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We investigate a potential of discovering lepton flavor violation (LFV) at the Large Hadron
Collider. A sizeable LFV in low energy supersymmetry can be induced by massive right handed
neutrinos, which can explain neutrino oscillations via the seesaw mechanism. We investigate a
scenario where the distribution of an invariant mass of two hadronically decaying taus (τhτh) from
χ̃0
2 decays is the same in events with or without LFV. We first develop a transfer function using this

ditau mass distribution to model the shape of the non-LFV τhµ invariant mass. We then show the
feasibility of extracting the LFV τhµ signal. The proposed technique can also be applied for a LFV
τhe search.

I. INTRODUCTION

Supersymmetry (SUSY) [1] is one of the most promis-
ing candidates of physics beyond the standard model
(SM). In SUSY, the gauge couplings can unify at a high
scale, which leads to a successful realization of grand uni-
fied theories (GUTs). Also, it can solve the gauge hierar-
chy problem and yield a dark matter candidate to explain
the 23% of the energy density of the Universe. However,
the flavor sector of the minimal supersymmetric standard
model (MSSM) can cause trouble due to the fact that
SUSY breaking terms can induce large flavor changing
neutral currents (FCNCs). The experimental constraints
on FCNCs require flavor degeneracy of the SUSY par-
ticles, especially for the first and second generations, if
SUSY particles are lighter than around 2-3 TeV [2].

In order to solve the flavor problem, the simplest as-
sumption is that the squark and slepton masses are uni-
fied, flavor diagonal, and degenerate in the mass basis of
quarks and leptons. The minimal version of this picture
is the minimal supergravity framework (mSUGRA) [3]
which is described by 4 parameters and a sign: The uni-
versal scalar mass, m0, the universal gaugino mass, m1/2,
the universal triliner coupling, A0, the ratio of the vac-
uum expectation values of the two Higgs fields, tanβ,
and the sign of the Higgs mixing term, µ, in the super-
potential. These parameters are specified at the grand
unified scale MG. In this model, however, the renormal-
ization group equation splits the third generation from
the other two because of the large top Yukawa coupling.
The Cabbibo-Kobayashi-Masukawa matrix then allows
this model to have observable flavor violation involving
the third generation, e.g., the branching ratio of b→ sγ.

In the leptonic sector, the neutrino oscillation data sug-
gest that we also have a neutrino mixing matrix, the
Maki-Nakagawa-Sakata-Pontecorvo matrix [4]. The light
neutrino masses are usually generated via the seesaw
mechanism, involving heavy Majorana masses for right
handed neutrinos, which are introduced as additions to

the SM quarks and leptons. The precise seesaw formula
for the light neutrino mass matrix with three generations
is given by [5]

Mν =MT
D(MR)−1MD, (1)

where MD is the Dirac neutrino mass matrix and MR

is the Majorana matrix, which consists of three right
handed neutrinos (νc) that have masses at the scale vB−L
corresponding to a new (local) B − L symmetry. The
neutrino mixing angles in such schemes would arise as
a joint effect from two sources: (i) mixings among the
right handed neutrinos present in MR and (ii) mixings
among different generations present in the Dirac mass
matrix MD. The (physical) neutrino oscillation angles
will also receive contributions from mixings among the
charged leptons.

The neutrino flavor mixings induced by the seesaw
mechanism (as needed by oscillation data) can generate
lepton flavor violating (LFV) effects. Within the SM,
extended minimally to accommodate the seesaw mecha-
nism, such effects are extremely small in any process due
to a power suppression factor (1/vB−L)2, as required by
the decoupling theorem. However, this situation is quite
different if there is low energy SUSY. The suppression
factor for LFV effects then becomes much weaker, taking
the value (1/MSUSY)2. This can lead to observable LFV
effects at low energies, as noted in a number of papers [6].
The main difference is that, with low energy SUSY, lep-
ton flavor violation (LFV) can be induced in the slepton
sector, which can then be transferred (through one loop
diagrams involving the exchange of gauginos) to the lep-
tons suppressed only by a factor (1/MSUSY)2. The exper-
imental evidence for neutrino oscillation is thus a strong
indicator that there might very well be LFV, assuming
the validity of low energy SUSY. Searches for LFV pro-
cesses such as τ → µγ and/or µ → eγ can therefore be
an important source of information on the νc mixings in
MR and/or family mixings in MD.

