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Abstract: The difference between vacuum energy of quantum fields in Minkowski

space and in Friedmann-Robterson-Walker universe might be related to the observed

dark energy. The vacuum energy of the Veneziano ghost field introduced to solve

the U(1)A problem in QCD is of the form, H +O(H2). Based on this, we study the

dynamical evolution of a phenomenological dark energy model whose energy density

is of the form αH + βH2. In this model, the universe approaches to a de Sitter

phase at late times. We fit the model with current observational data including

SnIa, BAO, CMB, BBN, Hubble parameter and growth rate of matter perturbation.

It shows that the universe begins to accelerate at redshift z ∼ 0.75 and this model is

consistent with current data. In particular, this model fits the data of growth factor

well as the ΛCDM model.



1. Introduction

The accelerating expansion is still a mystery of modern cosmology since its discovery

in 1998 [1], and a new energy component called dark energy (DE) is needed to explain

this acceleration expansion within the framework of general relativity. The simplest

model of DE is the cosmological constant, which is consistent with all observational

data, but it faces with the fine tuning problem [2]. Instead, many alternative DE

models have also been proposed [3, 4, 5, 6, 7, 8, 9], but almost all of them explain

the acceleration expansion either by introducing new degree(s) of freedom or by

modifying general relativity.

Recently the so-called QCD ghost dark energy has been proposed in [10, 11, 12].

The Veneziano ghost field plays a crucial role in the resolution of the U(1)A problem

in QCD [13]. The ghost field has no contribution to the vacuum energy density in

Minkowski spacetime, but in a curved spacetime, it gives rise to a vacuum energy

density proportional to Λ3
QCDH [14, 15, 16, 17], where ΛQCD is QCD mass scale

and H is Hubble parameter. Note that in this ghost dark energy model, there

are no unwanted features such as violation of gauge invariance, unitarity, causality

etc. [10, 11, 14, 15, 16, 17]. In fact, the description in terms of the Veneziano ghost

is just a matter of convenience to describe very complicated infrared dynamics of

strongly coupled QCD. The Veneziano ghost is not a physical propagating degree

of freedom, one can describe the same dynamics using some other approaches (e.g.

direct lattice simulations) without using the ghost. Therefore the Veneziano ghost

field is quite different from those ghost fields in some dark energy models in the

literature, there those ghost fields are real physical degrees of freedom, introduced

in order to have the equation of state of dark energy to cross −1. On the other

hand, the vacuum energy is generally expected exponentially suppressed because

QCD is a theory with a mass gap. However, this issue is elaborated in some details in

[14, 15, 16, 17], there it has been convincingly argued that the complicated topological

structure of strongly coupled QCD will lead to a vacuum energy density with an

inverse linear scale of manifold size in a nontrivial background. The power law

behavior is also supported by recent lattice result [15, 18]. Very recently it has been

shown that this behavior is also got supported from the holographic description of

gauge field [19].

Because this model is totally embedded in standard model and general relativity,

one needs not to introduce any new degrees of freedom or to modify Einstein’s general

relativity. In this model, the energy density of DE is roughly of order Λ3
QCDH, with

ΛQCD ∼ 100MeV and H ∼ 10−33eV , so Λ3
QCDH gives the right order of observed

DE energy density. This numerical coincidence is impressive and also means that

this model gets rid of fine tuning problem [10, 11]. The model parameters have been

fitted recently by observational data including SnIa, BAO, CMB, BBN and Hubble

parameter data [12]. It shows that this model is consistent with those observational
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data.

On the other hand, it is convincingly argued that the contribution of zero-

point fluctuations of quantum field to the total energy density should be com-

puted by subtracting the Minkowski space result from the computation in a FRW

space-time [20, 21]. Usually the difference, H2Λ2
c , between the vacuum energies in

Minkowski space and in the FRW space-time, is absorbed into a renormalization of

Newton’s constant G, here H is the Hubble constant of the FRW universe and Λc is

the cutoff. However, it is true only under the assumption that the vacuum expec-

tation value of the energy-momentum tensor is conserved in isolation [21]. In that

reference the authors investigated the role of this term as early dark energy in the

evolution of the universe.

Notice the fact that the vacuum energy from the Veneziano ghost field in QCD

is of the form H + O(H2), see for example, [19], while in the previous works on

the QCD ghost dark energy model, the leading term H has been considered only.

Having considering the study in [21], one may expect that the subleading term H2

in the ghost dark energy model might play a crucial role in the early evolution of the

universe, acting as the early dark energy.

