,” Phys. Rev. D 80, 023527 (2009) [arXiv:0902.1171 [astro-ph.CO]];

R. Bousso and S. Leichenauer, “Predictions from star formation in the multiverse,” Phys. Rev.

D 81, 063524 (2010) [arXiv:0907.4917 [hep-th]];

R. Bousso, B. Freivogel, S. Leichenauer and V. Rosenhaus, “Geometric origin of coincidences

and hierarchies in the landscape,” arXiv:1012.2869 [hep-th];

A. De Simone and M. P. Salem, “The distribution of Ωk from the scale-factor cutoff measure,”

Phys. Rev. D 81, 083527 (2010) [arXiv:0912.3783 [hep-th]];

P. W. Graham, R. Harnik and S. Rajendran, “Observing the dimensionality of our parent vac-

uum,” Phys. Rev. D 82, 063524 (2010) [arXiv:1003.0236 [hep-th]];

J. Frazer and A. R. Liddle, “Exploring a string-like landscape,” JCAP 02, 026 (2011)

[arXiv:1101.1619 [astro-ph.CO]];

D. Yamauchi, A. Linde, A. Naruko, M. Sasaki and T. Tanaka, “Open inflation in the land-

scape,” arXiv:1105.2674 [hep-th].

[15] For reviews, see e.g. A. H. Guth, “Inflation and eternal inflation,” Phys. Rept. 333, 555 (2000)

[arXiv:astro-ph/0002156];

A. Vilenkin, “A measure of the multiverse,” J. Phys. A 40, 6777 (2007) [arXiv:hep-th/0609193];

S. Winitzki, “Predictions in eternal inflation,” Lect. Notes Phys. 738, 157 (2008) [arXiv:gr-

qc/0612164];

A. Linde, “Inflationary cosmology,” Lect. Notes Phys. 738, 1 (2008) [arXiv:0705.0164 [hep-th]].

[16] Y. Nomura, “Physical theories, eternal inflation, and the quantum universe,” JHEP 11,

063 (2011) [arXiv:1104.2324 [hep-th]]; “Quantum mechanics, spacetime locality, and gravity,”

arXiv:1110.4630 [hep-th].

[17] M. Kleban and M. Schillo, “Spatial curvature falsifies eternal inflation,” arXiv:1202.5037 [astro-

ph.CO].

[18] M. Kleban, Private communication, later explained more fully in Ref. [17].

[19] S. Coleman and F. De Luccia, “Gravitational effects on and of vacuum decay,” Phys. Rev. D

21, 3305 (1980).

[20] J. R. Gott III, “Creation of open universes from de Sitter space,” Nature 295, 304 (1982);

M. Bucher, A. S. Goldhaber and N. Turok, “An open universe from inflation,” Phys. Rev. D

52, 3314 (1995) [hep-ph/9411206];

40



K. Yamamoto, M. Sasaki and T. Tanaka, “Large angle CMB anisotropy in an open universe

in the one bubble inflationary scenario,” Astrophys. J. 455, 412 (1995) [astro-ph/9501109].

[21] J. Silk and M. S. Turner, “Double inflation,” Phys. Rev. D 35, 419 (1987).

[22] A. D. Linde, “Hybrid inflation,” Phys. Rev. D 49, 748 (1994) [astro-ph/9307002].

[23] L. Randall, M. Soljacic and A. H. Guth, “Supernatural inflation: inflation from supersymmetry

with no (very) small parameters,” Nucl. Phys. B 472, 377 (1996) [hep-ph/9512439];

M. Kawasaki, T. Takayama, M. Yamaguchi and J. Yokoyama, “Power spectrum of the density

perturbations from smooth hybrid new inflation Model,” Phys. Rev. D 74, 043525 (2006) [hep-

ph/0605271];

D. H. Lyth, “The hybrid inflation waterfall and the primordial curvature perturbation,”

arXiv:1201.4312 [astro-ph.CO];

M. Kawasaki, A. Kusenko and T. T. Yanagida, “Primordial seeds of supermassive black holes,”

arXiv:1202.3848 [astro-ph.CO].

[24] R. Bousso, B. Freivogel and I.-S. Yang, “Properties of the scale factor measure,” Phys. Rev. D

79, 063513 (2009) [arXiv:0808.3770 [hep-th]].

[25] R. Bousso, “Complementarity in the multiverse,” Phys. Rev. D 79, 123524 (2009)

[arXiv:0901.4806 [hep-th]];

R. Bousso and I.-S. Yang, “Global-local duality in eternal inflation,” Phys. Rev. D 80, 124024

(2009) [arXiv:0904.2386 [hep-th]].

[26] A. Linde and A. Mezhlumian, “Stationary universe,” Phys. Lett. B 307, 25 (1993) [arXiv:gr-

qc/9304015];

A. Linde, D. Linde and A. Mezhlumian, “From the big bang theory to the theory of a stationary

universe,” Phys. Rev. D 49, 1783 (1994) [arXiv:gr-qc/9306035];

A. Vilenkin, “Predictions from quantum cosmology,” Phys. Rev. Lett. 74, 846 (1995) [arXiv:gr-

qc/9406010].

