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If dark matter (DM) is a weakly interacting massive particle (WIMP) that is a thermal relic
of the early Universe, then its total self-annihilation cross section is revealed by its present-day
mass density. This result for a generic WIMP is usually stated as 〈σv〉 ≈ 3 × 10−26 cm3s−1,
with unspecified uncertainty, and taken to be independent of WIMP mass. Recent searches for
annihilation products of DM annihilation have just reached the sensitivity to exclude this canonical
cross section for 100 % branching ratio to certain final states and small WIMP masses. The ultimate
goal is to probe all kinematically allowed final states as a function of mass and, if all states are
adequately excluded, set a lower limit to the WIMP mass. Probing the low-mass region is further
motivated due to recent hints for a light WIMP in direct and indirect searches. We revisit the thermal
relic abundance calculation for a generic WIMP and show that the required cross section can be
calculated precisely. It varies significantly with mass at masses below 10 GeV, reaching a maximum
of 5.2 × 10−26 cm3s−1 at m ≈ 0.3 GeV, and is 2.2 × 10−26 cm3s−1 with feeble mass-dependence
for masses above 10 GeV. These results, which differ significantly from the canonical value and
have not been taken into account in searches for annihilation products from generic WIMPs, have
a noticeable impact on the interpretation of present limits from Fermi-LAT and WMAP+ACT.

PACS numbers: 95.35.+d
Keywords: Dark Matter

I. INTRODUCTION

Cosmological measurements [1, 2] have established
that ∼ 80 % of the non-relativistic matter in the Universe
is in the form of a non-luminous particle, dubbed “Dark
Matter” (DM). Although there is no empirical evidence
for a specific particle to be the DM, thermally populated
weakly interacting massive particles (WIMPs) are the
best motivated candidates on theoretical grounds [3–5].
Particle physics theories addressing apparently unrelated
issues, e.g., the hierarchy problem, often introduce new
particles and a discrete symmetry that makes the least
massive new particle stable. This provides a DM
candidate. In such theories, the observed cosmological
abundance of DM can be explained by the chemical
“freeze out” of a thermal relic [6–15]. See also
reviews in [4, 5, 11, 16].

The observationally inferred relic abundance of DM
is a valuable empirical clue to the particle nature
of the WIMP. The interactions that determine the
relic abundance of DM in the Universe also lead to
annihilation of DM pairs to other particles in the present
epoch. The aim of indirect detection experiments is
to observe a flux of the annihilation products created
in astrophysical environments where DM annihilation
may be occurring at an appreciable rate. Similarly,
collider experiments are attempting to produce WIMPs
with these cross sections. Unambiguous detection of
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DM annihilation has not been achieved yet, but several
experiments are now probing annihilation cross sections
that are expected of a thermal WIMP. The relationship
of the annihilation cross section to the cross section for
scattering on other particles is well-defined but model
dependent. Direct detection experiments search for
nuclear recoils resulting from the scattering of local DM
(from the DM population of the Milky Way halo).

Our aim in this work is a contemporary reappraisal of
the thermal WIMP relic abundance and its relationship
to constraints from indirect detection experiments. This
is motivated and timely for a number of reasons, as we
discuss below.

First, although the calculation relating the thermal
relic abundance and the annihilation cross section has
been done several times in the literature [6–15], we
identify several simple improvements to the analytical
approach, that can be made quite easily. Furthermore,
the original relic density calculations were performed
in an era when the target DM relic density and
the evolution with temperature of the early Universe
radiation density were rather uncertain. As a result,
the required annihilation cross section could not be
predicted with much precision. The situation has
changed dramatically since then. The cosmological
and particle physics inputs are now determined much
more accurately so that the required annihilation
cross section can be predicted more precisely. In
particular, numerical routines can perform the required
calculations to high precision, e.g., DarkSUSY [17] for
supersymmetric models, and micrOMEGAs [18] for a
wider variety of models. However, considering that
nowadays there is an increased interest in generic dark
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matter candidates, we believe that a precise analytical
calculation, revealing how the result depends on the
WIMP mass and the present mass density, is of value.
Our work, with updated inputs, improvements in the
analytic calculation, comparison between the analytic
and numerical calculations, including a careful discussion
of the errors resulting from the analytic approximations,
and extension to lower masses, will be useful for testing
generic WIMP models.

Second, experiments are now probing annihilation
cross sections close to the “canonical” value of 〈σv〉 =
3 × 10−26 cm3s−1. Studies, e.g., from Fermi-LAT
gamma-ray data from nearby dwarf galaxies and diffuse
emission in our galaxy, have in fact constrained cross
sections to be lower than this canonical thermal cross
section, and disfavor WIMPs for a range of DM masses
for annihilations to bb̄ and τ τ̄ [19–22]. Studies of
galaxy clusters are also probing this range of cross
sections, albeit with greater uncertainties associated with
modeling the cluster DM halo [23–25]. We find, both
numerically and analytically, that for small masses, 〈σv〉
is smaller than the canonical value assumed in previous
studies, weakening the claimed mass limits by up to a
factor of two. Future experiments will continue to probe
this interesting range of cross sections more aggressively
and for other channels, making this present study timely.

Third, a variety of recent experiments have made
WIMP masses <∼ 10 GeV very interesting [26]. Hints
from direct detection experiments, e.g., DAMA/LIBRA,
CoGeNT, CRESST-II etc. [27–30], relate to the
annihilation cross section indirectly, in a model
dependent fashion, while the astrophysical observations
directly probe the annihilation cross section [31–36].
Particular attention should be focused on the value of the
DM annihilation cross section for this range of low WIMP
masses. For this regime of small WIMP masses, which
has traditionally neither been favored nor investigated in
the previous literature, we find a factor of >∼ 2 increase
in the value of 〈σv〉 required to achieve the target WIMP
relic density. As a result, the present day annihilation
fluxes are increased by the same factor for these low
masses.

Exploring this low mass regime is also timely because
low mass thermal relics are in tension with cosmological
constraints on reionization and recombination from
WMAP+ACT CMB observations [37–39]. It should
be noted that these constraints require significant
modeling and may be evaded, e.g., by annihilation
predominantly to neutrinos, making the limits
significantly weaker [40–43]. However, if the CMB
constraints do apply, our results complement and
strengthen them.

