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Triangulating an exotic T quark
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Limits on an exotic heavy quark T are broadly generalized by considering the full range of T →

Wb, th or tZ branching ratios. We combine results of specific T → tZ and T → Wb searches with
limits on various combinations of decay modes evaluated by re-interpreting other searches. We find
strong bounds across the entire space of branching ratios, ranging from mT > 415 GeV to mT > 557
GeV at 95% confidence level.

PACS numbers: 12.60,-i, 14.65.-Jk

I. INTRODUCTION

A fourth generation of fermions would be a natural
extension to the standard model of particle physics. Di-
rect searches for a chiral fourth-generation (b′ and t′),
however, have yielded no evidence for a fourth genera-
tion of fermions. Specifically, the CMS collaboration has
set limits of mt′ > 557 GeV if BR(t′ → Wb)=100% [1]
and mb′ > 611 GeV [2] if BR(b′ → Wt)=100%. Even if
these branching ratios are reduced by off-diagonal mix-
ing terms, these analyses have complementary sensitivity
which is nearly impossible to escape if the fourth gener-
ation is chiral and decays via W -boson emission [3].

A fourth-generation quark, however, may be a vec-
tor particle (T ) which has exotic decays [4, 5], such as
T → tZ or th, see Fig. 1. Such a quark is a generic fea-
ture [6] of models in which the Higgs boson is a composite
state, such as models featuring a “little Higgs” [7–9]. The
contribution from the T quark in such models is essen-
tial to cancel the contributions to the Higgs mass from
the top quark, keeping the Higgs mass at the electroweak
scale.

The LHC collaborations have strong sensitivity to such
a quark [10]. CMS performed a dedicated search for
this T quark in data with 1 fb−1, reporting mT > 475
GeV [11] if BR(T → tZ)=100%, but no searches have
been reported for the T → th mode, nor for models with
realistic mixtures of decay modes, see Fig. 2.

In previous work, we reinterpreted an ATLAS search
for b′ → tW which has broad sensitivity for other
heavy quark modes; we set limits on the T -quark mass
in the case of a realistic mixture branching ratios,
mT > 419 GeV [12] if BR(T → tZ)=15%, BR(T →

th)=35%, BR(T → Wb)=50%.

In this paper, we relax the assumptions which deter-
mine the branching ratios as a function of mass and ex-
plore the entire space of possible branching ratios, achiev-
ing an important generalization of the existing limits.

FIG. 1: Decay modes of a heavy exotic quark, T
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FIG. 2: Branching ratio of T -quark decays to Wb, tZ and th
vs mT , from the model in Ref. [4].

II. DIRECT SEARCHES

The CMS collaboration searched for a heavy chiral
fourth-generation t′ quark decaying via Wb in the di-
lepton decay mode using data with 5.0 fb−1 of lumi-
nosity. We assume that this limit, mT > 557 GeV at
95% CL, is also applicable to the exotic quark T when
it decays to Wb; parton-level studies of T → Wb and
t′ → Wb show no discernable differences in W boson or b
quark momenta or angles. Other analyses have also been
performed[13–15], but we only consider the strongest lim-
its.

In addition, CMS searched directly for T -quark pro-
duction specifically in the mode T → tZ. Assuming
BR(tZ) is 100%, their analysis yields mT > 475 GeV at
95% CL from data with 1 fb−1 of integrated luminosity.
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The ATLAS collaboration reported a search for heavy
fourth-generation down-type chiral quarks (b′) using data
with 1 fb−1 [16] of integrated luminosity. The b′ de-
cays via tW , leading to a final state with four W bosons
and two b quarks. The single-lepton mode is used, leav-
ing three hadronically decaying W bosons. The ATLAS
search makes use of a novel technique for tagging boosted
W bosons by searching for jet pairs with small angular
separation. The analysis variables are the jet multiplic-
ity and W boson multiplicity; it is a counting experiment
in nine bins: Njet = (6, 7,≥ 8)×NW = (0, 1,≥ 2). This
analysis does not directly set limits on T -quark models,
but it is clear that if such particles were produced, they
would appear as an excess in this analysis.
Note that the precise aim of the original b′ → tW anal-

ysis is not directly relevant to the analysis presented in
this paper, as we are reinterpretting it in another context.
However, since the decay modes are similar (b′ → tW vs
T → tZ) in topology makes the reinterpretation more
powerful and robust.

