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Abstract

We argue that in an inflationary cosmology a consequence of the lack of time translational

invariance is that spontaneous breaking of a continuous symmetry and Goldstone’s theorem do not

imply the existence of massless Goldstone modes. We study spontaneous symmetry breaking in

an O(2) model, and implications for O(N) in de Sitter space time. The Goldstone mode acquires a

radiatively generated mass as a consequence of infrared divergences, and the continuous symmetry

is spontaneously broken for any finiteN , however there is a first order phase transition as a function

of the Hawking temperature TH = H/2π. For O(2) the symmetry is spontaneously broken for

TH < Tc = λ1/4v/2.419 where λ is the quartic coupling and v is the tree level vacuum expectation

value and the Goldstone mode acquires a radiatively generated mass M2
π ∝ λ1/4H. The first order

nature of the transition is a consequence of the strong infrared behavior of minimally coupled scalar

fields in de Sitter space time, the jump in the order parameter at TH = Tc is σ0c ≃ 0.61H/λ1/4.

In the strict N → ∞ the symmetry cannot be spontaneously broken. Furthermore, the lack of

kinematic thresholds imply that the Goldstone modes decay into Goldstone and Higgs modes by

emission and absorption of superhorizon quanta.
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I. INTRODUCTION

In its simplest realization inflationary cosmology can be effectively described as a quasi-

deSitter space time. Early studies[1–6] revealed that de Sitter space time features infrared

instabilities and profuse particle production in interacting field theories. Infrared diver-

gences in loop corrections to correlation functions hinder the reliability of the perturbative

expansion[7–9], led to the suggestion of an infrared instability of the vacuum[10–14], and

affect correlation functions during inflation[7, 8, 15–20] requiring a non-perturbative treat-

ment.

Back reaction from particle production in a de Sitter background has been argued to

provide a dynamical“screening” mechanism that leads to relaxation of the cosmological

constant[21–23], a suggestion that rekindled the interest on infrared effects in de Sitter

space time. A body of work established that infrared and secular divergences are manifest

in super-Hubble fluctuations during de Sitter (or nearly de Sitter) inflation[24–27], thus a

consistent program that provides a resummation of the perturbative expansion is required.

Non-perturbative methods of resummation of the secular divergences have been implemented

in several studies in de Sitter space time[28] suggesting a dynamical generation of mass[27],

a result that was originally anticipated in the seminal work of ref.[29], and explored and

extended in ref.[30]. More recently a self-consistent mechanism of mass generation for scalar

fields through infrared fluctuations has been suggested[24, 27, 31–37].

The lack of a global time-like killing vector in de Sitter space time leads to remarkable

physical effects, as it implies the lack of particle thresholds (a direct consequence of energy-

momentum conservation) and the decay of fields even in their own quanta[28, 38] with the

concomitant particle production, a result that was confirmed in ref.[12, 39] and more recently

investigated in ref.[40, 41] for the case of heavy fields.

For light scalar fields in de Sitter space time with mass M ≪ H , it was shown in refs.[28]

that the infrared enhancement of self-energy corrections is manifest as poles in ∆ = M2/3H2

in correlation functions and that the most infrared singular contributions to the self-energy

can be isolated systematically in an expansion in ∆ akin to the ǫ expansion in critical

phenomena. A similar expansion was noticed in refs.[27, 31, 34, 41, 42].

Whereas infrared effects in de Sitter (or quasi de Sitter) cosmology are typically studied

via correlation functions, recently the issue of the time evolution of the quantum states
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has began to be addressed. In ref.[43] the Wigner-Weisskopf method[44, 45] ubiquitous in

quantum optics[46] has been adapted and extended as a non-perturbative quantum field

theory method in inflationary cosmology to study the time evolution of quantum states.

This method reveals how quantum states decay in time, it has been shown to be equivalent

to the dynamical renormalization group in Minkowski space time[43, 47] and has recently

been implemented to study the radiative generation of masses and decay widths of minimally

coupled fields during inflation[37].

Early studies[48, 49] suggested that infrared divergences during inflation can prevent

spontaneous symmetry breaking, however more recently the issue of spontaneous symmetry

breaking during inflation has been revisited in view of the generation of masses by radiative

corrections[33, 34, 36]. In ref.[34] the study of an O(N) model in the large N limit reveals

that there is no spontaneous symmetry breaking as a consequence of the infrared divergences:

if the O(N) symmetry is spontaneously broken there would be massless Goldstone bosons

which lead to strong infrared divergences, the resolution, as per the results of this reference is

that the symmetry is restored by the strong infrared divergences and no symmetry breaking

is possible. This result is in qualitative agreement with those of earlier refs.[48, 49]. However,

a different study of the same model in ref.[36] reaches a different conclusion: that indeed

the O(N) symmetry is spontaneously broken but Goldstone bosons acquire a radiatively

induced mass. In ref.[33] a scalar model with Z2 symmetry is studied with the result that

radiative corrections tend to restore the symmetry via the non-perturbative generation of

mass. Both refs.[33, 36] suggest a discontinuous transition.

Motivation, goals and results:

Spontaneous symmetry breaking is an important ingredient in the inflationary paradigm,

and as such it merits a deeper understanding of whether radiative corrections modify the

familiar picture of slow roll inflation. If, as found in ref.[34], symmetry breaking is not

possible in some models, these would be ruled out at least in the simple small field scenarios

of slow roll, as inflation would not be successfully ended by the inflaton reaching the broken

symmetry minimum. Furthermore, if the inflaton is part of a Higgs-type mode of multiplet

of fields, the question of whether the fields associated with unbroken generators are massless

is very important as these could lead to entropy perturbations whose infrared divergences

are more severe than those of adiabatic perturbations[9].
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In this article we study an O(2) scalar field theory in de Sitter space time and extract

implications for O(N) with the following goals: i) to revisit at a deeper level the content

of Goldstone’s theorem in an expanding cosmology in absence of manifest time translational

invariance. In particular whether spontaneous symmetry breaking of a continuous symmetry

does imply the existence of massless Goldstone modes in an inflationary setting. ii) a

study beyond the local mean field approximation of whether a continuous symmetry can be

spontaneously broken in de Sitter space time, iii) how the mechanism of self-consistent non-

perturbative mass generation can be compatible with symmetry breaking and Goldstone

modes.

Recently there has been renewed interest in a deeper understanding of Goldstone’s theo-

rem and spontaneous symmetry breaking both in relativistic and non-relativistic systems[50–

52], thus our study provides a complementary investigation of symmetry breaking in a cos-

mological setting wherein the lack of a global time-like Killing vector leads to unexpected

yet very physical consequences.

Brief summary of results:

• We argue that in absence of time translational invariance Goldstone’s theorem does not

imply the existence of massless excitations if a continuous symmetry is spontaneously

broken. We revisit the implementation of Goldstone’s theorem in a spontaneously

broken O(2) symmetry in Minkowski space time and highlight that the masslessness

of Goldstone Bosons is a consequence of a cancellation between space time local and

non-local terms in the loop expansion and discuss the implications for an O(N) theory

in the large N limit.

• We then study the same model in de Sitter space-time, and emphasize that whereas

in Minkowski space-time the conservation of the Noether current associated with the

continuous symmetry directly leads to Goldstone’s theorem, in an expanding cosmol-

ogy this current is covariantly conserved and the consequences are, therefore, much

less stringent. In conformal coordinates a conserved Noether current is manifestly ob-

tained, but the lack of time translational invariance renders the content of Goldstone’s

theorem much less stringent.

• We implement a self-consistent non-perturbative approach based on the Wigner-
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Weisskopf method described in refs.[37, 43] that allows to extract the mass of the

single particle excitations and distinctly shows that the space-time local terms can-

not be cancelled by non-local self-energy terms in leading order in a ∆ expansion.

As a result Goldstone modes acquire a radiatively generated mass as a consequence

of infrared divergences in agreement with the results in refs.[34, 36]. The lack of a

time-like Killing vector entails that there are no kinematic thresholds, and as a con-

sequence Goldstone modes acquire a width from processes of absorption and emission

of superhorizon quanta of both Goldstone and Higgs-like modes.

• We show that for finite N there is a symmetry breaking first order transition as a func-

tion of the Hawking temperature TH = H/2π, Goldstone modes acquire a radiatively

infrared generated self consistent mass but also a decay width, and that the symmetry

cannot be spontaneously broken in the strict N → ∞ limit. We argue that a first

order transition is a distinct and expected consequence of infrared effects, because a

continuous transition would entail that at the critical point there should be massless

excitations which would lead to infrared divergences. Radiative corrections relieve the

infrared singularities by generating a mass but at the expense of turning the symmetry

breaking transition into first order.

II. SPONTANEOUS SYMMETRY BREAKING AND GOLDSTONE BOSONS

IN MINKOWSKI SPACE-TIME:

A. General aspects:

We consider the O(2) linear sigma model as a simple example of a scalar theory with

spontaneous symmetry breaking (SSB) and extract consequences for the case of O(N) in

the large N limit.

