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A combined expansion in the number of QCD colors 1/Nc and SU(3) flavor breaking parameter ε
has long been known to provide an excellent accounting for the mass spectrum of the lightest spin-
1
2
, 3
2

baryons when the quarks are taken to transform under the fundamental SU(Nc) representation,
and in the final step Nc → 3 and ε is set to its physical value ∼ 0.3. Subsequent work shows that
placing quarks in the two-index antisymmetric SU(Nc) representation leads to quantitatively equally
successful mass relations. Recent lattice simulations allow for varying the value of ε and confirm
the robustness of the original 1/Nc relations. In this paper we show that the same conclusion holds
for the antisymmetric quarks, and demonstrate that the mass relations also hold under alternate
prescriptions for identifying physical baryons with particular members of the large Nc multiplets.

PACS numbers: 11.15.Pg, 14.20.-c, 12.38.Gc

I. INTRODUCTION

QCD with three colors and realistic quark masses has
no expansion parameters to allow perturbative calcu-
lations of low-energy observables from first principles.
Soon after the discovery of QCD, however, ’t Hooft ob-
served [1] that non-abelian gauge theories such as QCD
simplify in the limit that the number of colors Nc tends to
infinity, suggesting that one could try to compute observ-
ables in an expansion in the small parameter 1/Nc. The
notion of large N limits has been extraordinarily fruitful
for studies of the formal aspects of gauge theories, and
many of the qualitative predictions of the 1/Nc expansion
are reasonable when compared to experimental results.

Unfortunately, because of the lack of a solution of large
Nc QCD in four dimensions, only a limited number of
quantitative predictions has been obtained from the 1/Nc
expansion. Despite some initial skepticism [2] about the
phenomenological relevance of the properties of baryons
at large Nc [3], these successes have turned out to in-
volve primarily large Nc baryons rather than mesons.
The most powerful tool for extracting such predictions
has been the contracted SU(2Nf ) spin-flavor symme-
try that emerges at large Nc for baryons [4–9]. When
combined with the SU(3) flavor-breaking expansion, the
SU(2Nf ) spin-flavor symmetry was shown to imply rela-
tions between baryon masses, even including isospin split-
tings [10, 11], and these relations show a good fit to the
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experimental baryon mass spectra. Indeed, these rela-
tions are among the strongest pieces of evidence that the
large Nc expansion is necessary to understand real-world
baryon spectroscopy, since the combined 1/Nc and flavor-
breaking expansion predictions fit the data much better
than the predictions from flavor-breaking alone. The ro-
bustness of baryon mass relations has recently been con-
firmed by showing they continue to hold to predicted un-
certainties when tested on baryon mass spectra obtained
from lattice simulations as the size of the SU(3) flavor
breaking is varied [12].

However, recent theoretical developments have re-
vealed that the predictions resulting from the SU(2Nf )
symmetry are not quite unique. The reason is the ex-
istence of more than one phenomenologically viable way
to take a large Nc limit starting from Nc = 3. The limit
advocated in the seminal papers of ’t Hooft [1] and Wit-
ten [3] assumed that quarks are in the fundamental (F)
representation for all Nc ≥ 3, while keeping the number
of flavors Nf fixed. We refer to this as the large]/ NF

c

limit. However, one can obtain a different large Nc limit
by taking the Nf quarks to be in the two-index antisym-
metric (AS) representation of SU(Nc) for Nc ≥ 3 [13–16];
we call this the large NAS

c limit. The reason for two pos-
sible extrapolations to general Nc from Nc = 3 is that
the AS and F representations are isomorphic for Nc = 3.

The large NAS
c limit also implies the emergence of an

SU(2Nf ) spin-flavor symmetry, and hence also results in
baryon mass relation predictions, but with different 1/Nc
suppression factors than the large NF

c limit. Curiously,
it turns out that the experimental data appears to be
consistent with both large Nc limits to within the ex-
perimental and theoretical errors [17]. Apparently, some
1/Nc expansion is necessary to fit the data, but it is not
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possible to decide which large Nc limit provides a better
guide for baryon mass spectra. The SU(2Nf ) symmetry
also makes predictions for magnetic moments of baryons,
and here the large NF

c expansion is a better guide to the
data than the large NAS

c expansion [18].
An additional complication leads to possible ambigu-

ities in large Nc predictions for baryon properties. At
large Nc, color antisymmetrization allows baryons to
have many more than 3 quarks, and consequently many
more baryon species appear than at Nc = 3; one needs
a prescription to match the baryons that can exist at
Nc = 3 to the baryons seen at large Nc. With more than
two flavors, no unique prescription exists, and one finds
at least two natural extrapolations of baryons with va-
lence strange quarks at Nc = 3 to large Nc. With one
choice one obtains large Nc baryons with ∼ N1

c strange
quarks, while with the other one obtains only ∼ N0

c

strange quarks. The baryon properties are different de-
pending upon the prescription one adopts, and this is a
serious phenomenological challenge in comparing to data.

