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Abstract

We consider neutron radiative β-decay, n→ pe−ν̄eγ, and compute the T-odd momentum corre-

lation in the decay rate characterized by the kinematical variable ξ = lν · (le×k) arising from elec-

tromagnetic final-state interactions in the Standard Model. Our expression for the corresponding

T-odd asymmetry ASM
ξ is exact in O(α) up to terms of recoil order, and we evaluate it numerically

under various kinematic conditions. Noting the universality of the V-A law in the absence of recoil

order terms, we retain the parametric dependence on masses and coupling constants throughout,

so that our results serve as a template for the computation of ASM
ξ in allowed nuclear radiative

β-decays and hyperon radiative β-decays as well.
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I. INTRODUCTION

Radiative β-decay offers the opportunity of studying T-odd momentum correlations which

do not appear in ordinary β-decay [1]. We consider a correlation characterized by the kine-

matical variable ξ = lν · (le×k), so that it is both parity P- and naively time-reversal T-odd

but independent of the particle spin. Its spin independence renders it distinct from searches

for permanent electric-dipole-moments (EDMs) of neutrons and nuclei. The inability of

the Standard Model (SM) to explain the cosmic baryon asymmetry prompts the search for

sources of CP-violation which do not appear within it and which are not constrained by

other experiments. A triple momentum correlation in radiative β-decay is one such example,

as we shall illustrate; under the CPT-theorem, T-violation is linked to CP-violation. A

decay correlation, however, can be, by its very nature, only “naively” or “pseudo” T-odd,

that is, only motion-reversal odd. As a result, although the appearance of a T-odd decay

correlation can be engendered by sources of CP-violation beyond the Standard Model, it can

also be generated without fundamental T- or CP-violation. In this paper we compute the

size of the T-odd momentum correlation in radiative β-decay simulated by electromagnetic

final-state interactions in the SM [2]. This is crucial to establishing a baseline in the search

for new sources of CP-violation in such processes. Our work is motivated in large part by

the determination that pseudo-Chern-Simons terms appear in SU(2)L×U(1) gauge theories

at low energies – and that they can impact low-energy weak radiative processes involving

baryons [3–5]. In the SM such pseudo-Chern-Simons interactions are CP-conserving, but

considered broadly they are not, so that searching for the P- and T-odd effects that CP-

violating interactions of pseudo-Chern-Simons form would engender offers a new window on

physics beyond the SM [6].

Searches for T-violating decay correlations in neutron and nuclear β-decay have a long

history. The best experimental limits are on the so-called D term, which appears as the

triple correlation DS · (le × lν), where S is the polarization of the decaying particle [7, 8].

These limits still greatly exceed the size of the D correlation expected from SM final-state

interactions [9, 10]. Radiative β-decay offers the possibility of forming a T-odd correlation

from momenta alone; to our knowledge such a possibility was first considered in the context

of K+
l3γ decay [11]. The T-odd asymmetry computed in Ref. [11] from electromagnetic final-

state interactions has recently been recalculated and is in significant disagreement with the
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earlier result [12].

In this paper we evaluate the T-odd asymmetry in radiative β-decay from electromag-

netic radiative corrections in the SM and focus on the neutron case: n(pn)→ p(pp)+e−(le)+

ν̄e(lν)+γ(k). The motion-reversal-odd terms in the decay rate, which mimic the appearance

of T-violation, are engendered by the interference of the tree-level amplitude with the imagi-

nary part of the O(α) corrected amplitude, which is determined by the physical two-particle

cuts and hence mediated by the scattering of particles on their mass shells [9, 13, 14]. In

what follows, we detail the computation of the interference terms and their components, as

well as the resulting numerical integration over the allowed phase space to yield the T-odd

asymmetry ASM
ξ . Our results are exact in O(α) up to corrections of recoil order, namely, up

to terms of O(ε/M), where ε is an energy scale which is small with respect to the nucleon

mass M . This certitude is guaranteed by the small Q-value of the decay, so that ε � M ,

and by Low’s theorem [15]. The natural scale of hadron excitations is set by the pion mass

mπ; consequently, in neutron radiative β-decay ε � mπ as well, and non-electromagnetic

final-state interactions cannot contribute to the physical two-particle cuts. This is in con-

tradistinction to K+
l3γ decay for which such contributions are appreciable, albeit relatively

small [16]. We relegate intermediate results essential for our final results but yet nonessential

to the flow of our discussion to Appendices. Since we neglect all terms of recoil order, our

results are relevant to the computation of ASM
ξ in nuclear and hyperon radiative β-decays

as well. We assess the size of undetermined corrections before offering a final summary of

our results.

II. FORMALISM

We work in a simultaneous expansion in the electromagnetic coupling constant e and in

ε/M , so that the leading contributions to neutron radiative β-decay are from the diagrams in

Fig. 1. At this order the baryons are effectively structureless, and the contributions arise from

bremsstrahlung off the charged particle legs of ordinary β-decay, yielding a gauge-invariant

result [15]. Employing the notation and conventions of Ref. [17], the decay amplitude is:

Mtree =M01 +M02 , (1)
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FIG. 1: Contributions to n(pn) → p(pp) + e−(le) + ν̄e(lν) + γ(k) up to corrections of recoil order.

The effective weak vertex is denoted by ⊗ and is controlled by the Fermi constant GF. The diagram

enumeration is utilized in our calculation of the T-odd asymmetry.

with [18, 19]

M01(le, k, pp) =
egVGF√

2
ūe(le)

2le · ε∗ + /ε∗/k

2le · k
γρ(1− γ5)vν(lν)ūp(pp)γ

ρ(1− λγ5)un(pn) , (2)

M02(le, k, pp) = −egVGF√
2

ūe(le)γρ(1− γ5)vν(lν)ūp(pp)
2pp · ε∗ + /ε∗/k

2pp · k
γρ(1− λγ5)un(pn) ,(3)

where εµ is the photon polarization vector and λ ≡ gA/gV , noting that gV and gA are the

vector and axial-vector weak coupling constants of the nucleon, respectively. We explicitly

include the arguments in the momenta le, k, and pp for later convenience.

The branching ratio and photon energy spectrum for this process have been computed

previously [18, 19]. The expressions which follow from Eq. (2) are consistent with the

experimental results [20, 21]. The next-to-leading order terms in the small-scale expansion,

i.e., those of O(ε/M), have been computed in heavy-baryon chiral perturbation theory and

are no larger than O(0.5%) of the leading-order result [19] – this is some twenty times smaller

than the current experimental sensitivity [21]. In what follows we neglect all recoil-order

terms and consider the O(α) corrections to the amplitude of Eq. (2). For future reference,

employing lepton and hadron tensors, we note that [19]∑
spins

|M0|2 =
e2g2

VG
2
F

2

(
1

(le · k)2
Lee
ρδH

ρδ +
1

M2
pω

2
LρδHee

ρδ −
1

Mpω(le · k)
M ee,mixed

)
, (4)

where Mn, Mp, and ω refer to the neutron mass, the proton mass, and the photon energy,
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respectively, and

Lee
ρδH

ρδ = −64MnMp

(
m2
e − le · k

) (
(1 + 3λ2)Eν(Ee + ω) + (1− λ2)(le · lν + lν · k)

)
,

LρδHee
ρδ = −64MnM

3
p

(
(1 + 3λ2)EνEe + (1− λ2)le · lν

)
, (5)

M ee,mixed = −64MnM
2
p

(
(1 + 3λ2)Eν(2E

2
e + Eeω − le · k) + (1− λ2)Ee(2le · lν + lν · k)

)
with me the electron mass. In realizing the amplitudes from the Feynman rules we im-

pose εi(k) · k = 0 for each polarization state i of a real photon with momentum k, noting∑
i=1,2 ε

∗
i (k) · εi(k) = −2. To effect the subsequent photon polarization sums, however,

we employ QED gauge invariance and make the replacement
∑

i=1,2 ε
µ
i (k)εν ∗i (k) −→ −gµν

throughout, without any supplemental conditions.

