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We present an SU(12) unification model with three light chiral families, avoiding any external
flavor symmetries. The hierarchy of quark and lepton masses and mixings is explained by higher
dimensional Yukawa interactions involving Higgs bosons that contain SU(5) singlet fields with VEVs
about 50 times smaller than the SU(12) unification scale. The presented model has been analyzed
in detail and found to be in very good agreement with the observed quark and lepton masses and
mixings.
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I. INTRODUCTION

The elementary fermions in the Standard Model (SM)
appear in three families, which are a triplication accord-
ing to their gauge transformations in the unbroken elec-
troweak Lagrangian. The masses vary by several orders
of magnitude and are a mystery within the SM. A wide
range of models introduce a spontaneously broken flavor
symmetry, with the associated group being either con-
tinuous or discrete [1, 2]. Different charges assigned to
the families account for the mass and mixing hierarchy by
producing different mass terms with an appropriate Higgs
sector. This is especially necessary in SO(10) Grand Uni-
fied Theories (GUTs), where the 16 spinor irreducible
representation (irrep) is the only complex representation
yielding chiral fermions but no exotic fermions [3]. Early
on, unification groups based on higher rank orthogonal
groups such as SO(18) were explored [4, 5], but the num-
ber of exotic fields introduced became prohibitive. Early
studies of the case of SU(N) family symmetry include
models based on SU(11) [6, 7] and SU(9) [8–10].

Grand Unified Theories based on the groups SU(N)
with N>5 can give rise to a different approach: while
all families transform in the same way under the SM
gauge group it is possible to assign them to different an-
tisymmetric multiplets of SU(N) to obtain a non-trivial
flavor structure. Since in SU(5) a family can only be
assigned to 10+5 (or to the conjugated pair) [11], the
unification group must be larger, hence N>5. This idea
has led to the supersymmetric SU(7) [12] and the non-
supersymmetric SU(8) models [13] proposed by Barr. In
a previous publication [14] two of the present authors
(RF and TWK) and others have constructed a hybrid
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of the latter two approaches, with a partial assignment
to different irreps of SU(9) and four discrete symmetries
in a non-supersymmetric model. Since then we have de-
veloped a systematic scan of SU(N)’s that loops over
all possible fermion assignments to find viable models
with or without discrete symmetries, including the hy-
brid case mentioned above. We present here an SU(12)
model found by this scan which is free of any imposed ex-
ternal flavor symmetries. We have now also included the
assignment of right-handed neutrinos, which allows the
analysis of the full lepton sector as well, which is more
ambitious than [12–14].

In Sec. II we outline the construction of the model by
effective higher dimensional operators, which produce the
mass and mixing hierarchy. Sec. III gives a brief survey
of the model scan procedure which enabled us to find
the SU(12) model presented here. Sec. IV is the ma-
jor section and presents the SU(12) model in detail: In
Sec. IVA we demonstrate how three chiral families arise
from SU(12) in our model. After listing the fermion as-
signments and the Higgs sector in Sec. IVB we construct
the Yukawa interactions for the quark and lepton sector
in Sec. IVC, compute the resulting mass matrices, which
involves the seesaw mechanism for the neutrinos, and fi-
nally fit the mass matrices to the measured values of the
known masses and mixings in Sec. IVD. The discussion
of the results and implications are presented in Sec. V.
We summarize and conclude in Sec. VI.
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II. FERMION MASS HIERARCHY FROM
HIGHER DIMENSIONAL OPERATORS

The Yukawa couplings in the Standard Model correctly
parametrize the observed masses and mixings of quarks
and leptons, yet the SM fails to explain why the cou-
pling strengths are spread over a range of five orders
of magnitude. Assuming an underlying naturalness of
the Yukawa couplings, one can understand their mea-
sured values in an effective field theory scenario as co-
efficients of effective operators encoding short distance
physics above a scale Λ. In these effective theories only
heavy fermions obtain their masses from renormalizable,
four-dimensional Yukawa couplings, while the masses of
the lighter fermions are due to higher dimensional op-
erators. In non-supersymmetric models these operators
may stem from loops involving Higgs fields, while in su-
persymmetric models these loops are suppressed by fac-
tors of MSUSY/MGUT. In the latter case the masses of
the lighter fermions must come from tree-level diagrams
at the MGUT scale, which we have pursued in the con-
struction of the model presented here. However, we do
not consider the phenomenology of the supersymmetric
partners of Standard Model particles by simply assuming
that supersymmetry is broken at a scale high enough to
be inaccessible to current collider experiments, but low
enough not to upset the suppression of loops. Here we ex-
pect supersymmetry breaking in the 108–1010 GeV range,
which would soften but not solve the hierarchy problem.

To this end we introduce vectorlike heavy fermions
with massesM at the SU(12) unification scale and extend
the Higgs sector by introducing SU(12) Higgs bosons con-
taining SU(5) singlet vacuum expectation values (VEVs).
These allow one to construct Froggatt-Nielsen-type dia-
grams [15], i. e. tree-level diagrams with heavy fermions
as one or more mass insertions and Higgs bosons contain-
ing SU(5) singlet VEVs (see e. g. [16]), which are assumed
to be about 50 times lighter than the SU(12) unifica-
tion scale. In going to the electroweak scale or lower,
these mass insertions can be integrated out leaving effec-
tive Yukawa couplings involving Higgs bosons with elec-
troweak VEVs and SU(5) singlet VEVs, suppressed by
the masses of the heavy fermions at the SU(12) unifica-
tion scale, MSU(12). After breaking the Higgs sector to
SU(5) and subsequently to GSM, the SU(5) singlet VEVs
〈1〉SU(5) and SU(12) unification scale MSU(12) appear in
the ratio:

ε =
〈1〉SU(5)

MSU(12)
∼ 1

50
. (1)

Yukawa interactions of dimension 4 +n give rise to mass
matrix elements of the form:

hijε
nv uTiLu

c
jL, (2)

where hij are the Yukawa couplings and v=174GeV
is the electroweak VEV. The dimensionless quantity
ε parametrizes the mass and mixing hierarchy in our

model. The power n of ε in each Yukawa interaction
is the number of mass insertions and SU(5) singlet VEVs
and represents an order of the effective operator higher
than four. The value is roughly the ratio of the bottom-
quark mass to the top-quark mass. The assumption in
our model is that all other mass and mixing ratios can
be expressed in powers of ε, while the Yukawa couplings
hij are of O(1) at the SU(12) unification scale, with the
dimension of the corresponding effective Yukawa interac-
tion chosen accordingly.

