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Abstract: We consider a phenomenological extension of the minimal supersymmetric standard
model (MSSM) which incorporates non-minimal chaotic inflation, driven by a quadratic potential
in conjunction with a linear term in the frame function. Inflation is followed by a Peccei-Quinn
phase transition, based on renormalizable superpotential terms, which resolves the strong CP and
µ problems of MSSM and provide masses lower than about 1012 GeV for the right-handed (RH)
(s)neutrinos. Baryogenesis occurs via non-thermal leptogenesis, realized by the out-of-equilibrium
decay of the RH sneutrinos, which are produced by the inflaton’s decay. Confronting our scenario
with the current observational data on the inflationary observables, the light neutrino masses, the
baryon asymmetry of the universe and the gravitino limit on the reheat temperature, we constrain
the strength of the gravitational coupling to rather large values (∼ 45 − 2950) and the Dirac
neutrino masses to values lower than about 10 GeV.

PACS numbers: 98.80.Cq, 11.30.Qc, 11.30.Er, 11.30.Pb, 12.60.Jv

I. Introduction

There is recently a wave of interest in implement-
ing non-minimal chaotic inflation (nMCI) within both
a non-supersymmetric (SUSY) [1–8] and a SUSY [9–13]
framework. The main idea is to introduce a large non-
minimal coupling of the inflaton field to the curvature
scalar, R. After that, one can make a transformation –
from the Jordan frame (JF) to the Einstein (EF) one –
which flattens the potential sufficiently to support nMCI.
The implementation of this mechanism within supergrav-
ity (SUGRA) has been greatly facilitated after the devel-
oped [10] supercorformal approach to SUGRA. In partic-
ular, it is shown that the frame function can be related to
a logarithmic type Kähler potential which ensures canon-
ical kinetic terms for the scalars of the theory and incor-
porates an holomorphic function, F , which expresses the
non-minimal coupling of the inflaton field to R. Un-
til now, the proposed models [10–13] of nMCI within
SUGRA are constructed coupling quadratically the in-
flaton superfield with another one in the superpotential
– leading thereby to a quartic potential – and adopting
a quadratic term for it in F .

In this paper we propose a novel realization of nMCI
within SUGRA, according to which the inflaton super-
field is coupled linearly to another superfield in the su-
perpotential of the model. As a consequence, a quadratic
potential for the inflaton arises which supports nMCI, if
the inflaton develops a linear coupling to R. Actually,
this set-up represents the SUSY implementation of the
model of nMCI with n = −1 introduced in Ref. [7]. In
contrast to earlier models [10, 14] which relied on the
same superpotential term – see also Ref. [15] –, no ex-

tra shift symmetry is imposed on the Kälher potential.
The resulting mass of the inflaton lies at the intermedi-
ate scale and the inflationary observables are principally
similar to those of nMCI with quartic – not quadratic –
potential and therefore, in excellent agreement with the
current observational data [16].

The inflationary model can be nicely embedded in a
modest phenomenological extension of the minimal su-
persymmetric standard model (MSSM) which incorpo-
rates a resolution of the strong CP problem [17] via a
Peccei-Quinn (PQ) symmetry. Note that there is an in-
creasing interest [18, 19] in such models at present, since
they provide us with two additional cold dark matter
(CDM) candidates (axino and axion) beyond the light-
est neutralino. In our model, a PQ phase transition
(PQPT), tied on renormalizable [11, 20] superpontential
terms, can follow nMCI generating in addition, the µ
term of MSSM and intermediate masses for the right

handed (RH) [s]neutrinos, νci [ν̃ci ]. As a consequence, the
light neutrino masses can be explained through the well-
known see-saw mechanism [21] provided that no large
hierarchies occur in the Dirac neutrino masses. The pos-
sible formation [22] of disastrous domain walls can be
avoided [23, 24] by introducing extra matter superfields
without jeopardizing the gauge unification of MSSM. The
appearance of a Lagrangian quatric coupling of the infla-
ton ensures its decay to ν̃ci , whose the subsequent out-
of-equilibrium decays can generate the Baryon Asymme-

try of the Universe (BAU) via non-thermal leptogenesis
(nTL) [25], consistent with the present data on neutrino
data [26, 27]. Our model favors mostly quasi-degenerate
νci – as in Ref. [28] – which enhances the contribution
from the self-energy corrections to leptonic asymmetries,
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without jeopardizing the validity of the relevant pertur-
bative results, though. The constraints arising from BAU

and the gravitino (G̃) limit [29–31] on the reheat temper-

ature can be met provided that the masses of G̃ lie in the
multi-TeV region.
In Sec. II we present the basic ingredients of our model,

Sec. III describes the inflationary scenario, and we out-
line the mechanism of nTL in Sec. IV. We then restrict
the model parameters in Sec. V and summarize our con-
clusions in Sec. VI. Throughout the text, the subscript
of type , χ denotes derivation with respect to (w.r.t) the
field χ (e.g., ,χχ = ∂2/∂χ2); charge conjugation is de-
noted by a star and brackets are, also, used by applying
disjunctive correspondence.

II. Model Description

We focus on a PQ invariant extension of MSSM, which
is augmented with (i) two superfields (P and P̄ ) which are
necessary for the implementation of nMCI; (ii) three su-
perfields (S,Φ and Φ̄) involved in the spontaneous break-
ing of the PQ symmetry, U(1)PQ (iii) three RH neutrinos,
νci , which are necessitated for the realization of the see-
saw mechanism; (iv) n – to be determined below – pairs of
SU(3)C triplets and antitriplets superfields, D̄a and Da

respectively, (a = 1, ..., n) in order to avoid the formation
of domain walls – c.f. Ref. [23, 24] – and (v) an equal num-
ber of pairs of SU(2)L doublet superfields, h̄a and ha in
order to restore gauge coupling unification at one loop –
see below. Besides the superfields in the points (iv) and
(v), all the others are singlets under the Standard Model

(SM) gauge group GSM = SU(3)C × SU(2)L × U(1)Y .
Besides the (color) anomalous U(1)PQ, the model also
possesses an anomalous R symmetry U(1)R the baryon
number symmetry U(1)B and two accidental symmetries
U(1)D and U(1)h. The representations under GSM, and
the charges under the global symmetries of the various
matter and Higgs superfields are listed in Table I. Note
that the lepton number is not conserved in our model.
In particular, the superpotential, W , of our model can

be split into four parts:

W =WMSSM +WDW +WCPQ +WNR, (1)

which are analyzed in the following:
1. WMSSM is the part of W which contains the

usual terms – except for the µ term – of MSSM, supple-
mented by Yukawa interactions among the left-handed
leptons and νci :

WMSSM = hDijd
c
iQjHd + hUiju

c
iQjHu

+ hEije
c
iLjHd + hNijν

c
iLjHu. (2)

Here, the group indices have been suppressed and sum-
mation over the generation indices i and j is assumed; the
i-th generation SU(2)L doublet left-handed quark and
lepton superfields are denoted by Qi and Li respectively,

and the SU(2)L singlet antiquark [antilepton] superfields
by uci and di

c [eci and νci ] respectively. The electroweak
SU(2)L doublet Higgs superfield, which couples to the
up [down] quark superfields, is denoted by Hu [Hd].

2. WDW is the part of W which gives intermediate
scale masses via 〈Φ̄〉 – see below – to D̄a−Da and h̄a−ha.
Namely,

WDW = λDaΦ̄D̄aDa + λhaΦ̄h̄aha. (3)

Here, we chose a basis in the D̄a −Da and h̄a − ha space
where the coupling constant matrices λDa and λha are
diagonal. Although these matter fields acquire interme-
diate scale masses after the PQ breaking, the unification
of the MSSM gauge coupling constants is not disrupted
at one loop. In fact, if we estimate the contribution of
D̄a, Da, and h̄a and ha to the coefficients b1, b2, and b3,
controlling [32] the one loop evolution of the three gauge
coupling constants g1, g2, and g3, we find that the quan-
tities b2 − b1 and b3 − b2 (which are [32] crucial for the
unification of g1, g2, and g3) remain unaltered.