[27] A. H. Guth, in Ref. [15];

M. Tegmark, in Ref. [14];

R. Bousso, B. Freivogel and I.-S. Yang, “Boltzmann babies in the proper time measure,” Phys.

Rev. D 77, 103514 (2008) [arXiv:0712.3324 [hep-th]].

[28] D. N. Page, “Is our universe likely to decay within 20 billion years?,” Phys. Rev. D 78, 063535

(2008) [arXiv:hep-th/0610079];

R. Bousso and B. Freivogel, “A paradox in the global description of the multiverse,” JHEP 06,

018 (2007) [arXiv:hep-th/0610132].

[29] B. Feldstein, L. J. Hall and T. Watari, “Density perturbations and the cosmological constant

from inflationary landscapes,” Phys. Rev. D 72, 123506 (2005) [arXiv:hep-th/0506235];

41



J. Garriga and A. Vilenkin, “Anthropic prediction for Λ and the Q catastrophe,” Prog. Theor.

Phys. Suppl. 163, 245 (2006) [arXiv:hep-th/0508005].

[30] A. Vilenkin, “Freak observers and the measure of the multiverse,” JHEP 01, 092 (2007)

[arXiv:hep-th/0611271].

[31] A. D. Linde and V. Mukhanov, “The curvaton web,” JCAP 04, 009 (2006) [arXiv:astro-

ph/0511736];

L. J. Hall, T. Watari and T. T. Yanagida, “Taming the runaway problem of inflationary land-

scapes,” Phys. Rev. D 73, 103502 (2006) [arXiv:hep-th/0601028].

[32] J. Garriga, D. Schwartz-Perlov, A. Vilenkin and S. Winitzki, “Probabilities in the inflationary

multiverse,” JCAP 01, 017 (2006) [arXiv:hep-th/0509184];

R. Easther, E. A. Lim and M. R. Martin, “Counting pockets with world lines in eternal infla-

tion,” JCAP 03, 016 (2006) [arXiv:astro-ph/0511233].

[33] R. Bousso, “Holographic probabilities in eternal inflation,” Phys. Rev. Lett. 97, 191302 (2006)

[arXiv:hep-th/0605263].

[34] A. De Simone, A. H. Guth, M. P. Salem and A. Vilenkin, “Predicting the cosmological constant

with the scale-factor cutoff measure,” Phys. Rev. D 78, 063520 (2008) [arXiv:0805.2173 [hep-

th]];

R. Bousso, B. Freivogel and I.-S. Yang, in Ref. [24];

see also, A. Linde, D. Linde and A. Mezhlumian, in Ref. [26].

[35] A. Linde, “Towards a gauge invariant volume-weighted probability measure for eternal infla-

tion,” JCAP 06, 017 (2007) [arXiv:0705.1160 [hep-th]];

A. Linde, V. Vanchurin and S. Winitzki, “Stationary measure in the multiverse,” JCAP 01,

031 (2009) [arXiv:0812.0005 [hep-th]].

[36] A. R. Liddle and D. H. Lyth, “Cosmological Inflation and Large-Scale Structure,” (Cambridge

University Press, Cambridge, 2000), p. 186.

The quantities called PR and δH in this book correspond, respectively, to the quantities ∆2
R

and Q used here.

[37] Ref. [36], p. 188.

[38] S. W. Hawking and I. G. Moss, “Supercooled phase transitions in the very early universe,”

Phys. Lett. B 110, 35 (1982);

E. J. Weinberg, “Hawking-Moss bounces and vacuum decay rates,” Phys. Rev. Lett. 98, 251303

(2007) [hep-th/0612146].

[39] P. Batra and M. Kleban, “Transitions between de Sitter minima,” Phys. Rev. D 76, 103510

(2007) [hep-th/0612083].

42



[40] D. Schwartz-Perlov and A. Vilenkin, “Probabilities in the Bousso-Polchinski multiverse,” JCAP

06, 010 (2006) [arXiv:hep-th/0601162].

[41] A. De Simone, A. H. Guth, A. D. Linde, M. Noorbala, M. P. Salem and A. Vilenkin, “Boltzmann

brains and the scale-factor cutoff measure of the multiverse,” Phys. Rev. D 82, 063520 (2010)

[arXiv:0808.3778 [hep-th]].

[42] S. Coleman, “The fate of the false vacuum: semiclassical theory,” Phys. Rev. D 15, 2929 (1977)

[Erratum-ibid. D 16, 1248 (1977)];

M. J. Duncan and L. G. Jensen, “Exact tunneling solutions in scalar field theory,” Phys. Lett.

B 291, 109 (1992).

[43] L. P. Grishchuk, Y. .B. Zeldovich, “Long-wavelength perturbations of a Friedmann universe, and

anisotropy of the microwave background radiation,” Astron. Zh. 55, 209 (1978) [Sov. Astron.