Motivated by the above considerations, in this paper
we revisit the relic abundance calculation for the
simplest WIMP model, adopting the standard model
(SM) particle spectrum to which we add one additional
Majorana fermion, the DM candidate, that self-
annihilates via s-wave scattering. The relic abundance

calculation is reviewed with particular attention paid
to the inputs and assumptions and we investigate their
impact of their uncertainties on the final result. We show
that since most inputs are measured to much better than
10 % precision, the required annihilation cross section can
be predicted with <∼ few % uncertainty. We focus on
the lower WIMP masses and find that for m <∼ 10 GeV,
the required cross section increases with decreasing mass,
rising to as much as 〈σv〉 ∼ 5.2 × 10−26 cm3s−1. In
contrast, for larger masses, >∼ 15 GeV, we find that over
some four orders of magnitude in mass, the required cross
section is roughly constant (increasing logarithmically) to
within <∼ 7 %, at a value of 〈σv〉 = 2.2× 10−26 cm3s−1,
i.e., a value which is ∼ 40 % smaller than the canonical
value, 〈σv〉 = 3 × 10−26 cm3s−1, quoted extensively in
the literature. These differences, which have never been
taken into account for generic WIMPs, now impact the
Fermi-LAT limits to the WIMP annihilation cross section
and the lower bound to the WIMP mass derived from
them [21, 22], and they strengthen the cosmological
WMAP/ACT constraints [37–39].

The outline of this paper is as follows. An improved
relic abundance calculation is presented in § II B where we
derive an approximate analytical expression relating the
relic abundance ΩCDMh

2 to the WIMP annihilation cross
section 〈σv〉 as a function of the WIMP mass, identifying
and including terms which might affect the result at the
∼ 1 % level. In § II C, we verify the approximate analytic
results against those from a direct numerical integration
of the evolution equation, confirming that the analytical
results are accurate to ∼ 3 % or better. In § III we
compare the total annihilation cross section required to
produce the cold dark matter abundance inferred from
the WMAP-7 observations [1], as a function of the WIMP
mass, to the limits on the partial cross sections for
annihilation into particular channels derived from the
Fermi-LAT and WMAP+ACT data and, we show the
impact of our new results on the derived mass limits.
In § IV, we summarize our conclusions and provide an
outlook to future developments.

II. EVOLUTION OF THERMAL RELICS IN
THE EARLY UNIVERSE

A. Review of the Framework

We consider a stable WIMP χ of mass m, produced
thermally during the early evolution of the Universe,
and follow its evolution as the Universe expands and
cools. For concreteness, we take χ to be a spin 1/2
Majorana fermion, so that χ is its own antiparticle and
has gχ = 2 degrees of freedom. We assume these
particles are sufficiently coupled to the photons and the
other particles present in the early Universe so that they
are produced by the relativistic plasma and establish a
common temperature T (≡ Tγ) with it. Their evolution,
determined by the competition between production and
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FIG. 1. Evolution of the cosmological WIMP abundance as a
function of x = m/T . Note that the y-axis spans 25 orders of
magnitude. The thick curves show the WIMP mass density,
normalized to the initial equilibrium number density, for
different choices of annihilation cross section 〈σv〉 and mass
m. Results for m = 100 GeV, are shown for weak interactions,
〈σv〉 = 2 × 10−26 cm3s−1, (dashed red), electromagnetic
interactions, 〈σv〉 = 2×10−21 cm3s−1 (dot-dashed green), and
strong interactions, 〈σv〉 = 2 × 10−15 cm3s−1 (dotted blue).
For the weak cross section the thin dashed curves show the
WIMP mass dependence for m = 103 GeV (upper dashed
curve) and m = 1 GeV (lower dashed curve). The solid black
curve shows the evolution of the equilibrium abundance for
m = 100 GeV. This figure is an updated version of the figure
which first appeared in Steigman (1979) [11].

annihilation, is described by [6],

dn

dt
+ 3Hn =

d(na3)

a3dt
= 〈σv〉

(
n2eq − n2

)
, (1)

where n is the number density of χ’s, a is the cosmological
scale factor, the Hubble parameter H = a−1da/dt
provides a measure of the universal expansion rate, and
〈σv〉 is the thermally averaged annihilation rate factor
(“cross section”). For the most part we use natural
units with h̄ ≡ c ≡ k ≡ 1. When χ is extremely
relativistic (T � m), the equilibrium density neq =
3ζ(3)gχT

3/(4π2), where ζ(3) ≈ 1.202. In contrast, when
χ is non-relativistic (T <∼ m), its equilibrium abundance

is neq = gχ (mT/(2π))
3/2

exp(−m/T ). If χ could be
maintained in equilibrium, n = neq and its abundance
would decrease exponentially. However, when the χ
abundance becomes very small, equilibrium can no longer
be maintained (the χ’s are so rare they can’t find each
other to annihilate) and their abundance freezes out.
This process is described next.

We begin by referring to Fig. 1, where the evolution
of the mass density of WIMPs of mass m, normalized

to the initial equilibrium WIMP number density, is
shown as a function of x = m/T , which is a proxy for
“time”, for different values of 〈σv〉. With this definition,
the final asymptotic value is proportional to the relic
abundance, as will be seen later. Later in this section
it is explained how this evolution is calculated, but first
we call attention to some important features. During
the early evolution when the WIMP is relativistic (T >∼
m), the production and annihilation rates far exceed
the expansion rate and n = neq is a very accurate,
approximate solution to Eq. (1). It can be seen in Fig. 1
that, even for T <∼ m, the actual WIMP number density
closely tracks the equilibrium number density (solid black
curve). As the Universe expands and cools and T drops
further below m, WIMP production is exponentially
suppressed, as is apparent from the rapid drop in neq.
Annihilations continue to take place at a lowered rate
because of the exponentially falling production rate. At
this point, equilibrium can no longer be maintained and,
n deviates from (exceeds) neq. However, even for T <∼ m,
the annihilation rate is still very fast compared to the
expansion rate and n continues to decrease, but more
slowly than neq. For some value of T � m, WIMPs
become so rare that residual annihilations also cease and
their number in a comoving volume stops evolving (they
“freeze out”), leaving behind a thermal relic.