The top-quark Yukawa coupling in the Standard Model
is of order unity, suggesting that the renormalizable, di-
mension four interaction is the correct description. Since
all other quark masses are small compared to the top-
quark mass they must arise from higher dimensional
Yukawa couplings. The up-type quarks exhibit an es-
pecially strong mass hierarchy compared to the down-
type quarks. The mixing angles of the CKM matrix are
small, leading to similar up- and down-type mass ma-
trices, but with somewhat stronger hierarchies for the
former. The neutrinos on the other hand have compa-
rable masses and large mixing angles, leading to a light
neutrino mass matrix with either a mild or little hier-
archy, while the charged leptons exhibit a strong mass
hierarchy.

III. MODEL SEARCH

The SU(12) model presented in this paper was found
by a computer program developed by one of us (RPF)
to scan models of the type described in Sec. II. The scan
essentially seeks models by brute force, i. e., constructing
all possible combinations of fermion assignments, Higgs
irreps, and massive fermions and probing them for their
phenomenological implications.

Due to the enormous number of combinations, the scan
is constructed in five enclosing loops for a specific SU(N)
group being searched: The first loop runs over anomaly-
free sets of irreps that yield three chiral families at the
SU(5) level. The fermions embedded in 10’s of SU(5)
are assigned to these sets of irreps first, which includes
all up-type quark fields. This is sufficient to compute the
up-type mass matrix, once the Higgs irreps and massive
fermions are defined. All subsets of three of the anomaly-
free, three-family sets of SU(N) irreps can be assigned
to fermions of SU(5) 10’s, which constitutes the second
loop.

For each of these assignments, a third loop over all
combinations of Higgs irreps and massive fermions taken
from a basic set, is performed that computes the orders of
the up-type mass matrix elements for each combination.
Imposed requirements for the ordering can already filter
out bad combinations of fermion assignments, Higgs and
massive fermions. A crucial requirement is that only the
top-quark mass term is of dimension 4, i. e. , of zeroth
order in ε.
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For each of these filtered combinations, there is an
analogous fourth loop over all assignments of fields em-
bedded in the SU(5) 5’s to irreps of the anomaly-free,
three-family set the outer loop is currently investigating.
Since assignments for the 10’s and 5’s for all three fam-
ilies and definitions of Higgs irreps as well as massive
fermions is sufficient to compute the orders of the up-
type and down-type mass matrix elements and thus the
CKM matrix, a fit of the prefactors of the up and down
quark mass matrices and thus the complete quark sector
is possible.

Having singled out quark models with reasonable phe-
nomenology, a fifth loop adds assignments of right-
handed neutrinos. For each of these assignments the
orders of Dirac- and Majorana-neutrino mass matrix el-
ements are computed, as well as the corresponding light-
neutrino mass matrix via the type I seesaw mechanism.
Together with the charged-lepton mass matrix, which is
the transpose of the down-type mass matrix, the neutrino
masses and mixings can be calculated.

For a fit to neutrino data analogous to the quark sector,
only the mass differences squared are used, which allows
for either a normal or an inverted hierarchy. The overall
fit performed at this stage is a combined fit including the
quark mass matrices as well. The fit yields a χ2 value for
each model, which allows one to select suitable models
automatically. A second requirement imposed is that the
prefactors be of order one. A more precise description of
these steps and their results will be published in a follow-
up paper by the authors.

IV. MODEL PROPERTIES

As a result of both the computer scan and by compar-
ing many models by hand we have found a set of models
of considerable interest. Here we will choose one specific
SU(12) example to explore, which has many attractive
features. Out of the thousands of models we have stud-
ied there is a large handful that fit the data quite well.
Hence, our SU(12) model is neither generic nor unique.

A. Three Families in SU(12)

As a prime example of our procedure, we begin with
the set of SU(12) irreps

6(495) + 4(792) + 4(220) + (66) + 4(12) (3)

which is anomaly free and consists of only totally an-
tisymmetric irreps, to avoid the occurrence of exotic
fermions. To see that this set contains precisely three
chiral families we consider the breaking of the SU(12)
gauge symmetry to SU(5), which can be accomplished
by many different patterns of which we discuss two in
the following paragraphs.

The totally antisymmetric irreps of SU(12) decompose
to SU(5) as

12 → (5) + 7 (1)
66 → 7 (5) + (10) + 21 (1)
220→ 21 (5) + 7 (10) + (10) + 35 (1)
495→ 35 (5) + 21 (10) + 7 (10) + (5) + 35 (1)
792→ 35 (5) + 35 (10) + 21 (10) + 7 (5) + 22 (1)
924→ 21 (5) + 35 (10) + 35 (10) + 21 (5) + 14 (1)
792→ 7 (5) + 21 (10) + 35 (10) + 35 (5) + 22 (1)
495→ (5) + 7 (10) + 21 (10) + 35 (5) + 35 (1)
220→ (10) + 7 (10) + 21 (5) + 35 (1)
66 → (10) + 7 (5) + 21 (1)
12 → (5) + 7 (1)

(4)

For the irreps in (3) including their multiplicities we have

3(10 + 5) + 238(5 + 5) + 211(10 + 10) + 487(1) (5)

at the SU(5) level with three massless chiral families in
3(10 + 5). Vectorlike pairs of (5 + 5) and (10 + 10)
as well as SU(5) singlet fermions (1) acquire masses at
the SU(5) unification scale. Of the sterile neutrinos in
the form of SU(5) singlet fermions we assign three to the
seesaw mechanism. The three massless chiral families will
acquire mass via the Higgs mechanism at the electroweak
scale.