Motivated by this natural occurrence of LFV due to
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neutrino oscillation, in this paper, we study the prospect
of discovering LFV in the slepton sector at the Large
Hadron Collider (LHC) using mass reconstruction tech-
niques. We do not use any particular scenario to generate
the LFV in the leptonic sector. Instead, we use a bottom
up approach so that this study can be applied to any
model of LFV.

At the LHC, the squarks and gluinos should be pro-
duced from the proton-proton collisions in any SUSY
model if the masses of these colored objects are . 3 TeV.
These colored objects decay via a cascade process ulti-
mately into the lightest SUSY particle, which is the light-
est neutralino (χ̃0

1) in this paper. We consider the well
motivated scenario where R-parity is conserved, so that
the χ̃0

1 is stable and can be the dark matter candidate.
At the detector, the χ̃0

1 escapes detection and forms miss-
ing energy. In order to be able to see the LFV from the
cascade decays, the cascade decay chain must contain
sleptons. This happens in a large class of SUSY mod-
els where the squarks and gluinos decay into χ̃0

2 or the
lightest chargino, χ̃±

1 , by emitting quarks (jets). The χ̃0
2

and the χ̃±
1 then decay into sleptons and leptons. The

sleptons eventually decay into leptons and the χ̃0
1. The

entire decay process is:

g̃ → qq̃ → qqχ̃0
2 → qq`˜̀→ qq``χ̃0

1. (2)

It is possible that χ̃±
1 may be produced instead of χ̃0

2, in
which case χ̃±

1 decays into `νχ̃0
1 via charged slepton or

sneutrino production.
In the mSUGRA framework, the first two generation

sleptons, ẽ and µ̃, are highly degenerate without LFV
effects. However, introducing some LFV effects causes
a mass splitting between these SUSY particles. If these
particles are accessible at the LHC, then measuring this
mass splitting can help to probe the LFV [7]. How-
ever, the first two generation sleptons are very difficult
to probe by direct production at the LHC. Additionally,
for larger tanβ, the staus are much lighter compared to
the first two generation sleptons. Thus, the branching
ratio into these heavier sleptons from other SUSY parti-
cles is very small. We propose a new technique in this
paper which only depends on a mass measurement of the
lightest slepton.

Our final state of interest contains at least 2 hadron-
ically decaying taus, τh, plus missing transverse energy,
E/T. Using the 2j+ 2τh +E/T signal, it has been shown in
various studies [8–12] that the τhτh invariant mass dis-
tribution, mττ , involving opposite sign (OS) − like sign
(LS) combinations of the two taus shows a clear endpoint
or peak which is a function of the lighter stau mass and
the two lightest neutralino masses. In particular, it is
also shown that using kinematic observables (such as var-
ious invariant mass distributions of the jets and taus as
well as the pT distribution of the taus), one can slove for
the gluino, squark, lighter stau, and lightest neutralino
masses in various SUSY models [9]. Since the masses are
reconstructed from the observables, this technique is very
general and can be applied to any generic SUSY model.

Since the slepton-neutralino and slepton-chargino in-
teractions carry the information of LFV, we investigate
one of the major cascade decay chains involving the slep-
tons. As we have discussed above, in non-LFV scenar-
ios, the final states contain only taus when staus are the
lighter of sleptons, and the mττ distribution shows a clear
endpoint and peak. However, when LFV is present, we
can have the decay modes χ̃0

2 → τµχ̃0
1 and/or χ̃0

2 → τeχ̃0
1.

The authors of [13] proposed a search for the LFV sig-
nal in an excess in OS µ-τh over OS e-τh events. Their
analysis assumed no LFV decays in the e-τh channels. In
this paper, we propose a complementary method using a
“transfer” function, which can be used for the µ-τh and
e-τh LFV channels simultaneously. (see Section IV).

The paper is organized as follows. In Section II we
discuss further the origins of LFV terms in SUSY, as
well as our particular implementation of such LFV terms
for this study. In Section III we show “measurements”
of the SUSY masses using non-LFV decays. Measuring
these SUSY masses is a crucial step in estimating the
non-LFV background. In Section IV we propose a tech-
nique to estimate this background and extract the effects
of LFV. This technique is based upon the hadronic tau
pair signal which is common to both the LFV and non-
LFV case. We report the feasibility of detecting the LFV
component at the LHC. Finally, we present our conclu-
sions in Section V.