In this paper, we address both of these subtleties in
the context of the large Nc baryon mass relations. First,
we use the lattice data employed by Jenkins et al. [12]
to compare the predictions of the large NF

c and large
NAS
c limits as a function of the strength of SU(3) break-

ing. We find that they both remain consistent with the
data. Second, we discuss the ambiguities in the match-
ing the Nc = 3 and large Nc flavor representations of
baryons. We show that remarkably, while individual
baryon masses are sensitive to these ambiguities, the
baryon mass relations are not. It is tempting to spec-
ulate that this may in some sense be the reason for the
robustness and phenomenological success of the large Nc
baryon mass relations.

The organization of this paper is as follows. Section II
presents a brief review of the operator methods by which
large Nc baryon phenomenology is performed. Section III
presents an analysis of the baryon mass lattice results in
light of the large NAS

c expansion, and shows that this ex-
pansion remains phenomenologically just as relevant for
this observable as does the large NF

c limit. The robust-
ness of baryon mass relations under different prescription
for treating strangeness is discussed in Sec. IV, and Sec. V
offers concluding remarks.

II. BARYONS AT LARGE Nc

The conventional phenomenological operator analysis
of large Nc baryons is based upon the use of three spe-
cific properties: (i) the large number of valence quarks in
the baryon [which is Nc in the large NF

c expansion and
Nc(Nc − 1)/2 in the large NAS

c expansion] and their de-
tailed combinatorics in the baryon wave function [3], (ii)

the ’t Hooft scaling [1] g∼N−1/2
c of the QCD coupling

constant required to obtain a nontrivial large Nc limit,
and (iii) a ground-state multiplet whose states are com-
pletely symmetric under the combined spin-flavor sym-

metry, and whose Nc = 3, Nf = 3 case is the SU(6)
56-plet [5, 8, 9]. Ambiguities related to the identifica-
tion of the physical baryon states with particular states
within the large Nc multiplets are addressed in Sec. IV.
The nonvalence (gluon and sea quark) degrees of freedom
enter into the analysis only indirectly: Since the physical
baryons fill specific spin and flavor representations based
upon the quantum numbers of valence quarks, the entire
baryon wave function may be written in terms of interpo-
lating fields that carry the same quark spin/flavor/color
quantum numbers and that encompass the full baryon
wave function, thus providing a rigorous footing to the
concept of constituent quarks [19].

Operators that describe the interactions among the
component quarks of the baryon are classified in terms
of their transformation properties under the spin-flavor
symmetry [7] and the number n of quark fields appear-
ing in the interaction, hence defining an n-body opera-
tor. Upon including both the appropriate quark combi-
natorics and the ’t Hooft scaling, one finds that n-body
operators are generically suppressed by a factor 1/Nn

c

(1/N2n
c ) in the NF

c (NAS
c ) counting. However, obtain-

ing the full 1/Nc suppression factor requires one to ac-
count for two other sources: First, one must also con-
sider the possibility that contributions from the quarks
add coherently in the baryon matrix elements, which in-
troduces compensatory combinatoric factors of Nc that
may change the power counting. Second, certain combi-
nations of operators may give matrix elements that form
a linearly dependent set when evaluated on the baryon
multiplet in question; such a linear dependence may oc-
cur to due an exact operator identity (for example, in
the case of Casimir operators) or due to the symmetry
properties of a particular multiplet on which the anal-
ysis is performed (for example, the vanishing of an an-
tisymmetric tensor acting upon the completely symmet-
ric ground-state multiplet) [7]. In addition, a particular
combination of operators acting upon a particular mul-
tiplet might produce a result that is subleading in the
1/Nc expansion compared to each of the component op-
erators, which is termed an operator demotion. Once this
reorganization is complete, one is left with a linearly in-
dependent set of operators, each one of which produces
matrix elements with a well-defined power counting in
1/Nc acting upon a particular baryon multiplet, and this
set carries precisely the same dimension as the space of
independent baryon observables for the multiplet. One
sees that the operators and independent observables form
equivalent bases for the baryons, and the operators may
then be assembled into an effective Hamiltonian for any
baryon observable such that the operators form a hierar-
chy in powers of 1/Nc.