Denoting the O(α) correction to the amplitude by Mloop the amended decay rate is

determined by

|M|2 = |Mtree|2 +Mtree · M∗
loop +Mloop · M∗

tree +O(α2) . (6)

The T-odd triple momenta correlation ξ = lν · (le × k) in the decay rate can arise from

the interference between the tree level amplitudeMtree and the anti-Hermitian parts of the

one-loop corrections to it, so that ultimately the interference term
∑

spins(2Re(MtreeM∗
loop))

contains terms linear in ξ. Since we consider the decay and detection of unpolarized particles

exclusively,
∑

spins |M|2T−odd is indeed characterized by terms linear in ξ. Evidently the

induced asymmetry is suppressed by a factor of α ≡ e2/4π ∼ 1/137; explicit computation

shows it to be much smaller still.

Before turning to the computation of |M|2T−odd let us consider its relation to a measurable

quantity. Following Ref. [11], we define a T-odd asymmetry Aξ, namely,

Aξ =
N+ −N−
N+ +N−

, (7)

where N+ is defined as the total number of decay events with positive ξ, and N− is defined

as the number of events with negative ξ. Specifically, we compute

Aξ =
Γ+ − Γ−
Γ+ + Γ−

, (8)

where Γ± contains an integral of |M|2 over the region of phase space with ξ >
< 0, respectively;

the numerator is non-zero if and only if |M|2T−odd is non-zero. Working to corrections of
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O(ε/M), the neutron radiative β-decay rate Γ in the neutron rest frame is

Γ =
1

8Mn

1

(2π)8

∫
|le|dEedΩeωdωdΩkdΩν

Θ(Mn − Ee − Eν − ω)Eν
4Mn

(
1

2

∑
spins

|M|2
)∣∣∣∣∣

pp, Eν

,

(9)

where pp = Mn− le− lν − k and Eν = Mn−Mp−Ee−ω are fixed throughout. The precise

form of Γ± depends on the concrete choice of coordinate system. Choosing the direction of

the electron momentum le as the z direction and letting k and le fix the x-z plane, then under

this specific choice ξ > 0 corresponds to φν ∈ [0, π] and ξ < 0 corresponds to φν ∈ [π, 2π].

Thus we define

Γ+(ωmin) ≡ 1

16M2
n(2π)6

∫ ωmax

ωmin

ωdω

∫ Emax
e (ω)

me

|le|dEe
∫ c

−c

dxk

∫ 1

−1

dxν

∫ π

0

dφνEν

×
(

1

2

∑
spins

|M|2
)∣∣∣∣∣

pp, Eν

(10)

and

Γ−(ωmin) ≡ 1

16M2
n(2π)6

∫ ωmax

ωmin

ωdω

∫ Emax
e (ω)

me

|le|dEe
∫ c

−c

dxk

∫ 1

−1

dxν

∫ 2π

π

dφνEν

×
(

1

2

∑
spins

|M|2
)∣∣∣∣∣

pp, Eν

, (11)

where Emax
e = Mn − Mp − ω, ωmax = Mn − Mp − me, and ωmin is determined by the

threshold energy of the detector. In our computation of |M|2 we set Mn = Mp = M in

terms which would yield corrections beyond leading order in the recoil expansion. We limit

the integration over xk to the range [−c, c]; we discuss this as well as our choice for c in

Sec. IV.

III. COMPUTATION OF
∑

spins |M|2T−odd IN LEADING ORDER

To compute the T-odd pieces, we need to obtain the anti-Hermitian parts of the one-

loop diagrams Im(Mloop). We do this by performing “Cutkosky cuts” [13], which means we

simultaneously put intermediate particles in the loops on their mass shells in all physically

allowed ways and then perform the relevant intermediate phase space integrals and spin

sums. Graphically speaking, after imposing the cuts, the anti-Hermitian part of a one-loop
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diagram can be viewed as the product of two physical tree-level processes. We have

Im(Mloop) =
1

8π2

∑
n

∫
dρn

∑
sn

MfnM∗
in =

1

8π2

∫
dρn

∑
sn

MfnMni , (12)

where
∑

n refers to the summation over all the possible cuts of the one-loop diagrams and∫
dρn and

∑
sn

refer to the intermediate phase space integration and spin sums, respectively,

for a cut which yields state n. The matrix elements Mni and Mfn refer to the two tree-

level diagrams after a physical cut. After excluding the physically unacceptable cuts, 14

cut diagrams remain, and they are illustrated in Fig. 2. We evaluate them explicitly. The

momenta labeled as k′, l′e, and p′p refer to momenta of intermediate particles. In performing

the Cutkosky cuts, each particle in a pair of particles is put on its own mass shell.

It is useful to categorize the cuts as per the sorts of processes involved. That is, Mfn

describes the manner in which select particles rescatter, so that we can have Compton scat-

tering or electron-proton scattering, the latter with or without the emission of an additional

photon. The family of diagrams given by (1), (2), (5.1), and (6.2) contain Compton scatter-

ing from the electron, as illustrated in Fig. 3, whereas the family comprised of (3), (4), (7.2),

and (8.3) contain Compton scattering from the proton. In these families Mfn is captured

by one of the following expressions:

Md
γe(l

′
e, k
′, le, k) = −e2ūe(le)

2le · ε∗ + /ε∗/k

2le · k
/ε′ue(l

′
e) , (13)

Mc
γe(l

′
e, k
′, le, k) = e2ūe(le)

2le · ε′ − /ε′ /k′
2l′e · k

/ε∗ue(l
′
e) , (14)

Md
γp(p

′
p, k
′, pp, k) = −e2ūp(pp)

2pp · ε∗ + /ε∗/k

2pp · k
/ε′up(p

′
p) , (15)

or

Mc
γp(p

′
p, k
′, pp, k) = e2ūp(pp)

2pp · ε′ − /ε′ /k′
2p′p · k

/ε∗up(p
′
p) , (16)

where ε′ ≡ ε(k′). Correspondingly, Mni is given by the tree-level neutron radiative β-decay

amplitude, as per the form of M01 and M02, with only some of the arguments changed.

