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Abstract: The computation of probabilities in an eternally inflating universe requires

a regulator or “measure”. The scale factor time measure truncates the universe when

a congruence of timelike geodesics has expanded by a fixed volume factor. This defini-

tion breaks down if the generating congruence is contracting—a serious limitation that

excludes from consideration gravitationally bound regions such as our own. Here we

propose a closely related regulator which is well-defined in the entire spacetime. The

New Scale Factor Cutoff restricts to events with scale factor below a given value. Since

the scale factor vanishes at caustics and crunches, this cutoff always includes an infinite

number of disconnected future regions. We show that this does not lead to divergences.

The resulting measure combines desirable features of the old scale factor cutoff and of

the light-cone time cutoff, while eliminating some of the disadvantages of each.



1 Introduction

The observed acceleration of the expansion of the universe [1, 2] implies that the uni-

verse as a whole is eternally inflating [3]. Absent unnatural tuning, this conclusion is

robust: to avoid eternal inflation, our vacuum would have to decay on a timescale of a

few billion years.1

The physics of eternal inflation is straightforward and arises completely within the

standard framework of classical gravity coupled to quantum field theory. Even though

the vacuum may only be metastable, the universe is expanding too rapidly for local

decays [6] to lead to a global crunch. Globally, the universe will become unbounded in

size. Because it is locally at nonzero temperature [7], everything that can happen will

happen, infinitely many times. This poses a challenge for the computation of relative

probabilities, known as the measure problem.

Eternal inflation is very natural from a theoretical viewpoint. Slow-roll inflationary

models, which are designed to solve the flatness problem and generate density pertur-

bations. These tasks require mild tuning; but eternal inflation requires no tuning at

all. Moreover, string theory appears to contain a very large number of metastable

vacua with either sign of the cosmological constant, a feature that allows it to solve the

cosmological constant problem [8]. However, it is worth emphasizing that the measure

problem is very robust and has nothing to do with the string landscape. For eternal

inflation to occur, there need only be one single metastable vacuum with positive en-

ergy. Thus the measure problem arises from the most straightforward interpretation of

the observed accelerated expansion.

Approaches to the measure problem are inevitably guided by theoretical priors (i.e.,

by what we perceive as simplicity, elegance, or deep principles). Yet, much of the recent

progress in the subject has come from a hard-nosed investigation of the phenomenology.

A number of proposed measures are in violent conflict with observation and have been

eliminated from consideration (see, e.g., [9–12]). Among the remaining proposals,

some are related by exact dualities; for example, the causal patch cutoff [13] (with

initial conditions in the longest-lived de Sitter vacuum) is equivalent to the light-cone

time cutoff [14, 15].

Here, we focus on the scale factor cutoff [16–19]. This measure is closely related

to the light-cone time cutoff and causal patch. It has the potential for considerable

phenomenological success (see, e.g., Refs. [20–26]). However, the definitions provided

1Interpretations of the observed acceleration in terms of matter with equation of state parameter

different from that of a cosmological constant, or in terms of modifications of general relativity, can

be viewed as special cases of this type of tuning, which is strictly in addition to the tuning associated

with the smallness of the vacuum energy [4, 5].
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so far have an unattractive feature: scale factor time is well-defined only in locally

expanding regions of spacetime. In regions undergoing gravitational binding or collapse,

such as our own galactic halo, the measure needs to be supplemented with additional

rules. These prescriptions have seemed ad hoc and entirely unrelated to the definition

of scale factor time itself. Four different possibilities for completions of the scale factor

time cutoff were noted in Refs. [19, 23] alone.2

In this paper, we propose a New Scale Factor Cutoff, whose definition requires no

separate rules for collapsing regions, and we show that it yields a finite probability

measure for eternal inflation.

Outline Given a timelike geodesic congruence, we show in Sec. 2 that every spacetime

point can be uniquely assigned a value of the scale factor, a. This relies on a nontrivial

result in classical geometry, which guarantees that every point lies on precisely one

geodesic with no conjugate points. It is convenient to work with the scale factor pa-

rameter η = log a. (We refer to η as a parameter since it is not, generally, a time

function.) We define the New Scale Factor Cutoff as a restriction to spacetime points

with scale factor parameter below a given value of η. As usual, relative probabilities

are computed in this finite region before taking the limit η →∞.

The scale factor parameter decreases in collapsing regions, and it diverges to −∞
at caustics and singularities. Formally, an infinite number of disconnected collapsing

regions must therefore be included at any finite cutoff (Fig. 1). In the remainder of the

paper, we show that neither of these unconventional features leads to any problems.