In order to see how these properties work in detail, we
begin by defining operators with specific transformation
properties under the spin-flavor symmetry. The opera-
tors in the adjoint representation are labeled J i, T a, and
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Gia, respectively, in Refs. [5, 10, 11]:

J i ≡ q†α

(
σi

2
⊗ 11

)
qα,

T a ≡ q†α

(
11⊗ λa

2

)
qα,

Gia ≡ q†α

(
σi

2
⊗ λa

2

)
qα, (1)

where 11 is the identity matrix, σi are Pauli matrices in
spin space, λa is the usual Gell-Mann matrix in flavor
space, and α sums over all the quarks in the baryon.
Color indices do not appear explicitly in this expression
since the baryon ground-state multiplet is completely
symmetric under the combined spin-flavor symmetry and
therefore is completely antisymmetric under color, so
that the operators are well defined for both large NF

c and
large NAS

c . All operators that have nonvanishing matrix
elements on baryon states are expressible as polynomials
in J i, T a, and Gia (with suitable contractions of spin-
flavor indices), and such a polynomial of nth degree is an
n-body operator. Since the physical baryons have Nc = 3
quarks, any such polynomial beyond cubic order applied
to these baryons gives matrix elements linearly depen-
dent upon those of lower-order operators, which means
that such operators are ignorable; the 1/Nc series for any
finite given value of Nc terminates after providing a com-
plete set of independent operators, which does not extend
beyond the Nc-body level.

An n-body operator requires an n-quark interaction,
which in turn implies 2n factors of the QCD coupling
g, to give the 1/Nn

c suppression for the large NF
c limit,

as discussed above. One might naively expect the same
suppression factor for the large NAS

c case, but one finds,
as argued in [20] and systematically verified in [21], that
the necessity of maintaining the color-singlet nature of
the large NAS

c baryon effectively makes the appropriate
effective expansion parameter 1/N2

c . Therefore, in the
effective large NF

c baryon Hamiltonian, the operator T a

appears multiplied by an explicit factor of 1/Nc compared
to the spin-flavor symmetric operator 11 that has O(N1

c )
matrix elements [while, in large NAS

c , the corresponding
factors are 1/N2

c and O(N2
c )]. Consider now the mass

operator T 8; its matrix elements, which naively merely
count strange quarks, are actually given in large NF

c by

〈T 8〉 =
1

2
√

3
(Nc − 3Ns) . (2)

Here we see a coherent O(N1
c ) contribution that seems to

upset the large Nc counting; however, note that it is the
same for all baryons and therefore simply provides an
additional contribution to the leading-order spin-flavor
symmetric mass operator 11. In the above terminology,
T 8−11/2

√
3 is a demoted operator. The operator T 8 also

breaks SU(3)flavor and therefore requires an explicit pref-
actor of ε. When one repeats this analysis for a complete
set of linearly independent operators, one finds that each

operator contributes to a unique baryon mass combina-
tion. To be specific, the mass Hamiltonian when isospin
breaking is suppressed reads [10]:

M =c1,0(0) Nc11 + c1,0(2)

1

Nc
J2

+ c8,0(1) εT
8 + c8,0(2)

ε

Nc
{J i, Gi8}+ c8,0(3)

ε

N2
c

{J2, T 8}

+ c27,0
(2)

ε2

Nc
{T 8, T 8}+ c27,0

(3)

ε2

N2
c

{T 8, {J i, Gi8}}

+ c64,0
(3)

ε3

N2
c

{T 8, {T 8, T 8}} , (3)

where the coefficients c are O(N0
c ), and the nontrivial

matrix elements of the baryon operators are given by

O8,0
(2) ≡

ε

Nc
{J i, Gi8}

→ 1

2
√

3
· ε
Nc

[
3I(I + 1)− J(J + 1)− 3Ns

2

(
Ns
2

+ 1

)]
,

O27,0
(3) ≡

ε2

N2
c

{T 8, {J i, Gi8}}

→ ε2

N2
c

· 1

6
(Nc− 3Ns)

×
[
3I(I +1)− J(J+ 1)−3

Ns
2

(
Ns
2

+ 1

)]
,

O8,0
(1) ≡ εT

8 → ε · 1

2
√

3
(Nc − 3Ns) ,

O27,0
(2) ≡

ε2

Nc
{T 8, T 8} → 1

6

ε2

N2
c

(Nc − 3Ns)
2
,

O64,0
(3) ≡

ε3

N2
c

{T 8, {T 8, T 8}} → ε3

N2
c

1

6
√

3
(Nc − 3Ns)

2
,

(4)

where the explicit suppressions of ε or 1/Nc have here
been absorbed into the operator definitions. The oper-
ators of Eq. (3) define the combinations Mi in Table I,
including the 1/Nc and ε suppression factors. For exam-
ple, the combination M2 is associated with the operator
εT 8 considered above.