The Lagrangian density for the O(2) sigma model is

L =
1

2
(∂µ σ)

2 +
1

2
(∂µ π)

2 − V (σ2 + π2) (2.1)

which is invariant under the infinitesimal transformations

π → π + ǫσ ; σ → σ − ǫπ (2.2)
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with ǫ a space-time constant infinitesimal angle. The canonical momenta conjugate to the

π, σ fields are respectively,

Pπ(x) = π̇(x) ; Pσ(x) = σ̇(x) (2.3)

with the equal time canonical commutation relations

[
Pπ(~x, t), π(~y, t)

]
= −i δ3(~x− ~y) ;

[
Pσ(~x, t), σ(~y, t)

]
= −i δ3(~x− ~y) . (2.4)

The conserved Noether current associated with the global symmetry (2.2) is

Jµ(x) = i
(
σ(x) ∂µπ(x)− π(x) ∂µσ(x)

)
; ∂µJ

µ(x) = 0 (2.5)

with the conserved charge

Q = i

∫
d3x
(
σ(~x, t)Pπ(~x, t)− π(~x, t)Pσ(~x, t)

)
. (2.6)

Consider the following identity resulting from current conservation (2.5),

∫
d3x〈0|

[
~∇ · ~J(~x, t), π(~y, t′)

]
|0〉 = ∂

∂t

∫
d3x〈0|

[
J0(~x, t), π(~y, t′)

]
|0〉 (2.7)

Assuming spatial translational invariance we introduce

S(~k; t, t′) =

∫
d3x e−i~k·(~x−~y) 〈0|

[
J0(~x, t), π(~y, t′)

]
|0〉 (2.8)

If the surface integral on the left hand side of eqn. (2.7) vanishes, then it follows that

limk→0
∂

∂t
S(~k; t, t′) = 0 (2.9)

In general this result implies that

limk→0 S(~k; t, t′) = 〈0|
[
Q(t), π(~y, t′)

]
|0〉 = 〈0|σ(~y, t′)|0〉 = v(t′) . (2.10)

namely Q is time independent. In absence of time translational invariance the results

(2.9,2.10) are the only statements that can be extracted from the conservation of the current.

However if time tranlational invariance holds then S(~k; t, t′) = S(~k; t − t′) and introducing

the spectral representation

S(~k, t− t′) =

∫
dω

2π
S(~k, ω) e−iω(t−t′) (2.11)
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it follows from (2.9) that i) v(t′) = v in (2.10) is time independent and ii)

limk→0 S(~k;ω) = 2π v δ(ω) ; v = 〈0|σ(~0, 0)|0〉 , (2.12)

where we have used eqns.(2.6,2.4).

When space-time translational invariance is available further information is obtained by

writing S(~k, ω) in term of a complete set of eigenstates of the momentum and Hamiltonian

operators by inserting this complete set of states in the commutators

ei
~P ·~x e−iHt|n〉 = ei ~pn·~x e−iEnt|n〉 , (2.13)

from which we obtain

S(~k, ω) = 2π
∑

n

{
〈0|J0(~0, 0)|n〉〈n|π(~0, 0)|0〉 δ3(~pn − ~k) δ(En − ω)−

〈0|π(~0, 0)|n〉〈n|J0(~0, 0)|0〉 δ3(~pn + ~k) δ(En + ω)

}
. (2.14)

Then the result (2.12) implies an intermediate state with vanishing energy for vanishing

momentum. This is the general form of Goldstone’s theorem valid even for non-relativistic

systems[50–53]. The result has a clear interpretation: under the assumption that the current

flow out of the integration boundaries vanishes, the total charge is a constant of motion. If the

theory is manifestly time translational invariant this automatically implies that S(~k, t− t′)

in (2.8) does not depend on t− t′ by charge conservation, therefore it follows directly that

in the limit k → 0 the spectral density S(~k, ω) can only have support at ω = 0.

The standard intuitive explanation for gapless long wavelength excitations relies on the

fact that the continuous symmetry entails that the manifold of minima away from the origin

form a continuum of degenerate states. A rigid rotation around the minimum of the potential

does not cost any energy because of the degeneracy, therefore the energy cost of making a

long-wavelength spatial rotation vanishes in the long-wavelength limit precisely because of

the degeneracy. Both this argument and the more formal proof (2.12) rely on the existence

of a conserved energy and energy eigenstates, which is not available in the cosmological

setting.

The main reason for going through this textbook derivation of Goldstone’s theorem is

to highlight that time translational invariance is an essential ingredient in the statement
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that the Goldstone theorem implies a gapless excitation if the symmetry is spontaneously

broken1.

Precisely this point will be at the heart of the discussion of symmetry breaking in infla-

tionary cosmology.

B. Tree level, one-loop and large N:

In order to compare the well known results in Minkowski space-time with the case of

inflationary cosmology we now study how Goldstone’s theorem is implemented at tree and

one-loop levels in the O(2) case, and in the large N limit in the case of O(N) symmetry, as

this study will highlight the main differences between Minkowski and de Sitter space times.

To be specific, we now consider the O(2) model with potential

V (σ2 + π2) =
λ

8

(
σ2 + π2 − µ2

λ

)2
(2.15)

Shifting the field

σ = σ0 + χ (2.16)

the potential (2.15) becomes

V (χ, π) =
M2

χ

2
χ2 +

M2
π

2
π2 +

λ

2
σ0J χ +

λ

2
σ0 χ

3 +
λ

2
σ0 π

2χ +
λ

8
χ4 +

λ

8
π4 +

λ

4
χ2π2 (2.17)

where

J = σ2
0 −

µ2

λ
; M2

χ = λ
(
σ2
0 +

J

2

)
; M2

π =
λ

2
J ⇒ M2

χ −M2
π = λσ2

0 (2.18)

The value of σ0 is found by requiring that the expectation value of χ vanishes in the correct

vacuum state, thus it departs from the tree level value µ2/λ by radiative corrections.

Tree level:

At tree level σ2
0 = µ2/λ ; M2

π = 0,M2
χ = µ2, and the π field obeys the equation of

motion

π̈(~x, t)−∇2π(~x, t) = 0 . (2.19)

1 Under the assumption that the current flow out of a boundary vanishes, see discussion in[53].
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The π field is quantized in a volume V as usual

π(~x, t) =
∑

~k

1√
2V k

[
a~k e

−i(kt−~k·~x) + a†~k e
i(kt−~k·~x)

]
. (2.20)

The conserved current (2.5) becomes

Jµ = i σ0 ∂
µπ + i

(
χ ∂µπ − π∂µχ

)
(2.21)

At tree level only the first term contributes to the spectral density (2.14), since at this

level the π field creates a single particle state out of the vacuum, which is the only state

that contributes to (2.14). We refer to the first term as Jµ
tl and its conservation is a result

of the equation of motion (2.19) and σ0 being a space-time constant. It is straightforward

to find

〈0|J0
tl(~0, 0)|1~p〉〈1~p|π(~0, 0)|0〉 = −〈0|π(~0, 0)|1~p〉〈1~p|J0

tl(~0, 0)|0〉 =
σ0

2V
(2.22)

where V is the quantization volume. Therefore

S(~k, ω) = 2πσ0

∫
d3p

(2π)3
1

2

[
δ(p+ ω)δ3(~p+ ~k) + δ(p− ω)δ3(~p− ~k)

]
(2.23)

and

limk→0 S(~k, ω) = 2πσ0 δ(ω) . (2.24)

One loop: We now focus on understanding how the π− field remains massless with

radiative corrections. We carry out the loop integrals in four dimensional Euclidean space

time, the result is independent of this choice. The interaction vertices are depicted in fig.

(1).

The vacuum expectation value σ0 is fixed by the requirement that

〈χ〉 = 0 , (2.25)

to which we refer as the tadpole condition, it is depicted in fig.(2). We find

〈χ〉 = 0 ⇒ λ σ0

2M2
χ

[
J + 3Iχ + Iπ

]
= 0 (2.26)

where

Iχ =

∫
d4k

(2π)4
1

k2 +M2
χ

; Iπ =

∫
d4k

(2π)4
1

k2 +M2
π

. (2.27)
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χ π

= λ
2Jσ0

= λ
2σ0

= λ
2σ0

= λ
8

= λ
4

= λ
8

FIG. 1: Vertices in broken symmetry. The broken line ending in the black dot refers to the linear

term in χ in eqn.(2.17).

〈χ〉 = + + = 0

FIG. 2: Tadpole condition (2.25).

This condition ensures that the matrix element of the interaction Hamiltonian HI between

the vacuum and single particle states vanishes, namely

〈1~k|HI |0〉 = 0 . (2.28)

There are two solutions of the tadpole equation

σ0 = 0 , (2.29)

J = −3Iχ − Iπ ⇒ σ2
0 =

µ2

λ
− 3Iχ − Iπ 6= 0 , (2.30)

if available, the second solution (2.30) leads to spontaneous symmetry breaking.