II. ORIGIN AND IMPLEMENTATION OF LFV

LFV effects can be generated by the neutrino seesaw
mechanism in SUSY as follows. At the GUT scale we
have the mSUGRA boundary condition and thus, there
is no flavor violation anywhere except in the Yukawa cou-
plings. It should be noted that in the absence of neutrino
masses, there is only one leptonic Yukawa matrix, Yl, for
the charged leptons, which can be diagonalized at MG

and which will remain diagonal to the weak scale. Thus,
it would not induce any flavor violation in the slepton sec-
tor in mSUGRA models. However, to satisfy the neutrino
mixing data, the right handed neutrinos have masses of
order vB−L which is lower than MG. These right handed
neutrino masses must be ∼ 1012 − 1015 GeV. In the mo-
mentum regime vB−L ≤ µ ≤MG where the νc fields are
active, the soft masses of the sleptons will feel the ef-
fects of LFV in the neutrino Yukawa sector through the
renormalization group evolution. At the scale vB−L, the
slepton mass matrix is no longer universal in flavor, and
this non-universality will remain down to the weak scale.

Since we are interested in the phenomenological as-
pects of such LFV at the LHC, we simply introduce a
term which causes LFV by hand within the charged slep-
ton mass matrix. The charged slepton mass matrix is a
6× 6 matrix and is given by

M2
˜̀ =

(
M2

LL M2
LR

M2
LR M2

RR

)
, (3)
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whereM2
LL represents the 3×3 matrix for the soft masses

for left sleptons,M2
RR represents the 3×3 matrix for the

soft masses for right sleptons, and M2
LR represents the

3 × 3 diagonal matrix with elements ml(Al + µ tanβ),
where Al is the trilinear soft mass term and ml is the
diagonal charged lepton mass (Ylvd) for generation l. In
mSUGRA,

M2
LL =M2

RR = m2
0

 1 0 0
0 1 0
0 0 1

 (4)

and Al = A0. The effects of LFV can be produced when
off-diagonal elements inM2

LL,LR,RR are present. During

the diagonalization of this mass matrix (which puts us
in the mass eigenstate basis of sleptons), if there is no
such off-diagonal LFV element in M2

LL,LR,RR, then the
mass eigenstates are states of pure flavors. However, the
off-diagonal LFV element causes the mass eigenstates to
become mixtures of different flavors. These mixed-flavor
mass eigenstates naturally act sometimes as one flavor,
and sometimes as another.

Consequently, if the second lightest neutralino, χ̃0
2, is

produced at the LHC from the cascade decays of squarks,
then it can decay to ττ , µµ, or ee final states, plus E/T
due to the undetectable lightest neutralino, χ̃0

1. On the
other hand, when LFV producing off-diagonal elements
are introduced, the final states from the χ̃0

2 decay can also
have τµ, µe, or eτ final states plus E/T. If, for example,
the (2, 3) element (which is the same as the (3, 2) ele-
ment) of any or all of the M2

LL,LR,RR are non zero then

τµ final states plus E/T will appear in the LFV χ̃0
2 decay.

In this paper, we study LFV by introducing a nonzero
value of the (2, 3) element of theM2

RR matrix. This new
element also will allow the τ → µγ decay and therefore
is constrained, i.e., B(τ → µγ) ≤ 4.4×10−8 [14]. We will
define

δRR,LFV =

[
M2

RR

]
23

[M2
RR]33

(5)

to quantify the amount of LFV. This quantity will enter
into the LFV decay modes of neutralinos and sleptons at
the LHC and τ → µγ amplitude.

III. DETERMINING THE MASSES OF τ̃1, χ̃
0
1,

AND χ̃0
2

As mentioned in the Introduction, we see that the LFV
and non-LFV decay channels both involve the τ̃1, χ̃0

1,
and χ̃0

2. In fact, for LFV which is not too large to intro-
duce appreciable change in the stau mass, it is possible
to reconstruct the τhµ invariant mass distribution, mτµ,
whose endpoint will coincide with the end point of the
mττ distribution. However, the mτµ distribution can also
be present even when there is non-LFV, due to the lep-
tonic tau decay, τ → νν̄µ. This is a major background
to the LFV signal.

Thus, in order to understand the LFV signal at the
LHC, we must first be able to estimate this background.
In order to do this, we must measure the masses of the
SUSY particles involved in both the LFV and non-LFV
signals as accurately as possible. Thus, in this section we
demonstrate the technique used to determine the SUSY
particle masses involved in the LFV decay chain, which
we will discuss in Section IV. Specifically, we will deter-
mine the τ̃1, χ̃0

1, and χ̃0
2 masses.

