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We forecast the expected cosmological constraints from a combination of probes of both the
universal expansion rate and matter perturbation growth, in the form of weak lensing tomography,
galaxy tomography, supernovae, and the cosmic microwave background incorporating all cross-
correlations between the observables for an extensive cosmological parameter set. We allow for non-
zero curvature and parameterize our ignorance of the early universe by allowing for a non-negligible
fraction of dark energy (DE) at high redshifts. We find that early DE density can be constrained
to 0.2% of the critical density of the universe with Planck combined with a ground-based LSST-like
survey, while curvature can be constrained to 0.06%. However, these additional degrees of freedom
degrade our ability to measure late-time dark energy and the sum of neutrino masses. We find that
the combination of cosmological probes can break degeneracies and constrain the sum of neutrino
masses to 0.04 eV, present DE density also to 0.2% of the critical density, and the equation of state
to 0.01 – roughly a factor of two degradation in the constraints overall compared to the case without
allowing for early DE. The constraints for a space-based mission are similar. Even a modest 1% dark
energy fraction of the critical density at high redshift, if not accounted for in future analyses, biases
the cosmological parameters by up to 2σ. Our analysis suggests that throwing out nonlinear scales
(multipoles > 1000) may not result in significant degradation in future parameter measurements
when multiple cosmological probes are combined. We find that including cross-correlations between
the different probes can result in improved constraints by up to a factor of 2 for the sum of neutrino
masses and early dark energy density.

I. INTRODUCTION

The measurement of the low-redshift expansion history
through observations of SNIa [1, 2], combined with cos-
mic microwave background (CMB) observations of flat-
ness [3, 4] and large-scale structure (LSS) measurements
of a sub-critical matter density [5–7] provide strong argu-
ments for a currently accelerating phase in the expansion
of the universe. The simplest solution to these observa-
tions is provided by a cosmological constant, or a uni-
formly smooth vacuum energy, with a pressure that is
the negative of the energy density.

Among alternatives to the cosmological constant, the
most popular are scalar field models with potentials tai-
lored to give rise to late-time acceleration and current
equation of state for the dark energy, w, close to -1 [8–15].
These models are fine-tuned to have dark energy domi-
nate today, just like the cosmological constant. However,
the requirement w & −1 currently, does not imply that
dark energy was sub-dominant at earlier times, specifi-
cally redshift z & 2, where we have no direct constraints.
Even in single scalar field models, one could have a wide
range of behavior for w(z), or equivalently the evolution
of the dark energy density with redshift. For example,
oscillating w(z) models provide an example where the
dark energy density is not negligible in the past, while at
the same time the fine-tuning of the potential is benign
as compared to anthropic considerations [16].

Observationally, we have no direct constraints on the
expansion rate of the universe at z & 2. One way to
parameterize our ignorance is to allow for early dark en-
ergy. Such a parameterization also allows us to estimate
the changes in the growth of structure compared to a

ΛCDM model.
Our aim in this paper is three-fold.

1. We explore how well the present dark energy den-
sity and its equation of state may be constrained
using multiple probes that are sensitive to the
growth of structure and expansion history. We
include cross-correlations between these different

probes and isolate their effect on parameter con-
straints and degeneracies.

2. We include non-negligible dark energy density at
early times (z & 2), ask how well this contribution
can be measured, and how it affects the inferred
values for the present dark energy equation of state
w and density Ωd0.

3. We discuss how the inclusion of early dark energy
affects the determination of the sum of the neutrino
masses in spatially flat and non-flat cosmological
models, along with the expected degradation from
unknown reionization history.

With respect to the second point above, we note that a
study of expected constraints from baryon acoustic oscil-
lation (BAO) observations has shown that the presence
of early dark energy can significantly bias the inferred
values of late-time dark energy parameters [17]. We may
attempt to resolve this bias by using a calibration param-
eter, similar to that for SNe observations. However, this
would lead to more than a factor of two larger degrada-
tion in BAO dark energy constraints [17], which stresses
the importance of including this uncertainty in parameter
constraints and on measuring dark energy contribution to
the expansion rate at z & 2.
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At low redshift, the expansion rate in a model with
EDE is designed to masquerade that of models with late-
time (z . 1) dark energy [18], thereby severely limiting
the constraining ability of probes exclusively sensitive to
the universal expansion, such as SN measurements. The
handle on early dark energy must therefore come from
a combination of expansion rate and matter power spec-
trum measurements.

For a universe with dark energy to produce the matter
perturbations seen in the present universe, more struc-
ture needed to have formed at earlier times than for a
universe without dark energy. Similarly, a universe with
a non-vanishing amount of dark energy at early times
requires more structure to have formed at earlier times
than a universe with only late-time dark energy. With
a fixed large-scale normalization of the power spectrum,
this implies a suppression of the matter power spectrum
on small scales.

Another effect on small scales is due to massive neutri-
nos.These relativistic massive neutrinos can stream out
of high-density regions on scales below the free-streaming
length scale, and therefore suppress the perturbations in
the small-scale matter spectrum. Both the free-streaming
of neutrinos and the suppression of small-scale power
due to dark energy are late-time effects. However, their
effects may be disentangled in either the CMB lensing
power spectrum [19, 20], shear power spectrum [21–23],
or galaxy power spectrum [24–27] (moreover see Ref. [28]
for a combined lensing analysis). We revisit this issue
including the presence of early dark energy because we
expect significant degeneracy between the effects of mas-
sive neutrinos and early dark energy [29].

Previous efforts to constrain models of early dark en-
ergy have focused on measurements of the CMB temper-
ature and polarization fields, large and small scale struc-
ture formation, Lyman-α forest, Gamma-Ray Bursts,
and SNe [30–35]. In recent work, the influence of weak
gravitational lensing observations of galactic sources at
low redshifts and the CMB as a large redshift source
has also been investigated [29, 36]. In this work, we
explore how well a generic model for dark energy that
does not vanish at early times can be constrained in con-
junction with massive neutrinos from a comprehensive
array of next-generation weak lensing, galaxy, CMB (in-
cluding lensing), and SN observations, including all cross-
correlations between the non-SN probes. We include SNe
to help break the degeneracies with the late-time dark
energy parameters. It is worth noting that the compre-
hensive inclusion of cross-correlations is new even for the
case with just late-time dark energy.

We take our fiducial cosmological model to be flat
with a nonzero fraction of dark energy at high redshift,
Ωe = 0.01, as discussed in the next section. We as-
sume that the dynamics is described by a canonical scalar
field. In agreement with WMAP data [3, 4], we set
Ωd0 = 0.742, w0 = −1.0, (present dark energy den-
sity and equation of state), Ωch

2 = 0.11 (density of
cold dark matter), Ωbh

2 = 0.0227 (density of baryons),

Ωνh
2 = 1.81× 10−3 (density of neutrino), Ωk = 0 (flat-

ness), ns = 0.963 (tilt of power spectrum), dns/d lnk = 0
(running of tilt), ∆2

R = 2.21 × 10−9 (normalization of
power spectrum), τ = 0.087 (optical depth to Thomson
scattering), Neff = 3.04 (effective number of neutrinos).

The fiducial value of Ωνh
2 corresponds to

∑

mν =
94 Ωνh

2eV = 0.17 eV. For the inverted hierarchy, this
value for the sum of neutrino masses actually implies 2
mass eigenstates with masses about 0.065 eV each and a
lighter eigenstate. We have approximated this as 2 mas-
sive neutrino eigenstates (with masses 0.085 eV each) and
one massless neutrino eigenstate. We included the frac-
tion of

∑

mν in one of the two massive eigenstates as
a parameter fν1 but found that the Fisher matrix con-
straint on that fraction to be ∼ 1/2 with all the cosmo-
logical probes and parameters included. Therefore, our
results are not expected to change if, for example, we
split

∑

mν among 3 mass eigenstates. For brevity, we
do not show this fraction parameter in the tables and
figures. Even though cosmology is primarily sensitive to
the sum of neutrino mass eigenstates, it can probe the
neutrino mass hierarchy in the sense that if the sum of
the neutrino mass is below 0.095 eV (see Fig. 11), then
the normal hierarchy is the only solution [37].

It is important to note that our cosmological model
above includes information about reionization only
through the optical depth. This is sufficient if reioniza-
tion happens rapidly enough compared to the age of the
universe during reionization. However, the reionization
process could be more gradual or more complicated (for
example, occur in two stages) and this would manifest
itself in a range of effects on the large-angle CMB po-
larization even when the optical depth is fixed [38]. As
a result, the estimate of how well τ can be measured is
dependent on the features of global reionization [38–40].

The constraint on τ determines how well the ampli-
tude of the primordial power spectrum is measured such
that σ(∆2

R)/∆
2
R = 2σ(τ), where σ(X) denotes the un-

certainty in parameter X . For constraints on parame-
ters such as neutrino mass, the knowledge of the overall
power spectrum normalization is important [19]. Here,
we test the effect that including a detailed reionization
model would have by imposing a floor on τ as advocated
in Refs. [19, 39, 40]. The main results we quote in this
paper, however, assume a sharp reionization scenario be-
cause our main aim is to see how adding different probes
helps break degeneracies in the presence of an unknown
dark energy component at high redshift.

We describe our method to include early dark energy
in Section 2, reviewing the nonlinear matter power spec-
trum, weak lensing power spectrum, galaxy power spec-
trum, SN distances, and the CMB. In Section 3, we pro-
vide prospective early dark energy and sum of neutrino
mass constraints (and potential biases) obtained from a
joint analysis of these probes, based on a Fisher matrix
prescription. Section 4 concludes with a discussion of our
findings.
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FIG. 1. Energy density (top) and equation of state (bottom)
of early dark energy and a cosmological constant. At low
redshifts the EDE mimics a dark energy component with the
same density and EOS at present, and decouples after red-
shifts of a few, the exact redshift depending on the size of the
EDE fraction Ωe.

II. METHODOLOGY

We begin with an overview of our calculation. We
briefly describe the EDE cosmological model, and then
discuss the relevant observational variables.

A. Early Dark Energy

Early dark energy changes the expansion rate and
hence cosmological distances. It also changes the growth
of density fluctuations in the universe and hence the mat-
ter power spectrum [16].
We begin by expressing the expansion rate of the uni-

verse in terms of the dark energy density Ωd(z) (in units
of the critical density) as

H(z) = H0

√

Ωr(1 + z)4 +Ωm(1 + z)3 +Ωk(1 + z)2

1− Ωd(z)
,

(1)
where H0 = 100 h km s−1 Mpc−1 is the Hubble constant,
and {Ωr,Ωm,Ωk} are the present radiation, matter, and
curvature densities in units of the critical density. The
present matter density is further composed of the densi-
ties of the cold dark matter, baryons, and massive neutri-
nos (Ωm = Ωc +Ωb +Ων). The evolution of dark energy
is conventionally expressed as a function of its equation
of state (EOS), w(z),

Ωd(z) =
Ωd0H

2
0

H2(z)
exp

(

3

∫ z

0

dz
1 + w(z)

1 + z

)

, (2)

where Ωd0 = Ωd(0) is the present density of the dark
energy.