We comment further here on the spontaneous symme-
try breaking from SU(12) to SU(5) and then on to the
standard model gauge group by discussing two of the sev-
eral possible patterns of symmetry breaking. Note that
since our model is supersymmetric above ∼1011 GeV, one
must investigate spontaneous symmetry breaking via the
superpotential. For this purpose there already exists
an analysis of the spontaneous symmetry breaking in
SU(N) models due to VEVs for chiral superfields in the
adjoint and totally antisymmetric tensor irreps [17–19].
It is straightforward to show that a single adjoint can
break SU(N)→SU(N−n)⊗SU(n)⊗U(1) and preserve su-
persymmetry, except when n=N/2. Hence we can
break SU(12)→SU(5)⊗SU(7)⊗U(1) with a single 143H.
Adding four more adjoints we can break to SU(5)⊗U(1)

7

and keep supersymmetry unbroken. Finally another ad-
joint can break SU(5) to SU(3)C⊗SU(2)L⊗U(1)Y. One
can check that the addition of 143H adjoint scalars does
not upset the patterns of masses and mixings we have
established in our SU(12) model. The safest way to
proceed further is to keep all the U(1)’s unbroken un-
til we reach the SUSY breaking scale where a set of
singlet VEVs coming from the antisymmetric tensor ir-
reps with charges under the various U(1)’s then breaks
all the U(1)’s except U(1)Y. These low scale VEVs
for components of the antisymmetric tensor irreps will
also not impact the masses and mixings. Hence we are
left with SU(3)C⊗SU(2)L⊗U(1)Y at the SUSY breaking
scale. This procedure is rather generic and should work
for most if not all of the models in the scan.
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A second somewhat more appealing and economical,
but less generic, approach is to use a set of scalars coming
directly from the antisymmetric chiral superfield irreps
to break SU(12) directly to SU(5) and then use a single
adjoint to break SU(5) to SU(3)C⊗SU(2)L⊗U(1)Y. This
can be accomplished if the set of antisymmetric chiral su-
perfield VEVs has vanishing total Dynkin weight [17, 18].
At least some of these VEVs would be expected to be in
the same SU(12) irreps as the quark and lepton families,
but this would not necessarily be so at the SU(5) level.
Sequestering the families from the VEVs at the SU(5)
level would avoid some technical difficulties, but the new
VEVs would still leave the model in danger of disrupted
masses and mixings. This approach would necessarily re-
quire a full analysis for each model in the scan. For the
rest of this work we follow the first more generic approach
to avoid these complications.

B. Fermion Assignments, Higgs and Massive
Fermions

A successful assignment of the three SU(5) chiral fam-
ilies and singlet right-handed massive neutrinos to the
SU(12) irreps follows:

First Family (10)4951→ uL, u
c
L, dL, e

c
L

(5)661 → dcL, eL, ν1,L
(1)7921 →N c

1,L

Second Family (10)7922→ cL, c
c
L, sL, µ

c
L

(5)7922 → scL, µL, ν2,L
(1)2202 →N c

2,L

Third Family (10)2203→ tL, t
c
L, bL, τ

c
L

(5)7923 → bcL, τL, ν3,L
(1)123 →N c

3,L

(6)

with five unassigned 495’s, two unassigned 220’s and
three unassigned 12 irreps, as required by anomaly can-
cellation, regarded as massive fields decoupled below the
SU(5) GUT scale as in (5).

The model uses two conjugated Higgs representations
containing the electroweak VEV, 5 and 5 at the SU(5)
level, which contain the SM Higgs doublet and its con-
jugate when SU(5) is broken via an adjoint Higgs. Two
additional conjugate Higgs pairs containing SU(5) sin-
glet VEVs and two massive fermion pairs are needed for
the higher dimensional Yukawa couplings. As explained
above and discussed in detail in Sec. IVA, a 143H of
SU(12) and a 24H of SU(5) are needed for the symme-
try breaking, where the latter may be embedded in the
143H. Four more adjoints for complete SU(7) breaking
are not displayed here. To summarize, our scalar and
massive fermion content is:

Higgs bosons Massive fermions
(5)924H, (5)924H, 220×220,
(1)66H, (1)66H, 792×792
(1)220H, (1)220H,
(24)143H

(7)

C. Yukawa Interactions

By construction, the only renormalizable, dimension
four Yukawa interaction is the top-quark mass term de-
noted as U33. At the SU(5) level the top-quark mass
term is 1031035H,arising from 22032203924H at the
SU(12) level, both containing singlets under their gauge
groups, with the corresponding Feynman diagram

U33:

�
(10)2203 (10)2203

(5)924H

(8)

which displays both the SU(5), in parentheses, followed
by the SU(12) multiplets. After spontaneous symmetry
breaking including the electroweak symmetry, the top-
quark mass term becomes: hu

33v t
T
L t
c
L.

All other mass terms in the full theory involve at least
one mass insertion of a heavy-fermion pair and one Higgs
with an SU(5) VEV. The corresponding tree-level di-
agrams are constructed by placing the fermion multi-
plets at both ends and assembling one Higgs containing
the electroweak VEV and, depending on the dimension,
one or more Higgs with an SU(5) singlet VEV and one
or more massive fermions in (massive-)fermion-massive-
fermion-Higgs vertices that individually form SU(12) as
well as SU(5) singlets. The whole mass term thus con-
tains an SU(12) and SU(5) singlet automatically. As an
instructive example we give the bottom-quark mass term
diagram (D33), which will be of dimension 5 after inte-
grating out the massive fermions:

D33:

�
(10)2203 (5)7923(5)220 (5)220

(5)924H (1)66H

(9)

We list all leading order diagrams for the quark and
charged lepton matrix elements in Table I using a short-
hand notation for the Feynman diagrams, which abbre-
viates (9) to

(10)2203.(5)924H.(5)220×(5)220.(1)66H.(5)7923.
(10)