Since the subsystem χ̃0
2-τ̃1-χ̃0

1 involves the decay chain
which is essential for the study of LFV at the LHC, we
need to produce this subsystem in the cascade decays of
q̃, g̃ which can occur as follows:

q̃L → qχ̃0
2 → qτ∓τ̃±1 → qτ∓τ±χ̃0

1 (6)

The signal of this decay chain at the LHC is character-
ized by high energy jets (from the squark decays), a pair
of oppositely charged tau leptons, and a large missing en-
ergy signal (from the lightest neutralino, which escapes
detection). We need to determine the χ̃0

2,1 and τ̃1 masses
from this chain.

In order to determine the masses, we choose a model
in mSUGRA [3], generate the mass spectrum for that
model using SPheno [15], simulate LHC collision events
at
√
s = 14 TeV using PYTHIA [16], and model the de-

tector response with PGS4 [17]. Although the model
point is excluded by the LHC experiments, we choose
m0 = 250 GeV, m1/2 = 350 GeV, A0 = 0, tanβ = 40,
and µ > 0 as a benchmark point for a comparison with
our previous study for the coannihilation case [9]. The
relevant masses χ̃0

2,1 and τ̃1 at this benchmark point are
shown in Table I. We stress that the technique presented
here can be used for any SUSY model point with heav-
ier SUSY masses as long as the χ̃0

2-τ̃1-χ̃0
1 subsystem is

present in the cascade decay chains of SUSY particles.
As stated above, our benchmark point has already

been ruled out at the LHC, since g̃ ∼ q̃L ' 800 GeV [18].
However, since the q̃ and g̃ masses set the cross-section
of SUSY production in the anylysis, we can go to any
other point of the parameter space with larger q̃ and g̃
masses. These larger masses do not change the presence
of the χ̃0

2-τ̃1-χ̃0
1 subsystem of interest. Thus, by scaling

the luminosity by the cross-section times the branching
ratio of q̃ and g̃ into χ̃0

2, we can achieve the same de-
gree of accuracies for determining the χ̃0

2,1 and τ̃1 masses
or the amount of LFV. For this parameter space point
B(q̃L → χ̃0

2q) ' 0.35 and B(q̃R → χ̃0
2q) ' 0. However,

we can change these branching ratios by changing the
wino-bino content of the lightest two neutralinos. For
instance, by departing from the gaugino mass unification
scheme in mSUGRA, we can find a model where the χ̃0

2 is
almost entirely bino-like. In this case, B(q̃R → χ̃0

2q) ' 1,
increasing the overall branching ratio of squarks into our
decay chain of interest by a factor of about three.

Thus, the luminosity requirement in the analysis of the
q̃L chain is dictated by σ(q̃L, g̃)B(q̃L, g̃ → χ̃0

2)Aj+E/TAττ ,
where σ(q̃L, g̃) is the production cross-section of q̃L and g̃
at the LHC, Aj+E/T is the acceptance for the jets plus E/T
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TABLE I: Relevant mass spectrum for our chosen mSUGRA
benchmark point: m0 = 250 GeV, m1/2 = 350 GeV, A0 = 0,
tanβ = 40, and µ > 0. All masses are in GeV.

Particle True Mass
τ̃1 186.7
χ̃0
1 141.5
χ̃0
2 265.8

system and Aττ is acceptance for the ττ system. Now,
as the q̃L and g̃ masses increase, σ(q̃L, g̃) will go down.
However, Aj+E/T and Aττ can be maintained the same
(by adjusting the cuts). Thus, to achieve the same result
for a different σ × B, the analysis technique remains the
same; only a different amount of luminosity is needed.

Our benchmark point described above (and shown in
Table I) has an overall production cross-section of 6.6
pb according to our PYTHIA simulation. If we choose
a model point which has a similar decay chain scenario
and which has not already been ruled out, we can es-
timate how much more luminosity would be required
as compared to our benchmark. For example, another
mSUGRA point (with m0 = 410 GeV, m1/2 = 750 GeV,
A0 = 0, tanβ = 40, and µ > 0) has larger squark and
gluino masses, yet still has the ττ system of interest.
This point has a cross-section of 0.094 pb. Thus, we
would naively expect to require a factor of 70 more lu-
minosity than we present here. As suggested above, the
acceptances may also change. However, we can alter the
cuts to maintain the luminosity requirement. We have
shown a similar luminosity scaling behaviour in a previ-
ous analysis [12]