A uniform and constant vacuum density (w = −1) is
simple but suffers from the well-known coincidence prob-
lem. The value of the dark energy density has to be
fine-tuned so that it only affects the dynamics of the uni-
verse at present. This coincidence problem motivates the
exploration of solutions other than ΛCDM (e.g. [10, 41]).
Among the possibilities that allow for w > −1 are models
in which the evolution of the dark energy density is such
that it is large enough to affect the universal dynamics
even at z > 2. They may even alleviate the coincidence
problem [16, 42].
A realization of early dark energy is given by

the ”tracker” parameterization of Doran & Robbers
(2006) [18], where the dark energy tracks the dominant
component in the universe. For this case, it is simpler to
parameterize the dark energy density evolution directly,
rather than express it in terms of an evolving equation of
state. We use a modified form of the Doran and Robbers
(2006) [18] parameterization that tracks the equation of
state of the dominant energy, as shown in Fig. 1,

Ωd(z) = Ωd0
(1 + z)3+3w0

h2
w(z)

+ Ωev(z)

(

1− (1 + z)3+3w0

h2
w(z)

)

, (3)

h2
w(z) = Ωd0(1 + z)3+3w0 +Ωm(1 + z)3

+ Ωr(1 + z)4 +Ωk(1 + z)2,

where w0 = w(0). The function v(z) should have the
properties that it asymptotes to unity at large redshift
and v(0) = 0, thus ensuring that Ωd(z) asymptotes to Ωe

at large redshift and Ωd(0) = Ωd0. We use v(z) = 1 −
(1+z)3w0 [18], but any other parameterization such that
d ln(v)/d ln(z) = O(1) will give similar results. Note that
the first term proportional to Ωd0 is dark energy density
as a function of redshift for a model with present density
of dark energy Ωd0 and constant EOS w0. Thus, in this
parameterization with early dark energy, the effect at low
redshift is the same as a model with constant EOS model
w0 and density Ωd0. Quantitatively, the Ωe term (“early
dark energy”) in Eqn. 3 constitutes [0, 2.1, 8.0, 17.7]% at
redshifts z = [0, 1, 2, 3] respectively of the overall amount
of dark energy Ωd(z) for w = −1 and Ωe = 0.01.
We may compute the EOS using the expression w(z) =

−1 + (1+z)
z

d ln[Ωd(z)H
2(z)]

3 d ln z . At z=0, w(z) = w0 and in-
creases with z, tending to 0 if the dominant component
of energy density is due to pressureless matter and an
example of this behavior is shown in Fig. 1.

B. Matter Power Spectrum

Given a particular parameterization of the EOS, the
growth history depends on the underlying microphysical
model for dark energy. In this paper, we will assume
that the underlying model is a single scalar field. Then
each Ωd(z) or equivalently w(z) can be connected to an
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FIG. 2. Matter power spectrum P (k) ((Mpc/h)3) against
wavenumber k (h/Mpc) at z = [0, 1, 5, 10] (high to low) in four
distinct cosmologies: ΛCDM (dotted black), wCDM (dashed
red, w0 = −0.9 and Ωe = 0), ΛCDM with massive neutrinos
(solid green,

∑
mν = 0.3 eV), and a CDM universe with EDE

(dot-dashed blue, Ωe = 0.05, w0 = −1).

underlying scalar field potential and equations for per-
turbations in matter, radiation and dark energy may be
written down (e.g. [8, 43, 44].) This allows the calcula-
tion of the growth of matter perturbations. In order to
correctly calculate the linear matter power spectrum, we
numerically solve the Boltzmann equations with a modi-
fied version of CAMB [79]. We approximate the effect of
an EDE component on the linear matter power spectrum
by use of the PPF module by W. Fang [45, 46].
We extend this power spectrum to nonlinear scales

by calculating the appropriate effective spectral index,
effective spectral curvature, and nonlinear scale, and
employing the fitting functions provided in Smith et
al. (2001) [47]. The underlying cosmology in the Smith et
al. fitting function manifests itself in two distinct ways.
First, cosmology impacts the evolution of the matter den-
sity, Ωm(z), and the evolution of the growth of matter
perturbations, D(z). The cosmology then fixes the func-
tional form and coefficients associated with the fitting
functions, which are fine-tuned to a suite of ΛCDM N-
body simulations.
Thus, whereas an arbitrary dark energy EOS could

leave its imprint on the nonlinear matter power spectrum
via its influence on Ωm(z) and D(z), the cosmological
dependence of the N-body fitting functions remain fine-
tuned to a w ≡ −1 dark energy EOS. For this reason, the
nonlinear solution for a non-ΛCDM cosmology is only ap-
proximate, and studies have shown that it could lead to
an underestimation of dark energy constraints: for exam-
ple, in prospective weak lensing measurements by factor
of two [48, 49]. Our use of this nonlinear extension could
also underestimate the suppression of the matter power
spectrum on small scales due to massive neutrinos (e.g.
Ref [50]). Our constraints on neutrino mass, in particular
from weak lensing, may therefore be conservative. Fur-
ther work is needed to quantify this effect to the level of

precision required for the next-generation telescopes con-
sidered in this paper (however, also see Refs. [51–53]).
Fig. 2 illustrates the matter power spectrum in four

distinct cosmologies: ΛCDM, wCDM, ΛCDM with mas-
sive neutrinos, and a CDM universe with EDE. The in-
clusion of massive neutrinos induces a suppression of the
matter power spectrum on scales below the free stream-
ing length and this is, to an extent, degenerate with the
suppression introduced by early dark energy. The sup-
pression due to the presence of early dark energy is ev-
ident in Fig. 2 and is a result of the fact that the uni-
verse is expanding faster compared to a model with no
early dark energy. The present (Ωd0) and early (Ωe 6= 0)
dark energy densities are further degenerate with the
present DE equation of state w0. A combination of large
and small scale probes are therefore needed to break
the degeneracy between these cosmological parameters
(mν ,Ωd0, w0,Ωe) [23, 31, 36, 54].

C. Weak Lensing Tomography

The images of distant galaxies are gravitationally
lensed by matter inhomogeneities along the line-of-sight.
In the weak lensing regime these percent-level magnifi-
cations and shape distortions of galaxies need to be ana-
lyzed statistically (see [55, 56] for a review). By extract-
ing the shear power spectrum of weakly lensed sources
[57–65], the nature of the dark energy has been con-
strained with lensing surveys [58, 59]. An important as-
pect is that the lensing power spectrum depends on both
the lensing kernel and the growth of perturbations, mak-
ing lensing the most powerful probe of the underlying
cosmology [66].
We employ weak lensing tomography, as this provides

information about the redshift distribution of the in-
tervening lenses, and thereby allows for more stringent
constraints on cosmological parameters [67, 68]. We
work within the Born approximation [69–71] to compute
the lensing potential (weighted projection of the three-
dimensional gravitational potential [72, 73]):

φi(n̂) =

∫ zmax

0

dzK(z)ζκi (z)Φ(n̂, z), (4)

where K(z) ≡ H(z)dχ/dz = 1 in a flat universe. The
lensing weight function (see Fig. 3) of the ith tomographic
bin is given by

ζκi (z) =
−2H−1(z)

n̄iχ(z)

∫ zi+1

max(z,zi)

dzs
X(z, zs)ρ(zs)

χ(zs)
, (5)

X(zo, zs) =
H−1

0
√

|Ωk|
Sk

(

√

|Ωk|
∫ zs

zo

dz′
H0

H(z′)

)

, (6)

where X(zo, zs) is the comoving distance to object at
redshift zs measured by observer at redshift zo, such that
χ(z) ≡ X(0, z), and Sk(x) = [sin(x), sinh(x), x] for a
[closed, open, flat] universe, respectively. We set ζκi (z) =
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FIG. 3. Redshift dependent geometric weight
Wij(z) = 9

16
(ΩmH2

0 )
2H(z)χ7/2(z)ζκi (z)ζ

κ
j (z) (see text

following Eqn. 13) of CMB weak lensing (CMBL) and
tomographic low redshift weak lensing bins for a flat CDM
model with Ωe = 0.1 and w0 = −1.0. For CMB lensing
and the fifth tomographic bin we also plot the kernel for
Ωe = 0. The lensing kernel captures approximately the
redshift dependence of the integrand for the lensing power
spectrum (including that from the matter power spectrum).
The diminishment of the kernels for Ωe > 0 stems from the
increase of H(z) with increasing Ωe.

0 explicitly if z > zi+1. The quantity ρ(zs) contains the
source galaxy distribution, the integral over which is n̄i

(see Sec. III A). For the lensing of the CMB photons, we
replace the galaxy source distribution with a δ-function
at the last scattering surface.
The cross correlation of the respective Fourier coeffi-

cients at angular multipoles l and l
′ is given by

〈φ∗
i (l)φj(l

′)〉 = (2π)2δD(l− l
′)Cφφ

ij (ℓ) (7)

in the flat sky limit, which through the Limber approxi-
mation reduces to [73–75]:

Cφφ
ij (ℓ) =

∫ zmax

0

dzK(z)ζκi (z)ζ
κ
j (z)

H(z)

χ2(z)
PΦΦ (k, z) .

(8)
This projected spectrum remains the same in the all sky
formulation [72].
To find the relation between the power spectrum

of the potential (PΦΦ(k, z)) and matter perturbations
(Pδδ(k, z)) on sub-horizon scales, we use the Poisson
equation in Fourier space,

Φ(k, z) = −3

2
Ωm

(

H0

k

)2

δ(k, z)(1 + z). (9)

Accounting for the definition of two-point correlations
of the potential and density fields:

〈Φ∗(k, z)Φ(k′, z)〉 = (2π)3δD(k− k
′)PΦΦ(k, z),

〈δ∗(k, z)δ(k′, z)〉 = (2π)3δD(k− k
′)Pδδ(k, z), (10)

we obtain the power spectrum of the potential in terms
of the power spectrum of density fluctuations as

PΦΦ(k, z) =
9

4
Ω2

m(1 + z)2
(

H0

k

)4

Pδδ(k, z). (11)

Reexpressing the power spectrum of the matter as a di-
mensionless quantity,

∆2
δδ(k, z) = k3Pδδ(k, z)/(2π

2), (12)

the spectrum of the convergence field, Cκκ
ℓ = (1/4)ℓ2(ℓ+

1)2Cφφ
ℓ , is given by:

Cκκ
ij (ℓ) = Aκκ

ℓ

∫ zmax

0

dzK(z)ζκi (z)ζ
κ
j (z) × (13)

(1 + z)2H(z)χ5(z)∆2
δδ

(

ℓ+ 1/2

χ(z)
, z

)

,

where the density and scale dependent amplitude
Aκκ

ℓ = (9π2/8)(ΩmH2
0 )

2ℓ2(ℓ+ 1)2 (ℓ+ 1/2)
−7

, and
∆2

δδ(ℓ/χ(z), z) encapsulates the full nonlinear dark mat-
ter power spectrum. We construct a geometric weight
Wij(z) that approximately captures the contribution to
the convergence power spectrum from different redshifts
for a broad range of multipoles by removing a factor of
(1+z)2χ3/2(z) from the integrand in Eqn 13. This results
in Wij(z) = 9

16 (ΩmH2
0 )

2H(z)χ7/2(z)ζκi (z)ζ
κ
j (z). The

reason this approximation takes into account the red-
shift contribution to the convergence power spectrum is
that the matter power spectrum ∆2

δδ(k, z) scales roughly

like k3/2 for scales O(0.1/Mpc). We plot this geomet-
ric weight Wij(z) in Fig. 3, and this shows that most of
the contribution to low redshift weak lensing comes from
z ≈ 0.5, and in the case of CMB weak lensing z ≈ 1.
Fig. 4 further illustrates the effect of varying the dark

energy and other parameters on the correlation function
in the third tomographic bin. The shapes are roughly the
same across the other bins. The similarity in the shapes
of the variation due to early dark energy and sum of
neutrino masses implies that there will be a degradation
in the constraints on the sum of neutrino masses due to
the addition of early dark energy.

D. Galaxy Angular Power Spectrum

The galaxy-galaxy angular power spectrum Cgg(ℓ) can
be obtained analogously to the derivation of Cφφ(ℓ) in
Eqn. 8. The two-dimensional projection of the three-
dimensional biased tracer of the density field δg(n̂, z) is

gi(n̂) =

∫ zmax

0

dzK(z)ζgi (z)δ
g(n̂, z). (14)

From 〈g∗(k, z)g(k′, z)〉 = (2π)3δD(k − k
′)Pgg(k, z), we

thereby obtain the projected galaxy power spectrum in
the Limber approximation:

Cgg
ij (ℓ) =

∫ zmax

0

dzK(z)ζgi (z)ζ
g
j (z)

H(z)

χ2(z)
Pgg(k, z), (15)
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FIG. 4. Left: Top: Convergence power spectra ℓ(ℓ+ 1)Cκκ
ij /2π for the case of five tomographic bins in the fiducial cosmology.