An important point is that a useful geometric cutoff should select a finite portion of the

infinite spacetime, but this portion need not be connected, nor does it need to be bounded

by an “instant of time” (a spacelike or null hypersurface).3 Abandoning connectedness

is a key feature that distinguishes the New Scale Factor Cutoff from the old scale factor

measure, allowing it reach all points in the spacetime without having to invent separate

ad hoc rules for collapsing regions.

In Sec. 3, we derive the rate equation for the distribution of de Sitter vacua as a

function of the scale factor parameter η. We use standard approximations, in which

all de Sitter vacua are treated as empty and all domain walls as comoving. In this

approximation, the scale factor parameter is monotonically increasing. Thus, the rate

equation is identical to that of old scale factor time. At late times, the evolution is

2The most interesting of these proposals, from our viewpoint, is the idea of eliminating the future

light-cone of all points on a fixed scale factor time surface. But then the light-cone time cutoff, which

based only on the elimination of future light-cones, would be a simpler, more natural choice.
3Nothing is lost by abandoning the latter criterion, since it is not generally satisfied even by the

old definition. Hypersurfaces of constant (old) scale factor time can contain timelike portions.
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future boundary

time

big crunch singularity

Figure 1. Schematic depiction of the New Scale Factor Cutoff in a simple model with one

de Sitter vacuum and one vacuum with a big crunch. (This model is considered in detail

in Sec. 5.) Square bubbles of the crunching vacuum are shown; the crunch is at the future

boundary (thick green intervals). Shaded regions correspond to the cutoff region M(η). The

expanding portion of M(η) is connected (pink). The contracting portion of M(η) (green)

consists of an infinite number of disconnected regions. The later a bubble nucleates, the

thinner the cutoff region near the caustics. As a result, the total contribution from the

collapsing regions is convergent.

dominated by an attractor regime controlled by the leading eigenvector of the rate

equation.

In Sec. 4, we compute the number NI(η) of events of arbitrary type I, as a function

of the cutoff parameter η, in the cutoff region. At this stage nonempty regions, and

in particular collapsing regions, must be treated in full. We show that only a finite

number of collapsing regions contribute to NI(η) at any value of the cutoff, and that

an attractor regime is reached as for other global cutoffs. Thus, the New Scale Factor

Cutoff yields well-defined probability amplitudes:

PI
PJ

= lim
η→∞

NI(η)

NJ(η)
. (1.1)

In Sec. 5, we compute probabilities in a concrete toy model of an eternally inflating

universe that contains collapsing regions. This example illustrates explicitly that the

novel features of New Scale Factor Cutoff do not lead to pathologies.
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Discussion We leave the detailed investigation of the phenomenology of the New

Scale Factor Cutoff to future work. One expects, however, that the New Scale Factor

Cutoff will share some of the desirable features of the (old) scale factor time measure [19,

22, 23, 27] and of its local dual, the fat geodesic [22, 28, 29]). These features include the

absence (subject to plausible assumptions on the structure of the vacuum landscape) of

catastrophies such as the youngness paradox and the dominance of Boltzmann brains

(see, e.g., Refs. [10, 12, 30–33]). Compared to the causal patch measure, which shares

the above features, the New Scale Factor Cutoff is likely to suppress vacua with Λ < 0

more strongly [25], and it may not diverge in “hat regions” with Λ = 0.

The New Scale Factor Cutoff is well-defined in collapsing regions, but its evaluation

in realistic models could be challenging. It requires detailed tracking of a geodesic

congruence and identifying its complicated caustic surfaces. The fact that the causal

patch depends only on the endpoint of the geodesic (and might not require a congruence

at all [34]) remains a significant formal and practical advantage.

A particular (and, so far, unique) phenomenological advantage of the causal patch

measure [35–37] is its robust prediction of the observed value of the cosmological con-

stant (at least over positive values of Λ; see [25]), eliminating the need to impose

anthropic conditions such as the presence of galaxies [19, 38, 39] and sufficient metal-

licity [28]. The causal patch explains the coincidence of vacuum and matter energy

directly: the value of Λ is determined by the the timescale when observers exist. It will

be interesting to study whether the New Scale Factor Cutoff is able to reproduce this

success.4

2 New Scale Factor Cutoff

In the eternally inflating spacetime, consider a smooth (C∞) spacelike hypersurface

Σ0. Every point x0 ∈ Σ0 is the starting point of a future-directed timelike geodesic

orthogonal to Σ0. We assume that the future of Σ0 is eternally inflating, or more

precisely, that there exists a set (of measure zero, but nonempty) of orthogonal geodesics

that remain forever in a de Sitter phase. This will usually be the case if Σ0 contains

much more than one horizon volume of metastable de Sitter vacua [3].