Our analysis proceeds as follows. In order to select our
SUSY events from the background of other SUSY events
and SM background events, we employ similar cuts as
were used in [9]. For us to select the event for analysis,
it must have:

• At least two hadronically decaying tau leptons with
pvisT,τ ≥ 15 GeV [19],

• At least two jets, where the leading two jets have
pT,jet1,2 ≥ 100 GeV,

• Missing transverse energy, E/T ≥ 200 GeV, and

• Scalar sum, hT = E/T + pT,jet1 + pT,jet2 ≥ 600 GeV.

Once events have been selected in this way, we select all
pairs of tau leptons from each event. Each pair is charac-
terized as either LS or OS based upon the reconstructed
charge of the taus in the pair. To remove the combina-
toric background of incorrect combinations of taus, we
can perform the OS−LS subtraction for any kinematical
distribution we are interested in. Doing this, we con-
struct the following kinematical distributions:

• The τhτh invariant mass distribution, mττ ,
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FIG. 1: The τhτh invariant mass distribution for our bench-
mark point, shown in Table I. A linear fit finds the endpoint
of the distribution. This distribution represents an integrated
luminosity of 1000 fb−1. However, we also report the situation
for a lower luminosity of 300 fb−1 in this paper.

• The distribution of the transverse momentum of
the higher pT tau, pvisT,τ(high),

• The distribution of the transverse momentum of
the lower pT tau, pvisT,τ(low), and

• The distribution of the transverse momentum sum
of the two taus, slope(pvisT +) = pvisT,τ(high)+pvisT,τ(low).

In order to determine the τ̃1, χ̃0
1, and χ̃0

2 masses, we
need three independent observables. Here, we over con-
strain the system with four observables, which allows us
to reduce the uncertainty in the measurement. The four
observables we choose are as follows.

The τhτh invariant mass distribution, mττ , has a max-
imum value for taus coming from the decay chain shown
in Eq. (6). (We select taus from this decay chain us-
ing the OS−LS technique described above). This maxi-
mum value, mend

ττ , depends on all three masses: mend
ττ =

f1(mτ̃1 ,mχ̃0
1
,mχ̃0

2
). A sample τhτh invariant mass distri-

bution is shown in Fig. 1.
The slope of the log scale plotted pT distributions

can also be made into observables. For instance, the
slope of the higher pT tau is a function of all three
masses: slope(pvisT,τ(high)) = f2(mτ̃1 ,mχ̃0

1
,mχ̃0

2
). Also,

the average of the slopes of the high and low taus,〈
slope(pvisT,τ )

〉
= 1

2

(
slope(pvisT,τ(low)) + slope(pvisT,τ(high))

)
,

is a function of all three masses as well:
〈
slope(pvisT,τ )

〉
=

f3(mτ̃1 ,mχ̃0
1
,mχ̃0

2
). Lastly, the slope of the transverse

momentum sum distribution is a function of two of the
masses: slope(pvisT +) = f4(mχ̃0

1
,mχ̃0

2
).

In order to find these functional forms, f1, f2, f3, and
f4, we vary the masses near our benchmark point. We
change each of the masses, mτ̃1 , mχ̃0

1
, and mχ̃0

2
, in turn

while holding the others constant. By repeating the sim-
ulation for each of these varied points, we can find the
functional forms of each observable as a function of one
mass. The overall functional forms are then estimated by
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TABLE II: Mass measurements for our chosen mSUGRA
benchmark point: m0 = 250 GeV, m1/2 = 350 GeV, A0 = 0,
tanβ = 40, and µ > 0. The statistical uncertainties shown
first are estimated for a luminosity of L = 1000(300) fb−1.
The systematic uncertainty due to a Jet Energy Scale mismea-
surement of 3% [20] has also been estimated, shown second.
All masses are in GeV.

Particle Mass Solution One Solution Two
τ̃1 : 186.7 181.5± 3.7(5.1)± 4.1 205.8± 5.9(6.1)± 5.7
χ̃0
1 : 141.5 140.6± 5.4(6.5)± 6.2 151.4± 6.4(8.6)± 6.3
χ̃0
2 : 265.8 265.3± 6.2(8.5)± 7.3 278.9± 9.2(11.7)± 9.0

combining these one dimensional function into a three di-
mensional function in a multiplicative way. Similar mass
determination techniques (using kinematical observables
and functional forms) have been demonstrated before.
See for example [8–12].