After integrating out massive fermions the bottom-quark
mass term becomes

(10)2203(5)924H(1)66H(5)7923, (11)

and after spontaneous symmetry breaking including the
electroweak one: hd

33εv b
T
L b

c
L. Note that only one diagram

for each matrix element appears at leading order, which
is not self-evident in our model setup.
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Up-Type Quark Mass-Term Diagrams
Dim 4: U33: (10)2203.(5)924H.(10)2203

Dim 5: U23: (10)7922.(1)66H.(10)220×(10)220.(5)924H.(10)2203

U32: (10)2203.(5)924H.(10)220×(10)220.(1)66H.(10)7922

Dim 6: U13: (10)4951.(1)220H.(10)792×(10)792.(1)66H.(10)220×(10)220.(5)924H.(10)2203

U31: (10)2203.(5)924H.(10)220×(10)220.(1)66H.(10)792×(10)792.(1)220H.(10)4951

U22: (10)7922.(1)66H.(10)220×(10)220.(5)924H.(10)220×(10)220.(1)66H.(10)7922

Dim 7: U12: (10)4951.(1)220H.(10)792×(10)792.(1)66H.(10)220×(10)220.(5)924H.(10)220×(10)220.(1)66H.(10)7922

U21: (10)7922.(1)66H.(10)220×(10)220.(5)924H.(10)220×(10)220.(1)66H.(10)792×(10)792.(1)220H.(10)4951

Dim 8: U11: (10)4951.(1)220H.(10)792×(10)792.(1)66H.(10)220×(10)220.(5)924H.(10)220×(10)220
.(1)66H.(10)792×(10)792.(1)220H.(10)4951

Down-Type Quark Mass-Term Diagrams
Dim 5: D32: (10)2203.(5)924H.(5)220×(5)220.(1)66H.(5)7922

D33: (10)2203.(5)924H.(5)220×(5)220.(1)66H.(5)7923

Dim 6: D31: (10)2203.(5)924H.(5)220×(5)220.(1)66H.(5)792×(5)792.(1)220H.(5)661

D22: (10)7922.(1)66H.(10)220×(10)220.(5)924H.(5)220×(5)220.(1)66H.(5)7922

D23: (10)7922.(1)66H.(10)220×(10)220.(5)924H.(5)220×(5)220.(1)66H.(5)7923

Dim 7: D12: (10)4951.(1)220H.(10)792×(10)792.(1)66H.(10)220×(10)220.(5)924H.(5)220×(5)220.(1)66H.(5)7922

D21: (10)7922.(1)66H.(10)220×(10)220.(5)924H.(5)220×(5)220.(1)66H.(5)792×(5)792.(1)220H.(5)661

D13: (10)4951.(1)220H.(10)792×(10)792.(1)66H.(10)220×(10)220.(5)924H.(5)220×(5)220.(1)66H.(5)7923

Dim 8: D11: (10)4951.(1)220H.(10)792×(10)792.(1)66H.(10)220×(10)220.(5)924H.(5)220×(5)220
.(1)66H.(5)792×(5)792.(1)220H.(5)661

Table I. Leading order up- and down-type quark diagrams for each matrix element abbreviated as discussed in Sec. IVC.

We have defined the mass contributions in Table I with
the left-handed fields to the left and the left-handed con-
jugate fields to the right. As can be seen from Eq. (6)
the left- and right-handed components of the charged lep-
tons are flipped assignments compared to the down-type
quark components, due to the breaking of the underly-
ing SU(5) to the SM gauge group. The corresponding
diagrams for the charged leptons are then just the trans-
pose of those listed for the down quarks, since no 143H
contributions appear in the diagrams.

1. Quark Masses and Mixings

Each mass term in Table I is accompanied by a cou-
pling constant, which is assumed to be of order one at
the SU(12) unification scale, as naturalness predicts. In
Sec. IVD we will perform a fit to data for masses and
mixings, where these coupling constants constitute the
fit parameters. The coupling constants, also called “pref-
actors”, are denoted by hu

ij and hd
ij for the up- and down-

type quark mass terms, h`ij for the charged-lepton mass
terms and hmn

ij and hdn
ij for the Majorana- and Dirac-

neutrino mass terms, with i, j=1, 2, 3.
The number of Higgs bosons with SU(5) singlet VEVs

for each mass term tells us the exponent of the parameter
ε occurring after SU(5) symmetry breaking to the SM
gauge group. We can thus derive the up-type, down-type
and charged-lepton mass matrices with the coefficients of
the effective mass operators involving the prefactors hu

ij ,
hd
ij and h`ij , respectively.

As explained above, due to the SU(5) breaking to the
SM gauge group, the charged-lepton mass matrix will
be the transpose of the down-type quark mass matrix,
which also holds true for its prefactors, h`ij=hd

ji. This
is true to the extent that no adjoint Higgs bosons with
VEVs pointing in the B−L direction are present which
would modify this transpose structure [20]. As such, the
Yukawa coupling matrices are then given by

MU =

hu
11ε

4 hu
12ε

3 hu
13ε

2

hu
12ε

3 hu
22ε

2 hu
23ε

hu
13ε

2 hu
23ε hu

33

v ,
MD =

hd
11ε

4 hd
12ε

3 hd
13ε

3

hd
21ε

3 hd
22ε

2 hd
23ε

2

hd
31ε

2 hd
32ε hd

33ε

v ,
ML =

h`11ε4 h`12ε
3 h`13ε

2

h`21ε
3 h`22ε

2 h`23ε
h`31ε

3 h`32ε
2 h`33ε

v = MT
D .