Technically we define a “family” to be those contributions to the T-odd correlation which

cancel amongst themselves to yield zero when we replace ε or ε∗ by k or ε′ or ε′∗ by k′ as per

the Ward-Takahashi identities.

Furthermore, there is an intermediate phase space integral over the kinematically allowed

phase space. For γ − e scattering we have∫
dργe ≡

∫
d3l′e
2E ′e

d3k′

2ω′
δ(4)(l′e + k′ − P0e) (17)
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FIG. 2: All two-particle cut contributions to n(pn)→ p(pp) + e−(le) + ν̄e(lν) + γ(k) which appear

in O(α) up to corrections of recoil order, using the syntax of Fig. 1. A “×” means that the

intermediate particle has been put on its mass shell; two such symbols define the Cutkosky cut.

The diagram enumeration is utilized in our calculation of the T-odd asymmetry. Note that the

first number selects a particular Feynman diagram, and the second determines the particular two-

particle physical cut in that diagram.

with P0e ≡ le + k, whereas for γ − p scattering we have∫
dργp ≡

∫
d3p′p
2E ′p

d3k′

2ω′
δ(4)(p′p + k′ − P0p) (18)
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FIG. 3: Compton scattering diagrams which appear in Im(Mloop) for γ − e cuts. We denote the

two graphs by Md
γe(l

′
e, k
′, le, k) and Mc

γe(l
′
e, k
′, le, k), respectively. The diagrams and amplitudes

appropriate to γ − p scattering follow from replacing electron with proton variables.

with P0p ≡ pp + k. Collecting the pieces, we have

Im(M1) =
1

8π2

∫
dργe

∑
sγe

Md
γe(l

′
e, k
′, le, k)M01(l′e, k

′, pp) , (19)

Im(M2) =
1

8π2

∫
dργe

∑
sγe

Mc
γe(l

′
e, k
′, le, k)M01(l′e, k

′, pp) , (20)

Im(M5.1) =
1

8π2

∫
dργe

∑
sγe

Md
γe(l

′
e, k
′, le, k)M02(l′e, k

′, pp) , (21)

Im(M6.2) =
1

8π2

∫
dργe

∑
sγe

Mc
γe(l

′
e, k
′, le, k)M02(l′e, k

′, pp) , (22)

for the “γ − e” cuts, and

Im(M3) =
1

8π2

∫
dργp

∑
sγp

Md
γp(p

′
p, k
′, pp, k)M02(le, k

′, p′p) , (23)

Im(M4) =
1

8π2

∫
dργp

∑
sγp

Mc
γp(p

′
p, k
′, pp, k)M02(le, k

′, p′p) , (24)

Im(M7.2) =
1

8π2

∫
dργp

∑
sγp

Md
γp(p

′
p, k
′, pp, k)M01(le, k

′, p′p) , (25)

Im(M8.3) =
1

8π2

∫
dργp

∑
sγp

Mc
γp(p

′
p, k
′, pp, k)M01(le, k

′, p′p) , (26)

for the “γ − p” cuts.

In addition to the families of Compton cuts, there are cuts in which Mfn is determined

by electron-proton scattering either with and without bremsstrahlung, and, correspondingly,

Mni is determined by either nonradiative or radiative β-decay. Referring to Fig. 2, we see

for cuts in which the electron and proton scatter with bremsstrahlung that diagrams (5.2)

and (6.1) comprise the family associated with electron bremsstrahlung, as shown in Fig. 4,

and (7.1) and (8.1) comprise the family associated with proton bremsstrahlung. In these
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l′e le

k

ppp′p

l′e le

k

ppp′p

FIG. 4: Diagrams which appear in Im(Mloop) for e − p scattering with electron bremsstrahlung.

We denote the two graphs by Mef
epγ(l′e, p

′
p, le, k, pp) and Mei

epγ(l′e, p
′
p, le, k, pp), respectively. The

diagrams and amplitudes appropriate to proton bremsstrahlung follow from exchanging electron

and proton variables.

pn

lν

le

pp

FIG. 5: Contribution to n(pn)→ p(pp) + e−(le) + ν̄e(lν) decay after Fig. 1.

families Mfn is given by one of the following:

Mef
epγ(l

′
e, p
′
p, le, k, pp) = −e3ūe(le)

2le · ε∗ + /ε∗/k

2le · k
γµue(l

′
e)

gµν
(p′p − pp)2

ūp(pp)γ
νup(p

′
p) , (27)

Mei
epγ(l

′
e, p
′
p, le, k, pp) = e3ūe(le)γ

µ2l′e · ε∗ − /k/ε∗
2l′e · k

ue(l
′
e)

gµν
(p′p − pp)2

ūp(pp)γ
νup(p

′
p) , (28)

Mpf
epγ(l

′
e, p
′
p, le, k, pp) = e3ūp(pp)

2pp · ε∗ + /ε∗/k

2pp · k
γµup(p

′
p)

gµν
(l′e − le)2

ūe(le)γ
νue(l

′
e) , (29)

or

Mpi
epγ(l

′
e, p
′
p, le, k, pp) = −e3ūp(pp)γ

µ
2p′p · ε∗ − /k/ε∗

2p′p · k
up(p

′
p)

gµν
(l′e − le)2

ūe(le)γ
νue(l

′
e) . (30)
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Moreover, Mni is given by neutron β-decay, as shown in Fig. 5, which, up to recoil-order

corrections, reads:

MDK(l′e, p
′
p) =

gVGF√
2
ūe(l

′
e)γρ(1− γ5)vν(lν)ūp(p

′
p)γ

ρ(1− λγ5)un(pn) . (31)

Collecting the pieces, we have

Im(M5.2) =
1

8π2

∫
dρepγ

∑
sep

Mef
epγ(l

′
e, p
′
p, le, k, pp)MDK(l′e, p

′
p) , (32)

Im(M6.1) =
1

8π2

∫
dρepγ

∑
sep

Mei
epγ(l

′
e, p
′
p, le, k, pp)MDK(l′e, p

′
p) , (33)

and

Im(M7.1) =
1

8π2

∫
dρepγ

∑
sep

Mpf
epγ(l

′
e, p
′
p, le, k, pp)MDK(l′e, p

′
p) , (34)

Im(M8.1) =
1

8π2

∫
dρepγ

∑
sep

Mpi
epγ(l

′
e, p
′
p, le, k, pp)MDK(l′e, p

′
p) (35)

for the “e− p− γ” cuts. The last family of cuts is given by (6.3) and (8.2) in Fig. 2. In this

case Mfn is given by e− p scattering, and we have

Mep(l
′
e, p
′
p, le, pp) = −e2ūe(le)γ

µue(l
′
e)

gµν
(l′e − le)2

ūp(pp)γ
νup(p

′
p) . (36)

The corresponding Mni is given by M01(l′e, k, p
′
p) for (6.3) and M02(l′e, k, p

′
p) for (8.2). We

thus have:

Im(M6.3) =
1

8π2

∫
dρep

∑
sep

Mep(l
′
e, p
′
p, le, pp)M01(l′e, k, p

′
p) , (37)

Im(M8.2) =
1

8π2

∫
dρep

∑
sep

Mep(l
′
e, p
′
p, le, pp)M02(l′e, k, p

′
p) (38)

for the “e − p” cuts. In these graphs the intermediate momenta satisfy l′e + p′p = le + pp,

so that the integral over the allowed phase space is slightly different from that in families

with e − p scattering and bremsstrahlung. In particular, diagrams (6.3) and (8.2) are each

infrared divergent when l′e = le; this divergence cancels, however, as expected [22], once we

construct ASM
ξ .