Based on the QCD ghost dark energy, in this work we therefore investigate a phe-

nomenological model with energy density ρDE = αH + βH2. For other motivations

to consider this form see [22], there it is argued that this form of varying cosmological

constant could be a possible candidate to solve the two fundamental cosmological

puzzles. We study the cosmological evolution of this DE model, fit this model with

current observational data and give constraints on the model parameters. Besides, it

is worth noticing that a varying DE should have some effect on the evolution of the

matter perturbation, so we study the first order perturbation to the matter density

and fit this model with the data of linear growth factor.

The paper is organized as follows. In Section 2 we study the dynamical evolution

of the DE model. In Section 3, we fit this model with current observational data and

discuss the fitting results. The data used are Union II SnIa sample [23], BAO data

from SDSS DR7 [24], CMB data (R, la, z∗) from WMAP7 [25], 12 Hubble evolution

data [26, 27] and Big Bang Nucleosynthesis (BBN) [28, 29], and we also study the

effect of the DE on the linear perturbation of matter density. We summarize our

work and give some discussions in Section 4.

2. Dynamics of QCD Ghost Dark Energy

To study the dynamics of the DE model, we consider a flat FRW universe with three

energy components: matter, DE and radiation. In this ghost DE model, the energy

density of DE is given by ρDE = αH + βH2, where α is a constant with dimension

[energy]3, roughly of order of Λ3
QCD where ΛQCD ∼ 100MeV is QCD mass scale,
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and β is another constant with dimension [energy]2. For convenience, we define

γ ≡ 1− 8πG
3
β and use this throughout the paper.

Arming with this DE density, the Friedman equation reads

H2 =
8πG

3γ
(αH + ρm + ρr) , (2.1)

where ρm is energy density of matter, whose continuity equation gives

ρ̇m + 3Hρm = 0 =⇒ ρm = ρm0a
−3. (2.2)

and ρr is energy density of the radiation, whose continuity equation gives

ρ̇r + 4Hρr = 0 =⇒ ρr = ρr0a
−4. (2.3)

We have set a0 = 1 and the subscript 0 stands for the present value of some quantities.

Solving the Friedman equation, we have

H± =
4πG

3γ
α±

√(
4πG

3γ
α

)2

+
8πG

3γ
ρm0a−3 +

8πG

3γ
ρr0a−4. (2.4)

There are two branches, H+ represents an expansion solution, while H− a contraction

one. We neglect the latter since it goes against the observation, and for simplicity,

write H+ as H in what follows.

Expressed with fraction energy density of matter and radiation, Ωm0, Ωr0, Equa-

tion 2.4 gives an important constraint among these parameters:

(γ − Ωm0 − Ωr0)H0 =
8πG

3
α. (2.5)

Further, Equation 2.4 can be rewritten as

H(z) = H0

(
κ+

√
κ2 +

Ωm0(1 + z)3 + Ωr0(1 + z)4

γ

)
. (2.6)

where κ = (1− (Ωm0 + Ωγ0)/γ)/2 and z is the redshift, z = 1/a−1. We can see from

(2.6) that the universe approaches to a de Sitter phase with Hubble parameter 2κH0

at late times, while it is dominated by matter and radiation terms at early times.

Note that there exist many papers focusing on the coupling between the time-

dependent vacuum energy and matter [30]. But we do not consider here such coupling

in our analysis. Namely in our discussion, the DE, matter and radiation are sepa-

rately conserved. In that case, the corresponding time evolution equation for the

matter density contrast D ≡ δρm/ρm is given by:

D̈ + 2HḊ − 4πGρmD = 0, (2.7)
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where the over dot denotes the derivative with respect to the cosmic time. In terms

of the growth factor [31], Equation 2.7 can be rewritten as

−(1+z)H(z)2 df

dz
+2H(z)2f+H(z)2f 2−(1+z)H(z)

dH(z)

dz
f =

3Ωm0(1 + z)3

2
, (2.8)

where the growth factor f is defined as f = −(1 + z)d lnD
dz

. In general, there is no

analytical solution to Equation 2.8, and we need to solve it numerically. But it is

very interesting that the solution of the equation can be approximated as [32]

f = Ωm(z)λ, (2.9)

and the growth index λ can be obtained for some general models as

λ =
3

5− w
1−w

+
3

125

(1− w)(1− 3w/2)

(1− 6w/5)3
(1− Ωm(z)). (2.10)

where w is the equation of state of DE. For the case with 1−Ωm(z) being between zero

and 0.8, the accuracy is better than 1%. For the ΛCDM model, the approximation

f(z = 0) = Ω0.6
m0 + ΩΛ0(1 + Ωm0/2)/70 can be made [33]. But in our analysis, instead

of parametrization of λ [34], we will solve the Equation 2.8 numerically, by setting

the initial condition f(z = 0) = f0, where f0 is a free parameter to be constrained

by observational data.