We will distinguish between a family and a congruence of geodesics. A congruence

in the spacetime subset M is a family of geodesics such that for every point p ∈ M ,

there is precisely one geodesic through p. The family of geodesics orthogonal to Σ0 will

be a congruence initially [40] but will cease to be a congruence after geodesics inter-

sect. Intersections can be local or nonlocal. A local intersection is where infinitesimally

4I am grateful to B. Freivogel for discussions of this question.
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neighboring geodesics meet, and the local expansion θ diverges to −∞. This is called a

caustic, or focal point, or conjugate point. A nonlocal intersection is where nonneigh-

boring geodesics meet, i.e., geodesics whose origins on Σ0 are more than infinitesimally

apart. Because of the accelerated expansion driving eternal inflation, geodesics ema-

nating from distinct points on Σ0 will either intersect nonlocally very close to Σ0
5 or

fall out of causal contact. Thus, nonlocal intersections will not play a role at late times,

i.e., in the limit η →∞ in which probabilities will be defined.6

This distinction between a family and a congruence can be important. For example,

the light-cone time cutoff is defined using a family of geodesics orthogonal to Σ0, all

of which are maximally extended, whether or not they intersect other geodesics [14].

The New Scale Factor Cutoff, on the other hand, will crucially require the use of a

congruence.

We can easily obtain a congruence from the geodesics orthogonal to Σ0, by declaring

that every geodesic will be terminated at its first conjugate point. This ensures (absent

nonlocal intersections) that no point is contained on more than one geodesic. To each

point p in the congruence, we can thus uniquely assign a scale factor parameter η,

defined in terms of an integral along the unique geodesic from Σ0 to p:

η ≡
∫
θ(t)

3
dt . (2.1)

Here, t is the proper time along the geodesic;

θ ≡ d

dt
log

dV

dV0

(2.2)

is the expansion of the congruence; dV is the volume element at the proper time t

along a geodesic spanned by infinitesimally neighboring geodesics in the congruence;

and dV0 is the volume element spanned by the same neighbors at t = 0. In terms of

the unit tangent vector field (the four-velocity) of the geodesic congruence, ξ = ∂t, the

expansion can be computed as [40]

θ = ∇aξ
a . (2.3)

We have defined η so that it vanishes at Σ0. At later times along a given geodesic,

η will increase while the congruence is expanding (θ > 0), and η will decrease during

5One expects that this can be avoided by a judicious choice of Σ0.
6A possible exception could arise if nonlocal intersections can occur before local intersections in

structure forming regions. This question deserves further study. If this case does arise, the New Scale

Factor Cutoff should still be defined by terminating geodesics only at caustics. Events that lie on

more than one geodesic because of nonlocal overlaps will receive greater weight by the corresponding

overlap factor.
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contracting phases. In particular, η is not of definite sign, and it diverges to −∞ as a

conjugate point is approached. For simplicity, we will assume the generic case in which

there is at most one contracting phase, which leads to a caustic. Because the strong

energy condition is not satisfied in regions with positive cosmological constant, the

congruence may in principle expand and contract multiple times. This case presents no

particular difficulties and could easily be included. However, it is not known to arise

at late times in realistic models, and it would make our discussion and notation more

cumbersome.

Some geodesics will never reach a caustic (for example, if they enter a terminal

vacuum with vanishing cosmological constant). Other geodesic may avoid caustics

until they encounter a singularity, such as a black hole singularity or a big crunch in

a vacuum region with negative cosmological constant. Such geodesics are maximally

extended. But in general, caustics do occur in regular spacetime regions, particularly

in gravitationally bound structures such as our galactic halo. Geodesics encountering

caustics will be terminated early; they are extendible.

This raises an important question: will the congruence have “gaps”—will there be

points that would have been reached by the fully extended geodesics, but which do not

lie on any geodesic once we impose the rule that geodesics are terminated at conjugate

points?

In fact, the congruence has no gaps. This is guaranteed by a result in classical

geometry. Without reproducing the proof, we quote the Corollary to Lemma 6.7.3 in

the textbook by Hawking and Ellis [41]:

If S is a C2 partial Cauchy surface, then to each point q ∈ D+(S) there is a

future-directed timelike geodesic curve orthogonal to S [...] which does not

contain any point conjugate to S between S and q.

A partial Cauchy surface is spacelike hypersurface which no causal curve intersects

more than once. Therefore, we may apply this result to S = Σ0. Strictly, it guarantees

the absence of gaps only in the future domain of dependence D+ of Σ0 (the set of points

p such that every inextendible past-directed causal curve from p intersects Σ0). Some

of the outermost geodesics in the congruence do not remain within this set. However,

one would expect a more general result to hold. In any case, we have already assumed

that Σ0 contains more than one de Sitter horizon volume. Then D+(Σ0) alone contains

an eternally inflating universe, and in the limit as η → ∞, effects from the edge of

the congruence will become arbitrarily suppressed. Therefore, the quoted Corollary is

sufficient.
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We conclude that the scale factor parameter is well-defined in all spacetime regions,

expanding or collapsing. The New Scale Factor Cutoff is the restriction of the eternally

inflating spacetime to the set of points M(η) with scale factor parameter less than η.