3. WCPQ is the part of W which is relevant for
nMCI, the spontaneous breaking of U(1)PQ, the decay of
the inflaton and the generation of the masses of νci ’s and
the µ term of MSSM. It takes the form

WCPQ = mP̄P + λaS
(
ΦΦ̄−M2

PQ

)
+ λiνcΦνc2i , (4)

where MPQ = fa/2 with fa ≃
(
1010 − 1012

)
GeV be-

ing the axion decay constant which coincides with the
PQ breaking scale. The parameters λa and fa can be
made positive by field redefinitions. From the terms in
the right hand side (RHS) of Eq. (4) we note that the im-
posed symmetries disallow renormalizable terms mixing
P̄ with some other superfields, which avoids undesirable
instabilities faced in Ref. [11].

4. WNR is the part of W which contains its non-
renormalizable terms. Namely, we have

WNR = λi
P̄ SΦνci
mP

+ λP
PP̄ Φ̄Φ

mP
+ λµ

Φ̄2HuHd

mP
, (5)

where mP ≃ 2.44 · 1018 GeV is the reduced Planck scale.
The first term in the RHS of Eq. (5) helps accomplish
sufficiently low reheat temperature and leads to the pro-
duction of ν̃ci ’s as dictated by nTL – see Sec. IVA. Fi-
nally, the third term provides the µ term of MSSM – see
below.
To get an impression for the role that each term in the

RHS of Eqs. (3), (4) and (5) play, we display the SUSY
potential, VSUSY, induced from the following part of W

WCI =WCPQ +WDW, (6)

which turns out to be

VSUSY = m2
(
|P |2 + |P̄ |2

)
+
∣∣λiνc ν̃c2i + λaSΦ̄

∣∣2

+ 4λ2iνc |ν̃ciΦ|2 + λ2a
∣∣Φ̄Φ−M2

PQ

∣∣2

+
∣∣λaSΦ+ λDaD̄aDa + λhah̄aha

∣∣2

+ λ2Da

(
|D̄a|2 + |Da|2

)
|Φ̄|2

+ λ2ha
(
|h̄a|2 + |ha|2

)
|Φ̄|2, (7a)
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Table I: Superfield Content of the Model

Super- Representations Global Symmetries

fields under GSM R PQ B D h

Matter Fields

Li (1,2,−1/2) 0 −1 0 0 0

eci (1, 1, 1) 2 −1 0 0 0

νci (1, 1, 0) 2 −1 0 0 0

Qi (3,2, 1/6) 1 −1 1/3 0 0

uci (3̄,1,−2/3) 1 −1 −1/3 0 0

dci (3̄,1, 1/3) 1 −1 −1/3 0 0

Extra Matter Fields

Da (3,1,−1/3) 1 1 0 1 0

D̄a (3̄,1, 1/3) 1 1 0 −1 0

ha (1,2, 1/2) 1 1 0 0 1

h̄a (1,2,−1/2) 1 1 0 0 −1

Higgs Fields

Hd (1,2,−1/2) 2 2 0 0 0

Hu (1,2, 1/2) 2 2 0 0 0

S (1, 1, 0) 4 0 0 0 0

Φ (1, 1, 0) 0 2 0 0 0

Φ̄ (1, 1, 0) 0 −2 0 0 0

P (1, 1, 0) 6 1 0 0 0

P̄ (1, 1, 0) −2 −1 0 0 0

where the complex scalar components of the superfields
P, P̄ , S, Φ̄,Φ, D̄a, Da, h̄a, and ha are denoted by the same
symbol as the corresponding superfields. From Eq. (6)
and assuming [20] canonical Kähler potential for the
hidden sector fields, we can also derive the soft SUSY-
breaking part of the inflationary potential which reads:

Vsoft = m2
φαφαφ∗α +

(
mBPP̄ − aTλaSM

2
PQ

+ λDaADaΦ̄D̄aDa + λhaAhaΦ̄h̄aha

+ λaAaSΦΦ̄ + λiνcAiνcΦνci + h.c.
)

(7b)

where mφα , with

φα = P, P̄ , S, Φ̄,Φ, ν̃ci , D̄ka, Dka, h̄la, hla (8)

Aa, Aiνc , ADa, Aha, B and aT are soft SUSY-breaking
mass parameters of order 1 TeV. From the potential in
Eqs. (7a) and (7b), we find that the SUSY vacuum lies
at

〈P 〉 = 〈P̄ 〉 = 〈ν̃ci 〉 = 0, (9a)

〈Dka〉 = 〈D̄ka〉 = 〈hla〉 = 〈h̄la〉 = 0, (9b)

and

〈S〉 = |Aa|+ |aT|
2λa

, |〈φΦ〉| = 2|〈Φ〉| = 2|〈Φ̄〉| = fa, (9c)

where the resulting 〈S〉 is of the order of TeV – cf.
Ref. [20] – and we have introduced the canonically nor-
malized scalar field φΦ = 2Φ = 2Φ̄. Also, we use the

subscripts k = 1, 2, 3 and l = 1, 2 to denote the com-
ponents of Da, D̄a and ha, h̄a, respectively. Note that,
since the sum of the arguments of 〈Φ̄〉, 〈Φ〉 must be 0, Φ̄
and Φ can be brought to the real axis by an appropriate
PQ transformation. After the spontaneous breaking of
U(1)PQ, the third term in Eq. (4) generates intermediate
scale masses, Miνc for the νci ’s and, thus, seesaw masses
[21] for the light neutrinos – see Sec. IV. The third term
in the RHS of Eq. (5) leads to the µ term of MSSM, with

|µ| ∼ λµ
∣∣〈Φ̄〉

∣∣2 /mP, which is of the right magnitude if∣∣〈Φ̄〉
∣∣ = fa/2 ≃ 5 · 1011 GeV, λµ ∼ (0.001 − 0.01). Fi-

nally, since 〈Φ̄Φ〉/mP = M2
PQ/mP ≪ m ≃ 1016 GeV –

see Sec. III B and VB 1 – the second term in the RHS of
Eq. (5) has no impact on our results.
Nonetheless, WCI also gives rise to a stage of

nMCI within SUGRA, if it is combined with a suitable
Kähler potential, K, related to the frame function, ΩCI

via

K = −3m2
P ln (−ΩCI/3) . (10)

In JF a specific form of ΩCI’s – see Ref. [10, 11] – ensures
canonical kinetic terms of the fields involved and a non-
minimal coupling of the inflaton to R represented by an
holomorphic function F (P ). Going from JF to EF, and

expanding the EF potential, V̂ , along a stable direction
– usually with all the fields besides inflaton placed at the

origin – V̂ takes the simple form

V̂CI0 ≃ VSUSY/f (σ)
2
, (11)

where σ =
√
2|P | and f can be found expanding ΩCI.

Vanishing of the non-inflaton fields ensures, also, the
elimination of some extra kinetic terms for scalars from
the auxiliary vector fields – see Ref. [9–11].
Let us emphasize here that the coupling of P to P̄

is crucial in order to obtain the simple form of V̂CI0

in Eq. (11), since only terms including derivatives of
WCI w.r.t P̄ survive in the EF SUGRA potential – see
Sec. III A. This fact ensures the appearance of just one
dominant power of σ in the numerator of the SUGRA
scalar potential. Such a construction is not possible, e.g.,
for a superpotential term of the formmP 2. Applying the
strategy, described above Eq. (11) in our case, we can ob-
serve that along the direction

θ = P̄ = S = Φ̄ = Φ = ν̃ci =

D̄ka = Dka = h̄la = hla = 0, (12a)

with θ = argP , VSUSY in Eq. (7a) becomes

VSUSY =
1

2
m2σ2 + λ2aM

4
PQ. (12b)

Clearly, for σ ≫ fa, VSUSY tends to a quadratic potential
which can be flattened, according to Eq. (11), if f is
mainly proportional to σ, i.e., if F is a linear function of
P with a sizable coupling constant cR. Therefore, we are
led to adopt the following frame function:

ΩCI = −3+
φαφ∗α
m2

P

− kP̄
m4

P

|P̄ |4−
(
F (P )+F ∗ (P ∗)

)
, (13a)
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with φα’s defined in Eq. (8) and the non-minimal gravi-
tational coupling