3. Data Fitting

3.1 Model

In order to fit the model with current observational data, we consider a more realistic

model which includes DE, Cold Dark Matter, radiation and baryon in a flat FRW

universe in this section. In this case, the dimensionless Hubble parameter can be

written as,

E ≡ H

H0

= κ+

√
κ2 +

Ωm0(1 + z)3 + Ωr0(1 + z)4

γ
, (3.1)

where the energy density of baryon and Cold Dark Matter are always written together

as ΩDM0 + Ωb0 = Ωm0, and ΩDM0,Ωb0,Ωr0 are present values of dimensionless energy

density for Cold Dark Matter, baryon and radiation, respectively. The energy density

of radiation is the sum of those of photons and relativistic neutrinos

Ωr0 = Ωγ0 (1 + 0.2271Nn) ,

whereNn = 3.04 is the effective number of neutrino species and Ωγ0 = 2.469×10−5h−2

for Tcmb = 2.725K (h = H0/100Mpc · km · s−1).

We will choose h, γ, Ωb0 and Ωm0 (and also f0 when we consider the growth

factor) as free parameters of the model in the following data fitting. This relation

Equation 2.5 implies that there exists a strong degeneracy among h, γ and Ωm0.
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3.2 Observational Datasets

We fit our model by employing some observational data including SnIa, BAO, CMB,

Hubble evolution data, BBN and the data of growth factor.

The data for SnIa are the 557 Uion II sample [23]. χ2
sn for SnIa is obtained

by comparing theoretical distance modulus µth(z) = 5 log10[(1 + z)
∫ z

0
dx/E(x)] + µ0

(µ0 = 42.384− 5 log10 h) with observed µob of supernovae:

χ2
sn =

557∑
i

[µth(zi)− µob(zi)]2

σ2(zi)
. (3.2)

To reduce the effect of µ0, we expand χ2
sn with respect to µ0 [35] :

χ2
sn = A+ 2Bµ0 + Cµ2

0 (3.3)

where

A =
∑
i

[µth(zi;µ0 = 0)− µob(zi)]2

σ2(zi)
,

B =
∑
i

µth(zi;µ0 = 0)− µob(zi)
σ2(zi)

,

C =
∑
i

1

σ2(zi)
.

(3.3) has a minimum as

χ̃2
sn = χ2

sn,min = A−B2/C, (3.4)

which is independent of µ0. In fact, it is equivalent to performing an uniform

marginalization over µ0, the difference between χ̃2
sn and the marginalized χ2

sn is just

a constant [35]. We will adopt χ̃2
sn as the goodness of fit between theoretical model

and SnIa data.

The second set of data is the Baryon Acoustic Oscillations (BAO) data from

SDSS DR7 [24], the datapoints we use are

d0.2 =
rs(zd)

DV (0.2)

and

d0.35 =
rs(zd)

DV (0.35)
,

where rs(zd) is the comoving sound horizon at the baryon drag epoch [36], and

DV (z) =

[(∫ z

0

dx

H(x)

)2
z

H(z)

]1/3
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encodes the visual distortion of a spherical object due to the non Euclidianity of a

FRW spacetime. The inverse covariance matrix of BAO is

C−1
M,bao =

(
30124 −17227

−17227 86977

)
.

The χ2 of the BAO data is constructed as:

χ2
bao = Y TC−1

M,baoY, (3.5)

where

Y =

(
d0.2 − 0.1905

d0.35 − 0.1097

)
.

The third set of data we use are CMB datapoints (R, la, z∗) from WMAP7 [25].

z∗ is the redshift of recombination [37], R is the scaled distance to recombination

R =
√

Ωm0

∫ z∗

0

dz

E(z)
,

and la is the angular scale of the sound horizon at recombination

la = π
r(a∗)

rs(a∗)
,

where r(z) =
∫ z

0
dx/H(x) is the comoving distance and rs(a∗) is the comoving sound

horizon at recombination

rs(a∗) =

∫ a∗

0

cs(a)

a2H(a)
da,

where the sound speed cs(a) = 1/
√

3(1 +Rba) and Rb = 3Ω
(0)
b /4Ω

(0)
γ is the photon-

baryon energy density ratio. The χ2 of the CMB data is constructed as:

χ2
cmb = XTC−1

M,cmbX, (3.6)

where

X =

 la − 302.09

R− 1.725

z∗ − 1091.3


and the inverse covariance matrix

C−1
M,cmb =

 2.305 29.698 −1.333

29.698 6825.270 −113.180

−1.333 −113.180 3.414

 .