At finite temperature

∫
d4k

(2π)4
1

k2 +M2
χ,π

⇒ T
∑

ωn

d3k

(2π)3
1

ω2
n +

~k2 +M2
χ,π

; ωn = 2π nT (2.31)
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where ωn are the Matsubara frequencies. For T 2 ≫ M2
χ,π both integrals are proportional to

T 2 and the symmetry breaking solution becomes

σ2
0 = C

(
T 2
c − T 2

)
(2.32)

with C a positive numerical constant. This well known observation will become relevant

below in the discussion of symmetry breaking in de Sitter space time because the (physical)

event horizon of de Sitter space-time 1/H determines the Hawking temperature TH = H/2π.

The π propagator becomes

Gπ(k) =
1

k2 +M2
π − Σπ(k)

(2.33)

where the Feynman diagrams for the self-energy are shown in fig. (3).

Σπ = + +

+ + +

(a) (b) (c)

(d) (e) (f )

FIG. 3: One loop diagrams that contribute to the π field self-energy Σπ(k).

The contributions from diagrams (a),(b),(c) yield

Σπ,a(k) + Σπ,b(k) + Σπ,c(k) =
λ2 σ2

0

2M2
χ

[
J + 3Iχ + Iπ

]
= 0 (2.34)

as a consequence of the tadpole condition (2.26). The remaining diagrams yield

Σπ,d(k) + Σπ,e(k) + Σπ,f(k) = −λ

2

[
Iχ + 3Iπ − 2λ σ2

0

∫
d4q

(2π)4
1

(q2 +M2
χ)((q + k)2 +M2

π)

]

(2.35)
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The pole in the π propagator determines the physical mass of the π field, we find

k2+M2
π −Σπ(k) = k2+

λ

2

[
J + Iχ+3Iπ−2λ σ2

0

∫
d4q

(2π)4
1

(q2 +M2
χ)((q + k)2 +M2

π)

]
(2.36)

where we have used M2
π given by eqn. (2.18).

If there is spontaneous symmetry breaking, J = −3Iχ − Iπ leading to

M2
π − Σπ(k) = λ

∫
d4q

(2π)4

[
1

q2 +M2
π

− 1

q2 +M2
χ

− λ σ2
0

((q + k)2 +M2
π)(q

2 +M2
χ)

]
. (2.37)

Therefore the inverse propagator is given by

k2 +M2
π − Σπ(k) = k2 + λ σ2

0

∫
d4q

(2π)4
1

q2 +M2
χ

[
1

q2 +M2
π

− 1

(q + k)2 +M2
π

]
(2.38)

where we used eqn. (2.18). Obviously (2.37,2.38) vanish as k2 → 0 (and are proportional to

k2 in this limit by Lorentz invariance), therefore the propagator for the Goldstone mode π

features a pole at k2 = 0. We emphasize that the vanishing of the mass is a consequence of

a precise cancellation between the local tadpole terms, fig.(3, (d),(e)) and the non-local (in

space-time) contribution fig.(3, (f)) in the k → 0 limit.

The propagator for χ-the Higgs like mode- is obtained in a similar manner, the Feynman

diagrams for the self energy Σχ(k) are similar to those for Σπ with χ external lines and

the only difference being the combinatoric factors for diagrams (a)-(e), and two exchange

diagrams of the (f)-type with intermediate states of two χ particles and two π particles

respectively. Again diagrams of the type (a)-(c) are cancelled by the tadpole condition

(2.26) and we find

k2 +M2
χ − Σχ(k) = k2 +

λ

2

[
2σ2

0 + J + 3Iχ + Iπ − λσ2
0 Ĩπ(k)− 9 λσ2

0 Ĩχ(k)

]
(2.39)

where

Ĩχ,π(k) =

∫
d4q

(2π)4
1

((
q + k

)2
+M2

χ,π

)2 . (2.40)

If the symmetry is spontaneously broken, using the condition (2.30) we find

k2 +M2
χ − Σχ(k) = k2 + λ σ2

0

[
1− λ

2
Ĩπ(k)−

9 λ

2
Ĩχ(k)

]
(2.41)

Large N limit:
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If rather than an O(2) symmetry we consider the O(N) case, after symmetry breaking

along the σ direction the ~π fields belong to an O(N − 1) multiplet. In the large N limit

the leading term in the tadpole condition 〈χ〉 = 0 (2.25) is given by the last diagram (solid

circle) in fig.(2),

〈χ〉 = 0 ⇒ λ σ0

2M2
χ

[
J +N Iπ

]
= 0 (2.42)

where we have neglected terms of O(1/N) in the large N limit. In this limit the leading

contribution to the π self-energy is given by fig. (3-(e)),

Σπ = −λ

2
N Iπ , (2.43)

where again we neglected terms of O(1/N). Therefore the inverse π propagator in the large

N limit is given by

k2 +M2
π − Σπ = k2 +M2

π (2.44)

where

M2
π =

λ

2

[
J +N Iπ

]
(2.45)

thus in the large N limit, the tadpole condition (2.42) can be written as

〈χ〉 = 0 ⇒ σ0 M2
π = 0 (2.46)

therefore if this condition is fulfilled with σ0 6= 0, namely with spontaneous symmetry

breaking, automatically the π field becomes massless.

C. Counterterm approach:

An alternative approach that is particularly suited to the study of radiative corrections to

masses in the cosmological setting is the familiar method of introducing a mass counterterm

in the Lagrangian by writing the mass term in the Lagrangian density as

M2
ππ

2 = M2
ππ

2 + δM2
ππ

2 ; δM2
π = M2

π −M2
π (2.47)

and requesting that the counterterm δM2 subtracts the π self-energy at zero four momentum

−δM2
π + Σπ(0) = 0 ⇒ M2

π = M2
π − Σπ(0) (2.48)

13



and the inverse propagator becomes

G−1
π (k) = k2 +M2

π −
[
Σπ(k)− Σπ(0)

]
(2.49)

in the broken symmetry phase M2
π = 0 from eqns. (2.37,2.38) and the propagator features

a pole at zero four momentum.

The main reason to go through this exercise is to highlight the following important points:

• i) the tadpole type diagrams (a),(b),(c) are cancelled by the tadpole condition (2.26)

which is tantamount to the requirement that the interaction Hamiltonian has vanishing

matrix element between the vacuum and a single χ particle state.

• ii) at one loop level the vanishing of the π mass in the case of spontaneous symmetry

breaking is a consequence of the cancellation between the local tadpole diagrams (d),

(e) and the non-local one loop diagram (f) in the k → 0 limit (the non-locality is

in configuration space not in Fourier space). This point will be at the heart of the

discussion in inflationary space time below.

• iii) In the large N limit, only the local tadpole fig. (3-(e)) contributes to the π

self-energy and the tadpole condition (2.26), for which a symmetry breaking solution

immediately yields a vanishing π mass. The tadpole and non-local diagrams fig. (3-

(d,f)) are suppressed by a power of 1/N in this limit compared to the diagram (3-(e)).

• iv) The general, non-perturbative proof of the existence of gapless long wavelength

excitations as a consequence of the results (2.12,2.14) manifestly relies on time trans-

lational invariance and energy eigenstates. In its most general form, without invoking

time translational invariance, the result (2.10) is much less stringent on the long-

wavelength spectrum of excitations without an (obvious) statement on the mass spec-

trum of the theory. Such a situation, the lack of time translational invariance (global

time-like Killing vector) is a hallmark of inflationary cosmology and it is expected that

-unlike in Minkowski space-time- Goldstone modes may acquire a mass radiatively.

These points are relevant in the discussion of the fate of Goldstone bosons in de Sitter

space-time discussed below.
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III. GOLDSTONE BOSONS IN DE SITTER SPACE-TIME:

We consider the O(2) linear sigma model minimally coupled in a spatially flat de Sitter

space time with metric given by

ds2 = dt2 − a2(t) d~x2 ; a(t) = eHt (3.1)

defined by the action (the different notation for the fields as compared to the previous section

will be explained below)

L =

∫
d4x
√

|g|
{
1

2
gµν∂µ~Φ · ∂ν~Φ− V (~Φ · ~Φ)

}
; ~Φ = (φ1, φ2) . (3.2)

were

V (~Φ · ~Φ) = λ

8

(
φ2
1 + φ2

2 −
µ2

λ

)2

. (3.3)

We follow the method of ref.[54] to obtain the conservation law associated with the global

O(2) symmetry: consider a space-time dependent infinitesimal transformation that vanishes

at the boundary of space-time

φ1(~x, t) → φ1(~x, t)− ǫ(~x, t)φ2(~x, t) ; φ2(~x, t) → φ2(~x, t) + ǫ(~x, t)φ1(~x, t) (3.4)

under which the change in the action is given by

δL =

∫
d4x
√

|g| ∂µǫ(~x, t) Jµ(~x, t) (3.5)

where

Jµ(~x, t) = i gµν
[
φ1∂νφ2 − φ2∂νφ1

]
(3.6)

upon integration by parts assuming a vanishing boundary term,

δL = −
∫

d4x
√

|g| ǫ(~x, t) Jµ
;µ(~x, t) (3.7)

from which upon using the variational principle[54] we recognize that the current (3.6) is

covariantly conserved

Jµ
;µ(~x, t) =

1√
|g|

∂µ

(√
|g|Jµ

)
= J̇0 + 3H J0 − 1

a2(t)
∇ ·
(
φ1∇φ2 − φ2∇φ1

)
= 0 (3.8)

where the dot stands for d/dt. This covariant conservation law can be seen to follow from

the Heisenberg equations of motion for the fields,

φ̈a + 3Hφ̇a −
∇2

a2(t)
φa + 2

(dV (ρ2)

dρ2

)
φa = 0 ; a = 1, 2 ; ρ2 = φ2

1 + φ2
2 . (3.9)
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It is the second term in (3.8) that prevents a straightforward generalization of the steps

leading to Goldstone’s theorem as described in the previous section. Fundamentally it is

this difference that is at the heart of the major discrepancies in the corollary of Goldstone’s

theorem in the expanding cosmology as compared to Minkowski space time.