Such an analysis is not unique to the 1/Nc expansion;
all that is required is a finite multiplet of states under
some symmetry and a perturbative parameter that sup-
presses some of the independent operators acting upon
the multiplet. For example, since an operator with
matrix elements linear in strangeness breaks SU(3)flavor

symmetry by transforming as an 8, an operator trans-
forming as a 27 (⊂ 8 ⊗ 8) does not occur until second
order in flavor breaking, and this operator must be as-
sociated with a doubly-suppressed flavor-breaking mass
combination. Indeed, when evaluated for the Nc = 3
baryon octet, this mass combination turns out to be just
the one that appears in the Gell-Mann–Okubo relation,
2N0 − Σ0 − 3Λ + 2Ξ0, where X0 indicates the isospin
average of the X baryon isomultiplet masses.
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TABLE I: Baryon mass combinations and their theoretical suppression factors. The 0 subscript indicates an average
over isospin states, which are termed I = 0 baryon masses.

Mass Combination Large NF
c suppression Large NAS

c suppression

M0 25(2N0 + 3Σ0 + Λ + 2Ξ0)− 4(4∆0 + 3Σ∗0 + 2Ξ∗0 + Ω) Nc N2
c

M1 5(2N0 + 3Σ0 + Λ + 2Ξ0)− 4(4∆0 + 3Σ∗0 + 2Ξ∗0 + Ω) 1/Nc 1/N2
c

M2 5(6N0 − 3Σ0 + Λ− 4Ξ0)− 2(2∆0 − Ξ∗0 − Ω) ε ε

M3 N0 − 3Σ0 + Λ + Ξ0 ε/Nc ε/N2
c

M4 (−2N0 − 9Σ0 + 3Λ + 8Ξ0) + 2(2∆0 − Ξ∗0 − Ω) ε/N2
c ε/N4

c

M5 35(2N0 − Σ0 − 3Λ + 2Ξ0)− 4(4∆0 − 5Σ∗0 − 2Ξ∗0 + 3Ω) ε2/Nc ε2/N2
c

M6 7(2N0 − Σ0 − 3Λ + 2Ξ0)− 2(4∆0 − 5Σ∗0 − 2Ξ∗0 + 3Ω) ε2/N2
c ε2/N4

c

M7 ∆0 − 3Σ∗0 + 3Ξ∗0 − Ω ε3/N2
c ε3/N4

c

III. THE 1/NF
c AND 1/NAS

c EXPANSIONS

Our previous results [17] show that the predictions of
both the large NF

c and large NAS
c analyses fit the exper-

imental spectrum of I = 0 baryon masses comparably
well. In the real world, one can take the SU(3)flavor-
breaking parameter to be, e.g., ε = (m2

K − m2
π)/Λ2

χ ≈
0.226 (Λχ ≈ 1 GeV indicating the scale of chiral sym-
metry breaking); however, lattice calculations of baryon
spectra allow one to move away from the physical value
of ε, and Jenkins et al. [12] demonstrated that the predic-
tions of the large NF

c expansion continue to accommodate
the data well even as ε is varied over the range (0,0.26).
In this section we compare the predictions of the 1/NAS

c

expansion to the lattice data.
First, let us briefly review how these comparisons are

defined in Refs. [12, 17]. Each mass combination Mi

from Table I (our M0,...,7 corresponding, respectively,
to M1,...,8 in Ref. [12]) is associated to a dimensionless
ratio Ri ≡ Mi/(M

′
i/2), where M ′i is defined to be the

same combination of masses as in Mi, but with each
coefficient replaced with its absolute value. These ra-
tios therefore compare the size of Mi as extracted from
lattice simulations or experiment relative to the appro-
priately weighted average M ′i of the masses that en-
ter the mass combinations Mi, which makes Ri scale-
independent quantities (but note that our Ri’s differ from
those defined in [12]). We then compute (as in [17]) the
ratio of each Ri to its corresponding theoretical suppres-
sion Si, including the appropriate SU(3)flavor and Nc fac-
tors as listed in Table I, and plot finally the accuracy fac-
tors Ai ≡ log3(Ri/Si). The logarithm appears in order
to distinguish different integer-power suppressions, while
the base 3 is used to separate each factor of Nc = 3 by
one unit. In particular, deviations from Ri/Si ∼ 1 to
either, e.g., Ri/Si = 1/2 or Ri/Si = 2 are considered
equally significant. If the suppression factors in the mea-
sured quantities agree with those predicted theoretically,
one expects that the Ai should lie roughly in the range
−1 . Ai . 1.