F = 3cRP/
√
2mP, (13b)

which breaks explicitly the imposed R and PQ symme-
tries during nMCI. In Eq. (13a) the coefficients kP̄ and
cR, for simplicity, are taken real. We remark that we add
the third term in the RHS of Eq. (13a) to cure the tachy-
onic mass problem encountered in similar models [9, 10]
– see Sec. III A.
For P ≪ mP, we can show – see Sec. IVA – that

an instability occurs in the PQ system which can drive
a PQPT which leads to the v.e.vs in Eq. (9c). Also,
at the SUSY vacuum the explicit breaking of U(1)R ×
U(1)PQ through Eq. (13b) switches off – see Eq. (9a).
A closer look, however, reveals that instanton and soft
SUSY breaking effects explicitly break U(1)R × U(1)PQ

to Z2 ×Z2(n−6), as can be deduced from the solutions of
the system

4r = 0 (mod 2π) and 2(n−6)p−12r = 0 (mod 2π) , (14)

where r and p are the phases of a U(1)R and U(1)PQ ro-
tation respectively. Here, we take into account that the
R charge of W and, thus, of all the soft SUSY break-
ing term is 4 and that the sum of the R [PQ] charges
of the SU(3)C triplets and antitriplets is −12 [2(n− 6)].
Note that no loop-induced PQ-violating term – as this
appearing in the first paper of Ref. [13] – is detected in
our case. It is then important to ensure that Z2×Z2(n−6)

is not spontaneously broken by 〈Φ〉 and 〈Φ̄〉, since oth-
erwise cosmologically disastrous domain walls are pro-
duced [22] during PQPT. This goal can be accomplished
by adjusting conveniently the number n of D̄a −Da and
h̄a−ha – see Table I. Indeed, when n = 5 or 7 we obtain
2p = 0 (mod 2π) and therefore, Z2 ×Z2(n−6) is not spon-

taneously broken by 〈Φ〉 and 〈Φ̄〉. The residual unbroken
Z2 subgroup of U(1)PQ can be identified with the usual
matter parity of MSSM – see Table I – which prevents
the rapid proton decay and ensures the stability of the
lightest SUSY particle (LSP).

III. The Inflationary Epoch

In Sec. III A we describe the salient features of our
inflationary model and in Sec. III B we extract the infla-
tionary observables.

A. Structure of the Inflationary Potential

The EF F–term (tree level) SUGRA scalar potential,

V̂CI0, of our model is obtained from WCI in Eq. (6) and
K in Eqs. (10) and (13a) by applying [9]

V̂CI0 = eK/m
2
P

(
Kαβ̄FαFβ̄ − 3

|WCI|2
m2

P

)
, (15a)

with

Kαβ̄ = K,φαφ∗β̄ , K β̄αKαγ̄ = δβ̄γ̄ (15b)

and

Fα =WCI,φα +K,φαWCI/m
2
P, (15c)

where the φα’s are given in Eq. (8). From the resulting

V̂CI0, we can deduce that along the field directions in
Eq. (12a),

V̂CI0 =
m2m2

Px
2
σ + 4λ2aM

4
PQ/m

4
P

2f2
≃ m2m2

Px
2
σ

2f2
, (16a)

where xσ = σ/mP and, according to the general recipe
[9–11], the function

f = 1 + cRxσ − x2σ/6 (16b)

expresses the non-minimal coupling of σ toR in JF. From
Eq. (16a), we can verify that for cR ≫ 1 and xσ ≪

√
6,

V̂CI develops a plateau since MPQ ≪ mP – see Sec. III B.
Along the trajectory in Eq. (12a), we can estimate the
constant potential energy density

V̂CI0 =
m2σ2

2f2
≃ m2m2

P

2c2R
, (17a)

and the corresponding Hubble parameter

ĤCI =
V̂

1/2
CI0√
3mP

≃ m√
6cR

· (17b)

In order to check the stability of the direction in
Eq. (12a) w.r.t the fluctuations of the various fields, we
expand them in real and imaginary parts according to
the prescription

P =
σeiθ√

2
and X =

χ1 + iχ2√
2

, (18a)

where

X = P̄ , S, Φ̄,Φ, ν̃ci , D̄ka, Dka, h̄la, hla (18b)

and

χ = p̄, s, φ̄, φ, νi, D̄ka, Dka, h̄la, hla, (18c)

respectively. Along the trajectory in Eq. (12a) we find

(
Kαβ̄

)
= diag


J2, 1/f, ..., 1/f︸ ︷︷ ︸

7+10n elements


 , (19a)

where

J =

√
1

f
+

3

2
m2

P

(
f,σ
f

)2

=

√
2 + 3c2R√

2f
≃
√

3

2

1

xσ
· (19b)
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Table II: The mass spectrum of the model during nMCI

Fields Eingestates Mass Squared

Bosons

1 real scalar θ̂ cRm
2xσ/f

3J2 ≃ 4H2
CI

2 real scalars ̂̄p1, ̂̄p2 m2
(
2kP̄ cRx

3
σ + (−cRxσ+

(6kP̄ − 1)c2Rx
2
σ)/2J

2f2
)
/f2

2 real scalars ŝ1, ŝ2
(
2λaM

4
PQ/m

2
P +m2x2

σ

)
/3f2

6 real scalars ν̂1i, ν̂2i
(
2λaM

4
PQ/m

2
P +m2x2

σ

)
/f2

4 real
̂̄φ1±φ̂1√

2
,

(
m2x2

σ/3± λ2
aM

2
PQf

)
/f2

scalars
̂̄φ2±φ̂2√

2

6n real scalars D̂1ka, D̂2ka

(
2λaM

4
PQ/m

2
P +m2x2

σ

)
/f2

6n real scalars ̂̄D1ka,
̂̄D2ka

(
2λaM

4
PQ/m

2
P +m2x2

σ

)
/f2

4n real scalars ĥ1la, ĥ2la

(
2λaM

4
PQ/m

2
P +m2x2

σ

)
/f2

4n real scalars ̂̄h1la,
̂̄h2la

(
2λaM

4
PQ/m

2
P +m2x2

σ

)
/f2

Fermions

2 Weyl spinors
ψ̂P̄±ψ̂P√

2
m2(6 + x2

σ)
2/36f2

Consequently, we can introduce the EF canonically nor-

malized fields, σ̂, θ̂ and χ̂, as follows – cf. Ref. [9–12]:

Kαβ̄φ̇
αφ̇∗β̄ =

1

2

(
˙̂σ
2
+

˙̂
θ
2
)
+

1

2

∑

χ

(
˙̂χ
2

1 +
˙̂χ
2

2

)
, (20)

where the dot denotes derivation w.r.t the JF cosmic
time, t and the hatted fields are defined as follows

dσ̂

dσ
= J, θ̂ ≃ Jσθ and χ̂ ≃ χ√

f
· (21)

Note that
˙̂
θ ≃ Jσθ̇ since Jσ ≃

√
3/2mP – see Eq. (19b).

On the other hand, we can show that during a stage of

slow-roll nMCI, ˙̂χ ≃ χ̇/
√
f since the quantity ḟ/2f3/2χ,

involved in relating ˙̂χ to χ̇, turns out to be negligibly

small compared with ˙̂χ. Indeed, the χ̂’s acquire effec-

tive masses mχ̂ ≫ ĤCI – see below – and therefore enter
a phase of oscillations about χ̂ = 0 with reducing am-
plitude. Neglecting the oscillating part of the relevant
solutions, we find

χ ≃ χ̂0

√
fe−2N̂/3 and ˙̂χ ≃ −2χ0

√
fĤCIη̂χe

−2N̂/3, (22)

where χ̂0 represents the initial amplitude of the oscil-

lations, η̂χ = m2
χ̂/3ĤCI and we assume ˙̂χ(t = 0) = 0.