The fourth set of observational data is 12 Hubble evolution data from [26] and

[27]. Its χ2
H is defined as

χ2
H =

12∑
i=1

[H(zi)−Hob(zi)]
2

σ2
i

. (3.7)
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z fobs σ Ref

0.15 0.51 0.11 [39]

0.22 0.60 0.10 [40]

0.32 0.654 0.18 [41]

0.35 0.70 0.18 [42]

0.41 0.50 0.07 [40]

0.55 0.75 0.18 [43]

0.60 0.73 0.07 [40]

0.77 0.91 0.36 [44]

0.78 0.70 0.08 [40]

1.4 0.90 0.24 [45]

3.0 1.46 0.29 [46]

Table 1: Currently available data for linear growth rate fobs used in our analysis. z is

redshift; σ is the 1σ uncertainty of the growth rate data.

Note that the redshift of these data falls in the region z ∈ (0, 1.75).

The Big Bang Nucleosynthesis (BBN) data we use here are from [28, 29], whose

χ2 is

χ2
bbn =

(Ωb0h
2 − 0.022)

2

0.0022
. (3.8)

And finally for the growth factor data, we define

χ2
f =

11∑
i=1

[f(zi)− fob(zi)]2

σ2
i

. (3.9)

The 11 data of growth factor are summarized in Table 1 [38].

3.3 Fitting Results

The best fitting values and errors of the model parameters are summarized in Table 2,

where we also list the best fitting values of the corresponding parameters of ΛCDM

model for comparison. The best fitting values of Ωm0 and h are slightly smaller than

corresponding ones in the ΛCDM model and the best fitting values of Ωb0 are larger

than corresponding ones in the ΛCDM model. We also can see from Table 2 that

adding the data of growth factor dose not have much impact on the values of the

parameters, both at 1σ confidence level and 2σ confidence level, which may mean

that this model is not sensitive to the linear growth rate of matter. In addition, we

find that γ < 1 is excluded at 2σ confidence level, which means that in the ghost dark

energy model, β < 0. Furthermore, we see that the subleading term H2 of the dark

energy density, the early dark energy, could have a fraction energy density around

10%. In Figure 1 and Figure 2, we plot the 1D marginalized distribution probability

of each parameter using the full datasets.
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parameter SN+BAO+CMB+H+BBN SN+BAO+CMB+H+BBN+F ΛCDM

h 0.642−0.017,−0.025
+0.012,+0.023 0.642−0.015,−0.027

+0.010,+0.021 0.708

Ωm0 0.250−0.014,−0.025
+0.014,+0.026 0.251−0.014,−0.025

+0.013,+0.026 0.266

Ωb0 0.052−0.002,−0.003
+0.002,+0.003 0.052−0.002,−0.003

+0.002,+0.003 0.045

γ 1.114−0.035,−0.062
+0.029,+0.058 1.105−0.028,−0.056

+0.035,+0.063 \
f0 \ 0.473−0.018,−0.029

+0.012,+0.024 0.485

Table 2: The best fitting values within 1σ and 2σ errors for h, Ωm0, Ωb0, γ and f0 for

the dark energy model. The second column shows the results using the datasets without

the data of growth factor, and the third column shows the results fitted with full datasets.

The last column shows the best fitting results of ΛCDM model using the full datasets for

comparison.

0.60 0.62 0.64 0.66 0.68
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PHh
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0.22 0.24 0.26 0.28
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Γ
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Figure 1: 1D marginalized distribution probability of h, Ωm0, Ωb0 and γ using the full

datasets.

In Figure 3 we plot the evolution behaviors of the equation of state w(z) of DE

and the deceleration parameter q(z), with the best fitting values of the model and

the ΛCDM model. In the calculation, we employ the following relations:

w(z) = −1 +
(1 + z)

3H(z)

dH(z)

dz
, (3.10)

q(z) = −1 +
(1 + z)

H(z)

dH(z)

dz
. (3.11)

The results show that in the QCD ghost dark energy model, the universe transits

from early matter dominant phase to the de-Sitter phase in the future, as expected.

The accelerating expansion begins at z = 0.75, which is earlier than what the ΛCDM
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Figure 2: 1D marginalized distribution probability of f0 using the full datasets.
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Figure 3: Evolution behaviors of the equation of state of DE and the deceleration param-

eter for the QCD ghost dark energy model and the ΛCDM model.

model predicts. w(z) varies from w > −1 to w = −1 which is similar to freezing

quintessence model [47].

