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We prove that sign problems in the traditional approach to some lattice Yukawa models can be completely
solved when fermions are formulated using fermion bags and bosons are formulated in the worldline repre-
sentation. We prove this within the context of two examples of three dimensional models, symmetric under
UL(1)×UR(1)×Z2(Parity) transformations, one involving staggered fermions and the other involving Wilson
fermions. We argue that these models have interesting quantum phase transitions that can now be studied using
Monte Carlo methods.

PACS numbers: 71.10.Fd, 02.70.Ss,05.30.Rt,11.10.Kk

I. INTRODUCTION

Feynman path integrals can be used to map a quantum sta-
tistical mechanics partition function into a classical statistical
mechanics partition function with one caveat : the Boltzmann
weight of the classical partition function may be negative or
even complex. When this occurs the mapping is said to suf-
fer from a sign problem since the mapping is not useful for
Monte Carlo methods. However, fortunately the mapping is
not unique and it may be possible to find a different map-
ping in which the Boltzmann weights of the classical partition
function are indeed positive. If these weights are calculable
with polynomial effort as the system size grows, the mapping
is said to be free from a sign problem and one may be able
to construct a Monte Carlo algorithm to sample the classical
configuration space and solve the problem. In many interest-
ing cases a mapping without a sign problem has eluded re-
searchers and discovering the correct mapping is defined as a
solution to the sign problem.

Sign problems are well known obstacles to solving many
quantum field theories from first principles. This is partic-
ularly true when the microscopic degrees of freedom con-
tain fermions. Famous examples of physical systems where
sign problems have hindered progress are a finite density of
strongly interacting matter [1–3] and a finite density of elec-
trons with Coulomb repulsion [4]. Many other model field
theories also suffer from sign problems. Examples of these
include four-fermion field theories and interacting boson-
fermion (Yukawa) models. These often have interesting low
energy physics and are used as effective field theories [5, 6]. In
three dimensions they can contain interesting quantum phase
transitions that have remained unexplored due to sign prob-
lems.

While some important sign problems may be unsolvable
[7], it has become clear that a variety of sign problems can in-
deed be solved by finding the right representation of the par-
tition function. Novel solutions to sign problems have been
found in both purely bosonic models with a complex action
[8–13] and in purely fermionic models [14, 15]. Here, for the
first time we show that sign problems in models containing
fermions and bosons as dynamical fields interacting with each
other (which we call Yukawa models) can also be solved. We
illustrate this using two examples of lattice models in three
dimensions.

In section 2 we review the sign problems that haunt the tra-
ditional approach to two lattice Yukawa models one with stag-
gered fermions and one with Wilson fermions. In section 3 we
show how the fermion-bag approach when combined with the
worldline formulation of bosonic degrees of freedom solves
these sign problems. In section 4 we present our conclusions.

II. SIGN PROBLEMS

In this section we review two examples of sign problems in
lattice Yukawa models, one with staggered fermions and the
other with Wilson fermions. For convenience our models are
defined in three space-time dimensions, but the discussion is
applicable in higher dimensions with minor modifications. We
begin with the example containing staggered fermions. The
action of the model is given by

Ss =
∑
x,y

ψx (D
s[θ])xy ψy + Sb[θ] (1)

where ψx, ψx are two Grassmann valued fields on the lattice
site x ≡ (x1, x2, x3) of a cubic lattice with V sites. While
there are many choices for the bosonic action, for simplicity
in this work we choose it to be the classical XY model,

Sb[θ] = −β
∑
〈xy〉

cos(θx − θy). (2)

where the bosonic field θx is a phase. Here 〈xy〉 refers to near-
est neighbor sites. The matrix Ds[θ] is the V × V staggered
Dirac operator whose matrix elements are given by

(Ds[θ])xy = −g eiεxθxδx,y + (Ds0)xy, (3a)

(Ds0)xy =
∑
α

ηα,x∇αxy, (3b)

where the fluctuating mass term depends on the bosonic field.
The index α = 1, 2, 3 represents the three directions, ηα,x
are the staggered fermion phase factors (η1 = 1, η2 =
(−1)x1 , η3 = (−1)x1+x2 ), εx = (−1)x1+x2+x3 is the site
parity and

∇αxy =
1

2
(δx,y+α̂ − δx+α̂,y). (4)
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FIG. 1. A schematic phase diagram of UL(1) × UR(1) × Z2 sym-
metric lattice Yukawa models discussed in the text. The symmetric
phase contains massless fermions while the broken phase contains
massless bosons. The critical point on the g = 0 line is the XY
critical point. For small β the model reduces to a Gross-Neveu (GN)
model.