We will now specify the associated probability measure. For this purpose, we make

a number of definitions which have become standard in the application of geometric

cutoffs to the measure problem. Let I and J be possible outcomes of some measure-

ment.7 Let NI(η) be the number of times outcome I occurs in the spacetime region

M(η). The relative probability of the outcomes I and J is defined by

PI
PJ

= lim
η→∞

NI(η)

NJ(η)
. (2.4)

Normalized probabilities can be obtained as usual by computing relative probabilities

for a complete set of alternative outcomes.

Because η is not monotonic along the congruence, M(η) may consist of multiple

disconnected spacetime regions. In fact, the number of disconnected components will

be infinite, if the eternally inflating spacetime includes regions where the congruence

contracts. Examples of such regions include pocket universes with negative cosmological

constant, and regions where gravitational binding occurs, such as the region we live in.

In the remainder of this paper we will examine the properties of the New Scale

Factor Cutoff in detail. For any value of η, we will find that effectively, only a fi-

nite number of the disconnected of components of M(η) contribute to NI(η).8 More

precisely, the total contribution from the infinite number of late bubbles converges to

7For example, each could represent some range of values for the Higgs mass, or for the cosmological

constant. We are free to condition on as many things as we like, such as other known parameters, the

precise nature of the experiment, or the environment in which it is carried out. Such conditions are

part of the definition of I and J . As always, the less we choose to condition on, the more powerful

the prediction or postdiction.—As a side remark, we note the freedom to choose the question we wish

to ask is unrelated to the language in which we cast the question, whether it is classical, or quantum-

mechanical. (It is usually assumed implicitly that the number of events of type I is more fundamentally

an expectation value computed in an appropriate quantum state; see, e.g., Ref. [42] for a discussion of

suitably collapsed states arise in the causal patch measure.) And in neither language will any amount

of conditioning alleviate the measure problem: in an eternally inflating universe, the past light-cone of

any event has finite maximal area, and thus contains a finite amount of information [43, 44]. Because

of the unbounded expansion, there exist infinitely many causally disconnected points whose past light-

cones contain exactly the same quantum state. Therefore, no amount of conditioning can localize

an experiment in the multiverse. Unless the outcome of the experiment is trivially determined by

the specified conditions (e.g., if the Higgs mass is measured but also conditioned on), every possible

outcome will occur in infinitely many locations.
8The evaluation of the measure may be further complicated in realistic models where the boundaries

of M(η) might be rugged and fractal-like. In future work [45] it will be shown that the New Scale

Factor Cutoff is equivalent to a local measure, where such issues do not arise. More generally, the
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a finite result. Thus, the probability measure, Eq. (2.4), is well-defined and can in

principle be computed from parameters of the theory.

3 Rate Equation

Our task is to compute for the number of events of type I, NI(η), that occur in the cutoff

region M(η) defined in the previous section. It is convenient to do this in two steps.

In this section, we perform the first step, which focusses on the dynamics of eternal

inflation. We restrict attention to regions occupied by de Sitter vacua (metastable

vacua with positive cosmological constant). Moreover, we approximate such vacua as

entirely devoid of matter. Further approximations will be spelled out below. The

resulting spacetime can be thought of as a scaffold to which, in Sec. 4, we will add

matter and terminal vacua (regions with nonpositive cosmological constant).

This division is convenient in the evaluation of global cutoffs [12, 15, 19, 22, 46],

because the timescales for vacuum decay are much larger than the matter or radiation

eras immediately following decay. It offers an additional advantage in the case of the

New Scale Factor Cutoff: the scaffold we will build contains no contracting regions.

Therefore, for the purposes of this section, M(η) will be a single connected region. It

will be bounded in the past by Σ0, and in the future by a hypersurface Ση. Our task

will be to compute the volume Vα(η) occupied by the de Sitter vacuum α.9

In regions occupied by vacuum α, the local metric rapidly approaches the form

ds2 = −dt2 + e2t/tΛ,αdx2 , (3.1)

where t is proper time, and

tΛ,α ≡
√

3

Λα

(3.2)

is the timescale associated with the cosmological constant. At the same rate, expo-

nentially in t/tΛ,α, geodesics of any congruence become comoving with the arbitrary

coordinate system of Eq. (3.1). Therefore, the local expansion is θ = t−1
Λ,α, and the

relation between proper time and scale factor time is

dη =
dt

tΛ,α
, (3.3)

evaluation of global measures is usually dramatically simplified by considering local duals, due to the

elimination of the infinitely redundant exponential self-reproduction underlying the attractor regime.
9We will use Greek indices to label de Sitter vacua (Λ > 0), indices m,n, . . . to label terminal vacua