Fig. 1 shows the accuracy factors Ai for each mass
combination as a function of the strength of SU(3)flavor

breaking ε, along with uncertainties reported in [12]. An

examination of the plots shows that the results we found
at the physical value of ε in [17] regarding the viability
of both large Nc limits also apply at generic values of ε.
The predictions of both large Nc expansions fit the data
equally well (i.e., their points cluster in Ai ∈ [−1, 1]),
and both these large Nc predictions give a much better
fit than predictions based solely on SU(3)flavor breaking.
Furthermore, each Ai appears to possess a smooth ε→ 0
limit. However, evidence of nonanalytic corrections in ε
(which arise in chiral perturbation theory) has recently
been identified in baryon lattice simulations [22].

IV. SU(3) SYMMETRY AND BARYONS AT
LARGE Nc

The existence of lattice calculations for baryon masses
with varying degrees of SU(3) breaking helps to put into
stark focus some of the underlying challenges for the
phenomenology of the physical Nc = 3 world, since one
can now analytically investigate the behavior of large Nc
baryons at more than just a single point. The crux of
the remaining difficulty is that many more baryon states
necessarily appear at large Nc than at Nc = 3. Accord-
ingly, one needs some method for relating the baryons at
Nc = 3 to particular baryons in the large Nc world. To
keep the discussion focused in this section, we analyze the
situation assuming that the quarks are in the fundamen-
tal representation. An analogous argument follows for
the case of quarks in the antisymmetric representation,
with appropriate replacements of N2

c for Nc.
For the case of two degenerate flavors, this identifi-

cation is obvious. The standard large Nc analysis [4–
9] produces ground-state multiplet baryons with I = J
differing in mass at O(1/Nc) [for J = O(1)], and with
I = 1

2 ,
3
2 ,

5
2 · · · . One naturally identifies baryons with

I = 1
2 ,

3
2 with the analogous N,∆ states, respectively, at

Nc = 3. Large Nc baryons with I ≥ 5
2 are taken to be ar-

tifacts of the large Nc world and not relevant at Nc = 3.
However, for three degenerate flavors the analogue of this
construction cannot be carried out: All representations
of flavor SU(3) for baryons have dimensions of O(N2

c )
as Nc → ∞, which raises a problem: Which baryons at
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FIG. 1: (Color Online) Plots of the accuracy factors Ai defined in the text. Black stars denote Ai extracted from
experimental values, red circles are evaluated with an Nc suppression factor of 1, corresponding to breaking of

SU(3)flavor only (no Nc expansion), blue squares are evaluated with NF
c suppression factors, and gold diamonds are

evaluated with NAS
c suppression factors.
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large Nc are analogous to ones at Nc = 3? Clearly, one
must declare that almost all of the members in any SU(3)
flavor multiplet are large Nc artifacts, but what principle
should one use to choose?

The issue is complicated by the fact that in nature
the three flavors are not degenerate; explicit SU(3) vio-
lations occur due to the mass difference between strange
and nonstrange quarks. One parametrizes the scale of
this SU(3) breaking in the Hamiltonian or in the me-
son sector by some dimensionless parameter ε. At finite
but large Nc, a typical baryon in an SU(3) multiplet has
O(Nc) strange quarks and a contribution from the SU(3)-
violating term of size εNc. As Nc becomes sufficiently
large, εNc � 1, and the notion of “small violations” of
SU(3) becomes complicated. Indeed, one might easily
imagine that the behavior of states might be qualitatively
different for varying values of εNc. Thus, one might worry
that the behavior of states at εNc � 1 could be qualita-
tively different than that for εNc ∼ 1 or εNc � 1. The
ability to use the lattice to see how states behave when ε
is varied can therefore play an important role in clarify-
ing the issues. The fact that the mass relations of Table I
are quite robust and work from zero SU(3) breaking to
fairly strong breaking provides a real clue as to what is
happening. As seen below, the explanation is that the
mass relations themselves are quite special in being quite
insensitive to the ambiguities.

Let us return to the question of how to identify states
at Nc = 3 with particular states in the large Nc world,
and do so without prejudice from the lattice data. For
simplicity, we consider the case where Nc is an odd multi-
ple of three. In principle, one can find an infinite number
of prescriptions to do this. Two of them are rather nat-
ural: The first one—and the one typically used—is to
identify a baryon at Nc = 3 with a large Nc baryon of
the same strangeness, total isospin and third component
of isospin. This identification is particularly natural if
εNc is comparatively large, in that one focuses on the
lowest-lying states in the large Nc multiplet. In effect,
one adopts a counting prescription in Ns; the strangeness
is treated as beingO(1), and we refer to this identification
as the S prescription. Such an approach has a natural
analogue in the treatment of topological solitons such as
the Skyrme model, the so-called bound-state approach of
Callan and Klebanov [23]. In that scheme, one begins by
treating a nucleon as an SU(2) Skyrmion and then con-
siders a strange baryon as a bound state of a kaon and
an SU(2) Skyrmion, a doubly-strange one as two kaons
bound to a nucleon, etc.