(12)

It is clear from the above that the up-quark matrix
is symmetric, while the down-quark and charged-lepton
mass matrices are doubly lopsided: the terms with hd

23

and h`32 are suppressed by one extra power of ε compared
with the hd

32 and h`23 terms, respectively. For MD, for
example, this implies that a larger right-handed rotation
than left-handed rotation is needed to bring the down
quark matrix into diagonal form, while the opposite is
true for ML [3, 20, 21].
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Dirac-Neutrino Mass-Term Diagrams
Dim 4: DN23: (5)7922.(5)924H.(1)123

DN33: (5)7923.(5)924H.(1)123

Dim 5: DN13: (5)661.(1)220H.(5)792×(5)792.(5)924H.(1)123

DN22: (5)7922.(1)66H.(5)220×(5)220.(5)924H.(1)2202

DN32: (5)7923.(1)66H.(5)220×(5)220.(5)924H.(1)2202

Dim 6: DN12: (5)661.(1)220H.(5)792×(5)792.(1)66H.(5)220×(5)220.(5)924H.(1)2202

DN21: (5)7922.(1)66H.(5)220×(5)220.(5)924H.(1)220×(1)220.(1)66H.(1)7921

DN31: (5)7923.(1)66H.(5)220×(5)220.(5)924H.(1)220×(1)220.(1)66H.(1)7921

Dim 7: DN11: (5)661.(1)220H.(5)792×(5)792.(1)66H.(5)220×(5)220.(5)924H.(1)220×(1)220.(1)66H.(1)7921

Majorana-Neutrino Mass-Term Diagrams
Dim 4: MN11: (1)7921.(1)66H.(1)7921

MN33: (1)123.(1)66H.(1)123

Dim 5: MN12: (1)7921.(1)66H.(1)792×(1)792.(1)66H.(1)2202

MN21: (1)2202.(1)66H.(1)792×(1)792.(1)66H.(1)7921

Dim 6: MN13: (1)7921.(1)66H.(1)792×(1)792.(1)66H.(1)220×(1)220.(1)66H.(1)123

MN31: (1)123.(1)66H.(1)220×(1)220.(1)66H.(1)792×(1)792.(1)66H.(1)7921

MN22: (1)2202.(1)66H.(1)792×(1)792.(1)66H.(1)792×(1)792.(1)66H.(1)2202

Dim 7: MN23: (1)2202.(1)66H.(1)792×(1)792.(1)66H.(1)792×(1)792.(1)66H.(1)220×(1)220.(1)66H.(1)123

MN32: (1)123.(1)66H.(1)220×(1)220.(1)66H.(1)792×(1)792.(1)66H.(1)792×(1)792.(1)66H.(1)2202

Table II. Leading order Dirac- and Majorana-neutrino diagrams for each matrix element abbreviated as discussed in Sec. IVC.

2. Neutrino Masses and Mixings

The assignment of heavy right-handed neutrinos to
SU(12) multiplets containing an SU(5) singlet allows
us to explore light-neutrino masses and mixings via
the seesaw mechanism. To this end we have com-
puted the resulting Dirac- and the Majorana-neutrino
mass terms, which are of the form (hdn

ij ε
nv)ν̄iLN

c
jL

and (hmn
ij ε

nΛR)N cT
iLN

c
jL, respectively. The Majorana-

neutrino mass terms are constructed from only SU(12)
Higgs irreps containing SU(5) singlet VEVs. At the
SU(5) level, a dimension four Majorana-neutrino mass
term has the form 1i1j1H, while a higher dimensional
mass term involves more SU(5) singlet Higgs. Thus the
right-handed scale ΛR coincides with the SU(5) singlet
VEV 〈1〉SU(5). The Dirac-neutrino mass term couples
the left-handed neutrino in the 5 at the SU(5) level with
the left-handed conjugate neutrino in the SU(5) singlet
(see (6)). A four-dimensional Dirac-neutrino mass term
thus has the form 5i1j5H, while a higher dimensional
Dirac mass term involves one or more SU(5) Higgs sin-
glets. The Dirac- and Majorana-neutrino mass diagrams
arising from the given fermion assignments and set of

Higgs bosons and massive fermions are listed in Table II.
As for the quark and charged lepton mass matrices, only
one diagram for each matrix element appears at leading
order.

The corresponding mass matrices are:

MDN =

hdn
11ε

3 hdn
12ε

2 hdn
13ε

hdn
21ε

2 hdn
22ε hdn

23

hdn
31ε

2 hdn
32ε hdn

33

v ,
MMN =

 hmn
11 hmn

12 ε hmn
13 ε

2

hmn
12 ε hmn

22 ε
2 hmn

23 ε
3

hmn
13 ε

2 hmn
23 ε

3 hmn
33

ΛR.

(13)

Observe that not only are MD and ML doubly lopsided,
but MDN is as well. The symmetric light-neutrino mass
matrix is obtained via the Type I Seesaw mechanism:

Mν = −MDNM
−1
MNM

T
DN. (14)

In accordance with the construction of the up- and down-
type quark mass matrices, we use only the leading term
in ε for each matrix element of the light-neutrino mass
matrix, yielding

Mν ≈
v2

ΛR
×



ε2

(
hdn
12

2
hmn
11

hmn
12

2−hmn
11 h

mn
22

−h
dn
13

2

hmn
33

)
ε

(
hdn
12h

dn
22h

mn
11

hmn
12

2−hmn
11 h

mn
22

−h
dn
13h

dn
23

hmn
33

)
ε

(
hdn
12h

dn
32h

mn
11

hmn
12

2−hmn
11 h

mn
22

−h
dn
13h

dn
33

hmn
33

)
ε

(
hdn
12h

dn
22h

mn
11

hmn
12

2−hmn
11 h

mn
22

−h
dn
13h

dn
23

hmn
33

)
hdn
22

2
hmn
11

hmn
12

2−hmn
11 h

mn
22

−h
dn
23

2

hmn
33

hdn
22h

dn
32h

mn
11

hmn
12

2−hmn
11 h

mn
22

−h
dn
23h

dn
33

hmn
33

ε

(
hdn
12h

dn
32h

mn
11

hmn
12

2−hmn
11 h

mn
22

−h
dn
13h

dn
33

hmn
33

)
hdn
22h

dn
32h

mn
11

hmn
12

2−hmn
11 h

mn
22

−h
dn
23h

dn
33

hmn
33

hdn
32

2
hmn
11

hmn
12

2−hmn
11 h

mn
22

−h
dn
33

2

hmn
33


(15)
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which does not involve the prefactors hdn
11 , hdn

21 , hdn
31 , hmn

13

and hmn
23 . These prefactors remain undetermined by the

fit described in Sec. IVD, reducing the number of fit pa-
rameters as opposed to using the full expression, and
thereby improving the fit convergence somewhat.