Taking into account the approximate expressions for σ̇
and the slow-roll parameter ǫ̂, which are displayed in
Sec. III B, we find

− ḟ

2f3/2
χ =

cRǫ̂Ĥ
2
CI

m2
χ̂

˙̂χ≪ ˙̂χ. (23)

The masses that the various scalars acquire during
nMCI are presented in Table II. To this end, we expand

V̂CI0 in Eq. (15a) to quadratic order in the fluctuations
around the direction of Eq. (12a). As we observe from
the relevant eigenvalues of the mass-squared matrices, no
instability – as the one found in Ref. [11] – arises in the
spectrum. In particular, it is evident that kP̄ & 1 assists
us to achieve positivity of the mass-squared associated
with the scalars ̂̄p1,2, m2

̂̄p
– in accordance with the results

of Ref. [9, 10]. It is remarkable that mass-squared corre-
sponding to ν̃ci , Dka, D̄ka, hla, h̄la are independent of the
relevant superpotential couplings λiνc , λDa and λha. We
have also numerically verified that the various masses re-

main greater than ĤCI during the last 50− 60 e-foldings
of nMCI, and so any inflationary perturbations of the
fields other than the inflaton are safely eliminated.
In Table II we also present the masses squared of chiral

fermions of the model along the direction of Eq. (12a).
Inserting these masses into the well-known Coleman-
Weinberg formula [33], we can find the one-loop radiative
corrections, Vrc, in our model which can be written as

Vrc =
1

64π2

(
m4
θ̂
ln
m2
p̂

Λ2
+ 2m4

̂̄p ln
m2

̂̄p

Λ2
+ 2m4

ŝ ln
m2
ŝ

Λ2

+ 6m4
ν̂ ln

m2
ν̂

Λ2
+ 2m4

φ̂+
ln
m2
φ̂+

Λ2
+ 2m4

φ̂−

ln
m2
φ̂−

Λ2

+ 20n m4
D̂
ln
m2
D̂

Λ2
− 4m4

ψ̂±

ln
m2
ψ̂±

Λ2

)
, (24)

where Λ = mP/cR is the cutoff scale of the effective
theory – see Sec. VA – and the involved above masses
squared m2

θ̂
, m2

̂̄p
, m2

ŝ, m
2
ν̂ , m

2
φ̂±

,m2
D̂

and m2
ψ̂±

are equal

to the ones listed in the third column of Table II from
top to the bottom. Note that the masses squared of all
the extra matter fields are equal to m2

D̂
. Based on the

one-loop corrected EF potential

V̂CI = V̂CI0 + Vrc, (25)

we can proceed to the analysis of nMCI in EF, employ-
ing the standard slow-roll approximation [48]. It can
be shown [49] that the results calculated this way are
the same as if we had calculated them using the non-
minimally coupled scalar field in JF. As expected and
verified numerically, Vrc does not affect the inflationary
dynamics and predictions, in the major part of the al-
lowed parameter space – see Sec. VB 1 – since the in-
flationary path already possesses a slope at the classical
level – see below.

B. The Inflationary Observables

According to our analysis above, the universe under-
goes a period of slow-roll nMCI, which is determined by
the condition – see e.g. Ref. [48]:

max{ǫ̂(σ), |η̂(σ)|} ≤ 1,
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where

ǫ̂ =
m2

P

2

(
V̂CI,σ̂

V̂CI

)2

=
m2

P

2J2

(
V̂CI,σ

V̂CI

)2

≃ 4m2
P

3c2Rσ
2
, (26a)

and

η̂ = m2
P

V̂CI,σ̂σ̂

V̂CI

=
m2

P

J2

(
V̂CI,σσ

V̂CI

− V̂CI,σ

V̂CI

J,σ
J

)

≃ −4mP/3cRσ. (26b)

Here, we employ Eqs. (17a) and (19b) and the following
approximate relations:

V̂CI,σ ≃ m2mP

c3Rx
2
σ

and V̂CI,σσ ≃ − 2m2

c3Rx
3
σ

· (27)

The numerical computation reveals that nMCI termi-
nates due to the violation of the ǫ̂ criterion at σ = σf ,
which is calculated to be

ǫ̂ (σf) = 1 ⇒ σf =
2√
3

mP

cR
· (28)

We note, in passing, that for σ ≥ σf the evolution of σ̂
– or σ via Eq. (19b) – is governed by the equation of
motion

3ĤCI
dσ̂

dt̂
= −V̂CI,σ̂ ⇒ σ̇ = −2

√
2m

3
√
3

√
m3

P

c3Rσ
, (29)

where t̂ is the EF cosmic time with dt̂ =
√
fdt. Using

Eqs. (26a) and (29), we can derive Eq. (23).

The number of e-foldings, N̂∗, that the scale k∗ =
0.002/Mpc suffers during nMCI can be calculated
through the relation

N̂∗ =
1

m2
P

∫ σ̂∗

σ̂f

dσ̂
V̂CI

V̂CI,σ̂

=
1

m2
P

∫ σ∗

σf

dσ J2 V̂CI

V̂CI,σ

, (30)

where σ∗ [σ̂∗] is the value of σ [σ̂] when k∗ crosses the
inflationary horizon. Given that σf ≪ σ∗, we can write

σ∗ as a function of N̂∗ as follows

N̂∗ ≃ 3cR
4mP

(σ∗ − σf) ⇒ σ∗ ≃ 4N̂∗

3cR
mP· (31)

The power spectrum PR of the curvature perturba-
tions generated by σ at the pivot scale k∗ is estimated as
follows

P
1/2
R =

1

2πm2
P

√
V̂CI(σ∗)

6 ǫ̂ (σ∗)
≃ mN̂∗

6πmPcR
, (32)

where Eq. (31) is employed to derive the last equality of
the relation above. Since the scalars listed in Table II
are massive enough during nMCI, P

1/2
R can be identified

with its central observational value – see Sec. V – with

almost constant N̂∗. The resulting relation reveals that
m is to be proportional to cR. Indeed we find

m = 6πmPcRP
1/2
R /N̂∗ ⇒ m = 4.1 · 1013cR GeV, (33)

for N̂∗ ≃ 55. At the same pivot scale, we can also calcu-
late the (scalar) spectral index, ns, its running, as, and
the scalar-to-tensor ratio, r, via the relations:

ns = 1− 6ǫ̂∗ + 2η̂∗ ≃ 1− 2/N̂∗, (34a)

αs =
2

3

(
4η̂2∗ − (ns − 1)2

)
− 2ξ̂∗ ≃ −2/N̂2

∗ , (34b)

r = 16ǫ̂∗ ≃ 12/N̂2
∗ , (34c)

where ξ̂ = m4
PV̂CI,σ̂V̂CI,σ̂σ̂σ̂/V̂

2
CI = mP

√
2ǫ̂ η̂,σ/J + 2η̂ǫ̂

and the variables with subscript ∗ are evaluated at σ =
σ∗. Comparing the results of this section with the obser-
vationally favored values [16], we constrain the parame-
ters of our model in Sec. VB 1.

IV. Non-Thermal Leptogenesis

A complete SUSY inflationary scenario should spec-
ify the transition to the radiation dominated era and
also explain the origin of the observed BAU consistently

with the G̃ constraint. These goals can be accomplished
within our set-up, as we describe in this section. Namely,
the basic features of the post-inflationary evolution are
exhibited in Sec. IVA and the topic of nTL in con-
junction with the present neutrino data is analyzed in
Sec. IVB.

A. The General Set-up

When nMCI is over, the inflaton continues to roll down
towards the SUSY vacuum, Eqs. (9a), (9b) and (9c). Note

that when xσ .
√
3λaMPQ/m, one scalar originating

from the superfields Φ and Φ̄ – see Table I – acquires a
negative mass squared triggering thereby the PQPT. As
the inflaton continues its rolling, there is a brief stage of
tachyonic preheating [34] which does not lead to signifi-
cant particle production [35]. Soon afterwards, it settles
into a phase of damped oscillations about the minimum

of the V̂CI0. Since no gauge symmetry is broken during
nMCI, no superheavy bosons are produced and therefore
no particle production via the mechanism of instant pre-
heating [36] occurs. Also, since the inflaton cannot decay
via renormalizable interactions to SM particles, effects of
narrow parametric resonance [34] are also absent in our
regime.
Nonetheless, the standard perturbative approach to

the inflaton decay provides a very efficient decay rate.
Namely, at the SUSY vacuum the fields involved acquire
the v.e.vs shown in Eqs. (9a), (9b) and (9c) giving rise
to the mass spectrum presented in Table III. There we
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can show the mass, mI, of the (canonically normalized)

inflaton P̂ and the masses Miνc of the RH [s]neutrinos,
νci [ν̃ci ], which play a crucial role in our scenario of nTL.
Note that since 〈Φ〉 = 〈Φ̄〉 = MPQ ≪ mP, 〈Ω〉 ≃ −3

and so 〈f〉 ≃ 1. Therefore, apart from P̂ , the EF canon-
ically normalized field are not distinguished from the JF

ones at the SUSY vacuum. On the other hand, P̂ can be
expressed as a function of P through the relation