However, the approach suggested by the S prescrip-
tion presents a difficulty. Consider the exact SU(3) fla-
vor limit, in which the u, d, and s quarks should appear
on the same footing, which in turn means that I-spin,
U -spin and V -spin should be treated equivalently. This
symmetry is badly violated at large Nc by the identifica-
tion of states discussed above. At Nc = 3, the 18 states
N , Λ, Σ, Ξ, ∆, Σ∗, Ξ∗, and Ω associated with the octet
and decuplet clearly treat I-spin, U -spin, and V -spin on

the same footing. For example, the third component of
isospin varies between − 3

2 and + 3
2 for these states, as

do the third components of the U -spin and V -spin. Now
consider baryons at large but finite Nc, using the S pre-
scription; the third component of isospin still varies be-
tween − 3

2 and + 3
2 , but the third components of U -spin

and V -spin are radically different as Nc becomes large:
They vary from (Nc−9)/4 to (Nc+3)/4. This result con-
flicts with the fundamental idea underlying SU(3) flavor
symmetry, that all flavors are created equal.

One particular identification of states avoids this prob-
lem: Instead of identifying each state at large Nc with
the state at Nc = 3 of the same strangeness, as in the S
prescription, one can identify large Nc states with Nc = 3
states of the same hypercharge. We refer to this as the Y
prescription. Note that, for general Nc, the relationship
between hypercharge and number of strange quarks for
a state of baryon number B reads

Y =
NcB

3
+Ns . (5)

Thus, at large Nc a state with S = O(1) has Y = O(Nc),
and conversely, a state that has Y = O(1) has S =
O(Nc). Using this new identification, the 18 states of
the octet and the decuplet all have I3, U3, and V3 eigen-
values between − 3

2 and + 3
2 . It is perhaps not surprising

that using the hypercharge to identify states rather than
the strangeness does a better job in preserving the sym-
metry between u, d, and s quarks for this class of states
since hypercharge is a traceless generator of SU(3)flavor

but strangeness is not.
The S and Y prescriptions are easy to distinguish in

pictorial form. In Fig. 2 we exhibit the weight diagram
for the SU(3) representation corresponding to the spin-
3
2 baryon multiplet [the spin- 1

2 representation is similar,
but has two sites on the top row and (Nc + 1)/2 sites on
the long sides]. In the S prescription, the analogues to
the Nc = 3 baryons appear in the top rows (minimum
Ns) of the diagram, while in the Y prescription they co-
incide with the sites nearest the centroid (Y = 0) of the
diagram.

The two prescriptions have important physical differ-
ences. If one focuses on the mass of a typical baryon M
in the octet or decuplet and considers its dependence on
the three quark masses, one finds

PrescriptionS :

dM

dms
= Ns = O(N0

c ) ,
dM

dmu,d
= Nu,d = O(N1

c ) ,

PrescriptionY :

dM

dmu,d,s
= Nu,d,s = O(N1

c ) . (6)

Note that the rate of change of the baryon mass with ms

is qualitatively different in the two approaches. Since this
rate also equals 〈B|

∫
d3x s̄s|B〉, the scalar strangeness

content of the baryon behaves differently in the two ap-
proaches, while 〈B|

∫
d3x ūu|B〉 ∼ 〈B|

∫
d3x d̄d|B〉 =
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FIG. 2: Weight diagram for the ground-state spin- 3
2

representation of SU(3), adapted from Ref. [7]. The
numbers indicate the multiplicity of states at a given

site. While this literal diagram corresponds to Nc = 15,
it is easily generalized to arbitrary odd Nc by extending

the longer sides to (Nc − 1)/2 sites.

O(Nc) in either approach. Given that the two pre-
scriptions are physically quite different at large Nc, it
should be clear that they actually correspond to distinct
1/Nc expansions for the baryon masses. One then faces
the obvious question: Which one of these expansions is
more phenomenologically useful in describing the world
of Nc = 3?

It is noteworthy that Ref. [10], where the mass relations
of Table II were first derived, makes the explicit assump-
tion that the strangeness—rather than the hypercharge—
is of order unity, which is consistent with prescription S.
The fact that the lattice suggests the Nc = 3 mass rela-
tions are robust—holding qualitatively over a fairly wide
ride range of the scale of SU(3) breaking ε, may then
seem to suggest that prescription S is the phenomeno-
logically relevant choice. Such a result may seem a bit
puzzling, since it is plausible that prescription Y , which
unlike prescription S treats u, d, and s on an equal foot-
ing, is more sensible than prescription S very near the
SU(3) limit.