(Λ ≤ 0), and i, j for arbitrary vacua.
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and the metric can be written locally as

ds2 = −dt2 + e2ηdx2 , (3.4)

up to shifts in η that can be absorbed into rescalings of the Euclidean spatial coordinates

x. Since slices of constant scale factor time are spatially flat on the horizon scale, a flat

horizon patch occupies a physical volume

vα =
4π

3
t3Λ,α . (3.5)

The rate equation for the volume distribution of de Sitter vacua is [46]

dVα
dη

= (3− κα)Vα +
∑
β

καβVβ , (3.6)

where κiβ = vαtΛ,βΓiβ is the dimensionless decay rate from β to i. That is, Γiβ is

the rate at which i-bubbles are produced inside the β-vacuum, per unit four-volume;

and κiβ is the decay rate per unit horizon volume and unit de Sitter time scale. By

κα ≡
∑

i κiα we denote the total dimensionless decay rate of vacuum α. We will now

explain the origin of each term on the right-hand side.

The first term, 3Vα, follows directly from the exponential volume growth of de Sitter

space, Eq. (3.4). This would be the only term were it not for dynamical transitions

between vacua.

The second term, −καVα is an effective term that takes into account the decay of

vacuum α into other vacua. Decays of this type proceed by the formation of a bubble

of the new vacuum [6]. Typically, the spherical domain wall separating the vacua will

be small initially, compared to the size of the event horizon of the parent vacuum. The

domain wall will then expand at a fixed acceleration, asymptotically approaching the

future light-cone of the nucleation event. A detailed treatment of this dynamics would

enormously complicate the rate equation, but fortunately an excellent approximation

is available. Because of de Sitter event horizons, only a portion the of parent vacuum

is ever destroyed by the bubble. This portion is the causal future of the nucleation

event, but at late times it agrees with the comoving future of a single horizon volume

centered on the nucleation point, at the nucleation time. Moreover, the bubble reaches

its asymptotic comoving size very quickly, exponentially in light-cone time. Thus only

a very small error, of order κα, is introduced if we remove this comoving future, rather

than the causal future, from the parent vacuum. That is, for every decay event in

vacuum α, we instantly reduce the volume Vα by one horizon volume, vα, in the rate

equation. This is called the square bubble approximation. The infinitesimal number
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of decay events is
∑

i ΓiαVαdt = κα
vα
Vαdη. Multiplication by vα yields the infinitesimal

volume loss.

The third term,
∑

β καβVβ, captures the production of bubbles of vacuum α by the

decay of other vacua. In the square bubble approximation, the prefactor of this term

must be fixed by demanding continuity of the scale factor parameter across nucleation

events. By the arguments of the previous paragraph, the β-volume that is instanta-

neously lost per α-nucleation is vβ, and it must be replaced by an equal volume of

α-vacuum. The infinitesimal amount of α-volume added by decays in the time dη is

obtained by computing the number of such decay events dNαβ = ΓαβVβdt, multiplying

by vβ, and summing over all β.

The rate equation (3.6) has the solution [46]

Vα(η) = V̄αe
γη +O(eϕη) . (3.7)

where ϕ < γ < 3. (The case γ = 3 arises if and only if the landscape contains no

terminal vacua, i.e., vacua with nonpositive cosmological constant, and will not be

considered in this paper.) Here, γ ≡ 3− q is the largest eigenvalue of the matrix Mαβ

defined by rewriting Eq. (3.6) as

dVα
dη

=
∑
β

MαβVβ ; (3.8)

and V̄α is the corresponding eigenvector. The (square) transition matrix is given by the

expression

Mαβ = καβ − δαβκα . (3.9)

The terms of order eϕt are subleading and become negligible in the limit as η →∞.

To a very good approximation (better than q � 1) [31], the eigenvector is dominated

by the longest-lived metastable de Sitter vacuum in the theory, which will be denoted

by ∗:
V̄α ≈ δα∗ , (3.10)

and

q ≈ κ∗ (3.11)

is its total dimensionless decay rate.

4 Attractor Solution

In this section, we compute the number NI(η) of events of type I in the New Scale

Factor Cutoff region M(η). At this stage, we will need to confront the infinite number
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of disconnected collapsing regions that are contained in M(η) at any finite value of η.

Before addressing this novel issue in Sec. 4.2, however, it is instructive to derive N(η) in

the idealized case where the congruence is everywhere expanding. This is a well-known

problem that has been considered in the context of other global cutoffs; we follow the

method used in Ref. [15] in the context of the light-cone time cutoff.