P̂

P
= 〈J〉 where 〈J〉 =

√
1 + 3c2R/2. (35)

Making use of Eq. (33) we can infer that mI is kept
independent of cR and almost constant at the level of
1013 GeV. Indeed,

mI ≃
m

〈J〉 =

√
2

3

m

cR
≃ 2

√
3πmP

P
1/2
R

N̂
≃ 1013 GeV,

(36)

where the WMAP7 value of P
1/2
R – see Sec. VA – is

employed in the last step of the relation above. In the
expressions of the various eigenstates listed in Table III,
we adopt the following abbreviations

δΦ = Φ−MPQ, δΦ̄ = Φ̄−MPQ, (37a)

and

ψ± = (ψΦ̄ ± ψΦ) /
√
2, (37b)

where ψx with x = P̂ , P, S, Φ̄,Φ, D̄ka, Dka, h̄la, and hla
denote the chiral fermions associated with the superfields

P̂ , P, S, Φ̄,Φ, D̄ka, Dka, hla, and hla respectively. The
eigenstates ψ− and δΦ−, with

δΦ± =
(
δΦ̄± δΦ

)
/
√
2, (38)

contain the components of the axion supermultiplet.
Namely axion [saxion] can be identified with the phase
[modulus] of the complex field δΦ−, whereas ψ− can be
interpreted as the axino. Note that the zero masses of
saxion and axino can be replaced with masses of order
1 TeV if we take into account the soft SUSY breaking
masses – see discussion below Eq. (9c).

The decay of P̂ commences when mI becomes larger
than the expansion rate and is processed via the first
coupling in the RHS of Eq. (5), into S and ν̃ci and S, ν̃ci
and δΦ+ or δΦ−. The relevant Lagrangian sector is

Ldc = −mI

mP
λiP̂

∗Sν̃ci

(
MPQ +

δΦ+ − δΦ−√
2

)
+h.c. (39)

which arises from the cross term of the F-term, corre-
sponding to P̄ , of the SUSY potential derived from the
superpotential terms in Eqs. (4) and (5). Note that we
have no cR-induced decay channels as in Ref. [12], since
〈P 〉 = 0. The interaction above gives rise to the following
decay width

ΓI =
1

8π

((
MPQ

mP

)2

+
1

64π2

(
mI

mP

)2
)
mI

3∑

i=1

λ2i , (40)

Table III: The mass spectrum of the model at the SUSY
vacuum

Eigenstates Eigenvalues

Scalars Fermions (Masses)

P̂ , P̄
(
ψP̄ ± ψ

P̂

)
/
√
2 mI = m/〈J〉

S,
(
δΦ̄ + δΦ

)
/
√
2 (ψS ± ψ+) /

√
2 mPQ =

√
2λaMPQ

(
δΦ̄− δΦ

)
/
√
2 (ψΦ̄ − ψΦ) /

√
2 0

ν̃ci νci Miνc = 2λiνcMPQ

Dka, D̄ka ψDka
, ψD̄ka

mDa = λDaMPQ

hla, h̄la ψhla , ψh̄la mha = λhaMPQ

where we take into account that mI ≫ mPQ and mI ≫
Mjνc . These prerequisites are safely fulfilled when λa
and λiνc remain perturbative, i.e. λa, λiνc ≤

√
4π - see

Table III. From the two contributions to ΓI, the domi-
nant one is the second one – the 3-body decay channel –
originating from the two last terms of Eq. (39).
Taking also into account that the decay width of the

produced ν̃ci , Γiνc , is much larger than ΓI– see below – we
can infer that the reheat temperature, Trh, is exclusively

determined by the P̂ decay and is given by [37]

Trh =

(
72

5π2g∗

)1/4√
ΓImP, (41)

where g∗ ≃ 232.5 counts the effective number of the rel-
ativistic degrees of freedom at temperature Trh for the
(s)particle spectrum of MSSM plus the particle content
of the axion supermultiplet. Although the factor before
the square root of Eq. (41) differs [37] slightly from other
calculations of Trh – cf. Ref. [25] – the numerical result re-
mains pretty stable and close to 108 GeV – see Sec. VB 1.
If Trh ≪ Miνc , the out-of-equilibrium condition [38]

for the implementation of nTL is automatically satisfied.
Subsequently, ν̃ci decay into H̃u and Li or H̃

∗
u and L̃∗

i via
the tree-level couplings derived from the second term of
the second line of Eq. (2). Interference between tree-level
and one-loop diagrams generates a lepton-number asym-
metry (per νci decay) εi [38], when CP is not conserved
in the Yukawa coupling constants hNij – see Eq. (2).
The resulting lepton-number asymmetry after reheating
can be partially converted through sphaleron effects into
baryon-number asymmetry. However, the required Trh
must be compatible with constraints for the G̃ abun-
dance, YG̃, at the onset of nucleosynthesis (BBN). In
particular, the B yield can be computed as

YB = −0.35
5

4

Trh
mI

∑

i

Briεi with Bri =
λ2i∑
i λ

2
i

(42)

the branching ratio of P̂ to ν̃ci – see Eq. (40). In the
formula above the first numerical factor (0.35) comes
from the sphaleron effects, whereas the second one (5/4)
is due to the slightly different calculation [37] of Trh –
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cf. Ref. [25]. On the other hand, the G̃ yield due to ther-
mal production at the onset of BBN is estimated to be
[31]:

YG̃ ≃ 1.9 · 10−22Trh/GeV. (43)

where we assume that G̃ is much heavier than the gaug-

inos. Let us note that non-thermal G̃ production within
SUGRA is unlikely in our scenario, since these contri-
butions are [39] usually proportional to the v.e.v of the
inflaton which is zero in our case.
Both Eqs. (42) and (43) calculate the correct values of

the B and G̃ abundances provided that no entropy pro-
duction occurs for T < Trh – see also Sec. VA. This fact
can be easily achieved within our setting. Indeed, follow-
ing the arguments of Ref. [11], one can show that the PQ
system comprised of the fields S and δΦ+ decays via the
third term in the RHS of Eq. (5) before its domination
over radiation, for all relevant values of λi’s. Regard-
ing the saxion, δΦ−, we can assume that it has mass
of the order of 1 TeV, its decay mode to axions is sup-
pressed (w.r.t the ones to gluons, higgses and higgsinos
[19, 40, 41]) and the initial amplitude of its oscillations is
equal to fa. Under these circumstances, it can [40] decay
before domination too, and evades [41] the constraints
from the effective number of neutrinos for the fa’s and
Trh’s encountered in our model. As a consequence of its
relatively large decay temperature, the LSPs produced by
the saxion decay are likely to be thermalized and there-
fore, no upper bound on the saxion abundance is [41] to
be imposed. Finally, if axino is sufficiently light it can act
as a CDM candidate [18, 19] with relic abundance pro-
duced predominantly thermally – due to the relatively
large Trh. Otherwise, it may enhance [19] non-thermally
the abundance of a higgsino-like neutralino-LSP, render-
ing it a successful CDM candidate.