The expressions we have collected complete the building blocks of the computation of

the T-odd correlation in O(α) up to recoil-order corrections. The spin-averaged T-odd

correlation is

|M|2T−odd ≡
1

2

∑
spins

|M|2T−odd =
1

2

∑
spins

(2Re(MtreeiImM∗
loop)) , (39)
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and we report the contributions to it family by family as each family represents a QED gauge

invariant group of contributions. We employ a subscript system to identify the contributions

in a straightforward way. Since the T-odd correlations are given by the interference of tree-

level diagrams, which are numbered in Fig. 1 as (01) and (02), with one-loop level diagrams,

which are numbered in Fig. 2 as (1), (2),..., and (8.3), we label, for example, the T-odd

correlation from the tree diagram (01) and one-loop diagram (6.3) as |M|2T−odd[6.3.01]. In

computing the intermediate phase space integrals which enter these expresssions, we find

that both vector and tensor structures appear in the intermediate momenta. We simplify

such integrals using the Passarino-Veltman reduction [23] and present the details, as well

as all needed integrals, in Appendix A. In Appendix B we report concrete expressions for

the final gauge-invariant combinations of the various contributions to |M|2T−odd which re-

sult after performing the trace calculations and employing the formulae of Appendix A for

the intermediate phase-space integrals. We work to leading order in the recoil expansion

throughout. Judging by the structure of the resulting expressions one can see that some

families, namely, the γ−p family containing cuts (3)+(4)+(7.2)+(8.3), as well as the e−p−γ
family containing cuts (7.1)+(8.1), do not have leading-recoil-order contributions, whereas

others do and need to be considered carefully. The computations necessary to determine

Im(Mloop) and the resulting T-odd interference term are involved, so that we employ the

program “FORM” to compute analytic expressions for the traces [24]. We compute all of

the diagrams with these methods as a check of our procedures – we verify that the expected

cancellations do indeed occur.

IV. RESULTS

Before presenting our final results for the asymmetry, there are three important remarks

to be made concerning our numerical evaluation of the integral of |M|2T−odd over the allowed

phase space. First of all, we note that the contributions to the asymmetry from the e − p
and e − p − γ cuts dominate the final numerical result. The γ − p contribution vanishes

in leading order, whereas the γ − e contribution partially cancels – the latter observation

comes from our detailed numerical evaluation of the asymmetry. Second, we note that the

contributions from the diagrams of the e − p cuts each contain an infrared divergence; we

regulate this by inserting a fictitious photon mass mγ. However, as we show in Appendix B,
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TABLE I: T-odd asymmetry as a function of ωmin for neutron radiative β-decay.

ωmin(MeV) Aξ

0.01 1.76× 10−5

0.05 3.86× 10−5

0.1 6.07× 10−5

0.2 9.94× 10−5

0.3 1.31× 10−4

0.4 1.54× 10−4

0.5 1.70× 10−4

0.6 1.81× 10−4

0.7 1.89× 10−4

the infrared divergence cancels in the net contribution to the asymmetry from the e−p cuts.

The remaining piece is thus finite and well-defined, and we can safely set mγ to zero. Finally,

we note it is most convenient to choose a restricted range in the γ − e opening angle. As

one can see from the formulae in the Appendix A, the solutions to the Passarino-Veltman

equations become invalid if the opening angle θeγ between the outgoing electron and the

photon is exactly equal to 0 or to π. There is no physical divergence. Rather, the spatial

components of the vector and tensor equations to determine the relevant coefficients become

degenerate at such a boundary. Potentially one could remove this difficulty by solving the

equations for infinitesimal values of θeγ or (θeγ − π) and then interpolating the solutions to

the needed θeγ = 0 and π points. In our present work, we simply choose a restricted range

xk ≡ cos θeγ ∈ [−0.9, 0.9], which spans the angular range over which the neutron radiative

decay rate is largest [25].

We can now present our results for ASM
ξ . Noting Eq. (8), we see that Eqs. (4), and (5)

share a common factor of e2g2
VG

2
FM

2/2, making ASM
ξ independent of the decaying particle’s

mass in leading order in the recoil expansion. As can be seen explicitly in Appendix B,

all of the contributions to |M|2T−odd are found to be proportional to (1 − λ2), so that the

resulting asymmetry goes as (1− λ2)/(1 + 3λ2), up to small corrections, in this limit. The

dependence on λ in |M|2T−odd stems from the special nature of the T-odd correlation. It
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FIG. 6: The asymmetry Aξ versus the smallest detectable photon energy ωmin in neutron radiative

β-decay. Note that the asymmetry is determined from integrals over the complete phase space

with the constraints ω > ωmin and xk ∈ [−0.9, 0.9].

is a real triple product in momenta arising from the interference of a tree-level diagram

with an imaginary part of an one-loop diagram after summing over the particles’ spins. To

leading order in M , the only surviving contribution is obtained from the product of the

symmetric part of the lepton tensor, which is determined by a trace containing γ5, namely,

lρνε
αβγδ + lδνε

αβγρ − gρδlν µε
αβγµ, where α, β, and γ refer to photon or lepton indices, with

the symmetric part of the hadron tensor. The latter is proportional to (1 + λ2)pρpδ −
λ2M2gρδ, where p is a baryon momentum and p2 = M2. As one can easily check, this special

combination generates an overall (1 − λ2) coefficient; the remaining (1 + λ2) term cannot

be of leading order once the photon spin sum is effected. We use λ = −1.2701± 0.0025 [26]

in our numerical evaluation. For definiteness, the remaining input parameters we employ

are me = 0.510999 MeV, Mn = 939.565 MeV, Mp = 938.272 MeV, and α−1 = 137.0360 –

these quantities can be regarded as exact for our current purpose [26]. We show our results

for the T-odd asymmetry in neutron radiative β-decay in Table I and Fig. 6. We see that

the asymmetry is rather smaller than α. We recall that the radiative β-decay rate grows

as logωmin as ωmin → 0, whereas the |M|2T−odd tends to zero in that limit. Consequently

the small values of the asymmetry as ωmin → 0 is reflective of the growth in the decay rate

itself.