We include the expected noise for LSST as a band about the curve. Mid: Logarithmic derivative d lnCκκ
ij /d ln pk of the

convergence power spectrum with cosmological parameters pk for the third tomographic bin (i = j = 3). The derivatives of the
other tomographic bins have similar shapes. Bottom: The sub-window zooms in on the logarithmic derivatives with sum of
neutrino masses (dotted blue) and EDE density (dot-dot-dashed red). Right: Same as Left but for galaxy power spectra. The
noise contribution (both LSST and JDEM) is at most on sub-percent level and decreases towards smaller scales, as the noise
is constant with scale whereas Cgg

ℓ increases with scale. This is to be contrasted with lensing tomography where Cκκ
ℓ peaks at

around ℓ = 10 and thereafter decreases continuously.

where the weights for zi < z < zi+1 are

ζgi (z) = ρ(z)/n̄i, (16)

and ζgi (z) = 0 if z /∈ (zi, zi+1). As a result, only the auto-
correlations survive the integral. In the linear regime, the
three-dimensional galaxy power spectrum, Pgg(k, z), is

related to the matter power spectrum via the bias b(k, z):

Cgg
ij (ℓ) = Agg

ℓ

∫ zmax

0

dzK(z)ζgi (z)ζ
g
j (z) (17)

× H(z)χ(z)b2(k, z)∆2
δδ

(

ℓ+ 1/2

χ(z)
, z

)

,
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 TT derivative
 EE derivative
κcκc derivative

FIG. 5. Left: Top: Tomographic galaxy-lensing correlations ℓ(ℓ + 1)Cκg
ij /2π. Here we only illustrate a subset of cases where

galaxy and lensing bins fully overlap. Mid: Logarithmic derivatives of the power spectra d lnCκg
ij /d ln pk with parameters pk

for the third tomographic bin in both galaxy and lensing (similar characteristics for other bins). Bottom: Zooming in on the
derivatives with EDE density and sum of neutrino masses. Right: Logarithmic derivatives of the CMB temperature (solid
black), E-mode (dashed blue), and lensing potential (dotted red) power spectra with cosmology.

where amplitude Agg
ℓ = 2π2 (ℓ+ 1/2)−3. Restricting the

analysis to largely linear scales (see Table II), we include
a time-varying linear bias by the first-order expansion
b(z) = b0 + b1z. A Gaussian prior of 10% is applied to
these two bias parameters [76, 77], and the fiducial values
are set to [b0, b1] = [1.0, 0.8] [78].

E. Galaxy-Lensing Correlation

The cross-correlation of the source galaxy distribution
and the weak lensing convergence is:

Cgφ
ij (ℓ) =

∫ zmax

0

dzK(z)ζgi (z)ζ
φ
j (z)

H(z)

χ2(z)
PgΦ(k, z).

(18)
Correlations between tomographic bins where the galaxy
bin lies behind the lensing bin are zero (resulting in 15
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FIG. 6. Left: Top: Correlations between weak lensing of the CMB and low-redshift sources ℓ(ℓ + 1)Cκcκ
i /2π for three of the

five tomographic bins. Mid: Logarithmic derivatives of the power spectrum d lnCκcκ
i /d ln pk with parameters pk for the third

tomographic bin (similar characteristics for other bins). Bottom: Zoom on derivatives with EDE density and sum of neutrino
masses. Right: Same as Left but for correlations between galaxy tomography and lensing of the CMB.

out of 25 non-zero correlations). The power spectrum of
galaxy and potential perturbations may be written as:

PgΦ(k, z) =
3

2

Ωm

a(z)

(

H0

k

)2

b(k, z)rc(k, z)Pδδ(k, z), (19)

where we have introduced the correlation coeffi-
cient rc defined through the relation P 2

gδ(k, z) =

r2c (k, z)Pgg(k, z)Pδδ(k, z). Then, using Cgκ
ℓ = −ℓ(ℓ +

1)Cgφ
ℓ /2, we may write the angular power spectrum for

galaxy and weak lensing correlation as:

Cgκ
ij (ℓ) = Agκ

ℓ

∫ zmax

0

dzK(z)ζgi (z)ζ
κ
j (z) × (20)

(1 + z)H(z)χ3(z)b(k, z)rc(k, z)∆
2
δδ

(

ℓ+ 1/2

χ(z)
, z

)

,

where we have defined Agκ
ℓ = −(3π2/2)(ΩmH2

0 )ℓ(ℓ +
1)(ℓ + 1/2)−5. Restricting the analysis to linear scales,
we fix rc ≡ 1 in our calculations.
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FIG. 7. Left: Top: ISW-WL correlations −ℓ(ℓ+1)CκT
i /2π for three of the five tomographic bins. Mid: Logarithmic derivatives

of the power spectrum d lnCκT
i /d ln pk with parameters pk for the third bin (similar characteristics for other bins). Bottom:

Zoom on the EDE and neutrino mass derivatives. Right: Same as Left but for ISW-galaxy correlations.

F. Cosmic Microwave Background (T , E, κc)

We consider CMB information from the temperature
field (T ), E-mode polarization (E), and weak lensing of
the CMB (κc). The temperature and E-mode polariza-
tion power spectra (and their cross-correlation) are ob-
tained from a modified version of the Boltzmann code
CAMB [79].

As for lensing of the CMB photons [68, 80, 81] (also
see Refs. [82, 83] for detections of the lensing power spec-

trum), we calculate it in the same manner as in Eqn. 13
with the source constrained to be at the redshift of de-
coupling (zdec), such that

ζκc(z) =
−2

H(z)χ(z)

χ(x(zdec)− x(z))

χ(zdec)
. (21)

Hence, aside from ζκi (z)ζ
κ
j (z) → ζκc(z)ζκc(z) (and

zmax = zdec), Cκcκc(ℓ) has the same functional form
as Cκκ

ij (ℓ). Similarly, the cross-correlation spectrum
Cκκc

i (ℓ) has the same form as Cκκ
ij (ℓ) with the substitu-
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tion ζκj (z) → ζκc(z), and we obtain Cgκc

i (ℓ) by replacing

ζκj (z) with ζκc(z) in Cgκ
ij (ℓ).

In Figure 5 we show the logarithmic derivatives of the
CMB temperature, E-mode, and lensing potential power
spectra with cosmological parameters. In particular, it
is evident that both CMB temperature and lensing mea-
surements of the early and late universe are necessary
to break the degeneracies between early dark energy and
sum of neutrino masses.

G. ISW-Lensing Correlation

We consider five distinct lensing cross-correlations: the
first is that of weak lensing in redshift bins (i) with the
lensing of the CMB photons, Cκκc

i (ℓ); the second is that
of galaxy counts in redshift bins (i) with the lensing of
the CMB photons, Cgκc

i (ℓ); the third is that of galaxy
counts in redshift bins (i) with weak lensing in redshift
bins (j), Cgκ

ij (ℓ); the fourth is that of weak lensing in red-

shift bins (i) with the unlensed temperature, CκT
i (ℓ); and

the fifth is that of lensing of CMB photons with the un-
lensed temperature, CκcT (ℓ). Having already described
the first three correlations, we here discuss the last two
correlations that arise due to the Integrated Sachs Wolfe
(ISW) effect [84–87].
The perturbations in the CMB temperature due to the

late-time gravitational redshifting of the photons is en-
capsulated in [72]

∆T ISW(n̂)

T
=

∫ zls

0

dzK(z)ζT (z)Φ̇(n̂, z), (22)

where the overdot denotes a derivative with time t, and
the ISW weight is

ζT (z) =
2

(1 + z)H(z)
. (23)

The cross spectrum of the respective Fourier coefficients
is given by

1

T
〈φ∗

i (l)∆T (l′)〉 = (2π)2δD(l − l
′)CφT

i (ℓ), (24)

which via the Limber approximation reduces to

CφT
i (ℓ) =

∫ zmax

0

dzK(z)ζκi (z)ζ
T (z)

H(z)

χ2(z)
PΦΦ̇(k, z).

(25)
To find PΦΦ̇(k, z), the time derivative of the potential

Φ̇(k, z) =
3

2

Ωm

(1 + z)−1

(

H0

k

)2(
δ(k, z)

H−1(z)
− δ̇(k, z)

)

,

(26)
and hence

PΦΦ̇(k, z) =
9

4

Ω2
m

(1 + z)−2

(

H0

k

)4(

Pδδ̇ −
Pδδ

H−1(z)

)

.

(27)

To compute Pδδ̇, we note that in the linear regime Pδδ̇ =
1
2

∂
∂tPδδ. This relation has been numerically verified to

hold in the nonlinear regime up to ℓ = 5000 [88]. Hence,
we adopt this relation so that

PΦΦ̇(k, z) = −9

4

Ω2
mH(z)

(1 + z)−2

(

H0

k

)4(

1 +
1 + z

2

∂

∂z

)

Pδδ,

(28)
and the resulting κ− T angular power spectrum is then
given by

CκT
i (ℓ) = AκT

ℓ

∫ zmax

0

dzK(z)ζκi (z)ζ
T (z)χ5(z) × (29)

(1 + z)2H2(z)

(

1 +
1 + z

2

∂

∂z

)

∆2
δδ

(

ℓ+ 1/2

χ(z)
, z

)

,

where the amplitude AκT
ℓ = (ℓ(ℓ+ 1)/2)

−1
Aκκ

ℓ =

(9π2/4)
(

ΩmH2
0

)2
ℓ(ℓ+ 1)(ℓ + 1/2)−7. As the derivative

∣

∣

1+z
2

∂
∂z∆

2
δδ

∣

∣ < ∆2
δδ, and the lensing weight contains a

negative sign, it follows that CκT
i (ℓ) < 0. We obtain

CκcT (ℓ) by replacing ζκi (z) with ζκc(z) in the above equa-
tion.

H. ISW-Galaxy Correlation

To obtain the ISW-galaxy correlation,

CgT
i (ℓ) =

∫ zmax

0

dzK(z)ζgi (z)ζ
T (z)

H(z)

χ2(z)
PgΦ̇(k, z),

(30)
we follow the same steps as for the ISW-lensing correla-
tion and obtain

PgΦ̇(k, z) =
3

2

Ωm

a(z)

(

H0

k

)2

b(k, z)rc(k, z) (31)

×
(

H(z)Pδδ(k, z)− Pδδ̇(k, z)
)

.

We thereby find the projected spectrum

CgT
i (ℓ) = AgT

ℓ

∫ zmax

0

dzK(z)ζgi (z)ζ
T (z) (32)

× (1 + z)H2(z)χ3(z)b(k, z)rc(k, z)

×
(

1 +
1 + z

2

∂

∂z

)

∆2
δδ

(

ℓ+ 1/2

χ(z)
, z

)

,

where amplitude AgT
ℓ = −3π2(ΩmH2

0 )(ℓ+ 1/2)
−5

.