22, 125 (1978)].

[44] D. J. Eisenstein, W. Hu and M. Tegmark, “Cosmic complementarity: joint parameter estima-

tion from CMB experiments and redshift surveys,” Astrophys. J. 518, 2 (1999) [arXiv:astro-

ph/9807130].

[45] M. Takada, Private communication.

[46] M. Vardanyan, R. Trotta and J. Silk, “How flat can you get? A model comparison perspective on

the curvature of the universe,” Mon. Not. Roy. Astron. Soc. 397, 431 (2009) [arXiv:0901.3354

[astro-ph.CO]].

[47] Y. Mao, M. Tegmark, M. McQuinn, M. Zaldarriaga and O. Zahn, “How accurately can 21 cm

tomography constrain cosmology?,” Phys. Rev. D 78, 023529 (2008) [arXiv:0802.1710 [astro-

ph]];

[48] A. D. Linde and A. Mezhlumian, “Inflation with Ω 6= 1,” Phys. Rev. D 52, 6789 (1995)

[astro-ph/9506017].

[49] A. Kashlinsky, I. I. Tkachev and J. Frieman, “Microwave background anisotropy in low-Ω0

inflationary models and the scale of homogeneity in the universe,” Phys. Rev. Lett. 73, 1582

(1994) [astro-ph/9405024];

P. G. Castro, M. Douspis and P. G. Ferreira, “Scale of homogeneity of the universe from

WMAP,” Phys. Rev. D 68, 127301 (2003) [astro-ph/0309320].

[50] G. Larsen, Y. Nomura and H. L. L. Roberts, “The cosmological constant in the quantum

multiverse,” Phys. Rev. D 84, 123512 (2011) [arXiv:1107.3556 [hep-th]].

[51] See, e.g., M. Abramowitz and I. A. Stegun, “Handbook of Mathematical Functions with Formu-

las, Graphs, and Mathematical Tables,” National Bureau of Standards Applied Mathematics

43



Series – 55, Tenth Printing (1972), Eq. (7.1.23), available at http://people.maths.ox.ac.

uk/~macdonald/aands/index.html

[52] A. Ceresole, G. Dall’Agata, A. Giryavets, R. Kallosh and A. D. Linde, “Domain walls,

near-BPS bubbles, and probabilities in the landscape,” Phys. Rev. D 74, 086010 (2006) [hep-

th/0605266].

[53] B. Freivogel and M. Lippert, “Evidence for a bound on the lifetime of de Sitter space,” JHEP

12, 096 (2008) [arXiv:0807.1104 [hep-th]].

[54] S. Kachru, R. Kallosh, A. Linde and S. P. Trivedi, in Ref. [10].

[55] M. Dine, G. Festuccia, A. Morisse and K. van den Broek, “Metastable Domains of the Land-

scape,” JHEP 06, 014 (2008) [arXiv:0712.1397 [hep-th]].

[56] N. Arkani-Hamed, S. Dimopoulos and S. Kachru, “Predictive landscapes and new physics at a

TeV,” arXiv:hep-th/0501082.

44



V (ϕ)

ϕ

parent
vacuum

child(our)
vacuum

•

slow-roll

z

V (ϕ)

ϕ

parent
vacuum

child(our)
vacuum

•

slow-roll

z

V (ϕ)

ϕ

parent
vacuum

child(our)
vacuum

•

slow-roll

z

-

V (ϕ)

ϕ

parent
vacuum

child(our)
vacuum

•

slow-roll

z

-

V (ϕ)

ϕ

parent
vacuum

child(our)
vacuum

•

slow-roll

z

-

V (ϕ)

ϕ

parent
vacuum

child(our)
vacuum

•

slow-roll

z

-

V (ϕ)

ϕ

parent
vacuum

child(our)
vacuum

•

slow-roll

z

-

V (ϕ)

ϕ

parent
vacuum

child(our)
vacuum

•

slow-roll

z

-

Figure 1                21APR12



C1

· · ·

P11 P12 P1n1

· · · · · · · · ·

distribution for inflaton

initial values

C2

· · ·

P21 P22 P2n2

· · · · · · · · ·

· · · · · · Cn

· · ·

Pn1 Pn2 Pnnn

· · · · · · · · ·

distribution for inflaton potentials

Ci: child (our) vacua

Pij: parent vacua

Figure 2                21APR12



P1

C1

P2

C2

· · · · · ·

P∗

C∗

C∗: our vacuum

· · · · · ·

Pn

Cn

Ci: child vacua

Each Ci has different inflaton

potential and initial value.

Pi: parent vacua

This path dominates the others, but

we don’t know what it actually is =⇒ probability

Figure 3                21APR12



Figure 4a                21APR12



Figure 4b                21APR12



0 2 4 6 8 10
p0.0

0.2

0.4

0.6

0.8

1.0

Pfuture

Figure 5a                21APR12



0 2 4 6 8 10
p0.0

0.2

0.4

0.6

0.8

1.0

Pfuture

Figure 5b                21APR12