The parameters β and g control the physics of the model. It is
easy to verify that the action in Eq. (1) is invariant under the
following UL(1)× UR(1) chiral transformations :

ψx → eiθL(1+εx)/2+iθR(1−εx)/2 ψx, (5a)
ψx → e−iθL(1−εx)/2−iθR(1+εx)/2 ψx, (5b)
θx → θx + (θR − θL) (5c)

In addition, the action is also invariant under the Z2 (parity)
transformations:

x→ −x, ψx → −ψ−x, ψx → ψ−x, θx → θ−x + π (6)

These symmetries play an important role in governing the
long distance physics of the model. The model possesses at
least two phases, a symmetric phase with massless fermions
and massive bosons and a broken phase with massless bosons
and a massive fermion. Since a fermion mass term breaks
parity in three dimensions, it is natural to expect massive
fermions in the broken phase. Both the phases can be accessed
by tuning β and g. A schematic phase diagram, expected from
general arguments, is shown in Fig. 1. The critical point on the
g = 0 axis is the well known 3d-XY critical point. If it exists,
a second order quantum critical line separating the two phases
starting from the XY point must be governed by a different
critical point. Based on symmetries we conjecture that it be-
longs to the universality class of the model studied in [16].
Unfortunately, as we will discuss below, this lattice Yukawa
model cannot be studied using traditional Monte Carlo meth-
ods due to sign problems.

Next we consider a Yukawa model constructed with Wil-
son fermions. We again restrict ourselves to three space-time

dimensions for simplicity. The action of the model is given by

Sw =
∑
xy

ψx (D
w[θ])xy ψy + Sb[θ] (7)

where, unlike the staggered fermion case, the fields ψx and
ψx are each four component fields, written in terms of four
two-component left and right fields as

ψ =
(
ψ
L
ψ
R
)
, ψ =

(
ψL

ψR

)
. (8)

We label the eight Grassmann fields on each site as ψ
c

s,x, ψ
c
s,x

where c = L,R and s = 1, 2. The Dirac operator is given by

(Dw[θ])xy =

(
(Dw0)xy −g I e−iθxδxy
g I eiθxδxy (Dw0†)xy

)
, (9)

where ~σ are the Pauli matrices and I is the 2× 2 identity ma-
trix. The 2V × 2V matrix Dw0 is the Wilson-Dirac operator
defined by

(Dw0)xy = IMxy + ~σ · ~∇xy (10)

where ~∇ was defined in Eq. (4) and M is the V × V Wilson
mass matrix defined by

Mxy = − 1

κ
δx,y +

1

2

∑
α

(δx,y+α̂ + δx+α̂,y). (11)

The action (7) is also invariant under the following UL(1) ×
UR(1) transformations:

ψLx → eiθLψLx , ψ
L

x → e−iθLψ
L

x , (12a)

ψRx → eiθRψRx , ψ
R

x → e−iθRψ
R

x , (12b)
θx → θx + (θR − θL). (12c)

However, due to the presence of the Wilson mass term Mxy ,
the action is not invariant under the Z2 (parity) transforma-
tions

x→ −x, ψx → −ψ−x, ψx → ψ−x, θx → θ−x+π. (13)

Parity transformations are restored in the long distance
physics, when the hopping parameter κ is tuned to a critical
value where massless fermions emerge. For g = 0, one finds
κc = 1/3. In general κc is a function of the couplings g and β.
Once κ is tuned to this value the phase diagram of the model
as a function of β and g is very similar to Fig. 1, except that
the critical behavior on the quantum critical line could belong
to a different universality class as compared to the staggered
fermion case. The difference is essentially due to the number
of fermions that become massless on the critical line.

In order to study the two Yukawa models discussed above
one begins with the partition function

Zi =

∫
[dψ dψ] e−Si , (14)
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where i = s, w and tries to construct a Monte Carlo technique
to compute expectation values of appropriate quantities. The
traditional method is to integrate the fermions completely and
rewrite

Zi =

∫
[dθ] e−Sb[θ] Det(Di[θ]). (15)

If the determinant of the Dirac operator Di[θ] was non-
negative then one could have devised a Monte Carlo method
to sample the [θ] configurations. Unfortunately this is not the
case for both the models considered here. With staggered
fermions there is no symmetry that can be used to even ar-
gue that Det(Ds[θ]) is real. The determinant can in fact be
complex. On the other hand with Wilson fermions one can
prove that

C(Dw[θ])C = (Dw[θ])∗, where C =

(
0 −iσ2
iσ2 0

)
,

(16)
which means the determinant of Dw[θ] is real. Unfortunately,
it could still be negative. Thus, both Yukawa models discussed
above suffer from sign problems in the traditional method. As
far as we know, these sign problems have remained unsolved
until now. While these sign problems clearly arise for reasons
completely different from the sign problem in finite density
QCD [3], they seem equally difficult.