I. Supernovae

We include the supernovae distances in our analysis
for their ability to constrain the expansion history of the
low-redshift universe [89]. The observable quantity is the
apparent magnitude:

m = 5 log10

(

(1 + z)χ(z)

Mpc

)

+ 25 +M, (33)
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where M is the absolute magnitude, and we marginalize
over it around the fiducial value of Mfid = −19.3 with
a Gaussian prior of 0.6. This is equivalent to treating
the distance modulus µ(z) = m(z) − M as the observ-
able, and adding to that the nuisance parameterM. The
fisher matrix of the prospective supernova measurements
is then

F SN
αβ =

1

σ2
m

∫ zmax

0

dzN(z)
∂m

∂pα

∂m

∂pβ
, (34)

where σm is the measurement uncertainty, N(z) is the
redshift distribution of the SNe, zmax is the redshift of
the farthest SN, and p represents the cosmological pa-
rameters.
Although, we do not expect a strong measurement of

EDE from SNe, we will see that it does help in break-
ing some of the degeneracies in the parameters of the
background cosmology, in particular the dark energy at
the present epoch. To this end, we uniformly distribute
a set of 300 SNe at z < 0.1 [66, 90]. For the space-
based JDEM survey, we add 2000 SNe in the range
0.1 < z < 1.7 [91], whereas for the LSST survey we
distribute 3.0 × 105 SNe (corresponding to six years of
data) between 0.1 < z < 0.8 [92]. For each supernova
we take the intrinsic noise to be Gaussian in magnitude
with σint = 0.1 [93]. We divide the Hubble diagram for
z > 0.1 into 50 redshift bins, and associate each bin with
a redshift-dependent systematic error floor of magnitude

δm(z) = 0.01(0.1/∆z)1/2(1.7/zmax)(1 + z)/2.7, (35)

where ∆z is the width of the relevant redshift bin [94].
For the ground-based LSST survey, we allow for photo-
metric uncertainties of the form

σz =
σF (1 + z)√

Nc

, (36)

where Nc = 100 is the number of spectra used in the
photo-z calibration in each bin, and σF = 0.01. As-
suming no correlation between bins, the total magnitude
uncertainty is thereby quantified via

σm(z) =

√

1

Nbin
σ2
int +

(

∂m

∂z

)2

σ2
z + δ2m(z), (37)

where Nbin is the number of SNe in each redshift bin,
and σz = 0 for the spectroscopic JDEM survey. The
dominant contribution to the total error comes from the
systematic floor, and the photometric redshift errors turn
significant only for more pessimistic choices of σF .
For a fixed zmax, the SN constraints on the underly-

ing cosmology are robust to variations in the particular
SN redshift distribution of the survey, while this maxi-
mum redshift itself imposes an important limiting factor
on the cosmological constraints [94–97]. Due to the sys-
tematic floor, we find the LSST constraints on the under-
lying cosmology from SNe remain effectively unchanged
after the first year’s data. The existence of a systematic

floor combined with SNe extending to higher redshifts
explain why our JDEM configuration provides stronger
constraints than our LSST configuration when it comes
to SN explorations of dark energy (as shown in Table IV).

III. RESULTS

We next explore the constraints on early dark energy
from future weak lensing, large-scale structure, SN, and
CMB measurements (and all relevant cross-correlations).
We begin by listing the observational properties of these
probes. Then we elaborate on the constraints on the
underlying cosmology of the universe, and the biases in
the cosmological parameters that arise due to a potential
neglect of early dark energy.

A. Survey Properties

We consider Planck [98, 99] for CMB temperature, po-
larization, and lensing measurements, and compare this
to a future mid-cost CMBPol [100, 101] mission (Epic-
2m). For the large-scale structure, weak lensing, and SN
observations, we compare two generic types of surveys:
1) a ”wide” survey, and 2) a ”deep” survey.
For the ”wide” configuration, we consider a survey cov-

ering half of the sky, such as the ground-based Large Syn-
optic Survey Telescope (LSST) [102, 103]. For compar-
ison, for the ”deep” configuration, we consider a survey
covering a tenth of the sky, such as a space-based Joint
Dark Energy Mission (JDEM) candidate like the Super-
Nova Acceleration Probe (SNAP) [91, 104–106]. For
weak lensing and galaxy clustering measurements, be-
yond the sky coverage, we only allow for the number den-
sity of source galaxies to be different between these two
survey configurations (as seen in Table I). For the SNe,
the two survey configurations are different in the number
and redshift extent of observations (as seen in Sec. II I).
We refer to the wide survey as LSST, and the deep sur-
vey as JDEM. Other surveys with similar characteristics
include WFIRST [107, 108] and Euclid [109, 110].
The distribution of source galaxies is divided into

five tomographic redshift bins, as the gain in cosmolog-
ical information diminishes rapidly for more than five
bins [49, 67]. The number density of sources in a square
arcminute in each redshift bin (with boundaries zi < zs <
zi+1) is defined by

n̄i =

∫ zi+1

zi

dzs ρ(zs), (38)

where the redshift distribution of source galaxies is taken
to be of the form [57]:

ρ(zs) = n̄g
zα

2z30
e−(zs/z0)

β

. (39)

We adopt {z0 = 0.5, α = 2, β = 1} [103], appropriate
for LSST [102, 111], normalized such that

∫∞

0
dz ρ(z) =
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Large-Scale Structure Survey Properties

Probe fsky n̄g (arcmin−2) zpeak
√

〈γ2〉 ℓmax No. bins

LSST 0.5 50 1.0 0.22 3000 5

JDEM 0.1 100 1.0 0.22 3000 5

LSST1000 0.5 50 1.0 0.22 1000 5

JDEM1000 0.1 100 1.0 0.22 1000 5

TABLE I. Description of the ground-based (LSST) and space-
based (JDEM) probes. The redshift bins of the source distri-
bution are delimited at [0.75, 1.1, 1.45, 1.95, 3.0], such that
each tomographic bin contains roughly the same number den-
sity of galaxies. The minimum angular multipole ℓmin = 2 (see
text for more details).

n̄g. We use the same distribution to describe our JDEM
source population [91, 104, 105] with a factor of 2 higher
n̄g value (see Table I).
The observed convergence power spectrum, identical

to that of the shear [56], is contaminated by shot noise
due to the finite source density, as well as uncertainty in
the intrinsic shapes of the source galaxies, leading to

C̃κκ
ij (ℓ) =

√

2f−1
sky;κ

2ℓ+ 1

(

Cκκ
ij (ℓ) + δij

〈

γ2
〉

/n̄i

)

, (40)

which assumes that the noise is uncorrelated between to-
mographic bins. Similarly, for the galaxy angular power
spectrum,

C̃gg
ij (ℓ) =

√

2f−1
sky;g

2ℓ+ 1

(

Cgg
ij (ℓ) + δij/n̄i

)

. (41)

We take the intrinsic shape uncertainty of the source

galaxies to be redshift independent:
〈

γ2
〉1/2

= 0.22, in
accordance with expected results for the future ground-
based probe. For simplicity, we keep the same source dis-
tribution and intrinsic shear uncertainty for the surveys
on ground and space, modifying only the source density
to twice that of the ground-based survey, and the width
of the survey to a tenth of the sky. Table I summarizes
the characteristics of the two surveys.
In Figure 4, we plot the power spectrum of the conver-

gence for a subset of the five tomographic bins (with the
redshift divisions listed in the caption of Table I). We
divide the power spectrum by its noise,

∆Cκκ
ij (ℓ) =

√

(

C̃κκ
ii (ℓ)C̃κκ

jj (ℓ) + C̃κκ
ij (ℓ)2

)

/2, (42)

in Figure 8. Whereas cosmic variance dominates the er-
ror on large angular scales, the shot noise is dominant
on small scales. The signal to noise is consistently higher
for the wider LSST than it is for the deeper JDEM. The
larger width of LSST gives strong signal to noise in par-
ticular at low-ℓ, while the greater depth of a JDEM-type
survey makes it increasingly competitive at high-ℓ.
For the weak lensing surveys we analyze multipoles

between ℓ = 2 − 3000 in one case, and multipoles of

i=j=2 LSST
i=j=2 JDEM
i=j=5 LSST
i=j=5 JDEM
i=2, j=5 LSST
i=2, j=5 JDEM

FIG. 8. Weak lensing signal-to-noise Cκκ
ij (ℓ)/∆Cκκ

ij (ℓ) for
combinations of the second and fifth tomographic bins in the
fiducial cosmology, for LSST (thick) and JDEM (thin).

ℓ = 2 − 1000 as a second case. The cutoffs at ℓ =
[1000, 3000] largely avoid non-Gaussianities of the con-
vergence field [112–114], as well as uncertainties from
baryonic physics that increase at larger multipoles [115–
118]. We impose a cutoff in the matter power spectrum
for k > kmax = 10 h/Mpc, which implies that for the
smallest angular scales, ℓmax = [1000, 3000], distances be-
low χ = [100, 300] Mpc/h (or equivalently, redshifts be-
low z ≃ [1/30, 1/10]) are wiped out in the calculation of
the convergence spectrum. Thus, the cutoffs ensure that
scales smaller than k = 10 h/Mpc in the matter power
spectrum are only probed at low redshift, where the num-
ber densities of sources approach zero. Recent hydrody-
namic simulations that include AGN feedback to solve
the overcooling problem have shown these cutoffs may
not be conservative enough unless the baryonic effects in
the power spectrum are precisely modeled [117, 118].
At the other end of the spectrum, we keep all mul-

tipoles down to ℓmin = 2. We incorporate perturba-
tions in the dark energy fluid on these scales. While
a JDEM-type survey is not expected to probe scales be-
low ℓ ∼ 10, we have checked that our extension down to
ℓ = 2 does not significantly affect our results. We use
the Limber approximation [74, 119] for all angular scales
for computational reasons. This will lead to some er-
rors in the constraints but this is not a significant source
of concern because the Limber approximation has been
shown to work better than 3% for ℓ > 20, better than
5% for ℓ > 10, and better than 30% even for ℓ > 2 (see
Fig. 19 of Ref. [120]). For the galaxy surveys we elimi-
nate nearly all nonlinear scales in our analysis by setting

[Cgg
ij , C

gT
i , Cgκ

ij , Cgκc

i ] (ℓ > ℓmax) = 0. The minimum an-
gular scale ℓmax is computed via ℓ ≃ kχ, where we let
χ = χ (zmedian) and approximate, for the redshifts under

consideration, k = kmax (zmedian) ≃ 0.1× (1 + z
3/2
median/2)

[121]. The cutoff scales are listed in Table II.
In the next section (Sec. III B) we will find, as also re-

ported by the Dark Energy Task Force [66], weak lensing
to be strongest future probe of the underlying cosmology
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Nonlinear Cutoffs in Galaxy Surveys

Bin 1 2 3 4 5

zmedian 0.38 0.93 1.3 1.7 2.5

kmax 0.11 0.14 0.17 0.21 0.29

ℓmax 120 320 490 720 1200

TABLE II. We effectively eliminate nonlinear scales
in the constraints from galaxy surveys by setting
[Cgg

ij , C
gT
i , Cgκ

ij , Cgκc

i ] (ℓ > ℓmax) = 0. The minimum an-
gular scale ℓmax is computed via ℓ + 1/2 = kχ, where we
let χ = χ (zmedian) and approximate, for the considered

redshifts, k = kmax (zmedian) ≃ 0.1× (1 + z
3/2
median/2) [121].

CMB Survey Properties

Experiment Channel FWHM ∆T/T × 106 ∆P/T × 106

Planck 100 10 25 40

143 7.1 16 30

217 5.0 24 49

EPIC-2m 100 8.0 0.84 1.19

150 5.0 0.81 1.15

220 3.5 1.24 1.75

TABLE III. Experimental specifications for the Planck and
mid-cost CMBPol (EPIC-2m) missions. The sky fraction
fsky = 0.65, and the angular multipoles extend from ℓmin = 2
to ℓmax = 2000. The channel frequencies are given in GHz,
and the angular resolutions in arcminutes.

of the universe, owing to its sensitivity to both structure
formation and the universal expansion. However, the op-
timism associated with lensing is predicated on overcom-
ing the vast systematic uncertainties in both measure-
ment and in theory [48–50, 67, 69–71, 112, 115, 116, 122–
132]. These systematics include dark energy correc-
tions to the modeling of the nonlinear matter power
spectrum [48–50, 131], higher order correction terms in
the lensing integral (such as due to the Born approxi-
mation and lens-lens coupling [69–71]), and uncertain-
ties of the matter power spectrum on nonlinear scales
due to the strong influence of baryonic physics [115–
118, 129, 130, 132]. Observational systematics include
intrinsic galaxy alignments (e.g. [123–128]), photometric
redshift uncertainties, shear calibration errors, and PSF
anisotropies [67, 122, 126].
Furthermore, the observed ellipticities of weakly lensed

galaxies are sensitive to the reduced shear, g = γ/(1−κ),
where γ is the shear and κ is the convergence. In the
weak lensing regime we make use of the expansion of the
reduced shear to first order in the fields: g ≈ γ. For
future lensing surveys, it has been shown that this ap-
proximation induces a bias on the cosmological param-
eters at the same order as that of the parameter con-
straints [133, 134]. Our main motivation is to elucidate
the degradation in constraints due to EDE and the biases
in the cosmological parameters from neglect of EDE. We
therefore continue with the above mentioned assumption
of the shear as the lensing observable.
Intrinsic galaxy alignments reflect the reality that un-

derlying galaxies that become lensed are not inherently

circularly shaped, but possess a non-trivial intrinsic el-
lipticity (e.g. [123–128]). The assumption that these in-
trinsic ellipticities are uncorrelated with each other and
the gravitational shear breaks down for high-precision
measurements of weak lensing from next-generation ex-
periments. For instance, nearby galaxies that lie in the
same gravitational potential of a massive dark matter
halo will experience the same tidal forces, giving rise to
an intrinsic-intrinsic term [123–128]. Moreover, intrinsic-
shear correlations occur for pairs of galaxies where one
galaxy is correlated with the surrounding density field in
the foreground, thereby contributing to the lensing dis-
tortion of the background galaxy [123–128].