Generally ASM
ξ is determined by an interplay between λ and the energetics of the decay,

14



along with the value of ωmin. The (1− λ2) behavior of |M|2T−odd we have found in neutron

radiative β-decay, neglecting terms of recoil order, is universal to allowed nuclear radiative

β-decays in this limit as well. In the case of the decay of a J = 1/2 nucleus this follows

because we can treat the parent and daughter nuclei as elementary fermions while evaluating

the electromagnetic radiative corrections. For the decay of a nucleus of arbitrary J , the

result follows from the use of the impulse approximation for a β-decay at tree level. The

(1 − λ2)/(1 + 3λ2) behavior of ASM
ξ in λ makes for a rich pattern. If, for some nucleus,

the associated value of λ were significantly different from unity, the T-odd effect could be

considerably amplified, whereas if λ ∼ 1, the T-odd effect could be substantially reduced,

facilitating from this perspective at least the search for physics beyond the SM. Interestingly

a “quenching” of the Gamow-Teller strength in nuclei in relation to shell-model predictions is

experimentally established [27, 28] – it derives from the presence of many-body correlations

in the nucleus [29]. As a concrete example, we consider the process 19Ne→ 19F+e+ +νe+γ.

The 19Ne lifetime is much shorter than that of the neutron, making experiments more

practical, and it should be possible to study such decays in a trapped atom experiment [30].

Moreover, in this decay the axial-vector coupling is given by geff
A = 0.928, as determined

by Refs. [31, 32] with Ref. [33] for a translation from the conventions of those references to

geff
A . Consequently, we expect the asymmetry in 19Ne radiative β-decay to be smaller than

that in the neutron case; we reserve detailed numerical results, however, for a subsequent

paper [34].

In our paper, we compute the O(α) contribution to the T-odd asymmetry, keeping only

the leading terms in the recoil expansion. The accuracy of our calculation is limited by

the uncertainties in the input parameters we employ, as well as by the numerical size of the

neglected recoil-order contributions. Crudely we expect the latter to be reduced with respect

to the leading-order contribution by a factor of O(Emax
e /M) ∼ 1 · 10−3. Nevertheless, we

can conveniently check the rough size of the recoil-order contributions in the neutron case

by replacing the vertex γµ(gV − gAγ5) in the tree-level amplitude with the weak magnetism

contribution, −iσµνqνF2(q2)/(2M), where F2(0)/gV = κv = 3.706, the isovector magnetic

moment of the nucleon. The interference of the resulting recoil-order contribution with the

tree-level amplitude yields upon explicit calculation a contribution to ASM
ξ which is no larger

than ∼ 4 · 10−7 for ωmin = 0.3 MeV.
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V. SUMMARY

In this paper, we have computed the T-odd correlation in neutron radiative β-decay aris-

ing from SM physics. The T-odd correlation is characterised by the kinematical variable

ξ = lν · (le × k); consequently, it is spin-independent – and thus fundamentally different

from a permanent EDM. The mimicking T-odd correlation arises from the presence of elec-

tromagnetic final-state interactions when the intermediate particles are each put on its own

mass shell. We have computed the leading-order result, which is of O(α, (ε/M)0), to the T-

odd asymmetry exactly. In particular, our detailed analysis shows that the resulting T-odd

asymmetry is controlled by (1− λ2), so that ASM
ξ vanishes as λ→ 1, suggesting that radia-

tive β-decay studies in other systems could be employed to good effect. We will report our

computation of the T-odd correlation in nuclear radiative β-decay in a subsequent paper;

there are additional Feynman diagrams, but they, up to corrections of recoil order, cancel

to yield the gauge-invariant combinations of graphs we have computed in this paper [34].
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Appendix A: Intermediate Phase Space Integrals

The computation of the imaginary parts of the loop diagrams requires an integration

over the allowed phase space of the intermediate momenta as fixed by the momenta of the

final-state particles and energy-momentum conservation. In this Appendix we report the

integrals which appear in the diagrams of Fig. 2 and label them as per the diagrams in that

figure. For diagrams with cuts which yield Compton scattering from electrons our results

can be compared to, and agree with, those of Refs. [11] and [12]. In what follows we report

the integrals which arise from γ − e cuts: (1), (2), (5.1), and (6.2), and then the integrals
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which arise from the cutting of electron and proton lines to generate physical ep → epγ

scattering, namely, (5.2) and (6.1), and ep → ep scattering, (6.3) and (8.2). The integrals

associated with the rest of the cuts in Fig. 2 are not given explicitly because they do not

contribute in leading order in the recoil expansion, as we note in the main body of the text.

Nevertheless, we note the relationships between these integrals which appear in the large

Mp limit in order to make the cancellations associated with these terms transparent.

From diagram (1), defining P0e ≡ le + k, we have

J1 ≡
∫
d3l′e
2E ′e

d3k′

2ω′
δ(4)(l′e + k′ − P0e) ≡

∫
dργe

=
π

2

(
1− m2

e

P 2
0e

)
, (A1)

as well as

Kµ
1 ≡

∫
dργek

′µ = a1P
µ
0e (A2)

with

a1 =
π

4

(
1− m2

e

P 2
0e

)2

.

From diagram (2) we have

J2 ≡
∫
dργe

1

le · k′
=

π

2le · k
log

(
P 2

0e

m2
e

)
. (A3)

We apply the Passarino-Veltman reduction method to compute integrals which contain ad-

ditional powers of the intermediate momenta [23]. That is, writing

Kµ
2 =

∫
dργe

k′µ

le · k′
= a2l

µ
e + b2P

µ
0e , (A4)

the values of a2 and b2 are fixed by the solution of the set of equations

J1 = a2m
2
e + b2le · P0e ,

le · kJ2 = a2le · P0e + b2P
2
0e .

Moreover,

Lµν2 =

∫
dργe

k′µk′ ν

le · k′
= c2g

µν + d2l
µ
e l
ν
e + e2P

µ
0eP

ν
0e + f2(lµeP

ν
0e + P µ

0el
ν
e ) , (A5)

where c2, d2, e2, and f2 are given by the solution of the set of equations

0 = 4c2 + d2m
2
e + e2P

2
0e + 2f2le · P0e ,

0 = c2 + d2m
2
e + f2le · P0e ,

a1 = e2le · P0e + f2m
2
e ,

le · kb2 = c2 + e2P
2
0e + f2le · P0e .
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For integrals which depend onMp we report their form in the largeMp limit for subsequent

use. Note that M rather than Mp appears in the limiting form because the n − p mass

difference itself is of higher order in the recoil expansion. From diagram (5.1) we have

J5.1 =

∫
dργe

1

pp · k′
=

π

2I0e

log

(
pp · P0e + I0e

pp · P0e − I0e

)
, (A6)

with I0e =
√

(pp · P0e)2 −M2
pP

2
0e, noting

J5.1 ∼
π

2M |k + le|
log

(
Ee + ω + |k + le|
Ee + ω − |k + le|

)
(A7)

as Mp →∞. In addition

Kµ
5.1 =

∫
dργe

k′µ

pp · k′
= a5.1p

µ
p + b5.1P

µ
0e , (A8)

where a5.1 and b5.1 are given by the solution of the set of equations

J1 = a5.1M
2
p + b5.1pp · P0e ,

le · kJ5.1 = a5.1pp · P0e + b5.1P
2
0e .