However, this result produces no real puzzle. The ro-
bustness of the mass relations tells us more about the na-
ture of the relations themselves rather than about which
prescription is better. Except for M0, the relations all in-

volve the differences of masses rather than masses them-
selves, and while the individual masses are sensitive to
the choice of prescription, we argue that this sensitivity
cancels completely in the mass relations to the order that
the relations hold. Thus, the relations are themselves
quite robust, and this fact appears to be responsible for
the relations holding at the predicted level of accuracy,
even for widely varying values of SU(3) breaking. Ad-
ditional evidence for the robustness of the mass analysis
under an alternate treatment of the flavor quantum num-
bers appears in Ref. [24].

To see how the cancellations arise, recall from Sec. II
how the mass relations are derived from operator re-
lations. Assuming exact isospin symmetry and using
quarks in the fundamental representation gives the mass
Hamiltonian in Eq. (3), whose operators have matrix ele-
ments given in Eq. (4). Using these expressions, the mass
Hamiltonian can be recast in the equivalent two forms:

M =
∑
i

aSi O
S
i =

∑
i

aYi O
Y
i , (7)

where the a coefficients are linear combinations of the c
coefficients and can be shown to be of order unity; the
operators are defined in Appendix A to have the simple
matrix elements given in Table II. For simplicity, the
leading Nc dependence and ε dependence are included as
part of the operators OSi and OYi . The superscripts S
and Y indicate which of the two prescriptions is used in
the Nc counting.

The two sets of operators have one very important
property: All operators of type S at a given order in
ε and 1

Nc
can be written as linear combinations of op-

erators of type Y at equal or subleading order in both
ε and 1

Nc
. Thus, for example, OS4 , whose matrix ele-

ments are O(ε/Nc), is expressible in terms of OY1 , OY3 ,
and OY4 , which are all of equal or subleading order in
both ε and 1

Nc
. It is straightforward to explicitly show

that this property holds for all of the operators, and this
result essentially amounts to a statement about the de-
composition of any high-order tensor into an irreducible
piece plus subleading traces. Similarly, all operators of
type Y at a given order in ε and 1

Nc
can be written as

linear combinations of operators of type S at equal or
subleading order in both ε and 1

Nc
.

Let us now recall how the mass relations are obtained.
One finds linear combinations of the masses among the 8
independent baryons N , Λ, Σ, Ξ, ∆, Σ∗, Ξ∗, and Ω that
vanish when acted on by all operators of an equal or sub-
leading order in both ε and 1

Nc
. Each such combination

gives a mass relation that holds up to the given order in
ε and 1

Nc
. However, since any operator of type S can

be written as a superposition of operators of type Y at
equal and subleading order, any mass relation that holds
for prescription S also holds for prescription Y , and vice
versa.
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TABLE II: The eight operators given in Eq. (7), including the Nc and ε dependence. Prescriptions S and Y are
defined in the text.

Operator Prescription S Prescription Y

O1 Nc Nc

O2
1
Nc
J(J + 1) 1

Nc
J(J + 1)

O3 εNs −ε Y
O4

ε
Nc

[
I(I + 1)− Ns

2

(
Ns
2

+ 1
)]

ε
Nc

[
I(I + 1)− Y

2

(
Y
2
− 1

)]
O5

ε
N2

c
Ns J(J + 1) − ε

N2
c
Y J(J + 1)

O6
ε2

Nc
N2
s

ε2

Nc
Y 2

O7
ε2

N2
c
Ns

[
I(I + 1)− Ns

2

(
Ns
2

+ 1
)]
− ε2

N2
c
Y

[
I(I + 1)− Y

2

(
Y
2
− 1

)]
O8

ε3

N2
c
N3
s − ε3

N2
c
Y 3

In terms of Eq. (7), our result indicates that aSi = aYi +
equal or subleading order in ε and 1/Nc. One additional
point deserves mention: If the correction is of equal or-
der, one might fear that only one of the two prescriptions
gives fully hierarchical coefficients, the other one merely
“maintaining the status quo.” In the example of O4 given
above, OS4 = OY4 − 1

6O
Y
3 + subleading order, so one might

expect that either aS4 is no smaller than aS3 , or aY4 is no
smaller than aY3 , at least parametrically. But in fact, one
can check that the numerical hierarchy using the physi-
cal baryon masses supports the result that both a4’s are
O(Nc) ∼ 3 smaller than their corresponding a3’s, owing
to the smallness of the explicit − 1

6 coefficient.