It is well known that weak-scale cross sections
naturally reproduce the correct relic abundance in the
Universe, whereas other stronger (or weaker) interactions
do not. This is a major motivation for WIMP dark
matter. Note that while for “high” masses (m >∼ 10 GeV)
the relic abundance is insensitive to m, for lower
masses the relic abundance depends sensitively on mass,
increasing (for the same value of 〈σv〉) by a factor of two.

There are two clearly separated regimes in this
evolution – “early” and “late”. The evolution
equation (Eq. (1)) can be solved analytically by different
approximations in these two regimes. During the
early evolution, when the actual abundance tracks the
equilibrium abundance very closely (n ≈ neq), the rate
of departure from equilibrium, d(n − neq)/dt, is much
smaller than the rate of change of dneq/dt. In the late
phase, where n � neq, the equilibrium density neq may
be ignored compared to n and Eq. (1) may be integrated
directly. This strategy allows the evolution to be solved
analytically in each of the two regimes and then joined
at an intermediate matching point which we call x∗.
Because the deviation from equilibrium, (n − neq), is
growing exponentially for x ≈ x∗, the value of x∗ is
relatively insensitive (logarithmically sensitive) to the
choice of (n− neq)∗.

Since the dynamics leading to freeze out occurs during
the early, radiation dominated (ρ = ρR) evolution of the
Universe, it is useful to recast physical quantities in terms
of the cosmic background radiation photons. The total
radiation density may be written in terms of the photon
energy density (ργ) as ρ = (gρ/gγ)ργ where, gρ counts
the relativistic (m < T ) degrees of freedom contributing
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to the energy density,

gρ ≡
∑
B

gB

(
TB
Tγ

)4

+
7

8

∑
F

gF

(
TF
Tγ

)4

. (2)

In Eq. (2), B ≡ Bosons and F ≡ Fermions. For
those particles in thermodynamic equilibrium with the
photons, TB,F = Tγ (in the following we drop the
subscript γ and write T ≡ Tγ). If relativistic particles
are present that have decoupled from the photons, it
is necessary to distinguish between two kinds of g: gρ
in Eq. (2) is associated with the total energy density,
whereas gs is associated with the total entropy density,

gs ≡
∑
B

gB

(
TB
Tγ

)3

+
7

8

∑
F

gF

(
TB
Tγ

)3

. (3)

Note that gρ and gs differ only when there are relativistic
particles present that are not in equilibrium with the
photons, i.e., when TB,F 6= Tγ . For the SM particle
content this only occurs for T <∼ me , when the e± pairs
annihilate, heating the photons relative to the neutrinos
(Tγ > Tν), after the neutrinos have decoupled (Tν,dec ∼
2− 3 MeV).

In the absence of phase transitions, throughout the
evolution of the Universe the entropy in a comoving
volume, S ≡ sa3 = (2π2/45)gsT

3a3, is conserved. As
a result, in the evolution equation, Eq. (1), n may be
replaced with Y ≡ n/s and neq with Yeq = neq/s where,

Yeq =
neq
s

=
45

2π4

(
π

8

)1/2
gχ
gs
x3/2exp(−x). (4)

Entropy conservation also enables us to relate changes
in the scale factor and the temperature1. During
radiation dominated epochs the expansion rate of the
Universe (H) is related to the total energy density by

H ≡ (1/a)da/dt =
√

8πGρ/3, where ρ = (π2/30)gρT
4.

Following the evolution using x ≡ m/T instead of t,

dY

dx
=
s〈σv〉
Hx

[
1 +

1

3

d(lngs)

d(lnT )

]
(Y 2
eq − Y 2). (5)

1 As an aside, we note that the total entropy in a comoving volume
is S = 1.80gsNγ , where Nγ is the number of photons in the
comoving volume. As the Universe expands and cools, dS = 0,
so that the “photon evolution equation” is d(gsNγ)/dt = 0,
and gs(T )Nγ(T ) = constant. This reflects the fact that as
the temperature drops below the masses of the SM particles in
thermal equilibrium with the photons, they annihilate and/or
decay, “heating” the photons (i.e., creating more photons in the
comoving volume). The temperature is always a monotonically
decreasing function of time or scale factor, but T decreases more
slowly than 1/a. This result is not unique to photons; it applies
to all extremely relativistic particles in thermal equilibrium with
the photons.

In Eq. (5) the term in square brackets accounts for the
variation of gs with T (as in [14]), an effect which is
almost always neglected. Equation (5) is our starting
point for both analytical and numerical investigations.

Equation (5) makes it clear that the only source of
uncertainty and model dependence in this calculation
is from g(T ), which enters directly into s ∝ gsT

3

and H ∝ g1/2ρ T 2. For our calculations we use g = gρ = gs
because for the range of WIMP masses we consider,
10 MeV <∼ m <∼ 10 TeV, and the particle content of the
SM, TB = TF = T , so there is no distinction between
gρ and gs. We adopt g(T ) from the calculations of Laine
and Schroeder [46]; g as a function of T is shown in Fig. 2
for temperatures in the range 1 MeV ≤ T ≤ 1 TeV. Over
this range of six orders of magnitude in temperature, g
changes only by a factor of ∼ 10. The relatively rapid
rise in g versus T for the temperature interval 0.1 GeV <∼
T <∼ 1 GeV reflects the quark-hadron transition, which is
a crossover transition and not a phase transition [47–49].
These results are expected to be accurate to within a
few % everywhere, except in the region of the quark-
hadron transition and electroweak transition (ignored
here), where the errors are expected to be <∼ 10 % [50].

The strategy is to assume that the WIMP begins in
equilibrium for x >∼ 1 and to solve Eq. (5) for x → ∞
(x � 1), to find Y at present (t = t0, T = T0).
The present relic abundance, ρχ, may be written in
terms of the density parameter Ω and the critical mass
density ρcrit,

Ω ≡ ρχ/ρcrit, (6)

where

ρχ = ms0Y0, (7)

and 8πGρcrit = 3H2
0 . The subscript 0 denotes quantities

evaluated at the present time, when T0 = 2.725 ±
0.001 K [51]. For a given WIMP mass, this allows us to
find the value of 〈σv〉 required in order to match, e.g., the
WMAP-7 inferred result, ΩCDMh

2 = 0.1120± 0.0056 [1].