B. Lepton-Number Asymmetry and Neutrino

Masses

As mentioned above, the decay of ν̃ci , emerging from

the P̂ decay, can generate a lepton asymmetry, εi, caused
by the interference between the tree and one-loop decay
diagrams, provided that a CP-violation occurs in hNij ’s.
The produced εi can be expressed in terms of the Dirac
mass matrix of νi, mD, defined in a basis (called νci -basis
henceforth) where νci are mass eigenstates, as follows:

εi =

∑
i6=j Im

[
(m†

DmD)
2
ij

](
FS (xij , yi, yj) + FV(xij)

)

8π〈Hu〉2(m†
DmD)ii

,

(44a)
where we take 〈Hu〉 ≃ 174 GeV, for large tanβ and

xij =
Mjνc

Miνc

and yi =
Γiνc

Miνc

=
(m†

DmD)ii
8π〈Hu〉2

· (44b)

Also FV and FS represent, respectively, the contributions
from vertex and self-energy diagrams which in SUSY the-
ories read [42–44]

FV (x) = −x ln
(
1 + x−2

)
, (44c)

and

FS (x, y, z) =
−2x(x2 − 1)

(x2 − 1− x2z lnx2/π)
2
+ (x2z − y)

2 ,

(44d)
with the latter expression written as given in Ref. [44].
When

∆iji ≫ 1 and ∆ijj ≫ 1 with ∆ijk =
|x2ij − 1|
xikyk

, (45)

(no summation is applied over the repeated indices) we
can simplify FS expanding it close to x ≃ 1 as follows

FS ≃ 2x

1− x2
≃ 1

1− x
− 1

2
· (46)

The involved in Eq. (44a) mD can be diagonalized if we
define a basis – called weak basis henceforth – in which
the lepton Yukawa couplings and the SU(2)L interactions
are diagonal in the space of generations. In particular we
have

U †mDU
c† = dD = diag (m1D,m2D,m3D) , (47)

where U and U c are 3× 3 unitary matrices which relate
Li and νci (in the νci -basis) with the ones L′

i and νc′i in
the weak basis as follows:

L′ = LU and νc′ = U cνc. (48)

Here, we write LH lepton superfields, i.e. SU(2)L doublet
leptons, as row 3-vectors in family space and RH anti-
lepton superfields, i.e. SU(2)L singlet anti-leptons, as

column 3-vectors. Consequently, the combinationm†
DmD

appeared in Eq. (44a) turns out to be a function just of
dD and U c. Namely,

m†
DmD = U c†dDdDU

c. (49)

The connection of the leptogenesis scenario with the
low energy neutrino data can be achieved through the
seesaw formula, which gives the light-neutrino mass ma-
trix mν in terms of miD and Miνc . Working in the νci -
basis, we have

mν = −mD d−1
νc mT

D, (50)

where

dνc = diag (M1νc ,M2νc ,M3νc) (51)

with M1νc ≤ M2νc ≤ M3νc real and positive. Solving
Eq. (47) w.r.t mD and inserting the resulting expression
in Eq. (50) we extract the mass matrix

m̄ν = U †mνU
∗ = −dDU cd−1

νc U cTdD, (52)
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which can be diagonalized by the unitary PMNS matrix
satisfying

m̄ν = U∗
ν diag (m1ν ,m2ν ,m3ν) U

†
ν (53)

and parameterized as follows:

Uν =




c12c13 s12c13 s13e
−iδ

U21ν U22ν s23c13

U31ν U32ν c23c13




· P . (54)

Here

U21ν = −c23s12 − s23c12s13e
iδ, (55a)

U22ν = c23c12 − s23s12s13e
iδ, (55b)

U31ν = s23s12 − c23c12s13e
iδ, (55c)

U32ν = −s23c12 − c23s12s13e
iδ, (55d)

with cij := cos θij , sij := sin θij and δ the CP-violating
Dirac phase. The two CP-violating Majorana phases ϕ1

and ϕ2 are contained in the matrix

P = diag
(
e−iϕ1/2, e−iϕ2/2, 1

)
. (56)

Following a bottom-up approach, along the lines of
Ref. [45], we can find m̄ν via Eq. (53) using as input
parameters the low energy neutrino observables, the CP
violating phases and adopting the normal or inverted hi-
erarchical scheme of neutrino masses. Taking also miD

as input parameters we can construct the complex sym-
metric matrix

W = −d−1
D m̄νd

−1
D = U cdνcU cT (57)

– see Eq. (52) – from which we can extract dνc as follows:

d−2
νc = U c†WW †U c. (58)

Note thatWW † is a 3×3 complex, hermitian matrix and
can be diagonalized following the algorithm described in
Ref. [46]. Having determined the elements of U c and the
Miνc ’s we can compute mD through Eq. (49) and the εi’s
through Eq. (44a).

V. Constraining the Model Parameters

We exhibit the constraints that we impose on our cos-
mological set-up in Sec. VA, and delineate the allowed
parameter space of our model in Sec. VB.

A. Imposed Constraints

The parameters of our model can be restricted once we
impose the following requirements:

1. According to the inflationary paradigm, the
horizon and flatness problems of the standard Big Bag

cosmology can be successfully resolved provided that N̂∗

defined by Eq. (30) takes a certain value, which depends
on the details of the cosmological scenario. Employing
standard methods [7], we can easily derive the required

N̂∗ for our model, consistent with the fact that the PQ
oscillatory system remains subdominant during the post-
inflationary era. Namely we obtain

N̂∗ ≃ 22.5 + 2 ln
VCI(σ∗)

1/4

1 GeV
− 4

3
ln
VCI(σf )

1/4

1 GeV

+
1

3
ln

Trh
1 GeV

+
1

2
ln
f(σf)

f(σ∗)
· (59)

2. The inflationary observables derived in Sec. III B
are to be consistent with the fitting [16] of the WMAP7,
BAO and H0 data. As usual, we adopt the central

value of P
1/2
R , whereas we allow the remaining quanti-

ties to vary within the 95% confidence level (c.l.) ranges.
Namely,

P
1/2
R ≃ 4.93 · 10−5, (60a)

0.944 ≤ ns ≤ 0.992, (60b)

−0.062 ≤ αs ≤ 0.018, (60c)

r < 0.24. (60d)

3. For the realization of nMCI, we assume that cR
takes relatively large values – see e.g. Eq. (16a). This
assumption may [5, 50] jeopardize the validity of the clas-
sical approximation, on which the analysis of the infla-
tionary behavior is based. To avoid this inconsistency –
which is rather questionable [10, 50] though – we have
to check the hierarchy between the ultraviolet cut-off
scale [7], Λ = mP/cR, of the effective theory and the

inflationary scale, which is represented by V̂CI(σ∗)
1/4 or,

less restrictively, by the corresponding Hubble parame-

ter, Ĥ∗ = V̂CI(σ∗)
1/2/

√
3mP. In particular, the validity

of the effective theory implies [50]

(a) V̂CI(σ∗)
1/4 ≤ Λ or (b) Ĥ∗ ≤ Λ. (61)

4. To ensure that the inflaton decay according to
the lagrangian part of Eq. (39) is kinematically allowed
we have to impose the constraint – see Table III:

mI ≥ 2mPQ+Miνc ⇒ 2mPQ+Miνc . 1013 GeV, (62)

where we make use of Eq. (36). This requirement can be
easily satisfied by constraining λa and λiνc to values lower
than the perturbative limit. As the inequality in Eq. (62)
gets strengthened, the accuracy of Eq. (40) where masses
of the decay products are neglected, increases.

5. From the solar, atmospheric, accelerator and re-
actor neutrino experiments we take into account the fol-
lowing inputs [26] – see also Ref. [27] – on the neutrino
mass-squared differences:

∆m2
21 =

(
7.59+0.2

−0.18

)
· 10−3 eV2, (63a)

∆m2
31 =

(
2.5+0.09

−0.16

[
−2.4+0.08

−0.09

])
· 10−3 eV2, (63b)
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on the mixing angles:

sin2 θ12 = 0.312+0.017
−0.015, (63c)

sin2 θ13 = 0.013+0.007
−0.005

[
0.016+0.008

−0.006

]
, (63d)

sin2 θ23 = 0.52+0.06
−0.07 [0.52± 0.06] , (63e)

and on the CP-violating Dirac phase:

δ = −
(
0.61+0.75

−0.65

[
0.41+0.65

−0.7

])
π (63f)

for normal [inverted] neutrino mass hierarchy. In partic-
ular, miν ’s can be determined via the relations

m2ν =
√
m2

1ν +∆m2
21 (64a)

and

m3ν =
√
m2

1ν +∆m2
31 (64b)

for normally ordered (NO) miν ’s or

m1ν =
√
m2

3ν + |∆m2
31| (64c)

for invertedly ordered (IO) miν ’s. The sum of miν ’s can
be bounded from above by the WMAP7 data [16]

∑
imiν ≤ 0.58 eV (65)

at 95% c.l. This is more restrictive than the 95% c.l.
upper bound arising from the effective electron neutrino
mass in β-decay [52]:

mβ :=
∣∣∑

iU
2
1iνmiν

∣∣ ≤ 2.3 eV. (66)

However, in the future, the KATRIN experiment [53] ex-
pects to reach the sensitivity of mβ ≃ 0.2 eV at 90%
c.l.