While intrinsic ellipticity correlations can be controlled
by downweighting close galaxy pairs from the analy-
sis [135–137], the removal of shear-ellipticity correlations
is more difficult [123–128, 138–140]. Ref. [124] has shown
that the dark energy EOS may be biased by 50% if intrin-
sic alignments are not accounted for in next-generation
weak lensing experiments. The presence of intrinsic
alignments also tighten the requirements on photomet-
ric redshift uncertainties by a factor of three, regard-
less of the fraction of catastrophic outliers [124]. Sug-
gested approaches to avoid these degradations include
halo modeling [128] and nulling techniques [139]. Al-
ternatively, the systematic may be self-calibrated for an
extended set of observables that can correlate with the
weak lensing shear and intrinsic alignment signals, such
as galaxy clustering and lensing magnification [125, 140]
(also see [126]).

The effects of multiplicative and additive uncertain-
ties in the convergence (e.g. from shear miscalibration
and PSF anisotropies, respectively) on the measurement
of dark energy are influenced by the corresponding pri-
ors. As shown in Ref. [122] (also see Refs. [49, 114]),
the cosmological parameter constraints are compromised
for multiplicative systematics at the 1% level, and mean
additive shear systematics at the 10−5 level. The situa-
tion is analogous for the uncertainty in the photometric
redshift distribution of the sources, where the parame-
ter constraints from lensing are either heavily influenced
(∼> 1% prior) or minimally influenced (∼< 0.1% prior)
by the photometric uncertainties [49, 67, 122]. Fortu-
nately, it has been shown that a complementary spec-
troscopic sample of 104 − 105 galaxies efficiently pro-
tects against photometric redshift errors as well as catas-
trophic outliers [141], whereas alternative methods may
even satisfy the systematic requirements from photome-
try alone [142, 143].

Thus, in this work, we will assume that these system-
atic difficulties have been largely overcome with minimal
influence on the constraints by the time the data from
the considered next-generation lensing probes are ana-
lyzed. At the same time, we are not incorporating further
statistics that can be extracted from weak lensing, such
as that included in the bispectrum [144–147], or utilizing
the complementarity between measurements of shear and
magnification [125, 149].
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We end this section with a summary of the CMB tem-
perature, polarization and lensing noise properties. The
effective experimental noise power spectrum associated
with the temperature and polarization fields is given by
a summation over the number of channels,

Naa(ℓ) =

[

Nchan
∑

i=1

((

∆a

T

)

i

el(l+1)θi/16 ln 2

)−2
]−1

,(43)

where ∆a is the detector noise for a ∈ (T,E), θ denotes
the beam FWHM, and we assume NTE(ℓ) = 0. The
optimal noise power spectrum of a quadratic estimator
of the convergence field is given by [150, 151]

Nκcκc(ℓ) =

[

∑

l1l2

(CTT
l2

Fl1ll2 + CTT
l1

Fl2ll1)
2

2(CT̃ T̃
l1

+N T̃ T̃
l1

)(CT̃ T̃
l2

+N T̃ T̃
l2

)

]−1

× (l(l + 1)/2)2(2l + 1), (44)

where T̃ denotes the lensed temperature, and

Fl1ll2 =

√

(2l1 + 1)(2l+ 1)(2l2 + 1)

4π

(

l1 l l2
0 0 0

)

× 1

2
[l(l + 1) + l2(l2 + 1)− l1(l1 + 1)], (45)

where the quantity in brackets is the Wigner-3j symbol.
Finally, we define

C̃ab(ℓ) =

√

2f−1
sky;cmb

2ℓ+ 1

(

Cab(ℓ) + δabN
ab(ℓ)

)

, (46)

where {a, b} ∈ {T,E, κc}. Values for the considered
CMB experiments are given in Table III. Secondary non-
Gaussianities in the covariance from the trispectrum (due
to weak lensing, the ISW effect, and the SZ effect) have
been shown to degrade the Planck and EPIC parame-
ter constraints by 20% and 30% [152, 154] respectively;
however, their full account lies beyond the scope of this
work.

B. Comprehensive Parameter Forecasts

In previous sections we explored the qualitative influ-
ence of EDE on the lensing, galaxy, supernova, and CMB
observables, via its impact on the expansion rate and
matter power spectrum. We now examine how these cor-
rections quantitatively affect the combined constraints of
the dark energy. To this end, we utilize a Fisher matrix
formalism [75, 155]:

F total
αβ =

∑

ℓ

∆ℓ × Tr

[

C̃
−1
ℓ

∂Cℓ

∂pα
C̃

−1
ℓ

∂Cℓ

∂pβ

]

+ F SN
αβ , (47)

where the decoupled SN fisher matrix is defined in
Eqn. 34, and for the combined observational analysis the

symmetric matrix

Cℓ =
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, (48)

such that {κ} consists of the spectra from five tomo-
graphic bins (κ1, κ2, κ3, κ4, κ5) and {g} consists of the
spectra from five tomographic bins (g1, g2, g3, g4, g5).

C
{κ}{κ}
ℓ , C

{g}{g}
ℓ , C

{κ}{g}
ℓ are therefore 5×5 submatrices,

and C
{κ}κc

ℓ , C
{κ}T
ℓ , C

{g}κc

ℓ , C
{g}T
ℓ are 5× 1 submatrices.

For the terms in Eqn. 47 we carry out two-sided numeri-
cal derivatives with steps of 2% in most parameter values.
We have confirmed the robustness of our results to other
choices of step size.
In Tables IV-X, we illustrate prospective constraints

from Planck/EPIC CMB temperature (T ), E-mode po-
larization (E), lensing (κc), LSST/JDEM weak lens-
ing tomography (κ), galaxy tomography (g), SNe (s),
and their combined impact (including all relevant cross-
correlations shown in Eqn. 48) on the 12 considered cos-
mological parameters (Ωd0, Ωe, Ωch

2, Ωbh
2, Ωk,

∑

mν ,
Neff , w0, ns, dns/d lnk, ∆

2
R, τ).

The contents of our tables are as follows: In Table IV
and Table V we consider only a flat universe, with cur-
vature always considered in the other tables. These ta-
bles present the separate constraints on the underlying
cosmology obtained from the CMB, lensing tomography,
galaxy tomography, and SNe, along with the synergies
attained from a combined analysis of these probes. Ta-
ble V differs from Table IV in that it fixes the early dark
energy density. Table VI differs from Table IV in that it
allows for variation in curvature. In Table X, we present
results where the CMB constraints are derived from a
future experiment like the proposed 2m EPIC [100, 101]
(compare to Table VI). Table VII differs from Table VI
in its neglect of SNe measurements. Lastly, Table IX dif-
fers from Table VI in that we neglect cross-correlations
between the observables (i.e. neglecting all correlations
between T , E, κc, κ, g, except for tomographic cross-
correlations within κ).
We now explore each of these tables in greater detail.

Table IV shows us that the dominant constraint on the
fraction of dark energy at early times is drawn from the
CMB (in particular TT and to some extent Tκc) due
to its deep redshift information. At a value of σ(Ωe) =
8.6×10−3 (Table IV), the Planck CMB temperature and
polarization constraint is within a percent of the critical
density. In general, EDE is best constrained by the CMB,
followed by weak lensing tomography, galaxy tomography
and SNe in that order. For comparison, the low-redshift
lensing constraint from LSST on Ωe is a factor of four
(factor of six for JDEM) weaker than from the CMB. If
we impose a nonlinear cutoff to the convergence spectra
at ℓmax = 1000, the situation becomes more dire, as the
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FIG. 9. Parameter degeneracies with early dark energy density (Ωe) in a flat universe (also see Table IV) for Planck measure-
ments of temperature and CMB lensing spectra [TT, EE, TE, κcκc, κcT] (dot-dashed, black), along with LSST tomographic
weak lensing spectra [κκ] (dotted, blue) and tomographic galaxy spectra [gg] (dashed, turquoise). Constraints from SNe are
too weak to be visible in the shown parameter regions. The error ellipses from the combination of all these probes (including
SNe), incorporating all cross-correlations (see Eqn. 48) is shown as (solid, red) curves.
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Probe w0 Ωd0 Ωe
∑

mν(eV) ns
dns

d ln k
1010∆2

R Ωch2 103Ωbh
2 Neff τ Ωk

P 0.42 0.12 0.0086 0.47 0.0088 0.0085 0.26 0.0032 0.27 0.28 0.0056 —

PK 0.23 0.057 0.0077 0.20 0.0085 0.0081 0.23 0.0031 0.25 0.28 0.0050 —

Pℓ>30K+ σ(τ) 0.23 0.060 0.0080 0.21 0.0085 0.0082 0.44 0.0031 0.25 0.28 0.0097 —

Lκ 0.055 0.0071 0.031 0.25 0.10 0.027 8.3 0.024 9.0 1.1 — —

Jκ 0.088 0.012 0.049 0.38 0.15 0.040 13. 0.035 14. 1.7 — —

Lκ
ℓ<1000

0.072 0.013 0.081 0.38 0.17 0.052 17. 0.049 16. 1.6 — —

Jκℓ<1000
0.13 0.024 0.14 0.67 0.27 0.088 28. 0.077 26. 2.5 — —

Lg 0.099 0.037 0.044 0.30 0.087 0.034 8.5 0.050 12. 2.4 — —

Jg 0.21 0.079 0.078 0.63 0.16 0.061 13. 0.11 26. 5.2 — —

Ls 0.21 0.27 0.59 — — — — 0.16 — — — —

Js 0.045 0.085 0.27 — — — — 0.086 — — — —

PKLκLgLs 0.0081 0.0017 0.0023 0.037 0.0050 0.0020 0.17 0.0011 0.13 0.090 0.0042 —

PKJκJgJs 0.0076 0.0014 0.0024 0.036 0.0052 0.0023 0.18 0.0012 0.14 0.088 0.0044 —

PKLκ
ℓ<1000

Lg
ℓ<1000

Ls 0.0084 0.0018 0.0023 0.039 0.0054 0.0027 0.18 0.0012 0.14 0.099 0.0043 —

PKJκℓ<1000
Jgℓ<1000

Js 0.0078 0.0015 0.0024 0.037 0.0054 0.0035 0.19 0.0014 0.14 0.10 0.0045 —

PKLκLgLs + Ωk 0.0085 0.0019 0.0023 0.038 0.0051 0.0021 0.20 0.0013 0.13 0.090 0.0044 0.00056

PKJκJgJs +Ωk 0.0076 0.0021 0.0025 0.036 0.0055 0.0024 0.19 0.0012 0.14 0.090 0.0045 0.00075

TABLE IV. 1σ uncertainties on cosmological parameters from a combination of probes. P denotes CMB T, E, TE modes
for a Planck survey. K denotes the CMB lensing potential power spectrum and the correlation with the temperature field
for Planck. L denotes an LSST type survey, whereas J denotes a JDEM type survey, and the superscripts κ, g, s, refer
to weak lensing tomography, galaxy tomography, and supernova measurements, respectively. When we combine more than
one probe, all relevant cross-correlations between the selected probes are included. Thus, for the case of PKLκLg, all cross-
correlations between [T,E, κc, κ, g] are included (see Eqn. 48). The subscripts with ℓ < 1000 refer to cutoffs of the respective
auto-correlations (and all related cross-correlations) at ℓ = 1000. At redshifts z = [0, 1, 2, 3] the early dark energy constitutes
[0, 2.1, 8.0, 17.7]% of the overall amount of dark energy (quantified as Ωd(z)− Ωw(z)/Ωd(z) with w = −1 and Ωe = 0.01). For
the case where ℓ < 30 modes in CMB polarization data are excluded, we add a prior of 0.01 on the optical depth.