III. FERMION-BAG WORLDLINE APPROACH

We now prove that the sign problems disappear in the above
two models when the fermions are formulated in the fermion-
bag approach and bosons are formulated in the worldline rep-
resentation. Since the details of the proof are slightly different
in each case, we will discuss them separately. Let us first con-
sider the partition function of the Yukawa model with stag-
gered fermions. As explained in [16, 17] we expand the inter-
action in powers of the coupling. We begin by noting that

eg(ψxψx)e
iεxθx

= 1 + g(ψxψx)e
iεxθx , (17)

at every lattice site x due to the Grassmann nature of ψxψx.
We can represent the two terms on the right through the dis-
crete variables nx = 0, 1. The first term refers to nx = 0
or no interaction while the second term represents nx = 1
and indicates the presence of an interaction vertex ψxψx (or
a monomer). Every monomer is also associated with the term
eiεxθx . Using this idea it is possible to write

Zs =
∑
[n]

gj
{∫

[dψ dψ] e−S
s
0 ψx1

ψx1
...ψxjψxj

×
∫
[dθ] e−Sb[θ] eiεx1θx1 ...eiεxj θxj

}
(18)

where [n] represents a configuration of monomers, j refers to
the total number of monomers and

Ss0 =
∑
x,y

ψx (D
s0)xy ψy (19)

is the free staggered fermion action. . For every configuration
[n] we have labeled the sites where the monomers are located
as {x1, ..., xj}. As explained in [17, 18] it is possible to show
that∫

[dψ dψ] e−S
s
0 ψx1

ψx1
...ψxjψxj = Det(W [n]) ≥ 0 (20)

whereW [n] is a (V −j)× (V −j) matrix which has the same
elements as Ds0 except that the sites x1, .., xj are dropped.
The sites (V − j) form what we call the strong coupling
fermion bag [16, 18]. Interestingly, one can also rewrite the
bosonic integral using the worldline representation as dis-
cussed in [11, 19]. One finds that∫

[dθ] e−Sb[θ] eiεx1θx1 ...eiεxj θxj =
∑
[k]

∏
x,α

{Ikx,α(β)}

×
∏
x

δ
(∑

α

(kx,α − kx−α,α) + εxnx

)
(21)

where the integer bond variables kx,α represent worldlines of
charged particles, Ikx,α(β) is the modified Bessel function, [k]
represents a configuration of these worldlines. Note that the
interaction between the fermions and bosons appear through
the constrained delta function which essentially implies that
every monomer either creates or destroys bosonic particles.
Thus, using a combined fermion-bag-worldline representa-
tion, the partition function of the staggered Yukawa model
takes the form

Zs =
∑
[n,k]

gj Det(W [n])
∏
x,α

{Ikx,α(β)}

×
∏
x

δ
(∑

α

(kx,α − kx−α,α) + εxnx

)
(22)

The Boltzmann weight of every [n, k] configuration is non-
negative and the sign problem is absent.

Let us now turn to the lattice Yukawa model with Wil-
son fermions. Unlike the staggered case, we now have four
couplings gψ

L

1,xψ
R
1,xe
−iθx , gψ

L

2,xψ
R
2,xe
−iθx ,−gψR1,xψL1,xeiθx ,

and −gψR2,xψL2,xeiθx . We expand in each of these couplings
and write

eg ψ
L
1,xψ

R
1,x eiθx = 1 + g ψ

L

1,xψ
R
1,x e

iθx (23)

for each of the four couplings. We then introduce four types
of monomers n1,x, n2,x, n3,x, n4,x = 0, 1 at each site x repre-
senting these four couplings. For every monomer configura-
tion [n] we label the sites where n1,x, n2,x, n3,x and n4,x are
non-zero, as w1, ..., wj1 , x1, ..., xj2 , y1, ..., yj3 , and z1, ..., zj4
respectively. Thus, in the fermion-bag approach we can write

Zw =
∑
[n]

gj1+j2+j3+j4

{∫
[dψ dψ] e−S

w
0 (−1)j3+j4

× ψ
L

1,w1
ψR1,w1

...ψ
L

1,wj1
ψR1,wj1 ψ

L

2,x1
ψR2,x1

...ψ
L

2,xj2
ψR2,xj2

× ψR1,y1ψ
L
1,y1 ...ψ

R

1,yj3
ψL1,yj3 ψ

R

2,z1ψ
L
2,z1 ...ψ

R

2,zj4
ψL2,zj4

×
∫

[dθ] e−Sb[θ] e−iθw1 ...e−iθx1 ...eiθy1 ...eiθz1 ...