The light-neutrino mass matrix exhibits a much milder
hierarchy compared to the up-type and down-type mass
matrices, as can be seen from the pattern of powers of ε.
A mild or flat hierarchy of Mν is conducive to obtaining
large mixing angles and similar light neutrino masses.
Furthermore, one observes that the light neutrino mass
matrix obtained via the seesaw mechanism involves the
doubly lopsided Dirac neutrino mass matrix twice. The
lopsided feature of MDN is such as to require a large left-
handed rotation to bring Mν into diagonal form.

D. Phenomenology

The phenomenological implications of the model pre-
sented here are encoded in the mass matrices. Nor-
mally the up-type, down-type, charged-lepton and light-
neutrino masses are the eigenvalues of the corresponding
mass matrices MU, MD, ML and Mν , but since not all
of these matrices are hermitian we diagonalize MM† in-
stead. Thus, with left-handed rotations we obtain real
and positive eigenvalues as squares of the corresponding
masses, according to

diag(m2
u,m

2
c ,m

2
t ) = U†UMUM

†
UUU,

diag(m2
d,m

2
s,m

2
b) = U†DMDM

†
DUD,

diag(m2
e,m

2
µ,m

2
τ ) = U†LMLM

†
LUL,

diag(m2
ν1 ,m

2
ν2 ,m

2
ν3) = U†νMνM

†
νUν .

(16)

The Cabibbo-Kobayashi-Maskawa (CKM) matrix
VCKM is calculated from the unitary transformations UU
and UD that diagonalize the up-type and down-type mass
matrices respectively:

VCKM = U†UUD, (17)

encoding the mismatch of the flavor and mass eigenbases
of the up-type and down-type quarks. The Pontecorvo-
Maki-Nakagawa-Sakata (PMNS) matrix VPMNS is ob-
tained analogously from UL and Uν that diagonalize the
charged-lepton mass matrix ML and the light-neutrino
mass matrix Mν :

VPMNS = U†LUν . (18)

From the doubly lopsided natures of the three matrices,
MD, ML, and MDN, discussed earlier, we anticipate that
for the mixing of the left-handed fields described by VCKM
and VPMNS, small mixing angles will appear in the former
and large mixing angles in the latter.

1. Fit Setup

The results still depend on the prefactors hu
ij , hd

ij=h
`
ji,

hdn
ij and hmn

ij . All four independent sets of prefactors are
of O(1) at the SU(12) unification scale in our Froggatt-
Nielsen scenario. To test the model, the prefactors should
be fit with data for the masses and mixing matrices. The
best fit should give reasonable theoretical predictions,
and a χ2 value serves as goodness-of-fit measure. Obvi-
ously the data and prediction should be fit at a common
scale, e.g., the top-quark mass scale. Hence, the running
of the prefactors has to be calculated, and their values
from the fit run to the SU(12) unification scale should
turn out to be of O(1).

For the fit we consider only real prefactors of the CKM
and PMNS matrix elements, to avoid too many fit param-
eters for a good convergence of the fit. We have adhered
to the Particle Data Group (PDG) sign convention for
the CKM matrix [22] but used the tri-bimaximal mixing
sign convention for the PMNS lepton mixing matrix [23].
As common scale for the fit, we choose for the top-quark
scale mt(mt)'166GeV and use extrapolated masses for
the quarks and charged lepton masses from [24], where
they have been calculated using three-loop QCD and one-
loop QED beta functions.

We use the measured values of the CKM matrix ele-
ments, with PDG sign convention, without extrapolating
to the top-quark mass scale. The renormalization group
flow of the CKM matrix is governed by the Yukawa cou-
plings, which are small except for the top-quark. Thus
the effect is negligible, especially for the matrix elements
of the first two families, and small for the third family
in the Standard Model [25], which also holds true for
the low scale of the SU(12) model presented here. As
data for the fit of the neutrino sector, we use the mass
squared differences of the light neutrinos and the neu-
trino mixing angles obtained by a global analysis of os-
cillation data [26]. The PMNS matrix entering the fit as
data is computed from the neutrino mixing angles using
the PDG parametrization of the PMNS matrix [22] but
with the tri-bimaximal mixing sign convention [23]. Note
that the 13 element of the PMNS matrix is non-zero, as
opposed to that for tri-bimaximal mixing, but in accord
with the evidence for a non-zero θ13 [26]. A negative sign
for the 13 element gives us better fit convergence and the-
oretical predictions than a positive one, which coincides
with the preference for the CP phase of cos δ=−1 in [26].

With respect to the SU(12) unification scale of
O(1016)GeV, the scale of neutrino measurements is near
the top-quark scale (∼1MeV for reactor and solar neutri-
nos and ∼1GeV for accelerator and atmospheric neutri-
nos). We assume here that the running between the two
neutrino scales is small compared to the uncertainties in
neutrino measurements.
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Up-type masses Down-Type masses CKM Matrix
mu = 2.2MeV
mc = 600MeV
mt = 166GeV

md = 3.8MeV
ms = 75MeV
mb = 2.78GeV

 0.974 0.225 0.003
−0.225 0.973 0.041
0.009 −0.040 0.999


Ch. Lepton masses Neutrino Mass Diff. PMNS Matrix Mixing Angles Phase
me = 0.501MeV
mµ = 104MeV
mτ = 1.75GeV

|∆21|= 7.6×10−5 eV2

|∆31|= 2.4×10−3 eV2

|∆32|= 2.4×10−3 eV2

 0.824 0.547 −0.145
−0.500 0.582 −0.641
−0.267 0.601 0.754

 sin2 θ12 = 0.306
sin2 θ23 = 0.420
sin2 θ13 = 0.021

δ = π

Table III. Phenomenological data entering the fit with masses at the top-quark scale.