4.1 Attractor Solution Without Collapsing Regions

We assume that the events unfolding in a new bubble of vacuum i depend only on i, but

not on the time of nucleation. This is true as long as the parent vacuum is long-lived,

so that most decays occur in empty de Sitter space. For notational convenience, we will

also assume that evolution inside a new bubble is independent of the parent vacuum;

however, this dependence could easily be included in the analysis.

Then the number of events of type I inside a bubble of type i, dNI/dNi will depend

only on the scale factor time since bubble nucleation, ζ ≡ η − ηnuc. Therefore, we can

write

NI(η) =
κI∗
v∗
V∗(η) +

∑
i 6=∗

∫ η

0

(
dNI

dNi

)
η−ηnuc

(
dNi

dη

)
ηnuc

dηnuc , (4.1)

Because the dominant vacuum ∗ plays a role analogous to an equilibrium configuration,

it is convenient to separate it out from the sum, and to define κI∗ as the dimensionless

rate at which events of type I are produced in ∗ regions. The rate at which vacua of

type i are nucleated is
dNi

dη
=
∑
β

κiβ
vβ
Vβ(η) . (4.2)

Note that the natural quantity appearing in the above equation is not the volume but

the number of horizon patches, Vα(η)/vα. Therefore, it will be convenient to define

n̄α ≡
V̄α
vα

. (4.3)

By Eq. (3.7), the number of horizon patches of type i at scale factor time η obeys

nα(η) = n̄αe
γη +O(eϕη) . (4.4)

By changing the integration variable to ζ in Eq. (4.1), and using Eq. (4.4), one

finds that

NI(η) =

(
κI∗n̄∗ +

∑
i 6=∗

∑
β

NIiκiβn̄β

)
eγη +O(eϕη) , (4.5)

where

NIi ≡
∫ ∞

0

dζe−γζ
(
dNI

dNi

)
ζ

(4.6)
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depends only on I and i. The above integral runs over the interior of one i-bubble,

excluding regions where i has decayed into some other vacuum. Naively, the integral

should range from 0 to η. But the global measure requires us to take the limit η →∞
in any case, and it can be done at this step separately without introducing divergences.

Since ∗ does not appear in the sum in Eq. (4.5), and all other vacua decay faster than

∗, the interior of the i-bubble in Eq. (4.6) grows more slowly than eγη. Therefore, the

integral converges, and we may write

NI(η) = N̄Ie
γη +O(eϕη) , (4.7)

where

N̄I ≡ κI∗n̄∗ +
∑
i 6=∗

∑
β

NIiκiβn̄β . (4.8)

The subleading terms become negligible in the limit as η → ∞. By Eq. (2.4),

relative probabilities are given by

PI
PJ

=
N̄I

N̄J

, (4.9)

The unnormalized probabilities N̄I and N̄J are given by Eq. (4.8) and can be computed

by standard methods, given the theory.

4.2 Including Collapsing Regions

When collapsing regions are included, the main new feature is that scale factor time

will not increase monotonically along the geodesics. For simplicity we will focus on the

simplest (and generic) case where the expansion changes sign only once, at a maximum

of the scale factor. (Since the strong energy condition is not assumed, the general case

involves local bounces but this can easily be included.)

Let us follow an arbitrary geodesic orthogonal to the initial surface. We set η = 0

at the starting point x0 ∈ Σ0. While the expansion θ is positive, η increases. It reaches

a maximum, ηmax, where θ = 0, and then begins to decrease. By Eq. (2.2), the scale

factor parameter diverges to −∞ at the first caustic. Therefore, a portion of every

collapsing region will be included at any finite scale factor cutoff η. But if there are

any collapsing regions at all, then there will be infinitely many such regions in the

future of Σ0. This would seem to make NI(η) poorly defined and possibly divergent.

However, let us terminate each geodesic slightly early, say one Planck time before

a caustic or singularity is reached.10 At the semiclassical level, this is physically in-

10In fact, the example in Sec. 5 shows that it is not necessary to impose this additional cutoff. The

total contribution from the infinite number of collapsing regions converges even without a cutoff near

caustics and singlarities. We introduce it here because it is physically reasonable and it simplifies the

argument.
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distinguishable from the definition of the New Scale Factor Cutoff given earlier, but

mathematically it greatly simplifies the analysis. It renders finite the amount by which

η decreases during the collapse:

∆η− ≡ ηmax − η† <∞ . (4.10)

Here, η† is the value of the scale factor parameter at the regulated endpoint of the

geodesic.