Probe w0 Ωd0 Ωe
∑

mν(eV) ns
dns

d ln k
1010∆2

R Ωch2 103Ωbh
2 Neff τ Ωk

P− Ωe 0.42 0.11 — 0.46 0.0086 0.0072 0.26 0.0032 0.25 0.24 0.0055 —

PK− Ωe 0.21 0.055 — 0.15 0.0079 0.0066 0.23 0.0030 0.23 0.22 0.0050 —

Pℓ>30K− Ωe + σ(τ) 0.22 0.058 — 0.17 0.0079 0.0066 0.44 0.0030 0.23 0.22 0.0097 —

Lκ −Ωe 0.033 0.0061 — 0.19 0.075 0.018 3.9 0.023 8.1 1.1 — —

Jκ − Ωe 0.053 0.0097 — 0.30 0.12 0.029 6.1 0.034 13. 1.7 — —

Lκ
ℓ<1000

− Ωe 0.050 0.0075 — 0.37 0.13 0.025 6.7 0.049 16. 1.5 — —

Jκℓ<1000
− Ωe 0.083 0.013 — 0.65 0.22 0.044 12. 0.076 26. 2.4 — —

Lg −Ωe 0.096 0.035 — 0.30 0.060 0.017 4.4 0.050 12. 2.2 — —

Jg −Ωe 0.21 0.067 — 0.60 0.13 0.038 8.0 0.11 26. 4.7 — —

Ls −Ωe 0.13 0.057 — — — — — 0.080 — — — —

Js −Ωe 0.042 0.012 — — — — — 0.075 — — — —

PKLκLgLs − Ωe 0.0026 0.0010 — 0.023 0.0039 0.0017 0.16 0.0011 0.13 0.078 0.0040 —

PKJκJgJs −Ωe 0.0031 0.00092 — 0.023 0.0047 0.0023 0.17 0.0012 0.13 0.084 0.0044 —

PKLκ
ℓ<1000

Lg
ℓ<1000

Ls − Ωe 0.0028 0.0012 — 0.024 0.0041 0.0025 0.16 0.0012 0.13 0.084 0.0041 —

PKJκℓ<1000
Jgℓ<1000

Js −Ωe 0.0034 0.00099 — 0.023 0.0050 0.0035 0.17 0.0014 0.14 0.098 0.0044 —

PKLκLgLs + Ωk −Ωe 0.0029 0.0014 — 0.028 0.0039 0.0019 0.18 0.0012 0.13 0.079 0.0041 0.00055

PKJκJgJs +Ωk − Ωe 0.0037 0.0020 — 0.025 0.0049 0.0023 0.18 0.0012 0.14 0.085 0.0044 0.00072

TABLE V. Same as Table IV (Planck CMB), for an EDE fiducial cosmology with Ωe = 0.01 kept fixed.

LSST and JDEM lensing constraints become worse by
another factor of three. Similarly, the galaxy tomography
constraint from LSST on Ωe is a factor of five (factor of
nine for JDEM) weaker than the CMB constraint, and
the LSST SN constraint is a factor of 70 weaker (factor

of 30 for JDEM) than the CMB.

Nevertheless, once the six observables (T , E, κc, κ,
g, s) and all relevant cross-correlations (see Eqns. 47-
48) from Planck (or EPIC) and LSST (or JDEM) are
analyzed in a combined setting, the constraint on Ωe
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Probe w0 Ωd0 Ωe
∑

mν(eV) ns
dns

d ln k
1010∆2

R Ωch2 103Ωbh
2 Neff τ Ωk

P + Ωk 0.43 0.12 0.0087 0.53 0.0090 0.0085 0.26 0.0032 0.27 0.29 0.0056 0.013

PK +Ωk 0.26 0.089 0.0082 0.22 0.0085 0.0081 0.24 0.0031 0.26 0.28 0.0053 0.0073

Pℓ>30K+Ωk + σ(τ) 0.27 0.092 0.0085 0.24 0.0085 0.0082 0.44 0.0031 0.26 0.28 0.0097 0.0075

Lκ + Ωk 0.055 0.014 0.033 0.27 0.11 0.029 8.3 0.025 9.3 1.2 — 0.012

Jκ + Ωk 0.089 0.025 0.055 0.42 0.16 0.045 13. 0.037 14. 1.8 — 0.020

Lκ
ℓ<1000

+Ωk 0.073 0.018 0.083 0.41 0.18 0.062 18. 0.050 16. 1.8 — 0.019

Jκℓ<1000
+Ωk 0.13 0.033 0.14 0.70 0.29 0.10 30. 0.077 26. 2.8 — 0.032

Lg + Ωk 0.20 0.040 0.045 0.34 0.093 0.035 8.5 0.053 12. 3.0 — 0.061

Jg + Ωk 0.39 0.088 0.087 0.67 0.20 0.073 15. 0.12 27. 6.4 — 0.12

Ls + Ωk 0.21 0.27 0.59 — — — — 0.16 — — — 0.013

Js + Ωk 0.046 0.086 0.27 — — — — 0.086 — — — 0.013

PKLκLgLs +Ωk 0.0085 0.0019 0.0023 0.038 0.0051 0.0021 0.20 0.0013 0.13 0.090 0.0044 0.00056

PKJκJgJs + Ωk 0.0076 0.0021 0.0025 0.036 0.0055 0.0024 0.19 0.0012 0.14 0.090 0.0045 0.00075

PKLκ
ℓ<1000

Lg
ℓ<1000

Ls +Ωk 0.0090 0.0022 0.0024 0.040 0.0054 0.0031 0.21 0.0013 0.14 0.10 0.0044 0.00068

PKJκℓ<1000
Jgℓ<1000

Js + Ωk 0.0078 0.0023 0.0025 0.037 0.0059 0.0035 0.20 0.0014 0.15 0.11 0.0045 0.00081

TABLE VI. Same as Table IV (Planck CMB), allowing for Ωk to vary. We include a CMB prior on the curvature for the
SN surveys. For the galaxy measurements alone, the bias parameters defined in Sec. IID as b(z) = b0 + b1z are constrained
to σ{b0, b1} = {0.16, 0.19} for LSST and σ{b0, b1} = {0.34, 0.43} for JDEM. Our 10% prior on these bias parameters (i.e.
σ{b0, b1} = {0.1, 0.08}) therefore improves the constraints on cosmology. When all probes are combined, the bias parameters
are constrained to σ{b0, b1} = {6.7, 3.5} × 10−3 for LSST and σ{b0, b1} = {7.4, 4.6} × 10−3 for JDEM. An imposed 10% prior
is therefore rendered negligible in the multi-probe scenario.

Probe w0 Ωd0 Ωe
∑

mν(eV) ns
dns

d ln k
1010∆2

R Ωch2 103Ωbh
2 Neff τ Ωk

PKLκLg +Ωk 0.0096 0.0021 0.0026 0.040 0.0053 0.0022 0.20 0.0013 0.13 0.092 0.0044 0.00056

PKJκJg + Ωk 0.012 0.0033 0.0032 0.047 0.0056 0.0024 0.19 0.0013 0.14 0.092 0.0045 0.00088

PKLκLg +Ωk − Ωe 0.0029 0.0015 — 0.028 0.0039 0.0019 0.18 0.0012 0.13 0.079 0.0041 0.00056

PKJκJg + Ωk − Ωe 0.0045 0.0025 — 0.026 0.0050 0.0023 0.18 0.0013 0.14 0.085 0.0044 0.00087

PKLκ
ℓ<1000

Lg
ℓ<1000

+Ωk 0.010 0.0024 0.0027 0.042 0.0057 0.0032 0.21 0.0013 0.14 0.10 0.0045 0.00068

PKJκℓ<1000
Jgℓ<1000

+ Ωk 0.012 0.0037 0.0033 0.049 0.0060 0.0036 0.20 0.0014 0.15 0.11 0.0045 0.00098

PKLκ
ℓ<1000

Lg
ℓ<1000

+Ωk − Ωe 0.0030 0.0020 — 0.029 0.0041 0.0031 0.18 0.0013 0.14 0.084 0.0042 0.00066

PKJκℓ<1000
Jgℓ<1000

+ Ωk − Ωe 0.0049 0.0029 — 0.027 0.0053 0.0035 0.19 0.0014 0.15 0.10 0.0044 0.00097

TABLE VII. Same as Table VI, without SNe.

improves by a factor of four over the CMB constraint.
The combined constraints are equally strong regardless
of the choice of LSST or JDEM for the non-CMB ob-
servations (κ, g, s). For a JDEM-like experiment, the
cross-correlations improve the Ωe constraints by a factor
of about 2.

As expected, we find the late-redshift parameters more
strongly constrained by the non-CMB probes. For exam-
ple, in a universe where we allow for the existence of early
dark energy, the LSST weak lensing constraints on the
present DE density (Ωd0) and EOS (w0) of 1% and 6%
are much better than the constraints obtained from just
CMB lensed data of about 7% and 20% on present DE
density and EOS (Table IV). Galaxy tomography mea-
surements with LSST constrain Ωd0 and w0 to 5% and
10%, respectively, whereas the strongest SN constraints
are derived from JDEM, at 10% and 5% for Ωd0 and
w0 respectively. When we combine the probes of lensing
and galaxy tomography, SNe, and CMB, the parameter

constraints improve by a factor of seven in w0 and fac-
tor of four in Ωd0 compared to the constraints from the
strongest single probe, here weak lensing from LSST.

The results of the joint analysis don’t change signifi-
cantly when we relax the assumption of spatial flatness.
The exception to this statement is Ωd0 for JDEM, which
degrades by about a factor of 2 for the case where EDE
density is fixed (see Table V). This is because for JDEM
Ωd0 is most strongly constrained by SNe measurements,
which require a tight bound on the curvature. In the joint
analysis, the curvature density is constrained to 6×10−4

of the critical density, which is an order of magnitude
stronger than solely with the CMB temperature and lens-
ing. The ability to measure curvature down to this level
is an exciting possibility that has been highlighted previ-
ously [156]. Our constraints on the curvature in the joint
analysis, and from combining the CMB exclusively with
galaxies or weak lensing in Fig. VIII, are consistent with
the results in Refs. [156, 157], even with the introduction
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Probe w0 Ωd0 Ωe
∑

mν(eV) ns
dns

d ln k
1010∆2

R Ωch2 103Ωbh
2 Neff τ Ωk

PKLκ +Ωk 0.024 0.0037 0.0040 0.068 0.0069 0.0028 0.22 0.0018 0.19 0.12 0.0048 0.0021

PKJκ +Ωk 0.036 0.0053 0.0054 0.093 0.0073 0.0035 0.23 0.0020 0.20 0.13 0.0049 0.0022

PKLκ +Ωk − Ωe 0.021 0.0030 — 0.047 0.0066 0.0028 0.22 0.0018 0.19 0.11 0.0048 0.0021

PKJκ +Ωk − Ωe 0.034 0.0046 — 0.059 0.0071 0.0034 0.23 0.0019 0.19 0.12 0.0049 0.0022

PKLg +Ωk 0.063 0.016 0.0056 0.078 0.0073 0.0041 0.23 0.0020 0.20 0.14 0.0049 0.0016

PKJg +Ωk 0.11 0.027 0.0064 0.12 0.0076 0.0058 0.23 0.0023 0.22 0.20 0.0049 0.0021

PKLg +Ωk −Ωe 0.059 0.016 — 0.074 0.0072 0.0040 0.23 0.0020 0.20 0.14 0.0049 0.0015

PKJg +Ωk − Ωe 0.098 0.025 — 0.10 0.0073 0.0052 0.23 0.0023 0.21 0.17 0.0049 0.0021

TABLE VIII. Same as Table VI, but only for combinations of CMB with weak lensing power spectrum measurements, and
CMB with galaxy power spectrum measurements.