It is convenient to pass to conformal time

η = −e−Ht

H
; a(η) = − 1

Hη
(3.10)

and to rescale the fields

φ1(~x, t) =
σ(~x, η)

a(η)
, φ2(~x, t) =

π(~x, η)

a(η)
(3.11)

in terms of which the covariant conservation law (3.8) becomes

∂

∂η
J 0(~x, η) + ~∇ · ~J (~x, η) = 0 (3.12)

where

J 0(~x, η) = i
[
σ π

′ − π σ
′

]
(3.13)

~J (~x, η) = −i
[
σ ~∇π − π ~∇σ

]
(3.14)

where ′ ≡ d/dη.

In terms of the rescaled fields the action becomes (after dropping a total surface term)

L =

∫
d3xdη

{
1

2

[
σ

′ 2 − (∇σ)2 + π
′ 2 − (∇π)2 +

a′′

a
(σ2 + π2)

]
− V

(
σ2 + π2; η

)
}

(3.15)

where

V
(
σ2 + π2; η

)
=

λ

8

(
σ2 + π2 − a2(η)

µ2

λ

)2
. (3.16)

Therefore, although the Noether current (3.13,3.14) is conserved and looks similar to that

in Minkowski space time, the Hamiltonian is manifestly time dependent, there is no time

translational invariance and no energy conservation and no spectral representation is avail-

able, all of these are necessary ingredients for Goldstone’s theorem to guarantee massless

excitations.

The Heisenberg equations of motion are

σ
′′ −∇2σ +

[
2
dV(r2)
dr2

− a
′′

a

]
σ = 0 (3.17)

π
′′ −∇2π +

[
2
dV(r2)
dr2

− a
′′

a

]
π = 0 (3.18)
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where r2 = π2 + σ2. Using these Heisenberg equations of motion it is straightforward to

confirm the conservation law (3.12) with (3.13,3.14).

Now making an η dependent shift of the field σ

σ(~x, η) = σ0 a(η) + χ(~x, η) (3.19)

the action (3.15) becomes

L =

∫
d3xdη

{
1

2

[
χ

′ 2 − (∇χ)2 + π
′ 2 − (∇π)2 − 1

η2

(M2
χ

H2
− 1

2

)
χ2 − 1

η2

(M2
π

H2
− 1

2

)
π2
]

+
λ

2 η3
σ0J

H3
χ+

λ

2η

σ0

H
χ3 +

λ

2η

σ0

H
π2χ− λ

8
χ4 − λ

8
π4 − λ

4
χ2π2

}
(3.20)

where Mχ,π, J are the same as in the Minkowski space time case given by eqn. (2.18). The

Heisenberg equations of motion for the spatial Fourier modes of wavevector k of the fields

in the non-interacting (λ = 0) theory are given by

χ′′
~k
(η) +

[
k2 − 1

η2

(
ν2
χ −

1

4

)]
χ~k(η) = 0 (3.21)

π′′
~k
(η) +

[
k2 − 1

η2

(
ν2
π −

1

4

)]
π~k(η) = 0 (3.22)

where

ν2
χ,π =

9

4
−

M2
χ,π

H2
. (3.23)

We will focus on the case of “light” fields, namely M2
χ,π ≪ H2 and choose Bunch-Davies

vacuum conditions for which the two linearly independent solutions are given by

gχ,π(k; η) =
1

2
iνχ,π+

1

2

√
−πη H(1)

νχ,π
(−kη) (3.24)

fχ,π(k; η) =
1

2
i−νχ,π−

1

2

√
−πη H(2)

νχ,π
(−kη) = g∗χ,π(k; η) , (3.25)

where H
(1,2)
ν (z) are Hankel functions. Expanding the field operator in this basis in a comov-

ing volume V

χ(~x, η) =
1√
V

∑

~k

[
a~k gχ(k; η) e

i~k·~x + a†~k g∗χ(k; η) e
−i~k·~x

]
(3.26)

π(~x, η) =
1√
V

∑

~k

[
b~k gπ(k; η) e

i~k·~x + b†~k g∗π(k; η) e
−i~k·~x

]
(3.27)

The Bunch-Davies vacuum is defined so that

a~k|0〉 = 0 ; bk|0〉 = 0 , (3.28)
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and the Fock states are obtained by applying creation operators a†~k; b
†
~k
onto the vacuum.

After the shift (3.19), the current (3.13,3.14) becomes

J 0(~x, η) = J 0
tl(~x, η) + i

[
χπ

′ − π χ
′

]
; J 0

tl (~x, η) = i
[
σ0 a π

′ − π σ0 a
′

]
(3.29)

~J (~x, η) = ~Jtl(~x, η)− i
[
χ ~∇π − π ~∇χ

]
; ~Jtl(~x, η) = −iσ0 a ~∇π . (3.30)

The terms J 0
tl(~x, η),

~Jtl(~x, η) on the right hand sides of (3.29,3.30) are the tree level con-

tributions to the conserved current as these terms create single particle π states out of the

vacuum.

The interaction vertices are the same as those for the Minkowski space-time case depicted

in fig.(1) but with the replacements

σ0 → − σ0

Hη
; J → − J

Hη
. (3.31)

In refs.[28, 31, 37] it is found that the tadpole contributions in figs.(2,3-(d,e)) are given

by

〈0|χ2(~x, η)|0〉ren =
1

8π2 η2
1

∆χ

[
1 + · · ·

]
(3.32)

〈0|π2(~x, η)|0〉ren =
1

8π2 η2
1

∆π

[
1 + · · ·

]
(3.33)

where the renormalization regularizes ultraviolet divergences, and

∆χ =
M2

χ

3H2
; ∆π =

M2
π

3H2
, (3.34)

the dots in eqns. (3.32,3.33) stand for terms subleading in powers of ∆χ,π ≪ 1. In order to

maintain a notation consistent with the previous section we introduce

Iχ,π ≡ 1

8π2∆χ,π
. (3.35)

The tadpole condition now becomes

〈χ〉 = 0 ⇒ λ a σ0

2 η2

[ J

H2
+ 3Iχ + Iπ

]
= 0 . (3.36)

A symmetry breaking solution corresponds to σ0 6= 0 ; J/H2 = −3Iχ − Iπ. At tree level

σ2
0 =

µ2

λ
⇒ J = 0 ⇒ M2

π = 0 , (3.37)
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and using that a
′′

/a = 2/η2 the tree-level conservation law becomes

∂

∂η
J 0

tl +
~∇ · ~Jtl = 0 ⇒ σ0a(η)

[
π

′′ − 2

η2
−∇2π

]
= 0 (3.38)

which is fulfilled by the Heisenberg equation of motion for the π field (3.22) with Mπ = 0,

namely νπ = 3/2.

It is illuminating to understand how the result (2.10) is fulfilled at tree level. With the

expansion of the π field given by (3.27) and νπ = 3/2 introduced in J 0
tl(~x, η) we find

S(~k; η, η′) = −2 σ0 a(η) Im
[
g∗π(k; η

′)
(
g

′

π(k; η) +
gπ(k; η)

η

)]
(3.39)

and the long wavelength limit is given by

limk→0 S(~k; η, η
′) = σ0 a(η

′) . (3.40)

Again, we note that it is precisely the lack of time translational invariance that restricts

the content of eqn. (3.40), while this equation is satisfied with Mπ = 0 at tree level, there

is no constraint on the mass of the single particle excitations from the general result (2.10).

Thus whether the Goldstone fields acquire a mass via radiative corrections now becomes a

dynamical question.

There are two roadblocks to understanding radiative corrections to the mass, both stem-

ming from the lack of time translational invariance: i) in general there is no simple manner

to resum the series of one particle irreducible diagrams into a Dyson propagator, whose poles

reveal the physical mass, ii) there is no Fourier transform in time that when combined with

a spatial Fourier transform would allow to glean a dispersion relation for single particle ex-

citations. Obviously these these two problems are related. In refs.[33, 34, 36] only the local

tadpoles were considered, this is a local mean field approximation and the space-time local

nature of the tadpole allows to extract a mass. However, while the mean field tadpole is the

leading contribution in the large N limit as discussed in the previous section, for finite N

the non-local diagram equivalent to fig. (3-(f)) is of the same order, and in Minkowski space

time it is this diagram that cancels the tadpole (mean field) contribution to the π mass.