In the large Mp limit b5.1 ∼ 1/M and a5.1 ∼ 1/M2. We postpone discussion of the integrals

from diagrams (5.2) and (6.1) to consider the integrals from the remaining diagrams with

Compton cuts. From diagram (6.2) we have

J6.2 =

∫
dργe

1

(le · k′)(pp · k′)
=

π

2(le · k)Ie
log

(
pp · le + Ie
pp · le − Ie

)
, (A9)

with Ie =
√

(pp · le)2 −M2
pm

2
e and

J6.2 ∼
π

2M |le|k · le
log

(
Ee + |le|
Ee − |le|

)
. (A10)

as Mp →∞. In addition

Kµ
6.2 =

∫
dργe

k′µ

(le · k′)(pp · k′)
= a6.2P

µ
0e + b6.2l

µ
e + c6.2p

µ
p , (A11)

where a6.2, b6.2, and c6.2 are given by the solution to the set of equations

J2 = a6.2pp · P0e + b6.2pp · le + c6.2M
2
p ,

J5.1 = a6.2le · P0e + b6.2m
2
e + c6.2pp · le ,

le · kJ6.2 = a6.2P
2
0e + b6.2le · P0e + c6.2pp · P0e .
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and in the large Mp limit a6.2, b6.2 ∼ 1/M and c6.2 ∼ 1/M2. Finally

Lµν6.2 =

∫
dργe

k′µk′ν

(le · k′)(pp · k′)
= d6.2g

µν + e6.2p
µ
pp

ν
p + f6.2l

µ
e l
ν
e + g6.2P

µ
0eP

ν
0e + h6.2(pµp l

ν
e + lµe p

ν
p)

+i6.2(pµpP
ν
0e + P µ

0ep
ν
p) + k6.2(lµeP

ν
0e + P µ

0el
ν
e ) , (A12)

where the coefficients which appear are given by the solution to set of the equations

4d6.2 + e6.2M
2
p + f6.2m

2
e + g6.2P

2
0e + 2h6.2pp · le + 2i6.2pp · P0e + 2k6.2le · P0e = 0 ,

d6.2 + f6.2m
2
e + h6.2pp · le + k6.2le · P0e = 0 ,

e6.2pp · le + h6.2m
2
e + i6.2le · P0e = a5.1 ,

g6.2le · P0e + i6.2pp · le + k6.2m
2
e = b5.1 ,

d6.2 + e6.2M
2
p + h6.2pp · le + i6.2pp · P0e = 0 ,

g6.2pp · P0e + i6.2M
2
p + k6.2pp · le = b2 ,

d6.2 + g6.2P
2
0e + i6.2pp · P0e + k6.2le · P0e = le · ka6.2 .

Note that the equations have been chosen to yield a self-consistent solution for the six

coefficients.

The integrals associated with the γ − p cuts can be found if necessary by replacing the

intermediate momentum l′e by p′p as well as le by pp in the γ − e integrals we have provided.

Specifically we note

J3 ≡
∫
d3p′p
2E ′p

d3k′

2ω′
δ(4)(p′p + k′ − P0p) ≡

∫
dργp ,

where P0p ≡ pp + k, and

J4 =

∫
dργp

1

pp · k′
(A13)

so that

J4 ∼
1

Mω
J3 ∼ O

(
1

M2

)
(A14)

as Mp →∞. Moreover,

J7.2 =

∫
dργp

1

le · k′
(A15)

and

Kµ
7.2 =

∫
dργp

k′µ

le · k′
= a7.2l

µ
e + b7.2p

µ
p , (A16)
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whereas

J8.3 =

∫
dργp

1

(le · k′)(pp · k′)
(A17)

and

Kµ
8.3 =

∫
dργp

k′µ

(le · k′)(pp · k′)
= a8.3k

µ + b8.3l
µ
e + c8.3p

µ
p , (A18)

so that

J8.3 ∼
1

Mω
J7.2 ∼ O

(
1

M2

)
; a8.3 ∼ 0 +O

(
1

M3

)
,

b8.3 ∼
1

Mω
a7.2 +O

(
1

M3

)
; c8.3 ∼

1

Mω
b7.2 +O

(
1

M4

)
(A19)

as Mp →∞.

The integrals in the remaining diagrams of Fig. 2 arise from cutting the electron and

proton lines to generate physical ep → epγ or ep → ep scattering. The intermediate phase

space integrals in these cases are more complicated than those associated with the Compton

cuts; fortunately, closed-form expressions for the integrals in the large Mp limit suffice to

leading order in the recoil expansion. With P0 ≡ pp + le + k, we note for diagram (5.2)

I5.2 =

∫
d3l′e
2E ′e

d3p′p
2E ′p

δ(4)(l′e + p′p − P0) ≡
∫
dρepγ

=
π

2P 2
0

√
(P 2

0 −M2
p +m2

e)
2 − 4P 2

0m
2
e ∼

π

M

√
(Ee + ω)2 −m2

e (A20)

as Mp →∞. Moreover,

J5.2 =

∫
dρepγ

1

(p′p − pp)2
(A21)

and

J5.2 ∼
π

4M |le + k| log

(
m2
e + le · k − (Ee + ω)2 +

√
(Ee + ω)2 −m2

e |le + k|
m2
e + le · k − (Ee + ω)2 −

√
(Ee + ω)2 −m2

e |le + k|

)
(A22)

as Mp →∞. In addition,

Kµ
5.2 =

∫
dρepγ

l′µe
(p′p − pp)2

= a5.2P
µ
0e + c5.2p

µ
p , (A23)

where a5.2 and c5.2 are given by the solution to

(m2
e + le · k)J5.2 −

I5.2

2
= a5.2P

2
0e + c5.2pp · P0e ,

pp · P0eJ5.2 +
1

2
I5.2 = a5.2pp · P0e + c5.2M

2
p ,
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so that in the large Mp limit a5.2 ∼ 1/M and c5.2 ∼ 1/M2. Turning to the integrals from

diagram (6.1) we have

I6.1 =

∫
dρepγ

1

(l′e · k)
, (A24)

so that as Mp →∞

I6.1 ∼
π

2Mω
log

(
Ee + ω +

√
(Ee + ω)2 −m2

e

Ee + ω −
√

(Ee + ω)2 −m2
e

)
, (A25)

as well as

I ′6.1 =

∫
dρepγ

(p′p − pp)2

(l′e · k)
, (A26)

where as Mp →∞
I ′6.1 ∼ 2(m2

e + le · k)I6.1 − 2I5.2 − 2Ĩ6.1 (A27)

with

Ĩ6.1 =
πk · le
Mω2

(√
(Ee + ω)2 −m2

e +
(Ee + ω)k · le

2k · le
log

(
Ee + ω +

√
(Ee + ω)2 −m2

e

Ee + ω −
√

(Ee + ω)2 −m2
e

))
.