6. The interpretation of BAU through nTL dic-
tates [16] at 95% c.l.

YB = (8.74± 0.42) · 10−11. (67)

7. In order to avoid spoiling the success of the
BBN, an upper bound on YG̃ is to be imposed depending

on the G̃ mass, mG̃, and the dominant G̃ decay mode.

For the conservative case where G̃ decays with a tiny
hadronic branching ratio, we have [31]

YG̃ .





10−14

2.5 · 10−14

4.3 · 10−14

10−13

for mG̃ ≃





0.69 TeV

5 TeV

8 TeV

10.6 TeV.

(68)

As we see below, this bound is achievable within our
model model only for mG̃ & 8 TeV. The bound above

may be somehow relaxed in the case of a stable G̃.

B. Results

As can be easily seen from the relevant expressions in
Secs. II and IVB, our cosmological set-up depends on the
following independent parameters:

m, λa, λµ, kP̄ , λi, fa, n, λiνc , mℓν , miD, ϕ1 and ϕ2,

where mℓν is the low scale mass of the lightest of νi’s and
can be identified with m1ν [m3ν ] for [NO] [IO] neutrino
mass spectrum. We do not consider cR as independent
parameter since it is related tom via Eq. (33). Recall also
that Vrc in Eq. (24) is independent of λDa, λha ≫ λa and
depends only on n, which is set equal to 5 for definiteness.
From the parameters above, the last nine affect exclu-
sively the YL calculation and can be constrained through
the requirements 5 and 6 of Sec. VA. From these, the
λiνc ’s can be replaced by Miνc ’s given in Table III keep-
ing in mind that perturbativity requires λiνc ≤

√
4π or

Miνc ≤ 3.5fa. To facilitate the realization of see-saw
mechanism, we take fa = 1012 GeV. This choice makes
also possible the generation of the µ term of MSSM
through the PQ symmetry breaking, since µ ∼ 1 TeV
is obtained for λµ = 0.01, whereas lower fa’s dictate
larger λµ’s. Moreover, our computation reveals that ε1
in Eq. (44a) is mostly smaller than ε2 and ε3. Therefore,
fulfilling the baryogenesis criterion enforces us to consider
Br1 ≪ Br2,3 or λ1 ≪ λ2,3 ∼ 0.1. Since ε2 and ε3 are of
the same order of magnitude, the resulting YB does not
depends crucially on λ2/λ3. Therefore we believe that
λ2 = λ3 = 0.5 is a representative choice – e.g., we ex-
plicitly checked that the option λ2 = 0.1 and λ3 = 0.9
or λ2 = 0.9 and λ3 = 0.1 lead to similar results. Fi-
nally, our results are independent of λa and kP̄ provided
Eq. (62) is fulfilled and the positivity ofm2

̂̄p
– see Table II

– is ensured, respectively. To facilitate the achievement
of these objective, we get λa = 0.01 and kP̄ = 1.
Summarizing, we set throughout our calculation:

kP̄ = 1, λ1 ≤ 0.01, λ2 = λ3 = 0.5, n = 5, (69a)

λµ = λa = 0.01 and fa = 1012 GeV. (69b)

The selected values for the above quantities give us a wide
and natural allowed region for the remaining fundamental
parameters of our model, as we show below concentrating
separately in the inflationary period (Sec. VB 1) and in
the stage of nTL (Sec. VB 2).

1. The Stage of non-Minimal Inflation

For nMCI, we use as input parameters in our numerical
code σ∗,m and cR. For every chosen cR ≥ 1 we restrict
m and σ∗ so that the conditions in Eq. (59) – with Trh
evaluated consistently using Eq. (41) – and (60a) are sat-
isfied. Let us remark that, in our numerical calculations,

we use the complete formulae for V̂CI – see Eq. (25) –,

N̂∗, the slow-roll parameters and P
1/2
R in Eqs. (30), (26a),
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Fig. 1: The allowed by Eqs. (59), (60a), (60b) and (61b) values of cR (solid line), mI – given by Eq. (36) – (dashed line) and
Trh – given by Eq. (41) – (dot-dashed line) [σf (solid line) and σ∗ (dashed line)] versus m (a) [(b)] for λ1 ≪ λ2 = λ3 = 0.5.
The light gray and gray segments denote values of the various quantities satisfying Eq. (61a) too, whereas along the light gray
segments we obtain σ∗ ≥ mP. Values of the parameters to the right of the lined region correspond to ns’s lying within its 68%
c.l. observationally favored region.

(26b), (32) and not the approximate relations listed in
Sec. III B for the sake of presentation.
Our results are displayed in Fig. 1, where we draw the

allowed values of cR (solid line) mI (dashed line)and Trh
(dot-dashed line) [σf (solid line) and σ∗ (dashed line)]
versus m – see Fig. 1-(a) [Fig. 1-(b)]. The constraint of
Eq. (61b) is satisfied along the various curves whereas
Eq. (61a) is valid only along the gray and light gray seg-
ments of these. Along the light gray segments, though,
we obtain σ∗ ≥ mP. The lower bound on m is derived
from the saturation of the upper bound of inequality in
Eq. (60b) whereas the upper bound comes from the fact
that the enhanced resulting m’s destabilize the inflation-
ary path through the radiative corrections in Eq. (25) –
see Eq. (24). Indeed, Vrc starts to influence the inflation-
ary dynamics for m ≥ 1.5 · 1016 GeV, and consequently,
the variation of σf as a function of cR or m – drawn
in Fig. 1-(b) – deviates from the behavior described in
Eq. (28). On the contrary the variations of σ∗ follows
Eq. (31).
In all, we obtain

45 . cR . 2950 and 2.5 .
m

1015 GeV
. 102 (70)

for N̂∗ ≃ 54.5. From Fig. 1-(a), we observe that m de-
pends on cR almost linearly whereas mI remains close
to 1013 GeV as we anticipated in Eqs. (33) and (36), re-
spectively. As a result of the latter effect, Trh given by
Eq. (41) remains also almost constant. As m (or cR) de-
creases below its maximal value in its allowed region in
Eq. (70), we obtain

0.965 . ns . 0.991, (71a)

6.5 . −αs/10
−4 . 12, (71b)

3.1 . r/10−3 . 7.3. (71c)

Clearly, the predicted ns, αs and r can lie within the al-
lowed ranges given in Eqs. (60b), (60c) and (60d) respec-
tively. In particular, values of the various parameters
plotted in Fig. 1, which lie to the right of the lined regions
correspond to ns ≃ (0.965− 0.98). This result is consis-
tent with the 68% c.l. observationally favored region –
see Eq. (60b). It is notable, however, that ns increases

impressively for σ∗/mP >
√
6, contrary to the situation

in models of nMCI with quadratic coupling to R where
ns remains constantly close to its central observational
favored value in Eq. (60b) – cf. Ref. [11].

As regards the G̃ abundance, employing Eq. (43), we
find

3.5 . YG̃/10
−14 . 8.4 (72)

as m varies within its allowed range in Eq. (70). Com-
paring this result with the limits of Eq. (68), we infer
that our model is consistent with the relevant restriction
for mG̃ & (8 − 10) TeV.

2. The Stage of non-Thermal Leptogenesis

As we show above, the stage of nMCI predicts al-
most constant values of mI and Trh – recall that we
consider λi’s of the order of 0.1. In other words, the
post-inflationary evolution in our set-up is largely in-
dependent of the precise value of m in the range of
Eq. (70). As a consequence, YB calculated by Eq. (42)
does not vary with m, contrary to the naive expectations.
Just for definiteness we take throughout this section
m = 4.2 ·1015 GeV which corresponds to cR = 100, ns =
0.969, mI = 3.4 · 1013 GeV and Trh = 2.1 · 108 GeV
(YG̃ ≃ 4 ·10−14) – recall that we use λ1 ≪ λ2 = λ3 = 0.5.
On the contrary, YB in our approach depends crucially

on the low energy parameters related to the neutrino
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Table IV: Parameters yielding the correct BAU for various
neutrino mass schemes.