Once the functional forms are found in this way, we
can invert them to solve for all three masses. In prin-
ciple, this can be done algebraically. However, such a
system of equations is complicated and over constrained.
Instead, we invert these equations by use of the Nelder
Mead method. This method is a nonlinear optimiza-
tion technique which we employ to search for the masses
which best fit the observables according to the functional
forms. This is nearly identical to the method used in [12].
We find two solutions for the SUSY masses using this
method, due to the nonlinear nature of the functional
forms. The results of our mass determination are shown
in Table II.

IV. SEARCHING FOR THE LFV SIGNAL

Now that the masses have been determined (in spite
of having two mass solutions), we can investigate the
effects of including the δRR,LFV term into our model. To
see the effects of this at the LHC, we choose a value
for δRR,LFV and use it to rediagonalize the slepton mass
matrix for our benchmark point. The lightest slepton,
˜̀
1, then becomes a linear combination of µ̃R in addition

to the original τ̃R and τ̃L states. This allows for the LFV
decays

χ̃0
2 → µ˜̀

1 (7)

and

˜̀
1 → µχ̃0

1. (8)

Thus, the final state may include one or more muons
from the LFV decays instead of the taus in the decay
chain shown in Eq. (6). Thus, if we can select these LFV
muons, we may be able to see the effect of δRR,LFV.

However, this analysis is complicated greatly by the
fact that some of the taus decay naturally to muons. In

TABLE III: The effects of δRR,LFV upon our benchmark point

(shown in Table I). The LFV decay χ̃0
2 → µ˜̀

1 has a negligible
decay branching ratio (B . 10−4) which we do not show here.
However, this decay is still included in our simulations. We
note that values of δRR,LFV larger than ∼ 15% violate the
bound on the branching ratio B(τ → µγ) ≤ 4.4 × 10−8 [14]
for our benchmark model.

δRR,LFV(%) m˜̀
1

(GeV) B(˜̀
1 → µχ̃0

1)

0 186.7 0
2 186.3 4.9× 10−4

5 186.0 3.1× 10−3

10 185.1 1.2× 10−2

15 183.5 2.6× 10−2

order to see the effects of δRR,LFV, we need to discrim-
inate between the muons from τ decays and the muons
from the LFV decays shown in Eqs. (7) and (8).

Once we have found such a method of discrimination,
we should be able to see the LFV signal in a kinematic
observable similar to mττ . We plan to see the signal us-
ing the τhµ invariant mass distribution, mτµ. We start by
generating the models for a few values of δRR,LFV. The
consequences for various values of δRR,LFV are shown in
Table III. In this table, we show how the lightest slepton
mass changes (which we calculate by re-diagonalizing the
slepton mass matrix), as well as the change in the branch-
ing ratio for the decay shown in Eq. (8). (We calculate
the tree-level decay width to determine the branching
ratios). In practice, we change the model only by intro-
ducing the additional decay channels shown in Eqs. (7)
and (8) (even though the former has a negligible branch-
ing ratio). However, we do not bother to change the
stau mass due to the effect of δRR,LFV, since it shifts
only slightly (easily within 1σ of our measured value in
Table II).

We simulate the LHC signals of the models for the
four non-zero values of δRR,LFV using PYTHIA and PGS4
as before. We include the branching ratios for these LFV
decays in the input files given to PYTHIA. These four sim-
ulations are treated as realities which we may see at the
LHC. Thus, we treat them as “LHC data”, and will refer
to them as such. The mass determination techniques of
Section III will result in the masses found in Table II for
each of these four “LHC data” points.

As stated above, to find the LFV signal, we must esti-
mate the background from muons which naturally arise
from leptonic tau decays. To do this, we simulate a
point with δRR,LFV = 0. However, this simulation is
based upon the mass determination from Section III.
Thus, instead of simulating the true benchmark point for
the δRR,LFV = 0 case, we instead choose a point which
matches the values for the measured masses shown in Ta-
ble II. In order to see the effect of the uncertainties shown
for the masses in that table, we also simulate points which
are 1σ away from the central values of the measured
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FIG. 2: The τhτh invariant mass distribution for our “LHC
simulated” δRR,LFV = 0 point. To generate this plot, we use
the first solution given in Table II. The shape of this non-LFV
distribution is found by the fit function given in Eq. (9). This
distribution represents an integrated luminosity of 1000 fb−1.
However, we also report the situation for a lower luminosity
of 300 fb−1 in this paper.

masses. This gives us a collection of points which we
refer to as “LHC simulated” δRR,LFV = 0 points.