Probe w0 Ωd0 Ωe
∑

mν(eV) ns
dns

d ln k
1010∆2

R Ωch2 103Ωbh
2 Neff τ Ωk

PKLκLg +Ωk 0.015 0.0030 0.0033 0.054 0.0062 0.0024 0.23 0.0016 0.21 0.11 0.0051 0.0015

PKJκJg + Ωk 0.022 0.0045 0.0047 0.071 0.0073 0.0031 0.24 0.0020 0.24 0.13 0.0053 0.0021

PKLκLgLs + Ωk 0.012 0.0025 0.0029 0.051 0.0059 0.0024 0.23 0.0016 0.20 0.11 0.0051 0.0014

PKJκJgJs +Ωk 0.010 0.0027 0.0038 0.066 0.0069 0.0031 0.24 0.0019 0.23 0.12 0.0053 0.0020

PKLκ
ℓ<1000

Lg
ℓ<1000

+Ωk 0.017 0.0037 0.0037 0.059 0.0066 0.0032 0.23 0.0017 0.20 0.13 0.0052 0.0015

PKJκℓ<1000
Jgℓ<1000

+ Ωk 0.027 0.0063 0.0053 0.082 0.0076 0.0048 0.24 0.0022 0.24 0.18 0.0053 0.0020

PKLκ
ℓ<1000

Lg
ℓ<1000

Ls + Ωk 0.012 0.0029 0.0033 0.056 0.0064 0.0032 0.23 0.0017 0.20 0.13 0.0052 0.0014

PKJκℓ<1000
Jgℓ<1000

Js + Ωk 0.011 0.0030 0.0047 0.079 0.0074 0.0047 0.24 0.0022 0.23 0.18 0.0053 0.0020

PKLκLg +Ωk − Ωe 0.0094 0.0023 — 0.036 0.0048 0.0023 0.22 0.0016 0.19 0.091 0.0050 0.0014

PKJκJg + Ωk − Ωe 0.015 0.0037 — 0.043 0.0066 0.0031 0.24 0.0020 0.23 0.11 0.0053 0.0021

PKLκLgLs + Ωk − Ωe 0.0081 0.0022 — 0.036 0.0048 0.0023 0.22 0.0016 0.19 0.091 0.0050 0.0014

PKJκJgJs +Ωk −Ωe 0.0081 0.0026 — 0.042 0.0065 0.0031 0.24 0.0019 0.22 0.11 0.0053 0.0020

PKLκ
ℓ<1000

Lg
ℓ<1000

+Ωk − Ωe 0.012 0.0034 — 0.036 0.0052 0.0032 0.22 0.0017 0.18 0.10 0.0051 0.0014

PKJκℓ<1000
Jgℓ<1000

+ Ωk − Ωe 0.021 0.0059 — 0.044 0.0067 0.0045 0.24 0.0022 0.22 0.14 0.0053 0.0020

PKLκ
ℓ<1000

Lg
ℓ<1000

Ls + Ωk − Ωe 0.0092 0.0028 — 0.036 0.0052 0.0032 0.22 0.0017 0.18 0.10 0.0051 0.0014

PKJκℓ<1000
Jgℓ<1000

Js + Ωk −Ωe 0.0084 0.0030 — 0.043 0.0067 0.0044 0.24 0.0021 0.22 0.14 0.0053 0.0020

TABLE IX. Same as Tables VI and VII, without any cross-correlations between the observables (except for tomographic ones
within a survey).

of early dark energy.

The sum of neutrino masses is most strongly con-
strained by the CMB temperature and lensing spectra
(including their cross-correlation), at the level of 0.20 eV
when the curvature is fixed (Table IV). When curvature
is allowed to vary, the sum of neutrino mass constraint
degrades to 0.22 eV. There is a strong degeneracy be-
tween sum of neutrino masses and curvature as pointed
out in Ref. [152], and this is evident in the bottom panel
of Fig. 10. However, in the joint analysis the constraint
on curvature (of 6 × 10−4 of the present critical den-
sity) is strong enough to break this degeneracy, which
will allow for an exquisite measurement of the sum of
neutrino masses. Our forecasts including CMB lensing,
weak lensing tomography, galaxy tomography, and su-
pernovae show that constraints on the sum of neutrino
masses at the level of 0.03-0.04 eV is possible (see Ta-
bles IV and VI). At this level, a detection is possible if
the neutrino mass hierarchy is inverted as Fig. 11 shows.

When the early dark energy density and curvature are

both fixed, the constraint on sum of neutrino masses is
0.15 eV from Planck alone. This clearly shows that the
sum of neutrino masses is substantially correlated with
early dark energy. This is also apparent in the right col-
umn top panel of Fig. 9 where we plot the constraints in
the plane of the sum of neutrino masses and EDE density.
Thus, as expected, ignorance of the expansion history at
high redshifts can significantly hamper the constraints on
the sum of neutrino masses from CMB lensing and cos-
mic shear. However, the constraints (even in the presence
of EDE) can be substantially improved by adding cosmic
shear tomography data because the degeneracy direction
in cosmic shear data is substantially different from that
in CMB lensing (see Fig. 9).

We note here that our estimate of 0.15 eV when curva-
ture and EDE density are held fixed is based on the as-
sumption that reionization happened sharply, and there-
fore all of the effects on the CMB can be encapsulated
in the optical depth parameter. We also allow for more
complicated reionization histories by imposing a floor of
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FIG. 10. Error ellipses showing degeneracies between curva-
ture (Ωk), early dark energy density (Ωe) and sum of neu-
trino masses (

∑
mν). The curves have the same meaning as

in Fig. 9. Note the strong degeneracy between curvature and
sum of neutrino masses for CMB data (black, dot-dashed)
that was pointed out in Ref. [152]. This degeneracy is broken
when information on curvature from measures of cosmological
distances are included, as shown by the solid (red) contour.
The constraints in the plane of Ωe and

∑
mν are shown in

Fig. 9.

ℓ = 30 in the polarization data and a prior on τ of
0.01 [19]. With this setup, we find that neutrino mass
constraints degrade by about 10% (see Pℓ>30K + σ(τ)
cases in Tables IV,VI,V).

We also considered a case assuming sharp reionization
where w0 is held fixed as is EDE density and curvature.
In this rather optimistic setup, we obtain an uncertainty
of about 0.14 eV for the sum of neutrino masses with
Planck lensing. We note that this is about 20% less strin-
gent than the number quoted in Ref. [29], some of which
can be traced to their different fiducial cosmology and
larger sky fraction (75% vs 65%).

We checked that the cross-correlation of κc and T (i.e.
without κcκc) doesn’t particularly improve the constraint
on the sum of neutrino masses, but it improves the con-
straint on the late time dark energy density and EOS by
about 50% compared to temperature and polarization
data alone.

Compared to the CMB with lensing, the LSST con-
straint on the sum of neutrino masses is moderately
weaker for both galaxy tomography (by 50%) and weak

CMB lensing (Planck)
fixing Curvature and 
Early Dark Energy

CMB lensing (Planck)

CMB lensing, Weak lensing, 
Galaxy power spectrum, SNe
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FIG. 11. Bands show the allowed values for the sum of
neutrino masses as a function of the lightest neutrino mass
eigenstate. The branch with higher values is for the inverted
mass hierarchy. We have used the constraints on the neutrino
mass squared differences from the Particle Data Group [153]
to create bands of the allowed regions. The 3 horizontal
lines show the 1σ Fisher matrix error estimates for the cases
PK + Ωk (0.22 eV, Table VI), PK − Ωe (0.15 eV, Table V)
and PKLκLgLs + Ωk (0.04 eV, Table VI).

lensing tomography (by 25%), whereas the JDEM con-
straint on the sum of neutrino masses is a factor of
three weaker for galaxy tomography and a factor of two
weaker for weak lensing tomography. In analyzing all
the probes allowing for EDE density to vary, we find
a one-sigma constraint of 0.03-0.04 eV for LSST and
JDEM (see Table IV). Tables VII and IX show that the
strength of JDEM in this joint analysis is owed partly
to the superior SN constraints on the dark energy EOS
(which helps in breaking degeneracies) and partly to the
cross-correlations between the temperature, lensing, and
galaxy fields.

Given the recent 2σ indications of extra relativistic
species in the universe (e.g. Neff = 3.86 ± 0.42 with the
datasets WMAP7+SPT+HST+BAO for a minimal cos-
mology [158]; for extended parameter spaces see [159]),
our understanding of Neff depends critically on the abil-
ity to distinguish its signatures from other cosmological
parameters. Fortunately, even for our extended param-
eter spaces, Planck alone could determine the possible
existence of extra relativistic species in the universe at
the 4σ level, as seen in Tables V and VI. The constraints
on Neff are only weakly correlated with the constraints
on
∑

mν , as shown in Fig. 12. When Planck is com-
bined with JDEM or LSST, this allows for a more than
10σ detection of additional light degrees of freedom in
our universe.

Turning our attention to systematics, Table IV shows
that the different choices for nonlinear cutoffs in ℓmax ∈
[1000, 3000] do not significantly affect the combined con-
straints. We can therefore throw out highly nonlinear
scales (ℓ > 1000) without significant loss in the param-
eter constraints shown in this work. This is primarily
due to the combination of cosmological probes and to a
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FIG. 12. Error ellipses showing degeneracies between the sum
of neutrino masses (

∑
mν) and the effective number of neu-

trinos (Neff ) in a flat universe, where we have marginalized
over the early dark energy density. The curves have the same
meaning as in Fig. 9. Even for our extended parameter spaces,
the CMB temperature as measured by Planck will be able to
determine the possible existence of extra relativistic species,
while the combination of experimental probes is extremely
helpful in pinning down the sum of neutrino masses.

lesser extent, due to the cross-correlations we have intro-
duced. For comparison, considering only one probe, the
constraint degradation could be up to a factor of 3 in
dark energy and neutrino mass parameters (Table IV).
This insensitivity to nonlinear scales is maintained even
without SN measurements (Table VII).

Comparing Table IV with Table VI, i.e. comparing con-
straints for a flat universe with a universe that allows for
a possible non-zero curvature, shows the CMB temper-
ature, polarization, and lensing constraints on Ωk from
Planck improve by an order of magnitude when account-
ing for future weak lensing, galaxy clustering, and super-
nova measurements from LSST or JDEM. The SN mea-
surements are, as expected, most sensitive to the curva-
ture prior, exhibiting significant degradations in param-
eters across the board. This motivates the consistent use
of a CMB curvature prior for SN measurements. The
parameter that the SN observations with a JDEM-like
survey measure well is the dark energy EOS (the relative
weakness of SNe from LSST is explained in Sec. II I).
Tables VI and VII show that the neglect of SN observa-
tions has < 10% impact on the cosmological constraints
for LSST, whereas for a JDEM survey the dark energy
parameters degrade by up to 50% without SN measure-
ments. The same features are found in the scenarios with
an ℓmax = 1000 nonlinear cutoff in multipole space.

Tables VI and IX show that most parameters improve
by 20% − 40% when cross-correlations are included for
LSST. The cross-correlations have a greater impact for
JDEM than for LSST. In particular, the early dark en-
ergy density, baryon and CDM densities, and sum of neu-
trino mass constraints improve by up to factor of 2 with
cross-correlations, the curvature density constraint im-

proves by factor of 3 (also for LSST), while the improve-
ment in the other parameters are at the same 20%−40%
level as for LSST. Naturally, when we weaken the param-
eter constraints by imposing ℓmax = 1000 in galaxy and
lensing tomography, the impact of the cross-correlations
increases somewhat (e.g. an additional 20% in early dark
energy and sum of neutrino masses for JDEM). These
quantitative comparisons between a full covariance and
one without cross-correlations largely hold true indepen-
dently of the SN sample. In the final analysis with all
cross-correlations, both JDEM and LSST are expected
to provide similar parameter constraints even though the
individual constraints and systematics are different.