(A28)

Moreover,

J6.1 =

∫
dρepγ

1

(l′e · k)(pp − p′p)2
, (A29)

so that as Mp →∞

J6.1 ∼
π

4M |le|k · le

(
log

(
A+

A−

)
− log

(
B+

B−

))
, (A30)

where

A± = m2
e + le · k − (Ee + ω)2 ± |le + k|

√
(Ee + ω)2 −m2

e (A31)

and

B± = |le|2(le · k)2 −
(
ω2m2

e − Eeω(le · k)
)
A±

+|le|(le · k)
(

(Ee + ω)ω|le + k| ∓ (ω2 + le · k)
√

(Ee + ω)2 −m2
e

)
. (A32)

In addition,

Kµ
6.1 =

∫
dρepγ

l′µe
(l′e · k)(pp − p′p)2

= a6.1l
µ
e + b6.1k

µ + c6.1p
µ
p , (A33)

21



where the undetermined coefficients are fixed by the solution to

J5.2 = a6.1le · k + c6.1pp · k ,

(m2
e + le · k)J6.1 −

I6.1

2
= a6.1(m2

e + le · k) + b6.1le · k + c6.1pp · P0e ,

pp · P0eJ6.1 = a6.1pp · le + b6.1pp · k + c6.1M
2
p ,

so that in the large Mp limit a6.1, b6.1 ∼ 1/M and c6.1 ∼ 1/M2. Also

Lµν6.1 =

∫
dρepγ

l′µe l
′ν
e

(l′e · k)(pp − p′p)2
= d6.1g

µν + e6.1p
µ
pp

ν
p + f6.1l

µ
e l
ν
e + g6.1k

µkν

+h6.1(pµp l
ν
e + lµe p

ν
p) + i6.1(pµpk

ν + kµpνp) + k6.1(lµe k
ν + kµlνe ) ,

where the undetermined coefficients are fixed by the solution to

4d6.1 + e6.1M
2
p + f6.1m

2
e + 2h6.1pp · le + 2i6.1pp · k + 2k6.1le · k = m2

eJ6.1 ,

d6.1 + e6.1M
2
p + h6.1pp · le + i6.1pp · k = pp · P0ec6.1 ,

g6.1pp · k + i6.1M
2
p + k6.1pp · le = pp · P0eb6.1 ,

f6.1pp · le + h6.1M
2
p + k6.1pp · k = pp · P0ea6.1 ,

e6.1pp · k + h6.1le · k = c5.2 ,

f6.1le · k + h6.1pp · k = a5.2 ,

d6.1P
2
0e + e6.1(pp · P0e)

2 + f6.1(le · P0e)
2 + g6.1(le · k)2 + 2h6.1pp · P0ele · P0e

+2i6.1pp · P0ele · k + 2k6.1le · P0ele · k = (m2
e + le · k)2J6.1 − (m2

e + le · k)I6.1 +
I ′6.1
4
.

For the remaining e− p− γ cuts we have

J7.1 =

∫
dρepγ

1

(l′e − le)2
∼ O

(
1

M

)
(A34)

and

Kµ
7.1 =

∫
dρepγ

l′µe
(l′e − le)2

= a7.1l
µ
e + b7.1p

µ
p , (A35)

whereas

J8.1 =

∫
dρep

1

(p′p · k)(l′e − le)2
(A36)

and

Kµ
8.1 =

∫
dρep

l′µe
(p′p · k)(l′e − le)2

= a8.1l
µ
e + b8.1k

µ + c8.1p
µ
p , (A37)
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so that

J8.1 ∼
1

Mω
J7.1 ∼ O

(
1

M2

)
; b8.1 ∼ 0 +O

(
1

M3

)
,

a8.1 ∼
1

Mω
a7.1 +O

(
1

M3

)
; c8.1 ∼

1

Mω
b7.1 +O

(
1

M4

)
(A38)

as Mp →∞.

The integrals for the e − p cuts follow from those we have just analyzed under the

replacement of P0 with P̃0 ≡ le + pp. In this case, however, there is an added complication

because the integrals become infrared divergent when p′p = pp. This divergence cancels once

we construct an observable quantity; nevertheless, we regulate the integrals as they stand

by adding a fictitious photon mass m2
γ – this will allow us to track the infrared divergences

through the course of the calculation, so that we can demonstrate the divergence cancellation

manifestly. In what follows we set m2
γ to zero in all terms which are finite in the m2

γ → 0

limit. We have

I8.2 =

∫
d3l′e
2E ′e

d3p′p
2E ′p

δ(4)(l′e + p′p − P̃0) ≡
∫
dρep

∼ π|le|
M

(A39)

as Mp →∞. In addition,

J8.2 =

∫
dρep

1

p′p · k
1

(p′p − pp)2 −m2
γ

(A40)

∼ π

4|le|ωM2
log

(
m2
γ

4|le|2
)

as Mp → ∞. Thus we see that J8.2 vanishes in this limit save for the infrared divergent

piece, which we define as Jdiv
8.2 . In addition,

Kµ
8.2 =

∫
dρep

1

p′p · k
l′µe

(p′p − pp)2 −m2
γ

= a8.2l
µ
e + b8.2k

µ + c8.2p
µ
p . (A41)

The coefficients are given by the solution to

m2
eJ8.2 −

1

2
Ĩ8.2 = a8.2m

2
e + b8.2le · k + c8.2pp · le ,

pp · leJ8.2 +
1

2
Ĩ8.2 = a8.2pp · le + b8.2pp · k + c8.2M

2
p ,

(le + pp) · kJ8.2 − I ′8.2 = a8.2le · k + c8.2pp · k ,
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where

Ĩ8.2 =

∫
dρep

1

p′p · k
; I ′8.2 =

∫
dρep

1

(p′p − pp)2 −m2
γ

. (A42)

In the large Mp limit we note that

Kµ
8.2 ∼

1

Mω
I ′8.2 (A43)

so that b8.2 ∼ 0, and we need only solve

m2
eJ8.2 −

I8.2

2Mω
= a8.2m

2
e + c8.2MEe ,

EeJ8.2 = a8.2Ee + c8.2M (A44)

to determine the leading-order expressions for a8.2 and c8.2. We can track the infrared

divergence in J8.2 in a8.2 and c8.2 by solving these equations with I8.2 = 0 and J8.2 = Jdiv
8.2 ,

which yields adiv
8.2 ∼ Jdiv

8.2 and cdiv
8.2 ∼ 0 in leading order.

The integrals from diagram (6.3) are

I6.3 =

∫
dρep

1

(l′e · k)
(A45)

∼ π

2ωM
log

(
Ee + |le|
Ee − |le|

)
as Mp →∞ and

I ′6.3 =

∫
dρep

(p′p − pp)2

(l′e · k)
(A46)

∼ 2m2
eI6.3 − 2Ĩ6.3

with

Ĩ6.3 ∼
π

2Mω

(
(E2

e − Ee|le| cos θe) log

(
Ee + |le|
Ee − |le|

)
+ 2|le|2 cos θe

)
(A47)

as Mp →∞. We define k · le ≡ |k||le| cos θe. Moreover,

J6.3 =

∫
dρep

1

(l′e · k)

1

(pp − p′p)2 −m2
γ

(A48)

∼ π

4|le|(le · k)M

(
log

m2
γ

4|le|2
+ log

m2
eω

2

(le · k)2

)
as Mp → ∞. In this case we see that J6.3 has both infrared finite and divergent pieces in

the Mp →∞ limit – the latter we define as Jdiv
6.3 . Finally

Kµ
6.3 =

∫
dρep

1

(l′e · k)

l′µe
(pp − p′p)2 −m2

γ

= a6.3l
µ
e + b6.3k

µ + c6.3p
µ
p , (A49)
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where the undetermined coefficients are fixed by the solution to

pp · kJ8.2 = a6.3le · k + c6.3pp · k ,

m2
eJ6.3 −

I6.3

2
= a6.3m

2
e + b6.3le · k + c6.3pp · le ,

pp · leJ6.3 = a6.3pp · le + b6.3pp · k + c6.3M
2
p .