Thus for finite N the question is whether the non-local self-energy contribution (3-(f)) can

cancel the tadpole contributions of fig. (3-(d),(e)) even when these feature very different

time dependence and (3-(f)) does not have a time Fourier transform that renders it local in

frequency space.
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It is at this point where the Wigner-Weisskopf method introduced in refs.[37, 43] proves

to be particularly useful.

A. Wigner-Weisskopf theory in de Sitter space time:

In order to make the discussion self-contained, we highlight the main aspects of the

Wigner-Weisskopf non-perturbative approach to study the time evolution of quantum states

pertinent to the self-consistent description of mass generation discussed in the previous

sections. For a more thorough discussion and comparison to results in Minkowski space

time the reader is referred to ref.[37, 43]. Expanding the interaction picture state |Ψ(η)〉I
in Fock states |n〉 obtained as usual by applying the creation operators on to the (bare)

vacuum state (here taken to be the Bunch-Davies vacuum) as

|Ψ(η)〉I =
∑

n

Cn(η)|n〉 (3.41)

the evolution of the state in the interaction picture given by [43]

i
d

dη
|Ψ(η)〉I = HI(η)|Ψ(η)〉I (3.42)

where HI(η) is the interaction Hamiltonian in the interaction picture. In terms of the

coefficients Cn(η) eqn. (3.42) becomes

dCn(η)

dη
= −i

∑

m

Cm(η)〈n|HI(η)|m〉 , (3.43)

it is convenient to separate the diagonal matrix elements, that represent local contributions

from those that represent transitions and are associated with non-local self-energy correc-

tions, writing

dCn(η)

dη
= −iCn(η)〈n|HI(η)|n〉 − i

∑

m6=n

Cm(η)〈n|HI(η)|m〉 . (3.44)

Although this equation is exact, it yields an infinite hierarchy of simultaneous equations

when the Hilbert space of states |n〉 is infinite dimensional. However, progress is made by

considering the transition between states connected by the interaction Hamiltonian at a

given order in HI : consider the case when one state, say |A〉 couples to a set of states |κ〉,
which couple back to |A〉 via HI , to lowest order in the interaction the system of equation
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closes in the form

dCA(η)

dη
= −i〈A|HI(η)|A〉CA(η)− i

∑

κ 6=A

〈A|HI(η)|κ〉Cκ(η) (3.45)

dCκ(η)

dη
= −i CA(η)〈κ|HI(η)|A〉 (3.46)

where the
∑

κ 6=A is over all the intermediate states coupled to |A〉 via HI representing

transitions.

Consider the initial value problem in which at time η = η0 the state of the system is

given by |Ψ(η = η0)〉 = |A〉 so that

CA(η0) = 1 ; Cκ 6=A(η = η0) = 0 , (3.47)

solving (3.46) and introducing the solution into (3.45) we find

Cκ(η) = −i

∫ η

η0

〈κ|HI(η
′)|A〉CA(η

′) dη′ (3.48)

dCA(η)

dη
= −i〈A|HI(η)|A〉CA(η)−

∫ η

η0

ΣA(η, η
′)CA(η

′) dη′ (3.49)

where2

ΣA(η, η
′) =

∑

κ 6=A

〈A|HI(η)|κ〉〈κ|HI(η
′)|A〉 . (3.50)

In eqn. (3.46) we have not included the diagonal term as in (3.45)3, it is clear from (3.48)

that with the initial condition (3.47) the amplitude of Cκ is of O(HI) therefore a diagonal

term would effectively lead to higher order contributions to (3.49). The integro-differential

equation (3.49) with memory yields a non-perturbative solution for the time evolution of the

amplitudes and probabilities, which simplifies in the case of weak couplings. In perturbation

theory the time evolution of CA(η) determined by eqn. (3.49) is slow in the sense that the

time scale is determined by a weak coupling kernel ΣA, hence an approximation in terms of

an expansion in derivatives of CA emerges as follows: introduce

W (η, η′) =

∫ η′

η0

ΣA(η, η
′′)dη′′ (3.51)

2 In ref.[43] it is proven that in Minkowski space-time the retarded self-energy in the single particle propa-

gator is given by iΣ.
3 These diagonal terms represent local self-energy insertions in the propagators of the intermediate states,

hence higher orders in the perturbative expansion.
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so that

ΣA(η, η
′) =

d

dη′
W (η, η′), W (η, η0) = 0. (3.52)

Integrating by parts in eq.(3.49) we obtain

∫ η

η0

ΣA(η, η
′)CA(η

′) dη′ = W (η, η)CA(η)−
∫ η

η0

W (η, η′)
d

dη′
CA(η

′) dη′. (3.53)

The second term on the right hand side is formally of higher order in HI , integrating by

parts successively yields a systematic approximation scheme as discussed in ref.[43].

Therefore to leading order in the interaction we find

CA(η) = e
−

∫ η
η0

W̃ (η′,η′) dη′
, W̃ (η′, η′) = i〈A|HI(η

′)|A〉+
∫ η′

η0

ΣA(η
′, η

′′

)dη
′′

. (3.54)

Following ref.[37] we introduce the real quantities EA(η) ; ΓA(η) as

i〈A|HI(η
′)|A〉+

∫ η′

η0

ΣA(η
′, η′′)dη′′ ≡ i EA(η′) +

1

2
ΓA(η

′) (3.55)

in terms of which

CA(η) = e
−i

∫ η
η0

EA(η′)dη′
e
− 1

2

∫ η
η0

ΓA(η′)dη′
(3.56)

When the state A is a single particle state, radiative corrections to the mass are extracted

from EA and

ΓA(η) = − d

dη
ln
[
|CA(η)|2

]
(3.57)

is identified as a (conformal) time dependent decay rate.

Extracting the mass: In Minkowski space-time for |A〉 = |1~k〉 a single particle state of

momentum ~k, E1~k includes the self-energy correction to the mass of the particle[37, 43, 46].

Consider adding a mass counterterm to the Hamiltonian density, in terms of the spatial

Fourier transform of the fields it is given by

Hct =
δM2

2

∑

~k

π~k π−~k (3.58)

the matrix element

〈1π~k |Hct|1π~k〉 = δM2 |gπ(η)|2 , (3.59)

hence it is clear that only the imaginary part of W̃ can be interpreted as a mass term, thus

only the imaginary part of Σ1~k
contributes to the mass. However, the non-local nature of

Σ1~k
also includes transient behavior from the initial state preparation thus a mass term
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must be isolated in the asymptotic long time limit when transient phenomena has relaxed.

Last but not least momentum dependence can mask a constant mass term, which can only

be identified in the long wavelength limit. In particular in refs.[37, 43] it is shown that in

Minkowski space time (see appendix)

Im

∫ t→∞

0

Σ1~k
(t, t′)dt′ = δE1~k

(3.60)

where δE1~k
is the second order correction to the energy of a single particle state with

momentum ~k obtained in quantum mechanical perturbation theory (see also the appendix).

The program of renormalized perturbation theory begins by writing the free field part

of the Lagrangian in terms of the renormalized mass and introducing a counterterm in the

interaction Lagrangian so that it cancels the radiative corrections to the mass from the self-

energy. Namely the counterterm in the interaction Lagrangian is fixed by requiring that

E1~k(η′) = 0, in the long time limit η′ → 0− and in the long-wavelength limit. Therefore as

per the discussion above we extract the mass term from the condition

E1~k(η′) = 〈1~k|HI(η
′)|1~k〉+

∫ η′

η0

Im
[
Σ1(k; η

′, η
′′

)
]
dη

′′

= 0 (3.61)

in the long wavelength limit.

In Minkowski space time, the condition (3.61) is tantamount to requiring that the (real

part of the) pole in the propagator be at the physical mass[43] and is equivalent to the

counterterm approach described in section (IIC). In the appendix we carry out this program

and show explicitly how the Wigner-Weisskopf approach reproduces the results in Minkowski

space time obtained in section (II) and how the mass is reliably extracted in the long time,

long wavelength limit.

We implement the same strategy to obtain the self-consistent radiatively generated mass

in de Sitter space time where equation (3.61) will determine the self-consistent condition for

the mass.

In the mass terms in the Lagrangian (3.20) we implement the counterterm method by

introducing the renormalized massesM2
χ,π that include the radiative corrections, and writing

−
M2

χ

2H2 η2
χ2 − M2

π

2H2 η2
π2 ≡ −

M2
χ

2H2 η2
χ2 − M2

π

2H2 η2
π2 − Lct (3.62)

leading to the counterterm Hamiltonian

Hct =
1

2H2 η2

∫
d3x

[
(
M2

χ −M2
χ

)
χ2 +

(
M2

π −M2
π

)
π2

]
(3.63)
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included in the interaction Hamiltonian HI(η), and redefining

∆χ =
M2

χ

3H2
; ∆π =

M2
π

3H2
. (3.64)

In what follows we assume that ∆χ,π ≪ 1, therefore the leading order contributions arise

from poles in ∆χ,π as a result of the strong infrared divergences of minimally coupled light

fields.