}
(24)



4

where

Sw0 =
∑
x,y

{
ψ
L

x (Dw0)xy ψ
L
y + ψ

R

x (Dw0†)xy ψ
R
y

}
(25)

is the free Wilson fermion action. Based on the fermion inte-
gral it is easy to see that only those monomer configurations
which satisfy j ≡ j1 + j2 = j3 + j4 contribute to the path
integral. If we define the free fermion propagator

Gs,x;s′,y =

∫
[dψ dψ] e−S

w
0 ψLs,xψ

L

s′,y (26)

then it is easy to prove that

(Gs,x;s′,y)
∗ =

∫
[dψ dψ] e−S

w
0 (−1) ψRs,xψRs′,y (27)

Using this result along with Wick’s theorem it is possible to
show that∫

[dψ dψ] e−S
w
0 (−1)j3+j4 ψL1,w1

ψR1,w1
...ψ

L

1,wj1
ψR1,wj1

× ψL2,x1
ψR2,x1

...ψ
L

2,xj2
ψR2,xj2ψ

R

1,y1ψ
L
1,y1 ...ψ

R

1,yj3
ψL1,yj3

× ψR2,z1ψ
L
2,z1 ...ψ

R

2,zj4
ψL2,zj4 = |Det(G[n])|2 (28)

where G([n]) is a j × j matrix whose matrix elements
are the free fermion propagators defined in Eq. (26) from
(s = 1, {w1, ...xj1}) and (s = 2, {x1, ..., xj2}) to (s =
1, {y1, ...yj3}) and (s = 2, {z1, ..., zj4}). Combining this re-
sult with the worldline representation of the bosonic integral,
(similar to Eq. (32)), we see that

Zw =
∑
[n,k]

g2j |Det(G[n])|2
∏
x,α

{Ikx,α(β)} ×

∏
x

δ
(∑

α

(kx,α − kx−α,α)− n1,x − n2,x + n3,x + n4,x)
)

(29)

The above expansion of the partition function is again free
of any sign problem since the Boltzmann weights are non-
negative.

IV. DISCUSSION

In this work we have shown that the fermion-bag approach
along with the worldline representation of bosonic degrees
of freedom, allows us to solve sign problems in some lattice
Yukawa models. These lattice Yukawa models can now be
solved using Monte Carlo methods in which the worldlines
and the fermion bags are updated. Such algorithms can be
easily constructed by extending the ideas developed in [18].
These algorithms should allow us to uncover the interesting
quantum critical behavior in these models.

While the solutions presented here depend on the details of
the models considered, the idea is more general and can be
applied to solve other sign problems, including those in non-
relativistic field theories. For example, models that contain
pairing interactions of the form gψLs ψ

R
s e

iθ can also be solved.

Further, we can study models with discrete rather than contin-
uous symmetries. For example, if we replace Eq. (3a) by

(Ds[θ])xy = −g sin(θx)δx,y + (Ds0)xy, (30)

the UL(1) × UR(1) symmetry of the model is reduced to a
Uf (1) × Z2. While the conventional approach still suffers
from a sign problem, the fermion bag approach does not. Sign
problems can also be solved with Nf fermion flavors as long
as all fermions couple to boson fields as in the one flavor case.
This enhances the symmetry of the models by an SU(Nf )
factor.

The bosonic action can also be changed. For example in-
stead of the XY model action, one can also choose the more
standard form where

Sb[φ] = −
∑
x,α

(φ∗xφx+α+φ
∗
x+αφx)+

∑
x

(
µ|φx|2+λ|φx|4

)
.

(31)
In this case the phase eiθx in the couplings is replaced by a the
complex field φx itself. Then the bosonic integrals in Eqs. (18)
and (24) can again be represented in a worldline represen-
tation with positive Boltzmann weights. Indeed, by writing
φx = ρxe

iθx in the polar form one can show that∫
[dφ] e−Sb[φ] φw1

...φwjφ
∗
z1 ...φ

∗
zj

=

∫
[dρ] e−

∑
x(µρ

2
x+λρ

4
x) ρw1

..ρwjρz1 ..ρzj

×

{∑
[k]

∏
x,α

{Ikx,α(2ρxρx+α)}

×
∏
x

δ
(∑

α

(kx,α − kx−α,α) + nx

)}
(32)

where nx = 1 for x = w1, .., wj and nx = −1 for x =
z1, .., zj and nx = 0 otherwise. Thus, the bosonic integral
can again be represented without a sign problem.

An important lesson from our work is that solutions to
sign problems only emerge when along with pairing in the
fermionic sector, the correct bosonic variables can also be
identified. Sign problems in theories with multicomponent
boson fields continue to remain a challenge, although our
ideas may provide hints for finding a solution. In certain
cases we believe that positivity may emerge in terms of quan-
tities like fermionants which unfortunately can be exponen-
tially difficult to compute [20]. The ability to convert a quan-
tum partition function into a classical partition function should
ultimately be dependent on the underlying physics and the de-
grees of freedom that capture it optimally.
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