Up-type masses Down-Type masses CKM Matrix
mu = 2.1MeV
mc = 600MeV
mt = 166GeV

md = 2.7MeV
ms = 90.7MeV
mb = 2.32GeV

 0.974 0.227 0.003
−0.227 0.973 0.042
0.007 −0.042 0.999


Ch. Lepton masses Neutrino Mass Diff. PMNS Matrix Mixing Angles Phase
me = 2.7MeV
mµ = 90.7MeV
mτ = 2.32GeV

|∆21|= 7.5×10−5 eV2

|∆31|= 2.5×10−3 eV2

|∆32|= 2.4×10−3 eV2

 0.824 0.548 −0.145
−0.500 0.582 −0.641
−0.267 0.601 0.754

 sin2 θ12 = 0.306
sin2 θ23 = 0.420
sin2 θ13 = 0.021

δ = π

Heavy Neutrinos Light Neutrinos
M1 = 1.67×1012 GeV
M2 = 6.85×1013 GeV
M3 = 5.30×1014 GeV

m1 = 0.0meV
m2 = 8.65meV
m3 = 49.7meV

Table IV. Theoretical mass and mixing results obtained from the fitting procedure.

The quark and charged-lepton masses and light-
neutrino mass differences, as well as the CKM and PMNS
matrix elements we use as data in the fit are listed in Ta-
ble III. The fit uses 6 quark masses, 3 charged-lepton
masses, 3 light-neutrino mass squared differences, and 9
CKM and 9 PMNS matrix elements as observations, for
a total of ndata=30.

The fit parameters are the prefactors of the four
mass matrices and the right-handed scale ΛR, i.e.
nparams=nprefactors+1. Since the up-type mass matrix
as well as the Majorana-neutrino mass matrix are sym-
metric, they involve only 6 independent fit parameters
each, while the down-type mass matrix and the Dirac-
neutrino mass matrix each contribute 9 parameters. As
explained in Sec. IVC2, only the leading order in ε of
the light-neutrino mass matrix is used in the fit, which
does not involve 3 prefactors of the Dirac-neutrino and 2
of the Majorana-neutrino mass matrix; thus 5 neutrino
related prefactors remain undetermined, yielding a total
of nprefactors=25 prefactors used in the fit.

It is clear that the ratio of the SU(5) singlet VEV
to the SU(12) unification scale used as the basic pa-
rameter, ε=〈1〉SU(5)/MSU(12)∼1/50, in our model should
be determined by the fit as well. However, we ob-
serve a bad convergence of the fit, when we allow it to
vary. Thus, we were forced to fix its value and found
ε=1/6.52=0.0237 to be an appropriate value in accord
with [24]. The resulting number of degrees of freedom is
then ndof=ndata−nprefactors−1=4.

2. Fit Results

The mass matrices with the results for the prefactors
inserted are listed below:

MU =

−1.1ε4 7.1ε3 5.6ε2

7.1ε3 −6.2ε2 −0.10ε
5.6ε2 −0.10ε −0.95

v,
MD =

−6.3ε4 8.0ε3 −1.9ε3

−4.5ε3 0.38ε2 −1.3ε2

0.88ε2 −0.23ε −0.51ε

v,
MDN =

hdn
11ε

3 0.21ε2 −2.7ε
hdn
21ε

2 −0.28ε −0.15
hdn
31ε

2 2.1ε 0.086

v,
MMN =

−0.72 −1.5ε hmn
13 ε

2

−1.5ε 0.95ε2 hmn
23 ε

3

hmn
13 ε

2 hmn
23 ε

3 0.093

ΛR,

Mν =

−81.ε2 −4.3ε 2.4ε
−4.3ε −0.25 0.28
2.4ε 0.28 −1.1

 v2

ΛR
,

(19)

with the right-handed scale determined to be
ΛR=7.4×1014 GeV and ∆32 fit with m3∼50 meV.
As explained in Sec. IVC2, ΛR coincides with the
SU(5) singlet VEV, 〈1〉SU(5), which allows us to deter-
mine the SU(12) unification scale from the fit to be
MSU(12)=ΛR/ε=3.1×1016 GeV.

The corresponding theoretical predictions for the
masses and mixings are listed in Table IV. The pre-
dictions are nearly in perfect agreement with the phe-
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nomenological data entering the fit, which is due to the
fact that almost as many fit parameters as data points are
used. This is reflected in the abnormally small χ2/ndof
and large P-value: With χ2=0.239 and ndof=4 we obtain
χ2/ndof=0.060 and a P-value of prob(0.239, 4)=0.993.
Only the lepton and down-quark masses deviate signifi-
cantly from their measured value, since our SU(12) model
forces them to be equal which keeps the χ2 from dropping
even further.

It is evident conclusions that can be drawn from the
fit results for our SU(12) model are somewhat limited,
for only a slightly different phenomenology could be ac-
commodated by an according shift of the prefactors. The
prefactors obtained from the fit can be considered to be
of O(1) as required by naturalness, aside from the 11
element of Mν . However, according to the phenomeno-
logical input discussed above, their values apply at the
top-quark scale. For a complete analysis one has to run
them to the SU(12) unification scale, where their com-
pliance with the naturalness paradigm is supposed to be
probed. This calculation as well as a fully fledged fit,
including uncertainties, correlations, complex prefactors
and the running of the CKM matrix and of the neutrino
data to the top-quark scale goes beyond the scope of this
paper.

Given the above caveats, we note that a normal mass
hierarchy for the light neutrinos is obtained with one
massless neutrino. Allowing for the sizable reactor neu-
trino angle confirmed by the fit and the fully allowed
ranges of the Dirac and Majorana phases not present in
our analysis, the effective mass prediction for neutrino-
less double beta decay lies in the range 1.5 - 3.7 meV.