We now come to the crucial point: by Eq. (2.1), ∆η− depends only on local

physics in the collapsing region, but not on ηmax. Similarly, the difference between

the turnaround time and the nucleation time of the bubble containing the collapsing

region,

∆η+ ≡ ηmax − ηnuc , (4.11)

depends only on the properties of the pocket universe. We conclude that the scale

factor parameter increases and decreases by the same finite amounts during the ex-

pansion and collapse phases in a particular pocket universe, no matter when that that

bubble universe is nucleated. This implies that only a finite number of bubbles need

be considered at any value of the cutoff.

To see this explicitly, let us define

∆η ≡ ∆η− −∆η+ , (4.12)

and let ∆ηsup be the smallest upper bound on ∆η, among all geodesics in the congru-

ence, or (for later convenience) at least zero:

∆ηsup ≡ min{0, sup
x0

∆η} . (4.13)

On physical ground one expects that ∆ηsup <∞.

Let Q be an event in an empty de Sitter region, with scale factor time ηQ, and

consider the short fat geodesic through Q. By the definition of ∆ηsup, the values of η

along this geodesic in the future of Q are guaranteed to satisfy

η > ηQ −∆ηsup (4.14)

(At this point we make use of the nonnegativity of ∆ηsup.) Therefore, in the analogue

of Eq. (4.1) for scale factor time,

NI(η) = κI∗n∗ +
∑
i 6=∗

∫ η+∆ηsup

0

(
dNI

dNi

)
η−ηnuc

(
dNi

dη

)
ηnuc

dηnuc . (4.15)
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Through dNI/dNi, this integral includes collapsing regions in the future of the hyper-

surface of old scale factor time η, including, if ∆ηsup > 0, collapsing regions in some

bubbles that have not yet formed by this time. But we need only integrate over a finite

number of bubbles, namely the bubbles that form before the time η + ∆ηsup.

The cumulative number of events of type I inside a bubble of type i, dNI/dNi, will

still depend only on the difference ζ = η − ηnuc between the New Scale Factor Cutoff

and the time of bubble nucleation. But instead of requiring ζ > 0, we now relax this

condition to ζ > −∆ηsup. Correspondingly, the analogue of Eq. (4.6) becomes

NIi ≡
∫ ∞
−∆ηsup

dζe−γζ
(
dNI

dNi

)
ζ

(4.16)

As in the previous subsection, this integral converges because all vacua decay faster

than the dominant vacuum, and one obtains the same attractor behavior, Eq. (4.7).

Relative probabilities are again given by

PI
PJ

=
N̄I

N̄J

, (4.17)

where

N̄I ≡ κI∗n̄∗ +
∑
i 6=∗

∑
β

NIiκiβn̄β . (4.18)

5 Example

In this section, we compute probabilities in a simple example. Its main purpose is

to demonstrate explicitly that the New Scale Factor Cutoff is finite, even though it

includes an infinite number of collapsing regions at finite cutoff.

Consider a toy model with just one metastable de Sitter vacuum (which is au-

tomatically the dominant vacuum), and one terminal vacuum containing a collapsing

phase (as would be the case if it had negative cosmological constant). The metric in

the de Sitter region is

ds2 = −dt2 +H−2e2Htdx2 = H−2(−dη2 + e2ηdx2) . (5.1)

We take Σ0 to be a large but finite portion of the hypersurface t = η = 0, for example

a sphere of radius |x| < 10.

We treat the terminal pocket universes as true square bubbles. That is, when a

bubble of terminal vacuum nucleates, we take it to instantaneously occupy one horizon

volume of the de Sitter parent vacuum. This is depicted in Fig. 1. In the more general

discussion in the previous sections, the square bubble approximation was applied only
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in the derivation of the rate equation (Sec. 3). The purpose of the present example is

not to work out a realistic model to great precision, but to illustrate how the New Scale

Factor Cutoff operates in the presence of collapsing reasons. Square bubbles eliminate

complications that are unrelated to this central issue.

Similar considerations will guide our choice of scale factor. The metric inside a

bubble of terminal vacuum,

ds2 = −dτ 2 + a2(τ)dx2 , (5.2)

will be a mock-up of a flat universe that first expands and then recollapses. The scale

factor a breaks up into factors before and after nucleation:

a(τ) = eη(τ) = eηnuc+ζ(τ) (5.3)

For the latter, we choose linear expansion and contraction (after an initial transitory

phase of duration ε):

eζ(τ) =


eHτ , 0 < τ < ε

c+τ , ε < τ < τturn

c−τ̃ , 0 < τ̃ < τ̃turn .