Parameters Cases

A B C D E F G

Normal Degenerate Inverted

Hierarchy Masses Hierarchy

Low Scale Parameters

m1ν/0.1 eV 0.05 0.1 0.5 1. 0.7 0.5 0.49

m2ν/0.1 eV 0.1 0.13 0.51 1.0 0.705 0.51 0.5

m3ν/0.1 eV 0.5 0.51 0.71 1.12 0.5 0.1 0.05
∑
imiν/0.1 eV 0.65 0.74 1.7 3.1 1.9 1.1 1

mβ/0.1 eV 8 · 10−3 0.013 0.19 0.46 0.3 0.42 0.44

ϕ1 π π 0 π/4 π/4 π/4 π/4

ϕ2 0 0 5π/6 π π π/2 π/4

Leptogenesis-Scale Parameters

m1D/GeV 2 2.5 4 8 9 6 5

m2D/GeV 3 3.49 5 9.3 6 3 1

m3D/GeV 6.7 4 8 11 4.7 2 2.1

M1νc/10
11 GeV 2.5 2.4 3.3 6.5 4.6 1 0.3

M2νc/10
11 GeV 11 7.3 5.2 8.13 4.9 5.56 4.3

M3νc/10
11 GeV 17 7.6 6 8.36 8.6 6.7 5.1

∆iji/10
4 4.5 0.5 0.96 0.05 0.3 1.6 1.4

∆ijj/10
4 1.6 0.54 0.48 0.04 0.3 1.2 3.5

(with i = 2 and j = 3 except for case E where i = 1 and j = 2)

Resulting B-Yield

1011Y 0
B 8.3 7.4 6.3 3.3 7.2 9.3 4.8

1011YB 8.7 8.85 8.98 8.4 8.9 8.96 8.95

physics. In our numerical program, for a given neutrino
mass scheme, we take as input parameters: mℓν , ϕ1, ϕ2

and the best-fit values of the neutrino parameters listed
in the paragraph 5 of Sec. VA. We then find the renor-

malization group (RG) evolved values of these parameters
at the scale of nTL, ΛL, which is taken to be ΛL = mI,
integrating numerically the complete expressions of the
RG equations – given in Ref. [47] – for miν , θij , δ, ϕ1 and
ϕ2. In doing this, we consider the MSSM with tanβ ≃ 50
(favored by the preliminary LHC results [54]) as an ef-
fective theory between ΛL and a SUSY-breaking scale,
MSUSY = 1.5 TeV. BelowMSUSY the running of the var-
ious parameters is realized considering the particle con-
tent of SM with a mass of about 120 GeV for the light
Higgs. Following the procedure described in Sec. IVB,
we evaluate Miνc at ΛL taking miD as free parameters.
In our approach we do not consider the running of miD

and Miνc and therefore we give their values at ΛL.

We start the exposition of our results arranging in Ta-
ble IV some representative values of the parameters lead-
ing to the correct BAU for normally hierarchical (cases A

and B), degenerate (cases C, D and E) and invertedly hi-
erarchical (cases F and G) neutrino masses. For compari-
son we display the B-yield with (YB) or without (Y

0
B) tak-

ing into account the RG effects. We observe that the two
results differ appreciably especially in the cases with de-
generate or IOmiν ’s. As it is evident from themiD’s cho-
sen, our model is not compatible with any GUT-inspired
pattern of large hierarchy between the miD’s. In partic-
ular, we need m1D < m2D < m3D [m3D < m2D < m1D]
for NO [IO] miν ’s (cases A, B, C and D [cases E, F and
G]).

From Table IV we also notice that the achievement of
YB within the range of Eq. (67) dictates mostly proxim-
ity between two of the Miνc ’s. Indeed, except for the
case A, we obtain M2νc/M1νc ≃ 1.06 in case E and
M3νc/M2νc < 1.2 in the residual cases. However, it is
clear from the displayed ∆iji’s and ∆iji’s (with i = 2 and
j = 3 for all the cases besides case E where i = 1 and
j = 2) that in our framework the conditions of Eq. (45)
are comfortably retained and therefore, our proposal is
crucially different from that of resonant leptogenesis [42–
44] – it rather resembles that of Ref. [28]. On the other
hand, the correctness of YB in the case A entails M2νc

and M3νc [λ2νc and λ3νc ] roughly larger than 1012 GeV
[unity]. In all cases the current limit of Eq. (65) is safely
met – the case D approaches it –, while mβ turns out to
be well below the projected sensitivity of KATRIN [53].

To highlight further our conclusions inferred from Ta-
ble IV, we can fix mℓν (m1ν for NO miν ’s or m3ν for
IO miν ’s) m1D, ϕ1 and ϕ2 to their values shown in this
table and vary m2D and m3D so that the central value
of Eq. (67) is achieved. The resulting contours in the
m2D −m3D plane are presented in Fig. 2-(a) – since the
range of Eq. (67) is very narrow the possible variation
of the drawn lines is negligible. The resulting values of
Mjνc are displayed in M1νc − M2νc and M2νc − M3νc

plane – see Fig. 2-(b) and Fig. 2-(c) respectively. The
conventions adopted for the types and the color of the
various lines are also described next to the graphs (a) of
Fig. 2. In particular, we use black [gray] lines for NO
[IO] miν ’s. Besides the case with m1ν = 0.005 eV we
observe that every curve in all graphs has two branches
and not large hierarchies allowed in the sectors of both
the mD’s and Mνc ’s. Note that the black contour for
m1ν = 0.01 eV in Fig. 2-(c) is included within the one for
m1ν = 0.1 eV and so, it is not quite distinguishable. For
m1ν = 0.005 eV, λ3νc saturates the perturbation limit.
Since we expect that the λiνc ’s increase [55] due to their
RG running from low to higher scale, our results do not
jeopardize the validity of the conventional perturbation
approach up to the scale ΛL. In all cases we find that
miD . 10 GeV.

It is worth emphasizing that, although our mechanism
of nTL is connected with the specific inflationary model
under consideration, it can have a much wider applica-
bility. It can be realized within other models of inflation
with similar inflaton mass and reheat temperature, since
it is largely independent of the details of the inflationary
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Fig. 2: Contours in the m2D −m3D (a) M1νc −M2νc (b) and M2νc −M3νc (c) plane yielding the central YB in Eq. (67), for
various (mℓν ,m1D, ϕ1, ϕ2)’s indicated next to the graph (a) and NO [IO] miν ’s (black [gray] lines).

phase but restricts mainly the yet unknown parameters
of neutrino physics (miν ,miD, ϕ1, ϕ2).

VI. Conclusions

We investigated a novel inflationary scenario in which
the inflaton field appears in a bilinear superpotential
term and in a linear holomorphic function included in a
logarithmic Kähler potential. The latter function can be
interpreted in JF as a non-minimal coupling to gravity,
whose the strength is constrained so as the EF inflation-
ary potential can be flattened enough to support a stage
of non-minimal inflation compatible with observations.
The inflationary model was embedded in a moderate ex-
tension of MSSM augmented by three RH neutrino su-
perfields and three other singlet superfields, which lead
to a PQPT tied to renormalizable superpotential terms.
The PQPT follows nMCI and resolves the strong CP and
the µ problems of MSSM and also provides RH neutrinos
with masses lower than about 1012 GeV. The possible
catastrophic production of domain walls can be eluded
by the introduction of extra matter superfields which
can be chosen so that the MSSM gauge coupling con-

stant unification is not disturbed. For G̃ masses larger
than 8 TeV, observationally safe reheating of the uni-
verse with Trh ≃ 108 GeV can be accomplished by a
three-body decay of the inflaton. The subsequent out-
of-equilibrium decays of the produced RH sneutrinos can
generate the required by the observations BAU consis-
tently with the present low energy neutrino data, pro-
vided that the Dirac neutrino masses are constrained
to values lower than 10 GeV for all the light neutrino
mass schemes. It is gratifying that the degeneracy of the
masses of the RH (s)neutrinos required by the mecha-
nism of nTL in our model is low enough compared with
their decay widths, so that perturbative calculation re-
mains safely valid. Finally, we briefly discussed scenaria
in which the potential axino and saxion overproduction
problems can be avoided.
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