The contributions from diagrams like those of fig. (3, (a),(b),(c)) are cancelled by the

tadpole condition (3.36). For the π − χ-fields respectively we find

〈1π~k |HI(η)|1π~k〉 =
|gπ(k, η)|2
H2 η2

[
λ

2

( J

H2
+ 3Iπ + Iχ

)
− M2

π

H2

]
. (3.65)

where Iχ,π are given by eqns.(3.35) with the redefined ∆χ,π given by (3.64).

The non-local contribution is given by (see [37])

Σπ(k; η; η
′) =

λ2 σ2
0

H2 η η′
g∗π(k; η)gπ(k; η

′)

∫
d3q

(2π)3
gχ(q; η)g

∗
χ(q; η

′)gπ(|~q − ~k|; η)g∗π(|~q − ~k|; η′) ,
(3.66)

For ∆π,χ ∼ 0 the integral features infrared divergences in the regions q ∼ 0; |~q − ~k| ∼ 0

which are manifest as poles in ∆π,χ[37]. These regions are isolated following the procedure

of ref.[37] and the poles in ∆π,χ can be extracted unambiguously. To leading order in these

poles we find

Σπ(k; η; η
′) =

λ2 σ2
0

8π2H2 (η η′)2
g∗π(k; η)gπ(k; η

′)

[
gπ(k; η)g

∗
π(k; η

′)

∆χ

+
gχ(k; η)g

∗
χ(k; η

′)

∆π

]
(3.67)

As discussed in detail in ref.[37] the poles originate in the emission and absorption of su-

perhorizon quanta and arise from the integration of a band of superhorizon wavevectors

0 ≤ q ≤ µir → 0 (see ref.[37] for details).

As per the discussion in Minkowski space-time, a vanishing mass for a Goldstone boson

after radiative correction requires that the tadpole terms in (3.65) be exactly cancelled by

the non-local self-energy contribution in the long-time, long wavelength limit. In particular

the poles in ∆χ,π in (3.65) must be exactly cancelled by similar poles in Σπ (3.67). Therefore,

to leading order in ∆π,χ we can set ∆π = ∆χ = 0, namely νπ,χ = 3/2 in the mode functions

gπ,χ given by (3.24), whence it follows that to leading order in ∆π,χ

Σπ(k; η; η
′) =

λ2 σ2
0

8π2H2

|g(k; η)|2|g(k; η′)|2
(η η′)2

[ 1

∆π
+

1

∆χ

][
1 +O(∆π,∆χ) + · · ·

]
, (3.68)
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where

g(k; η) = −1

2

√−πη H
(1)
3

2

(−kη) . (3.69)

Therefore, to leading order in poles in ∆χ,π, Σπ(k; η; η
′) is real and does not contribute to

the radiatively generated π mass .

Therefore, to leading order in the poles in ∆π,χ the self-consistent condition that deter-

mines the mass, eqn. (3.61) becomes

〈1π~k |HI(η)|1π~k〉 = 0 . (3.70)

This observation is important: unlike Minkowski space time where the diagram (3-(f))

cancels the local tadpole contributions, in de Sitter space time the similar diagram cannot

cancel the local contributions because the leading infrared divergences yield a real contribu-

tion whereas the tadpoles yield a purely imaginary contribution as befits a mass insertion.

Therefore, the self-consistent mass is obtained solely from the local tadpole terms which de-

termine the mean-field contribution. This validates the results of [34, 36] which rely solely

on the mean field approximation (which is exact only in the strict N → ∞ limit).

Assuming spontaneous symmetry breaking so that eqn. (3.36) is fulfilled with σ0 6= 0,

namely
J

H2
= −3Iχ − Iπ , (3.71)

it follows that
M2

π

H2
=

λ

8π2

[ 1

∆π

− 1

∆χ

]
. (3.72)

For the χ field we find the following contributions,

〈1χ~k |HI(η)|1χ~k〉 =
|gχ(k, η)|2
H2 η2

[
λ

2

( J

H2
+ 2

σ2
0

H2
+ 3Iχ + Iπ

)
−

M2
χ

H2

]
. (3.73)

where Iχ,π are given by eqn. (3.35) and for Σχ(k; η, η
′) we find

Σχ(k; η; η
′) =

λ2 σ2
0

2H2 η η′
g∗χ(k; η)gχ(k; η

′)

∫
d3q

(2π)3

[
9 gχ(q; η)g

∗
χ(q; η

′)gχ(|~q − ~k|; η)g∗χ(|~q − ~k|; η′)

+ gπ(q; η)g
∗
π(q; η

′)gπ(|~q − ~k|; η)g∗π(|~q − ~k|; η′)
]
. (3.74)

Extracting the poles in ∆π,χ the leading order result is given by

Σχ(k; η; η
′) =

λ2 σ2
0

8π2H2 (η η′)2
g∗χ(k; η)gχ(k; η

′)

[
gπ(k; η)g

∗
π(k; η

′)

∆π
+ 9

gχ(k; η)g
∗
χ(k; η

′)

∆χ

]
(3.75)
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Again, just as for the π field above, to leading order in the poles in ∆π,χ we can set ∆π =

∆χ = 0, namely νπ,χ = 3/2 in the mode functions gπ,χ, leading to

Σχ(k; η; η
′) =

λ2 σ2
0

8π2H2

|g(k; η)|2|g(k; η′)|2
(η η′)2

[
1

∆π
+

9

∆χ

]
(3.76)

where g(k; η) is given by eqn. (3.69).

The result is that to leading order in the poles, both Σπ,χ are real and do not contribute

to the radiatively generated masses but will contribute to the decay of the single particle

excitations discussed below (see section IIID).

Therefore, assuming spontaneous symmetry breaking so that the condition (3.71) holds

we find that
M2

χ

H2
=

λ σ2
0

H2
. (3.77)

Now identifying self-consistently the masses in the definition (3.64) with Mπ,χ, and defin-

ing

ε =

√
λ

24π2
; ∆π = εδπ ; ∆χ =

λ

3

σ2
0

H2
≡ εδχ (3.78)

equation (3.72) becomes

δπ =
1

δπ
− 1

δχ
(3.79)

with the (positive) solution

δπ =
1

2δχ

[√
1 + 4δ2χ − 1

]
(3.80)

the negative root would lead to an instability and an uncontrollable infrared divergence in

the loop integrals which would not yield a self-consistent solution.

Now we are in position to understand whether spontaneous symmetry breaking does

occur. The condition (3.71) is

σ2
0

H2
=

µ2

λH2
− 3

8π2∆χ
− 1

8π2∆π
6= 0 (3.81)

which when written in terms of the definitions (3.78) and using (3.80) becomes

F [δχ] ≡ δχ +
1

2δχ

[
7 +

√
1 + 4δ2χ

]
=

µ2

3εH2
(3.82)

The function F [δχ] and its intersection with µ2/3εH2 is displayed in fig. (4).

As shown in fig. (4), F [δχ] features a minimum at δχ,min = 1.906 · · · at which F [δχ,min] =

4.77614 · · · , therefore there are symmetry breaking solutions for

µ2

3εH2
> 4.77614 · · · (3.83)
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FIG. 4: F [δχ] vs. δχ and its intersection with µ2/3εH2. The function features a minimum at

δχ,min = 1.906 · · · with F [δχ,min] = 4.77614 · · · . The value of δπ(δχ,min) = 0.772 · · · .

this condition can be written in a more illuminating manner as

TH < Tc ; TH =
H

2π
; Tc =

µ

2.419 · · · λ1/4
=

λ1/4 v

2.419 · · · (3.84)

where TH is the Hawking temperature of de Sitter space time4 and v = µ/
√
λ is the tree

level vacuum expectation value (minimum of the tree level potential). From eqn. (3.79) it

follows that
δχ
δπ

=
1 +

√
1 + 4δ2χ
2

(3.85)

and δχ > 1.906 · · · , therefore in the broken symmetry phase we find that

δχ
δπ

≃ δχ +
1

2
for TH < Tc , (3.86)

in the spontaneously broken phase. At weak coupling, for µ2 ≫ 3εH2 (but µ2 ≪ H2 for

consistency ) we find that

Mχ ≃ |µ|+ a λ1/4H ; Mπ = b λ1/4 H (3.87)

where a, b are positive constants.

4 In comoving time t, the mode functions gπ, gχ are functions of η = −e−Ht/H therefore periodic in

imaginary time τ = it with period β = 2π/H = 1/TH . See [38].
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For TH > Tc the unbroken symmetry solution σ0 = 0 is the only solution of the tadpole

condition (3.36). In this case we find

M2
π

H2
=

λ

2

( J

H2
+ 3Iπ + Iχ

)
(3.88)

M2
χ

H2
=

λ

2

( J

H2
+ 3Iχ + Iπ

)
(3.89)

subtracting (3.89) from (3.88) we find

δπ − δχ =
1

δπ
− 1

δχ
, (3.90)

if δπ > (<) δχ the left hand side is positive (negative) but the right hand side is negative

(positive), therefore the only solution is

δπ = δχ =
µ2

12εH2

[√
1 +

(12εH2

µ2

)2
− 1

]
. (3.91)

Inserting this result in (3.89) we find for TH > Tc

Mπ = Mχ =
µ2

4

[√
1 + 0.701

(T 2
H

T 2
c

)2
− 1

]
, (3.92)

as expected Mχ = Mπ if the symmetry is unbroken.