B. Improved Analytical Treatment

We first solve Eq. (5) using an analytical
approximation (see, e.g., [6]). Although our calculation
mirrors those in the previous literature, we improve
upon earlier results by carefully including the effect of
the changing value of g(T ) during the evolution, as well
as by including some terms ignored in previous studies.

1. Early Evolution (n ≈ neq)

In following the early evolution where Y ≈ Yeq, it
is useful to write Y ≡ (1 + ∆)Yeq and to follow the
evolution of ∆ instead of Y . The evolution equation for
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FIG. 2. The effective number of interacting (thermally
coupled), relativistic degrees of freedom, g, as a function of
the temperature for 1 MeV ≤ T ≤ 1 TeV (adapted from Laine
and Schroeder [46]).

∆ takes the form

d(ln(1 + ∆))

d(lnx)
+
d(lnYeq)

d(lnx)
=

− Γeq
H

[
1 +

1

3

d(ln g)

d(lnT )

]
∆(2 + ∆)

(1 + ∆)
, (8)

where Γeq ≡ neq〈σv〉 = Yeqs〈σv〉 and

Γeq/H = 8.00× 1034m〈σv〉x1/2e−xg−1/2 , (9)

where m is in GeV, and 〈σv〉 is in cm3s−1. We
use these units throughout this section, and wherever
it is unstated, this should be assumed. Now, since
Yeq ∝ x3/2e−x/g,

d(lnYeq)

d(lnx)
= −

[
x− 3/2 +

d(ln g)

d(lnx)

]
. (10)

This allows us to rearrange Eq. (8) as

∆(2 + ∆)

(1 + ∆)
=

x− 3/2− d(ln g)

d(lnT )
− d(ln(1 + ∆))

d(lnx)

Γeq
H

[
1 +

1

3

d(ln g)

d(lnT )

] . (11)

Note that although the logarithmic derivative of g with
respect to T in the denominator on the right hand
side has been noted before [14], the third term in the
numerator, involving the same derivative, has not been
considered in previous treatments. If freeze out occurs in

∆
 =

 (
Y

-Y
eq

)/
Y

eq

x=m/T
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x
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2
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FIG. 3. Evolution of the departure of the WIMP abundance
from the equilibrium abundance, ∆, for x close to x∗. The
departure from the equilibrium value is shown as a function
of x, calculated numerically (solid black), and analytically
(dashed red) using Eq. (12), for an illustrative case with
m = 100 GeV and 〈σv〉 = 2.2× 10−26 cm3s−1. The analytical
approximation ignores d∆/dx (see Eq. (11)), leading to an
underestimate of x∗ by ∼ 2 %. See the text for details.

a temperature regime where g is changing, both of these
terms are equally important.

If the WIMP is close to equilibrium, i.e., ∆, d∆/dx�
1, the fourth term in the numerator of Eq. (11) can be
ignored2. If, further, the terms involving the logarithmic
derivative of g with T are ignored and Eq. (9) is used,

∆(2 + ∆)

(1 + ∆)
≈ 1.25× 10−35g1/2

〈σv〉m

(
(x− 3/2)ex

x1/2

)
. (12)

Comparison with the results from the numerical
integration of the evolution equation confirms that the
neglect of the logarithmic derivative of g introduces an
error which is < 1 %, except when the approach to freeze
out occurs close to the quark hadron transition. As in
almost all previous analytic analyses, it can be assumed
that (x−3/2)/x1/2 ≈ x1/2, introducing a very small error
of order ∼ 0.1− 1 %.

The departure from equilibrium, ∆, is shown as a
function of x in Fig. 3 for an illustrative case with m =
100 GeV and 〈σv〉 = 2.2×10−26 cm3s−1. The numerically
calculated value (solid black curve) is lower than the
analytical prediction using Eq. (12) (dashed red curve).
This is because the analytical approximation ignores

2 Since ∆ is increasing exponentially, this neglect becomes a poor
approximation when ∆ >∼ O(1).
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d∆/dx in Eq. (11), which is not completely negligible. As
a result the analytical prediction for ∆ (dashed red curve
in Fig. 3) overshoots the true value (solid black curve in
Fig. 3), leading to an underestimate of x∗ by about 2 %.

∆ is initially very small, but, as may be seen
from Fig. 3, as x increases, ∆ increases exponentially,
eventually approaching O(1). Beyond this point the
approximations (∆, d∆/dx � 1) leading to Eq. (12)
break down. Therefore, the above analysis can only be
valid for x <∼ x∗, where ∆ <∼ O(1). We define x∗ by
setting the left hand side of Eq. (12) to 1 when x = x∗,

∆(x∗) (2 + ∆(x∗))

(1 + ∆(x∗))
= 1 , (13)

resulting in ∆∗ ≡ ∆(x∗) = (
√

5 − 1)/2 ≈ 0.618. Our
results for T∗ (x∗) and for 〈σv〉 depend logarithmically
on this choice of ∆∗. Some alternative choices are
∆∗ = 1/2 or ∆∗ =

√
2 − 1. We explicitly verified

that these alternate choices would change our result for
〈σv〉 by ∼ ±0.1% .

The solution for x∗ from Eq. (12) for ∆∗ = 0.618 is

x∗ + ln(x∗ − 1.5)− 0.5 lnx∗ =

20.5 + ln(1026〈σv〉) + lnm− 0.5 ln g∗. (14)

This equation is solved iteratively for x∗ as a function
of the WIMP mass m (in GeV), 〈σv〉, and g∗. If T∗ =
m/x∗ is close to the region where d(lng)/d(lnT) ∼ 1, e.g.,
close to the temperature of the quark hadron transition,
Eq. (11) can be solved iteratively (with d∆/dx = 0), for
a more accurate result.