The total χ2 of the best fitting values of this model using the full datasets is

χ2
min = 589.422 for dof = 586. The reduced χ2 equals to 1.006, which is acceptable,

but χ2
min is a little larger than the one for the ΛCDM model, χ2

ΛCDM = 558.890. A

similar conclusion is also reached by other authors using different data set in [48].

That work studies the dynamics of varying vacuum energy as a cosmological constant.

That is, the equation of state of the vacuum energy is always kept as w = −1. In

that case, there must exist interaction between matter and the vacuum energy. In

Figure 4, we plot the evolution of the growth factor for the QCD ghost dark energy

model and the ΛCDM model, it shows that the ghost dark energy model can not be
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Figure 4: Evolution behaviors of the growth factor for the QCD ghost dark energy model

and the ΛCDM model.

discriminated by the data, and that both of these two models fit the data very well,

even the ghost dark energy model looks fitting the data better.

4. Conclusion and Discussion

The accelerating expansion (dark energy) of the universe must be closely related

to the vacuum energy of quantum fields. It is believed that the difference between

the vacuum energies in Minkowski space and in FRW universe might be the origin

of observed dark energy. However, the naive estimate indicates that the difference

should be of the form H2Λ2
c [20, 21]. Such a term is too small and cannot derive the

universe to accelerating expansion. But this term may play an important role in the

early evolution of the universe, acting as an early dark energy.

On the other hand, the vacuum energy difference from the Veneziano ghost field

introduced in order to solve the so-called U(1)A problem in QCD has the exact form,

αH+βH2, where α ∼ Λ3
QCD ∼ (100MeV )3. The leading term gives exactly the order

of the observed dark energy. Therefore the QCD ghost dark energy model is very

attractive in the sense that this model needs not introduce new degrees of freedom

or modify Einstein’s general relativity, to explain the accelerating expansion of the

universe observed today.

In this paper, based on the vacuum energy of QCD ghost field, we investigated a

DE model whose energy density has the form αH +βH2. We studied the dynamical

evolution of the QCD ghost dark energy model and fitted this model with obser-

vational data including SnIa, BAO, CMB, BBN, Hubble parameter and the growth
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factor. The best fitting results show that the subleading term of the energy density

makes a negative contribution to the total energy density. In this model, the universe

transits from early matter dominant phase to a de-Sitter phase in the future, and

the accelerating expansion begins at z = 0.75, which is earlier than that of ΛCDM

model. The equation of state of DE varies from w > −1 to w = −1 like a freezing

quintessence model.

The total χ2 of the best fitting values of this model is χ2
min = 589.422 for the full

datasets with dof = 586. The reduced χ2 is 1.006, which is acceptable, but χ2
min is

a little larger than the one for the ΛCDM model, χ2
ΛCDM = 558.890, for the same

datasets. We further studied the cosmological dynamics of the model by considering

the effect on the growth rate of matter. The ghost dark energy model can not be

discriminated by the data, and both of this model and the ΛCDM model fit the

data very well.

Finally before ending this paper, we would like to stress that in fact there have

not been any precise calculations showing that the vacuum energy density of the

Veneziano ghost of QCD in a FRW universe is of the form, αH + β2, because the

vacuum energy calculation of the Veneziano ghost is quite difficult in both flat and

curved spacetimes due to the intrinsic difficulties of QCD and strongly interacting

fields in general [10]. But the vacuum energy calculations of the Kogut-Susskind

ghost in 2d QED (which is the direct analogue of the Veneziano ghost in QCD), in 2d

topological nontrivial spacetime and curved space [10, 16], and the vacuum energy

calculations of the effective Veneziano ghost of QCD in 4d Rindler spacetime [11]

indeed indicate such a power-law behavior. Note that in those calculations, the

kinetic contribution is not included, it is expected that the kinetic contribution is of

the same order of magnitude of the potential. While the dynamics of the effective

scalar field model for the Veneziano ghost of QCD in FRW universe is discussed in

the fourth reference in [10], here we have further made an approximation that the

size scale L of some nontrivial manifold is replaced by the Hubble size of the FRW

universe, which becomes time-dependent. In principle, in such an extension, one

has to consider the kinetic contribution of the time-dependent scale to the vacuum

energy density. However, we assume that such a contribution is subdominant due

to slowly evolution of the scale, compared to the potential term, and absorb some

uncertainties into the two coefficients α and β, because at the moment one could not

make an explicit calculation to take into account the effect. Of course, the kinetic

contribution of the Veneziano ghost of QCD and the effect in a time-dependent

spacetime should be seriously studied if the QCD ghost dark energy model studied

in this paper can fit well with the observational data. Clearly at the moment one

just can review this model at a phenomenological level.
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