B. A first order phase transition:

Fig. (4) shows that for TH < Tc there are two solutions of the equation that determines

symmetry breaking and the question arises: which of the two solutions describes the broken

symmetry phase?. The answer is gleaned by analyzing the weak coupling limit ε → 0

(λ → 0). In this limit the left most intersection in fig.(4) corresponds to the solution

δ(−)
χ ≃ 12 ε

H2

µ2
⇒ M2

χ ≃ λ

2π2

H4

µ2

λ→0

→ 0 (3.93)

whereas the right-most intersection corresponds to the solution

δ(+)
χ ≃ µ2

3εH2
⇒ M2

χ ≃ µ2 ; M2
π ≃ εH2 → 0 (3.94)

Obviously the solution δ
(+)
χ is the correct one since for λ → 0 the expectation value λσ0 = µ2

the loop corrections vanish and the mass of the χ, π fields should be the tree level ones

28



namely M2
χ = µ2,M2

π = 0 respectively. However, as εH2 increases beyond the critical value

at which µ2/3εH2 = F [δχ,min] there is no available symmetry breaking solution and this

occurs for a non-vanishing value of σ0 signaling a first order phase transition at TH = Tc

given by (3.84). The value of the order parameter at TH = Tc is given by

σ0c ≃ 0.61
H

λ1/4
. (3.95)

These results are in general agreement with those of ref.[36]. The first order nature of

the phase transition can also be understood within the context of the infrared divergences:

if the transition (as a function of coupling or TH) were of second order, then at the critical

point the masses of both χ, π fields must necessarily vanish, but the vanishing of the masses

would lead to strong infrared divergences. Therefore a first order transition with a finite

mass (correlation length) and a jump in the order parameter is a natural consequence of the

strong infrared behavior of minimally coupled nearly massless fields in de Sitter space-time.

The infrared singularities are self-consistently relieved by the radiative generation of a mass

at the expense of turning the phase transition into first order.

C. Large N limit

The above results can be simply generalized to the O(N) case where the π-fields form an

O(N − 1) multiplet. Now the tadpole condition becomes

〈χ〉 = 0 ⇒ λ a σ0

2 η2

[ J

H2
+ 3Iχ + (N − 1)Iπ

]
= 0 (3.96)

and the χ, π masses become

M2
π

H2
=

λ

2

[ J

H2
+ (N + 1)Iπ + Iχ

]
(3.97)

M2
χ

H2
=

λ

2

[
2
σ2
0

H2
+

J

H2
+ (N − 1)Iπ + 3Iχ

]
. (3.98)

In the strict N → ∞ limit these equations simplify to

σ0

[ J

H2
+NIπ

]
= 0 (3.99)

M2
π

H2
=

λ

2

[ J

H2
+NIπ

]
(3.100)

M2
χ

H2
=

λ

2

[
2
σ2
0

H2
+

J

H2
+NIπ

]
, (3.101)
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with Iπ,χ given by eqn.(3.34) and self-consistently ∆π,χ = M2
π,χ/3H

2. Clearly, eqns.

(3.99,3.100) lead to conclude that the only symmetry breaking solution corresponds to

M2
π = 0 but this is obviously in contradiction with the self-consistent solution because

of the infrared singularity in Iπ ∝ 1/M2
π. Therefore, the only available solution of (3.99)

that is also self-consistent and infrared finite must be the unbroken symmetry solution σ0 = 0

which results in equal masses for χ, π fields. Thus in the strict N → ∞, neglecting the 1/N

corrections the O(N) symmetry cannot be spontaneously broken because of the strong in-

frared effects. This is the conclusion of ref.[34]. However the analysis presented above for

finite N , and in particular for N = 2 suggests that this conclusion holds only in the strict

N → ∞ limit but for any finite N there is spontaneous symmetry breaking, along with in-

frared radiatively induced masses for the Goldstone fields without contradicting Goldstone’s

theorem, but the transition is first order as a consequence of infrared divergences.

D. Decay of π, χ particles:

As discussed above the non-local self-energies Σπ,χ(k; η, η
′) are real and do not contribute

to the mass to leading order in ∆π,χ, however they determine the decay of single particle

states as described in ref.[37]. We now focus in obtaining the decay amplitudes arising from

these contributions. Using the relations given by eqns. (3.77-3.78) to leading order in poles

in ∆π,χ the one loop results (3.68,3.76) can be written as

Σ(1)
π (k; η; η′) =

3 λ

8π2

|g(k; η)|2|g(k; η′)|2
(η η′)2

[
1 +

δχ
δπ

]
(3.102)

Σ(1)
χ (k; η; η′) =

27 λ

8π2

|g(k; η)|2|g(k; η′)|2
(η η′)2

[
1 +

δχ
9δπ

]
. (3.103)

Thus formally the real part of the single particles self-energy are of O(λ).

In ref.([37]) it was found that quartic self-interactions with strength λ yield two loops

self-energies that are also of O(λ) as a consequence of infrared divergences that are manifest

as second order poles in ∆. Implementing the “infrared rules” obtained in ref.[37] in the

two loop diagrams for Σπ,χ figs. (5) (a,b) and (c,d) respectively we find the leading order
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two-loops contributions

Σ(2)
π (k; η; η′) =

3λ

16π2

|g(k; η)|2|g(k; η′)|2
(η η′)2

[
9

δ2π
+

1

δ2χ
+

2

δπδχ

]
(3.104)

Σ(2)
χ (k; η; η′) =

3λ

16π2

|g(k; η)|2|g(k; η′)|2
(η η′)2

[
9

δ2χ
+

1

δ2π
+

2

δπδχ

]
(3.105)

From (3.55) we obtain the conformal time dependent single particle decay rates (3.57)

1

2
Γπ,χ(k; η) =

∫ η

η0

Σπ(k; η; η
′)dη′ = λ Cπ,χ k

∣∣H(1)
3/2(z)

∣∣2

z

∫ z0

z

dz′

z′

∣∣H(1)
3/2(z

′)
∣∣2 ; z = −kη ,

(3.106)

with

Cπ =
3

256

[
2
(
1 +

δχ
δπ

)
+
( 9

δ2π
+

1

δ2χ
+

2

δπδχ

)]
(3.107)

Cχ =
3

256

[
18
(
1 +

δχ
9δπ

)
+
( 9

δ2π
+

1

δ2χ
+

2

δπδχ

)]
(3.108)

(a) (b)

(c) (d)

FIG. 5: Two loops contributions to Σπ (a,b) and Σχ (c,d). Solid lines = π, dashed lines = χ .

As discussed in ref.[37, 43] the decay π → π + χ is a consequence of emission and

absorption of superhorizon quanta, in the superhorizon limit z ≪ 1 ; z0 ∼ 1 the integrals

can be done simply[37], leading to the results for the single particle amplitudes in the

superhorizon limit

|Cπ,χ
1~k

| ≃ e−γχ,π(−kη) ; γχ,π(−kη) =
2λ

9π2
Cχ,π

[
H

kphys(η)

]6
. (3.109)
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Possible caveats: There are other two loops diagrams that have not been accounted for

above. The generic form of these diagrams are displayed in fig.(6) (we have not displayed

specific π, χ lines but just showed the generic form of the diagrams) and can be interpreted

as a renormalization of the internal propagator and the vertex. Both of these diagrams are

∝ (λσ0/H)4 ≃ λ2∆2
χ, therefore if the “infrared rules” of ref.[37] apply to these diagrams

the two loops imply an infrared factor ∝ 1/∆2
χ; 1/∆

2
π; 1/∆χ∆π, in which case the overall

coupling dependence of these diagrams is ∝ λ2 and would be subdominant as compared to

the two loop diagrams of fig. (5). The possible caveat in this argument is that the rules to

obtain the leading contributions in poles in ∆ given in ref.[37] do not directly apply to the

diagrams above because if the bubble that renormalizes the propagator in the first diagram

dresses a line in which the wavevector is within an infrared band 0 < q < µir → 0, then

both lines in this bubble are within this band. This situation is not contemplated in the

rules provided in ref.[37] which apply to the case when in a loop integral only one of the

lines carries momenta within an infrared band whereas the other line carries a finite value

of the momentum (even if superhorizon) (see the arguments in ref. [37]). Thus in absence

of a sound proof that the diagrams in fig. (6) are subleading, the result for the damping

rate Γ(k; η) given by eqn. (3.106) should be taken as indicative. Nevertheless the analysis

of symmetry breaking and the emerging conclusions on the mass generation of Goldstone

bosons and the order of the transition are not affected by this possible caveat on the damping

rate. Further study on the infrared aspects of diagrams in fig. (6) is certainly worthy but

beyond the scope of this article.