III. REINTERPRETING b′ → tW

Given the clear sensitivity of the ATLAS b′ search to T -
quark production and decay, we reinterpret this analysis
in the context of T -quark models.
The ATLAS analysis uses a binned likelihood

with nine bins in jet and W -boson multiplicity:
Njet = (6, 7,≥ 8)×NW = (0, 1,≥ 2). Jets are recon-
structed using the anti-kt algorithm with a distance pa-
rameter of 0.4 and are required to have pT > 25 GeV. The
W -boson multiplicity is estimated by counting the num-
ber of unique jet pairs that simultaneously have invariant
mass within 70 − 100 GeV and are within dR ≤ 1.0 of
each other.
Until recently, reinterpretation of such a multi-bin

analysis was effectively impossible, as it would require
publication by the experiment of the complete likelihood
details, including bin-to-bin correlations. However, we
showed in recent work [12] that if the template for a new
signal model can be expressed as a linear combination of
the templates for models tested by the experiment, then
limits on the new model can be trivially derived. Note
that uncertainties in the background model (including
correlations) which are included in the original experi-
mental analysis are automatically included in the reinter-
pretted limits as well. This approach can be understood
as an interpolation strategy, and is valid when the domi-
nant systematic uncertainties are due to the background
sources, or are similar between the basis templates and
the new signal model.
We exploit this approach to derive limits on T -quark

production and decay in a variety of decay modes. We
generate T production and decay using madgraph [22],
use pythia [23] to model showering and hadronization,
and use pgs [17] to describe the detector response. To
be consistent with the ATLAS b′ analysis we use anti-

kt jets with a cone size of 0.4 and pT > 25 GeV. We
reconstruct W bosons using the same parameters as the
ATLAS analysis. In every case, we use mh = 125 GeV.

In the following sections, we find mixtures of the
b′ → tW templates which closely approximate templates
for exotic T quark decays in tZ, th, (tZ and th), (Wb and
th), sor (Wb, th, and tZ) decay modes. In each case, we
find the approximations to be imperfect but reasonable.
Variations of the template mixtures which have discrep-
ancies of similar magnitude but opposite sign give similar
results to those we present, suggesting that the results are
not highly sensitive to these discrepancies. Uncertainties
due to the imperfect description are assessed.

A. Decays to tZ

If the T -quark decays exclusively to tZ, then the final
state of tt̄ZZ closely resembles the tt̄WW final state of
the b′ search, as the jet resolution does not allow us to
distinguish between W → qq′ and Z → qq̄ decays, and
the mass window used (70−100 GeV) encompasses most
hadronic Z-boson decays.

However, to reinterpret the tt̄WW in terms of the
tt̄ZZ, we do not assume that the kinematics are iden-
tical. Instead, we simulate TT → tt̄ZZ events as
described above, and apply the ATLAS tt̄WW selec-
tion. This allows us to form the prediction for tt̄ZZ

in the nine tt̄WW bins in jet and W -boson multiplic-
ity: Njet = (6, 7,≥ 8)×NW = (0, 1,≥ 2). We then form
a linear combination of tt̄WW templates which match
the ttZZ prediction and use the experimentally reported
limits on those tt̄WW templates to calculate a limit
on the tt̄ZZ prediction, using our technique described
above [12].

Hence, we do not require that the tagging efficiency for
W and Z bosons be identical, only similar enough that
we may represent the tt̄ZZ templates in terms of tt̄WW

templates. In this section we show that linear combina-
tions of b′ → tW templates may be used to sufficiently
describe T → tZ templates.

Table I gives the details of these linear combinations.
For each mass point of the T quark, we list the coeffi-
cients, ai, of b

′-quark templates used to derive the limits
(also listed) for that T -quark mass. For example, the 550
GeV T -quark template is described by a linear combina-
tion of 500, 550 and 600 GeV b′-quark templates scaled
to 0.01, 0.06 and 1.14, respectively. The linear combi-
nations are shown along with corresponding original T
templates in Fig. 3 for the 450 and 550 GeV T -quark
cases. Fig. 4 shows the derived upper limits on the cross-
section. If BR(T → tZ)=100%, the reinterpretation of
the b′ search yields mT > 446 GeV at 95% CL, compa-
rable to the CMS limit of mT > 475 GeV derived from a
search optimized for this mode.
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FIG. 3: Jet and W -boson multiplicity, for T → tZ events
(solid blue). Also shown (dashed red) is the sum of b′ basis
templates used to derive the limit on the T quark model. Left
for mT = 450 GeV, right for mT = 550 GeV.

TABLE I: Details of the predicted limit on T pair-production
and T → tZ decay, using basis templates from b′ → tW
decays at ATLAS.

T300 T350 T400 T450 T500 T550 T600

ab′300 0.74 0.13 0 0 0 0 0
ab′350 0 0.30 0.07 0 0 0 0
ab′400 0 0.25 0.49 0.03 0 0 0
ab′450 0 0.01 0.13 0.37 0.10 0 0
ab′500 0 0 0 0.14 0.024 0.01 0
ab′550 0 0 0 0.28 0.36 0.06 0.01
ab′600 0 0 0 0.76 0.97 1.14 0.66

σlimit
i /σtheory

i
(pred) 0.22 0.41 0.69 1.02 1.87 3.4 6.47

σlimit [pb] (pred) 1.77 1.31 0.98 0.67 0.62 0.58 0.6

B. Decays to th

Decays of the T -quark to th would give a tt̄hh final
state. If mH = 125 GeV, the predominant Higgs boson
decay mode is bb̄. As in the case of tZ decays, this gives
a final state similar to that used in the b′ search, though
the larger Higgs mass gives a smaller number of observed
W -boson tags due to the 70 − 100 GeV mass window,
and a somewhat larger jet multiplicity.
The templates for T → th decay are shown in Fig. 5.