(5.4)

Here, τ is the proper time since nucleation; τturn is the time of maximum expansion;

and

τ̃ ≡ τcrunch − τ (5.5)

is the time remaining before the big crunch, a → 0. The crunch thus occurs at the

time τ̃ = 0 or τ = τcrunch = τturn + τ̃turn. Continuity of a implies the relations

c+ =
eHε

ε
, (5.6)

c− = c+
τturn

τ̃turn

. (5.7)

We will assume that events of type I occur only in the terminal vacuum. We

specify that no such events occur at times earlier than τ = δ+, where δ+ > ε, or later

than τ̃ = δ− where δ− > 0. In the intermediate region, we assume that events of type I

occur at a constant density DI per unit four-volume. For later convenience we choose

DI = v−1
∗ , where v∗ is one horizon volume of the de Sitter vacuum.

The cumulative number of events of type I in regions with expansion factor smaller

than eζ generally receives a contribution from both the expanding and contracting

region. It will be convenient to compute these contributions separately:

dNI

dNm

(ζ) =
dN+

I

dNm

[τ(ζ)] +
dN−I
dNm

[τ̃(ζ)] . (5.8)
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The three-volume in the bubble at the time τ is one parent horizon volume, times the

volume expansion factor since nucleation, which is (c+τ)3 in the expanding era and

(c−τ̃)3 in the contracting era. Hence,

dN+
I

dNm

(τ) = DI v∗

∫ τ

δ+

c3
+τ
′3dτ =

c3
+

4
(τ 4 − δ+

4) (5.9)

and
dN−I
dNm

(τ̃) = DI v∗

∫ τ

δ−

c3
−τ̃
′3dτ̃ =

c3
−

4
(τ̃ 4 − δ−4) (5.10)

Both expressions can be regarded as functions of ζ, by substituting τ = eζ/c+ and

τ̃ = eζ/c− from Eq. (5.4). The above results hold for δ+ < τ < τturn and δ− < τ̃ < τ̃turn,

respectively, and in the corresponding range of ζ. Outside this range, the cumulative

number of events receives no contributions and thus remains constant. Thus, each

function is defined in the entire range −∞ < ζ <∞; for example,

dN+
I

dNm

(ζ) =


0 , 0 < ζ < ζ(δ+)
c3+
4

[τ(ζ)4 − δ+
4] , ζ(δ+) < ζ < ζ(τturn)

c3+
4

[τ 4
turn − δ+

4] , ζ > ζ(τturn) .

(5.11)

The probability for events of type I is given by Eq. (4.18), which reduces to

NImκm∗n̄∗ in our model. Since we consider events that can only occur in the ter-

minal vacuum, the factors κm∗n̄∗ will drop out of all relative probabilities,11 and the

unnormalized probability for I is given by

NIm = N+
Im +N−Im , (5.12)

where

N±Im =

∫ ∞
−∞

dζ e−3ζ dN
±
I

dNm

(ζ) . (5.13)

We have approximated γ = 3 − κ∗ ≈ 3. It is convenient to perform these integrals in

terms of τ and τ̃ . One finds

N+
Im =

1

4

∫ τturn

δ+

dτ

τ 4
(τ 4 − δ+

4) +
1

4

∫ ∞
τturn

dτ

τ 4
(τ 4

turn − δ+
4) =

1

3
(τturn − δ+) (5.14)

11Since we have only specified one type of event, I, it may seem that there are no relative probabilities

to compute. However, it is trivial to repeat our analysis for some other type of event J , for which

one might specify different values of δ+ and δ−, or a nonconstant density. The point is that the

unnormalized probability is finite; hence, relative probabilities will be well-defined.
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and

N−Im =
1

4

∫ τ̃turn

δ−

dτ̃

τ̃ 4
(τ̃ 4 − δ−4) +

1

4

∫ ∞
τ̃turn

dτ̃

τ̃ 4
(τ̃ 4

turn − δ−4) =
1

3
(τ̃turn − δ−) . (5.15)

Note that the latter result is finite, even in the limit as δ− → 0. This shows that the

total contribution from the infinite number of disconnected future regions converges. In

this example, of course, the caustic occurs only at the spacelike singularity at δ− = 0.

Classical spacetime breaks down a finite time before the caustic is reached, so that the

limit δ− → 0 would not strictly be taken in any physical application. But for caustics in

gravitationally bound regions, our result is significant, since it shows that no portions

of regular spacetime regions need be excluded to make the New Scale Factor Cutoff

finite—not even portions of Planck size, which were excluded in the argument of Sec. 4.2

for convenience.

The total unnormalized probability for events of type I is proportional to the

time duration during which a constant spacetime density for such events is turned on,

τcrunch − δ+ − δ−. The simplicity of this result suggests that there is a simpler way of

deriving it. In a separate publication [45], it will be shown that the New Scale Factor

Cutoff is equivalent to the Short Fat Geodesic, a local measure that defines probabilities

in terms of the expected number of events of type I in an infinitesimal neighborhood

of a single geodesic terminated at the first caustic. This generalizes the old scale factor

time cutoff/fat geodesic duality [22] to arbitrary spacetime regions.
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