First we analyze the “LHC simulated” δRR,LFV = 0
points to understand the shape of the mτµ distribution
for the case of non-LFV. To do this, we form both the
mττ distribution (as we did above in Section III) as well
as the mτµ distribution. To form the mτµ distribution,
we select events which satisfy similar cuts as above:

• At least one hadronically decaying tau lepton with
pvisT,τ ≥ 15 GeV,

• At least one muon with pT,µ ≥ 20 GeV,

• At least two jets, where the leading two jets have
pT,jet1,2 ≥ 100 GeV,

• Missing transverse energy, E/T ≥ 200 GeV, and

• Scalar sum, hT = E/T + pT,jet1 + pT,jet2 ≥ 600 GeV.

In order to understand the shape of the non-LFV mτµ

distribution, we relate it to the shape of the mττ distri-
bution using a transfer function.

With a given small branching ratio for the LFV decay,
we take advantage of the co-existence of non-LFV and
LFV decays to construct the transfer function in the fol-
lowing experimental steps: (1) We observe and measure
the mnon−LFV

ττ shape in our “LHC data” point; (2) using
the “LHC simulated” δRR,LFV = 0 simulation (where the
mnon−LFV
ττ shapes in “LHC data” and “LHC simulated”

are matched) we perform empirical fits to the mnon−LFV
ττ

and mnon−LFV
τµ distributions; (3) the transfer function is

the ratio of these fit functions.
The fits which form the transfer function are shown for

the mττ and mτµ distributions in Figs. 2 and 3. These
fits are used to try to minimize the statistical fluctuations
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FIG. 3: The τhµ invariant mass distribution for our “LHC
simulated” δRR,LFV = 0 point. To generate this plot, we use
the first solution given in Table II. The shape of this non-LFV
distribution is found by the fit function given in Eq. (9). This
distribution represents an integrated luminosity of 1000 fb−1.
However, we also report the situation for a lower luminosity
of 300 fb−1 in this paper.

by fitting with a “smooth” function. The empirical fit
function we use is given by

f(m) =

{
p0 + p1(m− p3) + p2(m− p3)2 if m < p3

p0
m−p4
p3−p4 if m ≥ p3 ,

(9)
where m is the invariant mass which we are fitting, and
the pis are fit parameters. We find for these distributions
that the fits perform the best if we fix the value of the
transition parameter p3. For the τhτh invariant mass, we
choose p3 = 75 GeV, and for the τhµ invariant mass, we
choose p3 = 65 GeV. The fit range we use is 20 GeV <
m < 110 GeV.

The transfer function, which is formed by the ratio of
these fits, is shown in Fig. 4. For the LFV points, we use
the transfer function to transform the mnon−LFV

ττ distri-
bution into a mnon−LFV

τµ shape. Then, we subtract the

mnon−LFV
τµ shape from the mdata

τµ distribution. Any sig-
nificant excess after this subtraction makes up our LFV
signal.

We use this transfer function with our four non-zero
“LHC data” δRR,LFV points from Table III. The result
of this transfer function method is shown in Fig. 5. This
figure shows that this method has only a little sensitivity
even for the largest allowed value of δRR,LFV = 0.15. This
figure also shows that in spite of having two solutions for
the measured SUSY masses, either mass solution will give
us a similar result for the LFV signal. We compare the
resulting mLFV

τµ shape of this analysis to the expected
number of LFV events in Fig. 6.

We determine how significant this signal is compared to
the null case of δRR,LFV = 0 in the region in Fig. 5 where
the uncertainties propagated from the transfer function
are not too large, namely, 60 GeV < mτµ < 110 GeV.
We do this by assuming a gaussian distribution for each
bin based upon these uncertainties. We find that the
LFV signal for the first (second) SUSY mass solution
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FIG. 4: The transfer function for our two “LHC simulated”
δRR,LFV = 0 points, each based upon one of our two SUSY
mass solutions shown in Table II. The first solution is the
solid black data points, and the second solution is the dashed
black data points (which are shifted horizontally slightly for
visibility). Notice that the transfer function does not vary so
much between the two SUSY mass solutions. These trans-
fer functions are generated using an integrated luminosity of
1000 fb−1. However, we also report the situation for a lower
luminosity of 300 fb−1 in this paper.
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FIG. 5: The τhµ invariant mass distribution for our “LHC
data” δRR,LFV = 0.15 point. The shape of the non-LFV dis-
tribution is estimated by using the transfer function as de-
scribed in the text for the mass range 20 GeV < mτµ <
110 GeV. This plot shows the result for both of the mass so-
lutions shown in Table II. The second solution is dashed and
shifted horizontally slightly for visibility. Note that the un-
certainties shown for the resulting (black) mLFV