It was not possible to find a linear combination of b′

basis templates which accurately reproduce the th tem-
plates unless we remove th events with more than eight
jets. This reduces the sensitivity, as the overall yield is
decreased, and thus produces a somewhat conservative
limit.
Table II gives the details of the decomposition and

Fig. 6 shows the derived upper limits on the cross-section.
If BR(T → th)=100%, the reinterpretation of the b′

search yields mT > 423 GeV at 95% CL, the first limit
in this mode.

C. Decays to tZ and th

To probe a mixed case, we allow both tZ and th de-
cays, which gives tt̄ZZ, tt̄hh modes as well as the mixed
mode tt̄Zh. The relative tZ : th branching ratios are
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FIG. 4: Upper limits at 95% CL on the cross-section for T -
quark pair production in the tZ decay mode.
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FIG. 5: Jet and W -boson multiplicity, for T → th events
(solid blue). Also shown (dashed red) is the sum of b′ basis
templates used to derive the limit on the T quark model. Left
for mT = 450 GeV, right for mT = 550 GeV.

unchanged, see Fig. 2.

The templates for T → th, tZ decay are shown in
Fig. 7. Table III gives the details of the decomposition
and Fig. 8 shows the derived upper limits on the cross-
section. If BR(th or tZ)=100%, the reinterpretation of
the b′ search yields mT > 419 GeV at 95% CL, the first
limit in this mixed mode.

TABLE II: Details of the predicted limit on T pair-production
and T → tH decay, using basis templates from b′ → Wt
decays at ATLAS.

T300 T350 T400 T450 T500 T550 T600

ab′300 0.62 0.23 0.07 0.02 0 0 0
ab′350 0 0 0 0.03 0 0 0
ab′400 0 0 0 0.01 0.03 0 0
ab′450 0 0 0 0 0 0 0
ab′500 0 0.77 1.13 0.62 0.40 0.29 0.17
ab′550 0 0 0 0 0 0 0
ab′600 0 0.03 0 0 0 0.01 0

σlimit
i /σtheory

i
(pred) 0.26 0.47 0.7 1.32 2.32 3.85 6.75

σlimit [pb] (pred) 2.13 1.52 1 0.88 0.77 0.66 0.62
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FIG. 6: Upper limits at 95% CL on the cross-section for T -
quark pair production in the th decay mode.
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FIG. 7: Jet and W -boson multiplicity, for T → tZ, th events
(solid blue). Also shown (dashed red) is the sum of b′ basis
templates used to derive the limit on the T quark model. Left
for mT = 450 GeV, right for mT = 550 GeV.

D. Decays with Wb

We probe two more mixed-decay cases which include
Wb decays. The first allows either Wb or th decays; see
Fig. 9 for templates, Table IV for decomposition details
and Fig. 10 for limits. If BR(th or Wb)=100%, the rein-
terpretation of the b′ search yields mT > 415 GeV at
95% CL, the first limit in this mixed mode.

TABLE III: Details of the predicted limit on T pair-
production and T → tZ, tH decays, using basis templates
from b′ → Wt decays at ATLAS.

T300 T350 T400 T450 T500 T550 T600

ab′300 0.74 0.15 0 0 0 0 0
ab′350 0 0.41 0.27 0.05 0 0 0
ab′400 0 0 0.15 0.26 0.18 0.05 0.00
ab′450 0 0 0 0 0.01 0.10 0.09
ab′500 0 0 0 0 0 0 0.00
ab′550 0 0 0 0 0 0 0
ab′600 0 0 0 0 0 0 0

σlimit
i /σtheory

i
(pred) 0.22 0.4 0.75 1.4 2.65 4.42 7.45

σlimit [pb] (pred) 1.79 1.3 1.06 0.93 0.88 0.76 0.69
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FIG. 8: Upper limits at 95% CL on the cross-section for T -
quark pair production in the tZ, tH decay mode.
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FIG. 9: Jet and W -boson multiplicity, for T → Wb, th events
(solid blue). Also shown (dashed red) is the sum of b′ basis
templates used to derive the limit on the T quark model. Left
for mT = 450 GeV, right for mT = 550 GeV.