V. DISCUSSION

Most flavor symmetry models studied to date involve
discrete flavor groups. A typical model in this class based
on the standard model gauge group or on a more general
SU(N) family gauge group has an additional discrete fla-
vor symmetryG with the matter spectrum living in irreps
of G. However, such models have several disadvantages
compared to models that have no additional discrete sym-
metry.

First disadvantage to having a discrete symmetry is
that if it is a global symmetry, it will be broken by grav-
ity [27–29], and the breaking will not in general be in the
pattern one wishes to arrange for the family symmetry.

Second, it is difficult to explain the origin of a discrete
symmetry in a more fundamental theory. It could arise
from breaking a gauge symmetry and avoid the problems
with gravity, but this is difficult to arrange. In that case
it would be necessary for G to be anomaly-free [30]. An-
other disadvantage of including a discrete symmetry is
that when it breaks, cosmic domain walls are produced.
The walls need to be removed, and they can be inflated
away in some models, but not all. In particular, if there

is a discrete symmetry breaking after inflation, then the
cosmology of the model will be untenable.

If we go to larger N to avoid G as in the present work,
then there is no domain wall problem. There is usu-
ally still a magnetic monopole problem that needs to be
solved by inflation. However, this can be done at the
GUT scale, and it does not re-emerge at a lower scale.
(The SM⊗G and SU(N)⊗G models also have similar
magnetic monopole problems.) So we conclude that the
cosmology of the discrete symmetry free models is typi-
cally more attractive. Their one disadvantage is that the
initial gauge group is usually larger, but not below the
GUT scale.

We see a balance between the two types of models.
Including a discrete symmetry to arrange a desired be-
havior for masses and mixings in SM⊗G and SU(N)⊗G
models can be offset by increasing N in pure gauge
SU(N) models to avoid the inclusion of G. Since no
domain wall problem or problem with gravity arises if
G can be avoided, we conclude that pure gauge fam-
ily symmetric models like the SU(12) model presented
here, have several advantages over flavor-symmetric mod-
els that contain discrete symmetries.

In our studies of models of different SU(N)’s we find
that with increasing N it is possible to obtain models
with more and more desired features implemented. Those
features show not only compliance with phenomenol-
ogy but additional esthetic properties such as simplicity.
Nevertheless, selecting a specific assignment of fermions
and Higgs scalars out of millions of possible assignments,
because of its ability to reproduce phenomenology, is yet
another application of the anthropic principle and is rem-
iniscent of the string theory landscape.

VI. SUMMARY AND CONCLUSION

We have developed a systematic computer scan for
SU(N) family and flavor unification models that repro-
duce the observed fermion mass and mixing hierarchy
with higher-dimensional effective Yukawa couplings in-
volving an extended Higgs sector. These models are of
the supersymmetric type since the higher-dimensional
Yukawa couplings stem from Froggatt-Nielson-type di-
agrams involving massive fermion insertions. The three
families of fermions, the massive fermions and the Higgs
scalars are assigned to various SU(N) representations and
may also involve the assignment of discrete symmetry
charges. A basic parameter in this setup is the ratio of
the scale of imposed SU(5) singlet VEVs to the SU(N)
unification scale, denoted as ε, with a value of roughly
the ratio of the bottom-quark to the top-quark mass,
i.e. ∼1/50.

In this paper we have presented an example of an
SU(12) model obtained by our computer scan, which does
not involve any discrete flavor symmetry. This particu-
lar model belongs to a subset of economic SU(12) mod-
els having only two pairs of Higgs bosons with SU(5)
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singlet VEVs besides the conjugate Higgs field with the
pair of electroweak VEVs, and two massive fermion pairs
at the SU(12) level. However, we need several addi-
tional SU(12) irreps for anomaly cancellation, and ow-
ing to the large SU(12) gauge group we predict a host of
fermions which become massive after symmetry break-
down to SU(5). Only three SU(5) sets of 10+5 fermions
remain massless down to the electroweak scale, while
three SU(5) left-handed neutrino conjugate singlets take
part in the seesaw mechanism.

The model presented has only one diagram at leading
order in ε for each matrix element of the five up, down,
charged lepton, Dirac- and Majorana-neutrino mass ma-
trices. The down-type, lepton and Dirac-neutrino mass
matrices are found to be doubly lopsided. The mass
matrices involve undetermined Yukawa couplings, called
“prefactors,” which are supposed to be of O(1) at the
SU(12) unification scale. Being able to compute all quark
and lepton masses and mixings from their dependence on
these prefactors, we performed a simple fit to experimen-
tal data to test their naturalness and the compliance of
the model with phenomenology. We have presented here
a fit result with prefactors that can be considered of O(1)
and a near to perfect agreement of theoretical prediction
with phenomenological data. In addition our analysis
of the neutrino sector involving the type-I seesaw mech-
anism allows us to determine the light-neutrino masses
and thus their hierarchy, as well as the heavy-neutrino
masses and the full PMNS matrix. We find a normal
hierarchy with one light-neutrino mass being zero.

Still the predictive power of our simple analysis is lim-
ited: We used the top-quark scale as common scale for

the fit. Thus the determined values of the prefactors ap-
ply at this scale and should be run to the SU(12) unifica-
tion scale to test their naturalness in a rigorous analysis.
We also have not included any CP phases in the mass
matrices. Furthermore, the nearly perfect agreement of
theoretical prediction with phenomenological data is due
to a large number of fit parameters, which are mostly
prefactors. Besides being of O(1), there is no a-priory
estimate of their value as initial value. Since differences
in numerators and denominators of mixing-matrix ele-
ments are involved, the uniqueness of the χ2 minimum
must be doubted. In a fully fledged analysis pull distri-
butions generated by toy Monte Carlos clarify this aspect
of the fit quality. A rigorous analysis would also include
uncertainties of experimental data as well as estimations
of the theoretical uncertainties. Nevertheless, we believe
the alternative approach to unification of families and
flavors explored here warrants further study despite the
limitations of our analysis cited above.
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