To summarize, individual masses depend sensitively on
one’s choice of prescription, but the mass relations do
not. They hold at the stated order of accuracy regard-
less of how one chooses to identify baryons at large Nc
with Nc = 3 baryons. In particular, the validity of the
mass relations does not depend upon the scale of εNc;
rather they only depend on both ε and 1/Nc to be sep-
arately small. The fact that lattice results uphold the
mass relations at the expected levels of accuracy, even as
εNc varies widely, presumably reflects this fact.

Ultimately, this behavior might teach us an impor-
tant lesson about the applicability of large Nc operator
analysis to baryons with three flavors. In order to find
quantities that discriminate between possible prescrip-
tion choices, one presumably needs to consider quanti-
ties sensitive to the absolute number of quarks of various
types in a given state, rather than their relative num-
ber between different baryon states. The one place in
our analysis that this distinction might be possible is the
common mass accuracy parameter A0. However, a linear
fit to the points in Fig. 1(a) gives A0 = 0.215 − 0.177ε.
Since 0.177/0.215 is neither large nor small compared to
unity, one cannot distinguish decisively between M0 ∼
Nc + ε (S prescription) or M0 ∼ Nc + εNc (Y prescrip-
tion).

V. CONCLUSIONS

Lattice simulations provide a unique window into un-
derstanding non-perturbative physics and why our uni-
verse chooses one unique solution out of many possi-
bilities, particularly since the simulations allow one to
explore universes in which the underlying parameters
(quark masses, for example) can be chosen at will. An-
other very recent example studies baryon masses by vary-
ing the literal numerical value of Nc [25]. Such results
provide otherwise unattainable insights into strongly in-
teracting systems.

In this work we have seen that lattice simulations of
baryons over a range of SU(3)flavor-breaking parameter
ε provide a spectrum of masses not only explainable in
terms of a large Nc QCD expansion (as seen in previous
work), but are in fact agnostic as to whether the quarks
fill the fundamental or two-index antisymmetric repre-
sentation of SU(Nc). Moreover, either expansion does a
much better job accounting for the mass spectrum than
including only the ε dependence and ignoring all factors
of Nc. This result greatly extends the scope of our pre-
vious work, which reached the same conclusion but only
at the physically realized value of ε.

We also addressed the interesting question of why this
conclusion should hold as ε → 0, the SU(3)-symmetric
point, when the baryon states in these analyses are as-
sumed to have O(1) strange quarks and O(Nc) u and d
quarks—a highly SU(3)-asymmetric configuration. The
resolution appears to be that mass differences, which con-
stitute the bulk of the large Nc baryon results, are insen-
sitive to whether one works in a prescription that favors
minimizing either the number of s quarks (S prescrip-
tion) or the difference between the number of u, d, and s
quarks (Y prescription). An examination of observables
sensitive not to differences of quarks but rather their col-
lective effect is necessary to resolve this remarkable am-
biguity.
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Appendix A: Relationships between operator bases

The precise relationships between the operators given

in Eq. (4) and the operators OS,Yi of the S and Y pre-
scriptions that give the matrix elements listed in Table II
are:

OS,Y1 = O1,0
(0) ,

OS,Y2 = O1,0
(2) ,

OS3 = − 2√
3
O8,0

(1) +
ε

3
O1,0

(0) ,

OY3 = − 2√
3
O8,0

(1) ,

OS4 =
2√
3
O8,0

(2) +
ε

3
O1,0

(2) ,

OY4 =
2√
3
O8,0

(2) +
ε

3
O1,0

(2) +
ε

6

(
1

6
+

1

Nc

)
O1,0

(0)

− 1

3
√

3
O8,0

(1) ,

OS5 = − 1√
3
O8,0

(3) +
ε

3
O1,0

(2) ,

OY5 = − 1√
3
O8,0

(3) ,

OS6 =
2

3
O27,0

(2) −
4ε

3
√

3
O8,0

(1) +
ε2

9
O1,0

(0) ,

OY6 =
2

3
O27,0

(2) ,

OS7 = −2

3
O27,0

(3) −
ε

3
√

3
O8,0

(3) +
2ε

3
√

3
O8,0

(2) +
ε2

9
O1,0

(2) ,

OY7 = −2

3
O27,0

(3) +
1

9
O27,0

(2) −
ε

3
√

3
O8,0

(3)

−
(

1

6
+

1

Nc

)
ε

3
√

3
O8,0

(1) ,

OS8 = − 2

3
√

3
O64,0

(3) +
2ε

3
O27,0

(2) −
2ε2

3
√

3
O8,0

(1) +
ε3

27
O1,0

(0) ,

OY8 = − 2

3
√

3
O64,0

(3) . (A1)
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