τµ histograms
include our estimate of the systematic uncertainties. This
result represents an integrated luminosity of 1000 fb−1. How-
ever, we also report the situation for a lower luminosity of
300 fb−1 in this paper.

shown in Table II has a 2.2σ (1.6σ) excess for a lumi-
nosity of 1000 fb−1. We also note here the estimated lu-
minosity requirements to obtain an equivalent signal for
different values of δRR,LFV, which we show in Table IV.

For a luminosity of 300 fb−1, this significance drops to
1.7σ (1.2σ). We note that the change in uncertainties on
the SUSY mass and transfer function determinations do
not scale as

√
L in our analysis. This indicates if the sys-
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FIG. 6: The black histogram shows the LFV τhµ invariant
mass distribution for our “LHC data” δRR,LFV = 0.15 point,
compared to the filled red histogram, which is the Monte
Carlo truth distribution of LFV decays for the same data
set. This plot shows the result for both our mass solutions
shown in Table II. The second solution is dashed and shifted
horizontally slightly for visibility. Note that the uncertain-
ties shown for the resulting (black) mLFV

τµ histograms include
our estimate of the systematic uncertainties. This result rep-
resents an integrated luminosity of 1000 fb−1. However, we
also report the situation for a lower luminosity of 300 fb−1 in
this paper.

TABLE IV: The required luminosity to obtain an equivalent
signal for different values of δRR,LFV at our benchmark point.
We estimate these luminosity values using our basic result of
a 2.2σ (1.6σ) excess of LFV signal for our benchmark model
with δRR,LFV = 0.15. We note that values of δRR,LFV larger
than ∼ 15% violate the bound on the branching ratio B(τ →
µγ) ≤ 4.4× 10−8 [14].

δRR,LFV(%) B(˜̀
1 → µχ̃0

1) L (fb−1)
5 3.1× 10−3 8390
10 1.2× 10−2 2170
15 2.6× 10−2 1000
32 1× 10−1 260
45 2× 10−1 130

tematic uncertainty in our determination technique can
be improved, the discovery potential is enhanced.

If there were no systematic uncertainty for measuring
the τh energy scale, the significance at 300 fb−1 would
bounce back to 2.2σ (1.6σ). Thus, a decrease in the sys-
tematic energy scale uncertainty at the LHC experiments
would greatly improve the significance of this signal.

V. CONCLUSIONS

In this paper, we investigated the possibility of finding
evidence of LFV using a new technique, called a “transfer
function”, along with mass reconstruction techniques at
the LHC. We constructed the τhτh and τhµ invariant mass
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distributions. We used the transfer function to convert
the τhτh mass distribution into the non-LFV τhµ mass
distribution, mnon−LFV

τµ . The subtraction of the non-LFV
τhµ distribution from the regular τhµ distribution left us
with the LFV signal distribution, mLFV

τµ .
For our benchmark model (δRR,LFV = 0.15), shown

in Table I, we needed ∼ 300 fb−1 to observe a ∼ 2σ
LFV signal for the case where B(˜̀

1 → µχ̃0
1) ' 3%. One

can probe (at the ∼ 2σ level) B(˜̀
1 → µχ̃0

1) ' 20% with
a luminosity of ∼ 45 fb−1 for the parameter space dis-
cussed so far. However, these luminosity requirements
are highly model dependent. If one goes to any other
model point where χ̃0

2 decays into ˜̀
1τ → ττ χ̃0

1, our analy-
sis still applies. The luminosity requirement can be scaled
by σq̃,g̃B(q̃, g̃ → χ̃0

2). One can reduce the requirement of
luminosity with a reduction in the systematic uncertainty
of the tau energy scale at the LHC experiments.

Lastly, we emphasize here that we have developed a
new technique which can probe a LFV effect in this com-

plex final state at the LHC. This technique will be equally
effective to probe LFV in other SUSY models with a sim-
ilar decay chain as a final state.
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