Also

Lµν6.3 =

∫
dρep

1

(l′e · k)

l′µe l
′ν
e

(pp − p′p)2 −m2
γ

= d6.3g
µν + e6.3p

µ
pp

ν
p + f6.3l

µ
e l
ν
e + g6.3k

µkν

+h6.3(pµp l
ν
e + lµe p

ν
p) + i6.3(pµpk

ν + kµpνp) + k6.3(lµe k
ν + kµlνe ) ,

where the undetermined coefficients are fixed by the solution to

4d6.3 + e6.3M
2
p + f6.3m

2
e + 2h6.3pp · le + 2i6.3pp · k + 2k6.3le · k = m2

eJ6.3 ,

d6.3 + e6.3M
2
p + h6.3pp · le + i6.3pp · k = pp · lec6.3 ,

g6.3pp · k + i6.3M
2
p + k6.3pp · le = pp · leb6.3 ,

f6.3pp · le + h6.3M
2
p + k6.3pp · k = pp · lea6.3 ,

e6.3pp · k + h6.3le · k = pp · kc8.2 ,

f6.3le · k + h6.3pp · k = pp · ka8.2 ,

d6.3m
2
e + e6.3(pp · le)2 + f6.3m

4
e + g6.3(le · k)2 + 2h6.3pp · lem2

e + 2i6.3pp · lele · k

+2k6.3m
2
ele · k = m4

eJ6.3 −m2
eI6.3 +

I ′6.3
4
.

We can track the infrared divergence in J6.3 in the solutions for the vector and tensor

coefficients by solving the equations in the large Mp limit with I6.3 ∼ I ′6.3 ∼ 0 and J6.3 ∼ Jdiv
6.3 ,

with a8.2 ∼ adiv
8.2 , which yields adiv

6.3 ∼ fdiv
6.3 ∼ Jdiv

6.3 with all other coefficients zero in this limit.

Appendix B: |M|2T−odd in Leading Order

In what follows we report the contributions to the T-odd correlation in O(α) up to

corrections of recoil order. We organize the results as per the various gauge-invariant families

we describe in the main body of the text, employing the subscript convention which follows

the labeling in Figs. 1 and 2. We use the integrals and Passarino-Veltman coefficients defined
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in Appendix A. The result for the γ − e family is

|M|2T−odd [1.01 + 1.02 + 2.01 + 2.02 + 5.1.01 + 5.1.02 + 6.2.01 + 6.2.02]

= −α2g2
VG

2
F ξ64M2(1− λ2)

(
m2
e

(le · k)2ω
a1 +

m2
e

(le · k)2ω
J1 +

1

le · k ω
c2 +

1

le · k ω
a1 −

1

le · k ω
J1

+
m2
e

le · k ω
b2 +

m2
e

le · k ω
a2 −

m2
e

le · k ω
J2 +

MEe
ω

k6.2 +
MEe
ω

g6.2 −
MEe
ω

b6.2 −
2MEe
ω

a6.2

+
MEe
ω

J6.2 +
MEe
le · k ω

b5.1 −
MEe
le · k ω

J5.1 −
MEe
2le · k

g6.2 +
MEe
2le · k

f6.2 +
MEe
le · k

a6.2 +
M2

ω
i6.2

−M
2

2ω
c6.2 −

M2Ee
le · k

c6.2 +
M2Ee
le · k

h6.2 +
M2

2le · k ω
a5.1 +

M3

2le · k
e6.2

)
.

The result for the γ − p family is

|M|2T−odd [3.01 + 3.02 + 4.01 + 4.02 + 7.2.01 + 7.2.02 + 8.3.01 + 8.3.02]

= −α2g2
VG

2
F ξ64M3(1− λ2)

(
Ee

le · k ω
a7.2 +

Ee
le · k ω

J7.2 −
1

le · k ω2
J3 −

MEe
le · k

b8.3 −
M

ω
a8.3

+
MEe
le · k

a8.3 −
MEe
le · k

J8.3 +
M

2le · k ω
b7.2 +

M

le · k ω
J4 −

M2

2le · k
c8.3

)
= 0 +O(M) ,

where we employ Eqs. (A14) and (A19) to determine that the contribution to this family

vanishes in leading order in M . The results for the e− p− γ families are

|M|2T−odd [5.2.01 + 5.2.02 + 6.1.01 + 6.1.02]

= −α2g2
VG

2
F ξ64M3(1− λ2)

(
2Ee
ω
k6.1 +

2M

ω
i6.1 −

M

ω
c6.1 −

2Ee
le · k

1

ω
a5.2 −

2m2
e

le · k
k6.1

+
m2
e

le · k
f6.1 +

m2
e

le · k
J6.1 −

M

le · k
1

ω
c5.2 −

2MEe
le · k

i6.1 +
2MEe
le · k

h6.1 +
2MEe
le · k

c6.1 +
M2

le · k
e6.1

)

and

|M|2T−odd [7.1.01 + 7.1.02 + 8.1.01 + 8.1.02]

= −α2g2
VG

2
F ξ64M3(1− λ2)

(
2Ee
le · k ω

a7.1 +
M

le · k ω
b7.1 −

2MEe
le · k

a7.1 −
2M

ω
b7.1

+
2MEe
le · k

b7.1 −
M2

le · k
c8.1

)
= 0 +O(M) ,
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where we employ Eq. (A38) to determine that the contribution to this family vanishes in

leading order in M . We emphasize that the contributions which vanish do so simply to the

order of the recoil expansion in which we work. Finally, the result for the e− p family is

|M|2T−odd [6.3.01 + 6.3.02 + 8.2.01 + 8.2.02]

= −α2g2
VG

2
F ξ64M3(1− λ2)

(
2m2

e

le · k
k6.3 −

2Ee
ω
k6.3 −

2Ee
ω
a6.3 −

2M

ω
i6.3 −

M

ω
c6.3 −

m2
e

le · k
f6.3

+
2m2

e

le · k
a6.3 −

m2
e

le · k
J6.3 +

2MEe
le · k

a8.2 +
2MEe
le · k

i6.3 −
2MEe
le · k

h6.3 +
M2

le · k
c8.2 −

M2

le · k
e6.3

)
.

From Appendix A we note that adiv
8.2 ∼ Jdiv

8.2 ∼ (le · k)Jdiv
6.3 /(Mω) and adiv

6.3 ∼ fdiv
6.3 ∼ Jdiv

6.3 with

all other coefficients zero in leading order in the recoil expansion. Thus we see explicitly

that the infrared divergence really does cancel in O(M2).
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