The second case allows all three decays (Wb, th or tZ)
in the predicted mixture (Fig. 2); see Fig. 11 for tem-
plates, Table V for decomposition details and Fig. 12 for
limits. If BR(th or tZ or Wb)=100%, the reinterpreta-
tion of the b′ search yields mT > 419 GeV at 95% CL as
reported previously [12].
In both cases, the T -quark signal has a jet multiplicity

which is quite different from the b′ → Wt basis templates.
The most accurate description of T -quark templates uses
the low-mass and high-mass b′ basis templates (see Ta-
bles IV and V) which have the least overlap and so can
be varied nearly independently to achieve the desired jet
multiplicity of the T -quark signals with Wb decays.

E. Limits in the branching ratio triangle

Each of the results above place lower limits on the
mass of the T quark under specific assumptions about
the branching ratios. Table VI summarizes these results.
For limits derived from basis templates we estimate the
errors by studying the relationship between the χ2 of the
fit and the predicted limit for various configurations of
basis templates(including non-optimal ones). The uncer-
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TABLE IV: Details of the predicted limit on T pair-
production and T → tH,Wb decays, using basis templates
from b′ → Wt decays at ATLAS.

T300 T350 T400 T450 T500 T550 T600

ab′300 0.36 0.18 0.07 0.03 0.01 0 0
ab′350 0 0 0 0 0 0 0
ab′400 0 0 0 0 0 0 0
ab′450 0 0 0 0 0 0 0
ab′500 0 0 0 0 0 0 0
ab′550 0.17 1.18 0.72 0.68 0.15 0.13 0.03
ab′600 4.07 3.27 2.16 0.97 0.95 0.51 0.35

σlimit
i /σtheory

i
(pred) 0.31 0.42 0.79 1.45 2.79 5 9.37

σlimit [pb] (pred) 2.5 1.37 1.12 0.96 0.92 0.86 0.86
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FIG. 10: Upper limits at 95% CL on the cross-section for
T -quark pair production in the th,Wb decay mode.

tainty on the mass limits are then derived by extrapolat-
ing the optimal-fit χ2 to an appropriate threshold. The
uncertainty on the mass limits are larger for cases where
the fit is worse. For each scenario, we quote the branch-
ing ratios at the limit value. Figure 13 shows the results
graphically, with interpolated values.

TABLE V: Details of the predicted limit on T pair-production
and tZ, tH,Wb decays, using basis templates from b′ → tW
decays at ATLAS.

T300 T350 T400 T450 T500 T550 T600

ab′300 0.39 0.20 0.07 0.02 0.01 0 0
ab′350 0 0 0 0 0 0 0
ab′400 0 0 0 0 0 0 0
ab′450 0 0 0 0 0 0 0
ab′500 0.01 0 0 0 0 0 0
ab′550 0.24 0.94 1.24 0.78 0.39 0.13 0.04
ab′600 4.35 2.88 1.46 1.11 0.87 0.68 0.42

σlimit
i /σtheory

i
(pred) 0.28 0.43 0.77 1.34 2.38 4.36 8.1

σlimit [pb] (pred) 2.29 1.4 1.09 0.89 0.79 0.75 0.75
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FIG. 11: Jet and W -boson multiplicity, for T → Wb, th, tZ
events (solid blue). Also shown (dashed red) is the sum of
b′ basis templates used to derive the limit on the T quark
model. Left for mT = 450 GeV, right for mT = 550 GeV.
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FIG. 12: Upper limits at 95% CL on the cross-section for
T -quark pair production in the th, tZ,Wb decay mode.
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TABLE VI: Summary of mass limits at 95% CL for various
branching ratios. For BR(tZ)=100%, we include for compar-
ison the direct limit from CMS [11] as well as our reinter-
pretation of the ATLAS [16] b′ → Wt search for this case.
Uncertainties are due to imperfect description of the signal
model via the basis templates.

Lower limit
BR(Wb) BR(tZ) BR(th) mT [GeV] Comment
1 0 0 557 Direct search [1]

0 1 0 475 Direct search [11]

0 1 0 446+4
−4 Reinterpreted here

0 0 1 423+23
−48 Reinterpreted here

0.50 0.13 0.37 419+3
−3 Reinterpreted [12]

0 0.26 0.74 419+12
−18 Reinterpreted here

0.58 0 0.42 415+6
−11 Reinterpreted here

IV. CONCLUSIONS

Searches for an exotic heavy quark T have been pre-
viously reported for specific choices of the decay modes:
BR(Wb)=100% or BR(tZ)=100%. We consider alter-
native branching ratio scenarios, scanning the branching
ratio triangle. We derive limits for these scenarios by
reinterpretting a recent ATLAS search for b′.
We find limits for T at mT > 415 GeV across the

entire triangle, up to mT > 557 GeV in the case of Wb

decay. An optimized experimental search for decays with
large th branching ratio would lead to significantly tighter
limits across the triangle.
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