In Fig. 4, the result for x∗ is shown by the dashed
(red) curve. This has been done iteratively, choosing
the value of 〈σv〉 required to produce the correct relic
abundance Ωh2 = 0.11. Once x∗ is found, T∗ = m/x∗
is determined and g∗ = g(T∗) may be evaluated; g

1/2
∗ is

shown as a function of the WIMP mass by the dot-dashed
(green) curve in Fig. 4. In Fig. 4 we also show the ratio
of the annihilation rate to the expansion rate, (Γ/H)∗ as
a function of the WIMP mass (the dotted blue curves).
We calculated (Γ/H)∗ at two different levels of accuracy.
First, (Γ/H)∗ was calculated assuming the logarithmic
changes in g to be negligible. This allowed us to rewrite
Eq. (11) as (Γ/H)∗ = (1 + ∆∗)(x∗ − 3/2). This result
is plotted as the upper curve. We calculated a more
precise result by including the effect of d(ln g)/d(lnT ),
which is shown by the lower curve. Note that (Γ/H)∗
is much larger than 1, meaning that when x = x∗,
the annihilation rate far exceeds the expansion rate and
significant annihilations occur for x >∼ x∗; freeze out does
not occur when x = x∗.
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rate to the expansion rate evaluated at T = T∗ without
the logarithmic corrections (dotted blue, upper) and with
the logarithmic corrections (dotted blue, lower). Also shown
(solid black) is 50α∗ (see Eq. (18)). See the text for details.

2. Approach to Freeze-Out

For x > x∗ (for temperatures T < T∗), ∆ increases
rapidly (exponentially) so that Y � Yeq, greatly
simplifying the evolution equation to

dY

dx
= −s〈σv〉

Hx

[
1 +

1

3

d(ln g)

d(lnT )

]
Y 2 . (15)

This equation can be integrated from x = x∗ to freeze
out x = xf ,∫ Yf

Y∗

dY

Y 2
= −

∫ xf

x∗

dx
s〈σv〉
Hx

[
1 +

1

3

d(ln g)

d(lnT )

]
. (16)

Using s〈σv〉/(Hx) ∝ √g/x2,

Yf
Y∗

=
1

1 + α∗ (Γ/H)∗
, (17)

where

α∗ ≡
∫ T∗

Tf

dT

T∗

√
g

g∗

[
1 +

1

3

d(ln g)

d(lnT )

]
. (18)

The integral α∗ includes the effect of the changing values
of g(T ) and can be evaluated numerically. Although,
strictly speaking, Tf should be taken to be the present
temperature, we evaluate it by assuming that Tf =
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T∗/100 (most of the contribution to the integral comes
from T∗/2 <∼ T <∼ T∗). In Fig. 4, α∗ is shown by the solid
(black) curve, multiplied by 50 for legibility, as a function
of WIMP mass.

It should be emphasized that in this analysis the
relic abundance does not freeze out when T = T∗.
Ongoing annihilations between T = T∗, where (Γ/H)∗ �
1, and freeze out at temperature T = Tf , where
(Γ/H)f � 1, further reduce the WIMP abundance by
the large factor 1 + α∗(Γ/H)∗ � 1 (see the dotted blue
curves in Fig. 4), with most of the residual annihilations
occurring for T∗ ≥ T >∼ T∗/2. Thus, it is expected that
the value of (Γ/H)∗ will have an impact on the predicted
relic density. Note that previous studies have ignored
the 1 in the denominator of Eq. (17) and have assumed
that α∗ = 1. These approximations incur an error of
∼ 3 − 5 % and can affect the calculation substantially,
especially for masses in the range 1− 10 GeV, where the
impact of the changing values of g(T ) is large. As may be
seen from Fig. 4, both (Γ/H)∗ and α∗ depend strongly on
mass. Our analytical framework takes these effects into
account.

3. Relic Abundance

Having determined Yf , (see Eq. (17)), calculating the
relic abundance is straightforward. The frozen out
WIMP abundance Yf is equal to the present day WIMP
abundance (Yf = Y0), so that the cosmological WIMP
mass fraction is

Ω =
mYf s0
ρcrit

=
8πG

3H2
0

(
mH∗s0
〈σv〉s∗

)(
(Γ/H)∗

1 + α∗(Γ/H)∗

)
, (19)

resulting in

Ωh2 =
9.92× 10−28

〈σv〉

(
x∗

g
1/2
∗

)(
(Γ/H)∗

1 + α∗(Γ/H)∗

)
. (20)

Note that this result has no explicit mass dependence
but x∗, g∗, andα∗, and (Γ/H)∗ are all mass-dependent.
Recall that the units for units for 〈σv〉, here and
elsewhere, are cm3s−1. For 10−1 ≤ m (GeV) ≤ 104

we find that 0.97 <∼ (Γ/H)∗/(1 + α∗(Γ/H)∗) <∼ 1.07,
varying noticeably with mass, as shown in Fig. 4. In most
previous analyses the term involving (Γ/H)∗ in Eq. (20)
is either ignored or assumed to be unity. This small but
non-negligible effect is relevant for the low mass regime,
that is currently of great interest, and retaining it we find

1026〈σv〉 = 0.902

(
0.11

Ωh2

)(
x∗

g
1/2
∗

)(
(Γ/H)∗

1 + α∗(Γ/H)∗

)
.

(21)
This result for 〈σv〉 as a function of the WIMP mass,
assuming the a best-fit value for Ωh2 = 0.11, is shown as
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FIG. 5. The thermal annihilation cross section required for
Ωχh

2 = 0.11 as a function of the mass for a Majorana
WIMP. The solid (black) curve is from numerical integration
of the evolution equation and the dashed (red) curve is for
the approximate analytic solution in Eq. (20). Note that the
agreement between analytical and numerical results is better
than ∼ 3%. For comparison, the thin horizontal line shows
the canonical value 〈σv〉 = 3× 10−26 cm3s−1.

the dashed (red) curve in Fig. 5. This general result for
the relic abundance of a thermal WIMP, whether or not
it is a dark matter candidate, derived by an approximate
analytic approach to solving the evolution equation [6, 11]
agrees to better than ∼ 3 % with the results of the
direct numerical integration of the evolution equation
(solid black curve in Fig. 5) described below in §II C.
For analytic results accurate to ∼ 5 %, the last factor
in Eq. (21) may be approximated by 1.02.