FIG. 6: Other two loops contributions to Σπ,χ .

IV. CONCLUSIONS:

Spontaneous symmetry breaking is an important ingredient in the inflationary paradigm.

In this article we have studied (SSB) of continuous symmetry in an O(2) model of scalar
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fields minimally coupled to gravity in de Sitter space time, focusing in particular on under-

standing whether Goldstone’s theorem implies massless Goldstone bosons and trying to shed

light on conflicting previous results[34, 36] which implemented a local mean field approxima-

tion. We first revisited the general results of Goldstone’s theorem in Minkowski space time

highlighting the fact that it is through time translational invariance that the conservation of

the Noether theorem guarantees massless Goldstone bosons. We emphasized that in absence

of time translational invariance Goldstone’s theorem is much less stringent and does not

rule out radiatively generated masses for Goldstone modes. We followed with an analysis

of the implementation of Goldstone’s theorem at one loop level in Minkowski space-time

by studying the self energies of Goldstone and Higgs-like modes, we showed that at one

loop level the masslessness of the Goldstone boson is a consequence of a precise cancellation

between local tadpole and non-local (in space-time) contributions, and analyzed in detail

the implementation of Goldstone’s theorem in the large N limit of an O(N) scalar theory.

These results paved the way towards a deeper understanding of Goldstone’s theorem and

its consequences in de Sitter cosmology.

Our conclusions are summarized as follows:

• In absence of a global time-like Killing vector Goldstone’s theorem does not imply

massless Goldstone bosons when a continuous symmetry is spontaneously broken.

• We implemented a non-perturbative Wigner-Weisskopf method that allows to ob-

tain the masses and decay widths of single particle states in a cosmological setting.

Strong infrared behavior associated with light particles minimally coupled to gravity

are treated in a self-consistent manner.

• Whereas in Minkowski space time at one loop level the masslessness of Goldstone

modes in the broken symmetry phase is a consequence of a precise cancellation be-

tween tadpole and non-local (absorptive) contributions to the self energy, we find that

in de Sitter space time no such cancellation is possible. Goldstone modes acquire a

self-consistent radiatively generated mass resulting from the build-up of infrared sin-

gularities in self-energies. We find that in a weak coupling the mass of the Goldstone

modes is Mπ ∝ λ1/4H , where λ is the quartic coupling of the O(2) theory.

• We find a first order phase transition between the broken and unbroken symmetry
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phase as a function of TH = H/2π the Hawking temperature of de Sitter space-time.

For the O(2) model we find (SSB) for TH < Tc = λ1/4 v/2.419 · · · where v is the tree

level vacuum expectation value. For TH > Tc the symmetry is restored. The value

of the order parameter at TH = Tc is σ0c ≃ 0.61H/λ1/4. The first order nature of

the transition and concomitant jump in the order parameter is a consequence of the

strong infrared behavior of correlation functions: if the transition were second order

both fields would be massless at Tc leading to strong infrared singularities. Thus

radiatively induced masses relieve the infrared singularities at the expense of a first

order transition and a jump in the order parameter. These results are in qualitative

agreement with those of ref.[36] and also confirm the validity of the local mean field

approximation since the non-local radiative corrections do not contribute to the masses

of either Goldstone or Higgs-like modes but only to their decay widths.

• In the strict N → ∞ limit of an O(N) scalar theory there is no possibility of (SSB)

in agreement with the result of ref.[34], but (SSB) is available for any finite N . This

result reconciles the conflicting conclusions of refs.[34, 36].

• The lack of a global time-like Killing vector prevents the existence of kinematic thresh-

olds, as a result we find that Goldstone modes decay into Goldstone and Higgs modes

via the emission and absorption of superhorizon quanta. We have obtained the decay

width of Goldstone modes in the superhorizon limit, the amplitude of single particle

Goldstone modes |Cπ
1~k
| ≃ e−γπ(−kη) where γπ(−kη) ∝ λ

(
H/kphys(η)

)6
.

Further Questions: The discussion in section (III) on the applicability and corollary of

Goldstone’s Theorem in an expanding cosmology highlights the consequences of a covariant

conservation law in a time dependent background geometry as contrasted with the strict

conservation law in Minkowski space time and is general for any cosmological background.

Our study focused on de Sitter space time wherein infrared divergences associated with

minimally coupled massless particles lead to the self-consistent generation of masses for

Goldstone bosons as described above. There remains the very important question of whether

Goldstone bosons acquire a mass in other cosmologies, for example during the radiation

dominated stage, where the arguments on the time dependence of the background are valid

but there may not be infrared divergences that lead to a self-consistent generation of mass as
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in de Sitter space time. A deeper understanding of this case certainly merits further study

as it may yield to novel and unexpected phenomena in cosmology and is relegated to future

work.

Acknowledgments

The author acknowledges support by the NSF through award PHY-0852497.

Appendix A: Wigner-Weisskopf approach to Goldstone’s theorem in Minkowski

space time:

In Minkowski space time and for a single particle π state of momentum ~k we need (see

eqn. (3.54))

W̃ (t) = i〈1π~k |HI(t)|1π~k〉+
∫ t

0

Σπ(~k; t, t
′) dt′ (A1)

from which the total correction to the energy of a single particle state is obtained from the

long time limit

Eπ
1~k

= 〈1~k|HI(0)|1~k〉+
∫ t→∞

0

Im
[
Σπ(k; t, t

′)
]
dt′ , (A2)

Including the counterterm Hamiltonian in the interaction as described in section (IIC) leads

to the requirement that in the long-wavelength limit

Eπ
1~k→0

= 0 . (A3)

The interaction Hamiltonian is read-off from the vertices in eqn. (2.17) including the

mass counterterm

Hct =
1

2

(
M2

π −M2
π

)
; M2

π =
λ

2
J . (A4)

The contribution 〈1π~k |HI(t)|1π~k〉 is recognized as the first order shift in the energy.

The tadpole condition eliminate the contributions from the tadpoles in figs.(3 (a,b,c))

because the matrix element of the Hamiltonian between the vacuum and a single particle

state vanish by dint of the tadpole condition. We find

〈1π~k |HI(0)|1π~k〉 =
1

2ωπ(k)

[(
M2

π −M2
π

)
+

λ

2

(
Iχ + 3Iπ

)]
(A5)
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where Iχ,π are given by eqn. (2.27). Upon using the tadpole condition assuming spontaneous

symmetry breaking it follows that J = −3Iχ − Iπ and (A5) becomes

〈1π~k |HI(0)|1π~k〉 =
1

2ωπ(k)

[
−M2

π + λ

∫
d3q

(2π3)

(
1

2ωπ(q)
− 1

2ωχ(q)

)]
(A6)

The self-energy

Σπ(k; t, t
′) =

∑

κ 6=1π
~k

〈1π~k |HI(t)|κ〉〈κ|HI(t
′)|1π~k〉 =

∑

κ 6=1π
~k

|〈1π~k |HI(0)|κ〉|2 ei(ω
π(k)−Eκ)(t−t′) , (A7)

where the intermediate states |κ〉 = |1χ~q ; 1π~q+~k
〉 (see fig. (3)-(f)).

Carrying out the time integral in (A1) in the long time limit we find

∫ t→∞

0

Σπ(k; t, t
′)dt′ = i

∑

~q

|〈1π~k |HI(0)|1χ~q ; 1π~q+~k
〉|2

ωπ(k)− ωπ(|~q + ~k|)− ωχ(q) + iǫ
≡ i δE(2)

π +
Γπ

2
(A8)

thus the imaginary part of the time integral yields the second order energy shift δE
(2)
π and

the real part yields half of the decay rate Γπ a la Fermi’s golden rule. In the case of the π

field the imaginary part vanishes by kinematics.

The matrix element is computed straightforwardly and we find

E1~k = − 1

2ωπ(k)

[
M2

π−
λ

2

∫
d3q

(2π3)

(
1

ωπ(q)
− 1

ωχ(q)
− λσ2

0

ωπ(|~q + ~k|)ωχ(q)
(
ωπ(|~q + ~k|) + ωχ(q)− ωπ(k)

)
)]

.

(A9)

To leading order in perturbation theory one can set ωπ(k) = k in (A9) leading to vanishing

of the integral in the long wavelength limit and Mπ = 0 from the condition (A3). However,

keeping the π mass selfconsistently, in the long wavelength limit (setting k → 0 in the

denominator inside the integral ) the bracket in (A9) becomes
[

· · ·
]

k→0

= M2
π +

λ2σ2
0

4
|Mπ|

∫
d3q

(2π3)

1

ωπ(~q)ωχ(q)
(
ωπ(~q) + ωχ(q)− |Mπ|

) (A10)

thus the requirement (A3) leads to

Mπ = 0 . (A11)

It is straightforward to check that the result (A9) coincides with (2.37) for the (off-shell

) value k = 0 in (2.37) upon integrating q0 in the complex plane.
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