We now turn attention to the impact of keeping EDE
fixed. In Table V we explore the case where EDE ex-
ists but is kept fixed for the Fisher matrix analysis. We
expect this to mimic the analysis where the existence of
EDE is neglected. We explore biases resulting from such
a scenario in the ensuing section. We expect the con-
straints in this limit (of keeping Ωe fixed) to match the
constraints in a non-EDE cosmology, i.e., the standard
case with Ωe = 0. Table V shows that the CMB tem-
perature and polarization constraints on cosmology are
nearly unaffected (∼< 10% differences) by the removal of
EDE. The removal of EDE improves the sum of neutrino
masses by 30%, and most other parameter constraints by

∼< 10% when CMB lensing is included.

If we turn to the non-CMB probes, we find that sig-
nificant degeneracies with Ωe exist for the dark energy
parameters, sum of neutrino masses, and the parameters
determining the normalization, spectral index, and its
running of the matter power spectrum, as expected from
Fig. 2. For instance, for weak lensing with both LSST
and JDEM, the power spectrum normalization constraint
improves by more than a factor of two without EDE, the
present DE EOS improves by 70%, the running by 50%,
the sum of neutrino masses and spectral index by 30%,
and the present DE density by 20%. When we throw out
nonlinear scales (ℓmax = 1000), the constraint on the sum
of neutrino masses only improves by about 5%. This is
because the sum of neutrino masses derives its degener-
acy with the EDE density from small angular scales, as
also illustrated by the respective parameter derivatives
in Fig. 4.

In SN measurements, we find the strongest degeneracy
between the present dark energy density and the early
dark energy density, which degrades the constraint on
the present DE density by factor of five in LSST and
factor of seven in JDEM. In the joint observational anal-
ysis of prospective cosmological constraints, we also find
that our ignorance of EDE significantly degrades our
constraints on the other cosmological parameters. As
an example, when keeping Ωe fixed in Table V, the DE
EOS constraint of σ(w0) ≃ 3× 10−3 (for both LSST and
JDEM) has improved by a factor of 3 for LSST and factor
of 2 for JDEM. In Table VII, we find these degradations
would have been stronger if SN observations were not
considered in the analysis. We further note that this 0.3%
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Probe w0 Ωd0 Ωe
∑

mν(eV) ns
dns

d ln k
1010∆2

R Ωch2 103Ωbh
2 Neff τ Ωk

P+ Ωk 0.21 0.042 0.0041 0.32 0.0042 0.0049 0.15 0.0017 0.082 0.14 0.0031 0.0069

PK+ Ωk 0.092 0.024 0.0038 0.079 0.0040 0.0044 0.14 0.0013 0.077 0.11 0.0029 0.0024

PKLκLgLs + Ωk 0.0062 0.0015 0.0017 0.027 0.0035 0.0015 0.13 0.00074 0.064 0.052 0.0027 0.00046

PKJκJgJs +Ωk 0.0065 0.0019 0.0020 0.029 0.0037 0.0019 0.13 0.00088 0.066 0.058 0.0028 0.00061

PKLκ
ℓ<1000

Lg
ℓ<1000

Ls + Ωk 0.0065 0.0016 0.0018 0.028 0.0036 0.0024 0.13 0.00076 0.066 0.061 0.0028 0.00051

PKJκℓ<1000
Jgℓ<1000

Js + Ωk 0.0067 0.0020 0.0021 0.030 0.0038 0.0029 0.13 0.00097 0.067 0.069 0.0028 0.00065

TABLE X. Same as Table VI, except for a 2m EPIC survey in lieu of Planck.

Probe w0 Ωd0 Ωe
∑

mν ns
dns

d lnk
1010∆2

R Ωch2 103Ωbh
2 Neff τ

PKLκLg − Ωe 0.83 0.45 — 0.23 0.41 0.091 0.37 0.40 0.061 0.41 0.29

PKJκJg −Ωe 2.4 1.5 — 0.17 0.35 0.27 0.73 0.34 0.029 0.39 0.48

TABLE XI. We present the fractional bias |δ(pi)|/σ(pi) (see Eqn. 49) on cosmological parameters for the full combination
of lensing, galaxy, and CMB surveys up to ℓ = 2000. The letters [L, J] in the first column denote [LSST, JDEM] (precise
explanation of notation in caption of Table IV). The parameter biases are comparable for Planck and EPIC. In this table, we
assume a flat fiducial universe with Ωe = 0.01, and determine the offset in the parameter estimates for the case where EDE is
not accounted for in the analysis. Naturally, the bias is larger for a universe with a larger fraction of EDE.

constraint on the EOS may be translated into roughly 10
model-independent redshift bins each constrained at the
1% level (since

∑

i σ
−2(wi) = σ−2(w) [49], where wi are

binned EOS parameters and w refers to a constant EOS).
Thus, if the dark energy EOS varies at late times, there
is significant promise in detecting its variation with our
considered surveys.

To end this section, we consider the constraints achiev-
able with a future CMB mission such as the 2m EPIC
(EPIC-2m) proposal [100, 101] in Table X. The prop-
erties of this probe are listed in Table III. With up to
40% increased resolution and factor of thirty lower noise
in an individual band than Planck, the EPIC-2m survey
in Table X shows improved constraints across the board
compared to Planck. The joint observational constraints,
with EPIC-2m in lieu of Planck, also show significant
gains – about 30% improvement in the DE constraints,
about 40% improvement in the sum of neutrino masses
constraint, and up to a factor of two improvement in the
other parameters.

C. Dark Energy Bias

We have analyzed the expected constraints on early
dark energy from use of weak lensing tomography, galaxy
tomography, SNe, and CMB. If we live in a universe with
EDE but do not account for this in the analysis of the
data sets of these future probes, we will compute cos-
mological parameter constraints that are not only overly
optimistic, but the best estimates of the parameters will
also be shifted.

We estimate here the parameter bias that would arise
from assuming a fiducial universe with Ωe = 0.01, but
where EDE is not accounted for in the constraint analy-

sis. The bias in each parameter is given by [133, 160–162]:

δpα = F−1
αβ

∑

l,β

∆ℓ× Tr

[

C̃
−1
ℓ

∂Cℓ

∂pβ
C̃

−1
ℓ δCℓ

]

, (49)

where δCℓ accounts for the difference between the con-
vergence spectra in a universe with EDE and a universe
without EDE.
Table XI presents the cosmological parameter biases

for the LSST and JDEM surveys combined with Planck
(comparable biases when combined with EPIC). For
LSST, we find less than 50% bias in most parameters ex-
cept for w0 (about 80%). Biases when including JDEM
instead of LSST are close to a factor of 2 times the ex-
pected constraints for the present DE density and EOS.
We note here that these estimates for the biases assume
a fiducial cosmology with Ωe = 0.01. The biases would
be larger in a universe with a larger fraction of EDE. If
we are to avoid significant bias in future joint analyses of
cosmological parameters, we must account for the uncer-
tain high redshift nature of the dark energy component.

IV. CONCLUSIONS

It is conceivable that in order to resolve the nature
of the force behind the late-time acceleration of the uni-
verse, we need a deeper understanding of how the univer-
sal expansion and growth of structure was affected by the
dark energy at earlier times. We have chosen an approach
that combines probes with varying degrees of sensitivity
in different parts of cosmological parameter space, and
we have included the cross-correlations between differ-
ent probes. We have performed a joint Fisher matrix
analysis of prospective measurements of weak lensing to-
mography, galaxy tomography, SNe, and Planck CMB.
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Our results show that the best possible constraints
on [w0, Ωd0, Ωe,

∑

mν(eV), ns,
dns

d ln k , 1010∆2
R, Ωch

2,

103Ωbh
2, Neff , τ , Ωk] will be at the level of [0.0085,

0.0019, 0.0023, 0.038, 0.0051, 0.0021, 0.20, 0.0013, 0.13,
0.090, 0.0044, 0.00056] for a wide survey like LSST,
and [0.0076, 0.0021, 0.0025, 0.036, 0.0055, 0.0024, 0.19,
0.0012, 0.14, 0.090, 0.0045, 0.00075] for a deep survey like
JDEM. These constraint assume that photometric red-
shift and other systematic uncertainties in weak lensing
can be controlled to better than 0.1%. Naturally, these
constraints improve in a universe without EDE. For con-
straints on our extended parameter space with present
cosmological datasets, see Ref. [159].
Our main findings are summarized below.

• The dominant constraint on the fraction of dark
energy at early times comes from the CMB (in
particular TT and to some extent Tκc). Con-
straints from Planck are expected to be within a
percent of the critical density. The next best probe
of EDE is weak lensing tomography, followed by
galaxy tomography, and then SNe. When all 6 ob-
servables (CMB temperature T , CMB polarization
E, CMB lensing κc, weak lensing shear κ, galaxy
counts g, SNe s) and all relevant cross-correlations
(see Eqns. 47-48) are analyzed in a combined set-
ting, the constraint on Ωe improves by a factor of
four over the CMB constraint. Interestingly, due
to the cross-correlations, the combined constraints
are equally strong for LSST and JDEM (κ, g, s).

• When analyzed together with early dark energy, we
find that the sum of active neutrino masses is most
strongly constrained by the CMB lensing potential
power spectrum, at the level of 0.22 eV for Planck
(0.20 eV when flatness assumed) and 0.08 eV for
Epic (0.07 eV when flatness assumed). A combined
analysis of Planck, and LSST or JDEM, shows that
future constraints at the level of 0.04 eV are possi-
ble. The CMB lensing constraints improve by 30%,
and the combined constraints by 60%, when EDE
is not allowed to vary. Our results suggest that
these constraints are not significantly affected by
our ignorance of the reionization history, but more
detailed work on this issue is necessary.

• The additional degree of freedom from the early
dark energy density degrades our ability to measure
late-time dark energy. We find that the present DE
density can be measured to 0.2% of the critical den-
sity and and equation of state to about 0.01, which

is a factor of roughly 2 and 3 degradation, respec-
tively, in the constraints compared to the case when
EDE is fixed.

• Our analysis suggests that throwing out nonlin-
ear scales (ℓ > 1000) may not result in signif-
icant degradation in future parameter measure-
ments when multiple cosmological probes are com-
bined. Including cross-correlations improves pa-
rameter constraints on dark energy density and
sum of neutrino masses by up to a factor of 2 when
these nonlinear scales are not included.

• The curvature of the universe can be constrained
to 6 × 10−3 of the critical density from CMB tem-
perature and lensing alone, and improved by an
order of magnitude in the joint analysis in agree-
ment with the results of Ref. [157]. Measurement
of the curvature of the universe with Planck will be
good enough that weak lensing tomography, galaxy
tomography, and supernova measurements will not
be limited by our ignorance of the curvature.

• Even a modest 1% of the critical density at high
redshift in dark energy, if not accounted for, shifts
cosmological parameters by 1-2 σ. Therefore, it
is crucial for measurements of the underlying cos-
mology that we avoid prejudices about the energy
content of the high redshift universe.

We have shown that degeneracies between cosmologi-
cal parameters, in particular between early dark energy,
curvature and sum of neutrino masses, can be effectively
broken by a joint analysis of weak lensing tomography,
galaxy tomography, SNe, and the CMB (temperature,
polarization, lensing). Our analysis included the cross-
correlations between these different probes. We find that
simultaneous measurements of dark energy density at
present and at high redshift with a precision of 0.2%
of the respective critical densities, present dark energy
equation of state with a precision of 0.01, curvature with
a precision of 0.06% of the present critical density, and
sum of neutrino masses with a precision of 0.04 eV are
possible.
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