C. Numerical Results and Discussion

To compare with the approximate analytic results
we have calculated the relic abundance by numerically
integrating the WIMP evolution equation, Eq. (5). We
transform this equation into a simple dimensionless form,

dY

dx
= λ

[
1 +

1

3

d(lngs)

d(lnT )

]
gs

g
1/2
ρ

1

x2
(Y 2
eq − Y 2), (22)

where λ ≡ 2.76 × 1035m〈σv〉 and Yeq =

0.145 (gχ/gs)x
3/2e−x (m is in GeV and 〈σv〉 in cm3s−1).

An approximation made here is to use the non-relativistic
expression for neq in Yeq. This has negligible impact on
our results. For m in the range 10−1 − 10 4 GeV and
〈σv〉 in the range 10−26 − 10−25 cm3s−1, λ has values in
the range 108 − 1014. The equation to be integrated is
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therefore numerically stiff. We find it useful to make the
replacement W = lnY and to integrate

dW

dx
=

λ

x2

[
1 +

1

3

d(lngs)

d(lnT )

]
gs

g
1/2
ρ

(e(2Weq−W ) − eW ) , (23)

where W does not change by many orders of magnitude
over the range of integration. This significantly reduces
the computational effort. In particular, one can work
with lower precision and still determine the solution quite
accurately.

We integrated Eq. (23) from x = 1 to x = 1000
using Mathematica along with our own numerical routine
employing a stiffness switching explicit-implicit method,
for 106 equally distributed values of λ in the {〈σv〉, logm}
plane. After finding W at x = 1000, we transform back
to Y , allowing us to find Ωh2. After finding the values
of Ωh2 corresponding to these 106 points, we identify
the contour in the {〈σv〉,m} plane corresponding to the
choice Ωh2 = 0.11.

In Fig. 5, the numerically integrated value of 〈σv〉
is shown as a function of mass (solid black curve),
verifying our claim that the approximate analytic results
agree with the numerical results to better than 3 %
over this range of WIMP masses. Most of the few
percent systematic downward shift of the analytic results
can be traced to the underestimate of x∗ compared
to the numerial result shown in Fig. 3. Bender and
Sarkar have recently solved the relic evolution equation
using boundary-layer theory [52], and the asymptotic
solution in their Eq. (46) predicts that the required 〈σv〉
is larger by a factor of (x∗ + 1)/x∗ (compared to our
solution). This correction brings the analytical results
to even closer agreement (∼ 1%) with the numerical
results. Additionally, we find that varying g(T ) within
its uncertainties changes the numerical results by only
∼ 1 %. This underscores our expectation that the relic
abundance can now be calculated quite precisely, with
all uncertainties constrained to be quite small. We
now proceed to describe our results, and ascertain their
impact on WIMP annihilation searches.

We call attention to the result that for low masses
the cross section required to account for the observed
relic dark matter density is mass dependent, reaching
a maximum of 〈σv〉 ≈ 5.2 × 10−26 cm3s−1 for m ≈
0.3 GeV. As the WIMP mass increases from this value,
〈σv〉 first decreases by more than a factor of two,
reaching a minimum at ≈ 2.2 × 10−26 cm3s−1 when
m ≈ 30 GeV, and then 〈σv〉 begins a slow increase to
≈ 2.4× 10−26 cm3s−1 for m ≈ 10 TeV. The exact shape
of the rise of the cross section at low mass depends on the
quark masses and the temperature of the quark-hadron
transition [46]. To the best of our knowledge, this rise in
〈σv〉 for low WIMP masses has only been noted in some
specific supersymmetric WIMP models, e.g., [53, 54].
Kappl and Winkler [55] also plot a similar feature, with
much larger uncertainties, in their Fig. 4. Numerical
packages, e.g., DarkSUSY [17]and micrOMEGAs [18], do

reproduce this effect, but previous analytical calculations
have ignored it. We emphasize that this is a generic
feature and make it manifestly visible in our analytical
results. The rise at low mass is a reflection of the fact
that for this mass range the number of relativistic degrees
of freedom populated at T ≤ T∗ is changing rapidly
(decreasing with decreasing mass) due to the quark-
hadron transition, while x∗ remains roughly constant (see

Fig. 4) so that the combination x∗/g
1/2
∗ increases with

decreasing mass.

Over the remaining range from ∼ 10 GeV to ∼ 10 TeV,
〈σv〉 = 2.2 × 10−26 cm3s−1 within ∼ 5 %, which is
∼ 40 % lower than the canonical value 3× 10−26 cm3s−1

usually quoted in the literature. The origin for this
discrepancy is not completely clear. The often quoted
reference by Jungman, Kamionkowski, and Griest [4]
provides 〈σv〉Ωh2 ≈ 3 × 10−27cm3s−1, which may have
resulted from the approximate treatment and rounding-
off to one significant figure. In fact, Steigman’s original
calculation [11], when modified for Majorana WIMPs,
gives 〈σv〉Ωh2 = 2.5 × 10−27cm3s−1, which could have
been rounded upwards. Our more careful approach yields
an answer that is 5% smaller, and agrees better with the
value that we find numerically. This additional precision
has become relevant only recently due to the accurate
determination of Ωh2 and experimental sensitivity having
approached this thermal scale.

D. Summary of Results for 〈σv〉 versus Ωh2

From Eq. (20) and the discussion below it in §II B 3,
the connection between 〈σv〉 and Ωh2, accurate to ∼ 5%
or better, is

1027〈σv〉Ωh2 = 1.0(x∗/g
1/2
∗ ). (24)

As may be seen from Figs. 4 and 5, for m >∼ 10 GeV,
the ratio of x∗ to g∗ is very nearly independent of mass,
resulting in 1027〈σv〉Ωh2 ≈ 2.4. However, as may be seen
from Fig. 1, and from Eq. (14), even for this mass range
x∗ and g∗ do depend, logarithmically, on 〈σv〉 and m.
For m >∼ 10 GeV we have found that as 〈σv〉 varies over
12 orders of magnitude, from 〈σv〉 ∼ 10−27 cm3s−1 to
〈σv〉 ∼ 10−15 cm3s−1, the connection between 〈σv〉 and
Ωh2, as a function of 〈σv〉, is well fit by

1027〈σv〉Ωh2 = 2.0 + 0.3 log(1027〈σv〉). (25)

If, instead, Ωh2 is known, then the same relation, as a
function of Ωh2, is well fit by

1027〈σv〉Ωh2 = 2.1− 0.3 log(Ωh2). (26)

For m >∼ 10 GeV and the current best estimate of
Ωh2 = 0.11, the required annihilation cross section is
〈σv〉 = 2.2 × 10−26 cm3s−1, within ∼ 5%. Because
of the rapid change in g∗ for T∗ in the vicinity of
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the quark hadron transition temperature, there is no
correspondingly simple 〈σv〉 versus Ωh2 relation for lower
WIMP masses.

E. Variations on a Theme

So far we have confined our discussion to the simplest
WIMP scenario in a standard cosmological setting.
We now discuss some possible generalizations of and
exceptions to our results. First, we have assumed the
WIMP to be a Majorana fermion χ, so that χ and χ̄
are indistinguishable. In contrast, if χ is a Dirac fermion
χ 6= χ̄, and gχ is doubled. In this case, for particle-
antiparticle symmetry, the relic abundance of χ is half as
large. This merely increases the required value of 〈σv〉
by a factor of 2 for Dirac fermions.

In our calculations the particle content of the standard
model has been assumed. This only enters through g(T ).
In addition, we have assumed that the WIMP is the only
new (non-SM) particle. We note that CMB analyses
which allow for “extra” relativistic degrees of freedom
(“equivalent neutrinos”) favor slightly higher dark matter
densities, ΩCDMh

2 ≈ 0.13 − 0.14 [1]. These lead to
correspondingly lower values of 〈σv〉, by ∼ 20−30 %. The
presence of such extra, decoupled, relativistic degrees
of freedom (∆Nν) will modify the analysis presented
here in a manner that is model dependent (How many
extra degrees of freedom? When did they decouple?) but,
for ∆Nν <∼ 2, the higher CDM mass density inferred
from the CMB dominates and, since 〈σv〉 ∝ (Ωh2)−1,
a smaller annihilation cross section is required. For
non-standard models containing additional decoupled
extremely relativistic particles, the distinction between
gρ and gs may need to be taken into account. This is
model dependent, but may be included relatively easily.

The s-wave dominated annihilation cross section 〈σv〉
is independent of temperature. It is straightforward to
generalize our results to p-wave (or arbitrary l -wave)
annihilation. Simply rewriting 〈σv〉 → 〈σv〉0x2l,
our analysis can be repeated for analogous results,
introducing no additional errors. However, for anything
but s-wave annihilations, the present experimental
constraints on annihilation are not even close to probing
the relevant thermal scale.

A major assumption in our analysis is that entropy
is conserved throughout the relevant evolution of the
Universe. This assumption is justified at the quark-
hadron transition, which is a crossover transition [47–49]
generating no entropy. However, we have assumed that
the electroweak transition is at most a second order phase
transition generating no entropy. If the electroweak
transition is first order, accompanied by an inflationary
period, the calculation of the relic WIMP abundance will
depend on the “reheat” temperature (TRH), and thermal
relics will be absent or suppressed if TRH < mχ.

WIMP annihilation may be more complicated than the
simple picture adopted in our analysis. There may be

other particles almost degenerate in mass with the WIMP
that contribute to the relic annihilation (coannihilation)
rate, or there may be effects due to mass thresholds,
or resonances [44]. These effects are model dependent,
and we have no way of easily generalizing our results.
More detailed numerical analyses for specific models is
needed in such scenarios. A non-standard cosmological
expansion or a non-thermal dark matter candidate may
require a separate treatment [56].

III. CONFRONTING EXPERIMENTAL LIMITS

The program for the indirect detection of DM is
to search systematically for annihilation fluxes into all
channels at all possible energies. Given a WIMP
mass, only a limited number of final states lighter
than the WIMP are kinematically allowed because the
annihilating WIMPs are non-relativistic today. Existing
experiments have recently reached the sensitivity to
probe the thermal relic annihilation cross sections for
some channels. We now discuss the impact of our
results on these recent indirect detection constraints on
WIMP models using gamma rays observed by Fermi-
LAT and from cosmology using the CMB observations of
WMAP+ACT. We also briefly comment on the impact
our results have on the interpretation of direct detection
experiments.

In Fig. 6, we plot the digitally extracted data on
the limits to the WIMP annihilation cross section from
(i) Analysis of the diffuse gamma ray flux in Milky
Way [19, 20], (ii) Stacked analysis of the gamma ray flux
from 10 dwarf spheroidal satellite galaxies of the Milky
Way by the Fermi-LAT [21, 22], and (iii) Constraints
from reionization and recombination based on an analysis
of WMAP+ACT data [37–39]. The strongest limits
from the diffuse flux analysis are for the uū annihilation
channel (dotted blue curve). The dd̄ limits, which
are similar, are not shown here. Other channels give
somewhat weaker limits. The data from dwarf galaxies
provides a stronger set of bounds for the bb̄ (dashed red
curve) and τ+τ− (dot-dashed green curve) channels. For
the lowest masses, the constraints from cosmology (dot-
dot-dashed yellow curve) are the strongest, but they are
less direct than the gamma ray observations.

Taking the diffuse flux results at face value and
if the canonical value of the thermal cross section,
i.e., 〈σv〉 = 3 × 10−26 cm3s−1, were used, WIMP
masses in the 5 − 7 GeV range suggested by the
direct detection experiments would be disfavored for
annihilations resulting mainly in the light uū quarks
(compare the dotted blue and horizontal grey curves).
The limits from annihilation to heavier quarks and
leptons are weaker. However, these constraints weaken
when the lower value of 〈σv〉 based on our analysis
(solid black curve) is used. More interesting, the rise in
the annihilation cross section for lower masses suggests
that if the Fermi-LAT analysis were extended to slightly
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lower gamma ray energies, corresponding to WIMP
masses in the 1 − 5 GeV range, they could provide
stronger constraints compared to those inferred using the
canonical cross section.

The stacked dwarf galaxy analysis provides mass limits
for annihilations to the bb̄ and τ+τ− channels, improving
the diffuse flux limits constraints by almost an order
of magnitude. It is interesting to note that for the
WIMP mass range >∼ 5 GeV, the τ+τ− constraint already
rules out τ+τ− branching fractions larger than ∼ 50 %.
In particular, WIMP masses in the range 5 − 27 GeV
are ruled out for the τ+τ− channel, and in the range
10− 17 GeV, for the bb̄ channel (compare the dot-dashed
green or dashed red curves, respectively, to the solid black
curves). These mass limits are a factor of ∼ 2 weaker
than those by Geringer-Sameth and Koushiappas [21] or
the Fermi-LAT collaboration [22], as a direct result of the
nearly 40 % reduction in the thermal annihilation cross
section pointed out in this paper.

Note that for the above limits from the diffuse flux and
from dwarf galaxies, the analyses have been limited to
higher energy gamma rays, resulting in the sharp cut-
offs to the limits at low masses shown in Fig. 6. In
general, these cut-offs are above the kinematic thresholds
for the corresponding channels. Usually, lowering the
threshold would have no advantage and would simply
lead to worse detector performance. In this case however,
the larger cross sections at lower masses that we have
pointed out here should make it easier to extend the
gamma ray analyses to lower energies, corresponding to
smaller WIMP masses, where, although the backgrounds
are higher, so too is the expected flux from WIMP
annihilation.

Cosmological constraints from reionization and
recombination disfavor low mass WIMPs [37–39]. If the
DM is a thermal WIMP, as we have assumed, our results
here imply that the cosmological constraints are stronger
than those using the canonical value of 〈σv〉 (compare
the dot-dot-dashed yellow curve to the solid black curve,
instead of the horizontal grey curve). These constraints
may, however, be evaded if the annihilation is primarily
to neutrinos, where the limits are weaker [40–43]. In
addition, the cosmological constraints are indirect and
depend on different assumptions.

Direct detection experiments, e.g., DAMA/LIBRA,
CoGeNT, CRESST-II etc. [27–30], which involve WIMP
scattering on nuclei prefer the 1 − 10 GeV region,
but relating the WIMP scattering cross section to the
annihilation cross section is model dependent. However,
for any given model the annihilation cross section can be
related to the scattering cross section, e.g., [57, 58]. It
is important to note that models designed to explain the
CoGeNT and DAMA results must now do so without
exceeding the branching fraction for annihilation into
u, d, quarks allowed by the above constraints which
follow from the annihilation cross section required to
account for the thermal relic abundance. These results
can also be interpreted as setting an upper limit to
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WIMP annihilation cross section into particular channels
(the regions above the colored curves are ruled out at 95 %
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(dashed red), and τ+τ− (dot-dashed green); constraints from
cosmology for µ+µ− (dot-dot-dashed yellow).

the allowed branching ratio for annihilations to the
light quark channels. This will set constraints on the
detailed particle physics models. For example, we find
that for the models considered by Keung et al. [58],
CoGeNT prefers values of 〈σv〉 which are in the 10−27 −
10−25 cm3s−1 range. Therefore, a large fraction of
the non-universal scalar models considered in [58] are
disfavored as thermal DM.

Gamma ray fluxes from dark matter annihilation
in clusters of galaxies are expected to be too small
to be detected by ∼ 2 − 3 orders of magnitude,
but substructure of very high density on scales
smaller than those observed, or normally probed by
N-body simulations, could significantly enhance the
annihilation rate, increasing the resulting gamma ray
flux dramatically. Adopting such model dependent, small
scale halo structure in the analyses of the flux of gamma
rays from nearby galaxy clusters leads to stringent limits
to 〈σv〉 [23, 24]. If the possible substructure is included
according to Han et al. [25], the limits in the µ+µ− and
bb̄ channels may now be below the total annihilation
cross section needed to reproduce the relic abundance
of WIMPs for WIMP masses in the range ∼ 5− 40 GeV.

The recent frenzy of activity suggesting values of 〈σv〉
close to that predicted for a thermal relic, along with
the prospect of new gamma ray data, provided the
stimulus for our revisiting the relic abundance analysis
and quantifying the approximations and uncertainties.
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It is clear that the available limits need to be
interpreted carefully. Astrophysical uncertainties on
these constraints can be as large as an order of
magnitude, but the precise quantitative relation between
〈σv〉 and the relic abundance can also have a strong
impact on conclusions inferred from them. In the
future, these analyses will be extended to all possible
channels (particularly to those involving lighter quarks
and leptons), and the limits will be combined to obtain
a lower bound to the WIMP mass, assuming that it
annihilates into observable channels, and no signal is
observed. In particular, the rise in 〈σv〉 at low masses
noted here suggests that annihilation into, e.g., uū and
dd̄, can be probed more easily than would be expected
for the canonical value of 〈σv〉. This should provide
motivation to revisit many analyses and to extend them
to lower energies, in order to probe low mass WIMPs.

IV. OUTLOOK AND CONCLUSIONS

A key result of the work described here is to point out
that the thermal cross section, 〈σv〉, required to account
for the relic dark matter abundance can be calculated
with great precision (<∼ few %). In addition, we find
that 〈σv〉 is not independent of the WIMP mass for
masses <∼ 10 GeV, as a result of the relatively rapid
decrease in the number of relativistic degrees of freedom
for temperatures below the quark-hadron transition.
From our more careful calculation we find that while
the required cross section is very nearly independent

of mass for larger WIMP masses, and that it is ∼
40 % smaller than the canonical value of 〈σv〉 usually
adopted in the literature. While these differences may
seem modest, as shown above in Fig. 6, they do have
a noticeable quantitative impact on the interpretation
of recent results from various experiments. When relic
abundances are calculated in more detailed particle
physics models of dark matter the mass dependence is
taken into consideration so, as a matter of principle, the
mass dependence for the generic WIMP model should be
included as well. Our analysis does that.

We expect that analyses of future gamma ray data
from the Milky Way, dwarf galaxies, and clusters are
likely to yield even more stringent constraints on DM
models. Future results from Fermi-LAT and from
cosmology will have the potential to probe the low mass
region even more aggressively by analyzing annihilation
into various light particle final states, so that the small
differences, that we have pointed out, are likely to become
even more relevant.
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