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Abstract

We study non-standard top quark couplings in the effective field theory approach. All nine dimension-

six operators that generate anomalous couplings between the electroweak gauge bosons and the third-

generation quarks are included. We calculate their contributions at tree level and one loop to all major

precision electroweak observables. The calculations are compared with data to obtain constraints on

eight of these operators.



1 Introduction

Top quark interactions could provide relevant information on physics beyond the Standard Model (SM).
Anomalous top quark interactions at colliders have been studied in the literature (see, e.g. [1, 2, 3, 4, 5,
6, 7, 8, 9, 10, 11, 12, 13] and references therein). In particular, a model-independent approach based on a
low-energy effective field theory is used to describe possible new physics effects. In this approach, high-scale
physics is integrated out to obtain effective interactions that involve only the SM particles. These interactions
are suppressed by inverse powers of Λ, the scale at which the new physics resides.

Such a field theory must satisfy the SU(3)C×SU(2)L×U(1)Y symmetry of the SM. With this requirement,
the only possible dimension-five operator violates lepton number conservation and is irrelevant to top quark
physics [14]. Thus the leading effects are generated by operators of dimension-six:

Leff = LSM +
1

Λ2

∑

i

(CiOi + h.c.), (1)

where Oi are the dimension-six operators and Ci are dimensionless coefficients. A complete list of dimension-
six operators was given in [15, 16, 17]. Subsequently it was found that several of this operators are not
independent [4, 18]. A list of 59 independent dimension-six operators is given in [19].

New physics that affects top-quark interactions can be parametrized using these operators. In particular,
consider anomalous top quark couplings, such as the Wt̄b, Zt̄t and γt̄t vertices. There are nine dimension-six
operators that can modify the couplings of the third-generation quarks to the W , Z and γ bosons:

O
(3)
φq = i(φ†τIDµφ)(q̄γ

µτIq), (2)

O
(1)
φq = i(φ†Dµφ)(q̄γ

µq), (3)

Oφt = i(φ†Dµφ)(t̄γ
µt), (4)

Oφb = i(φ†Dµφ)(b̄γ
µb), (5)

Oφφ = i(φ̃†Dµφ)(t̄γ
µb), (6)

OtW = (q̄σµντI t)φ̃W I
µν , (7)

ObW = (q̄σµντIb)φW I
µν , (8)

OtB = (q̄σµνt)φ̃Bµν , (9)

ObB = (q̄σµνb)φBµν , (10)

where q is the third-generation left-handed quark doublet, t and b are the right-handed top and bottom, φ

is the Higgs boson doublet, ǫ =

(

0 1
−1 0

)

, φ̃ = ǫφ∗, and Dµ = ∂µ − i g2 τ
IW I

µ − ig′Y Bµ is the covariant

derivative where τI denote the Pauli matrices. W I
µν = ∂µW

I
ν −∂νW

I
µ+gǫIJKW J

µ W
K
ν and Bµν = ∂µB

I
ν−∂νB

I
µ

are the field strength tensors of the W and B field. The contribution of these operators to the vertices can
be found in [18].

Naively, from dimensional analysis we may expect that the effects of these operators are suppressed by
E2/Λ2 where E is the energy scale of the process. This is not the case for the operators listed above in
Eqs. (2)-(10). The anomalous couplings generated by these operators violate the SU(2)L symmetry, so they
are related to the Higgs vacuum expectation value v. Instead of E2/Λ2, these anomalous vertices scale as
v2/Λ2, which is independent of the energy scale of the process. This can be seen in [18], where the relation
between the anomalous couplings and the dimension-six operators are given.

The consequence of this scaling is that the effects of new physics will not increase with energy. On the
other hand, the effects will not disappear in the low energy limit. Therefore an important question is whether
it is possible to extract better bounds from electroweak precision measurements for these operators, than
from the measurements performed at high-energy colliders.

The electroweak precision measurements have a much cleaner background than hadron colliders, and
therefore are performed with a higher level of precision. However, most of the operators listed above do not
directly contribute to these measurements at tree-level. Their corrections to the W , Z and γ self-energies
occur at loop-level, so they are suppressed by g2/(4π)2. Still, the large mass of the top quark can lead to an
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enhancement of the loop-level contribution, and as a result the constraints on top-quark anomalous couplings
obtained from precision measurements may be comparable with those obtained from collider experiments.
The top quark plays an important role as a virtual particle in precision electroweak physics. Indeed, the
correct range for the top-quark mass was anticipated by precision electroweak studies. Now that the top-
quark mass is accurately known from direct measurements, we can ask what the precision electroweak
measurements have to say about the presence of dimension-six operators in loop diagrams involving the top
quark.

The easiest way to put constraints on these operators is to consider the “oblique parameters” [20, 21, 22],
as most of the operators contribute only through corrections to the self-energies of the electroweak gauge
bosons. However, as we will see in Section 2, this approach is not appropriate for all nine operators. Therefore
we explicitly calculate the effects of these operators on all electroweak measurements. We compare the results
with data and perform a global fit to obtain one-sigma bounds on the coefficients of these operators. In
order to be specific, we assume that these operators (plus two additional operators) are the only new physics
effects in the theory.

The operators in Eqs. (2)-(10) may be expressed in any basis that is convenient. We choose a basis in
which all fermion fields are mass eigenstates, with q = (tL, VtbbL+VtssL+VtddL) [23]. In W boson self-energy
diagrams, one must sum over all charge -1/3 quarks. These quarks are much lighter than the top quark in
the loop, so it is a good approximation to neglect their masses, in which case the CKM factors add up to
unity. The only place that a CKM factor survives is in photon and Z boson self energies involving a b-quark
loop and the operators ObW or ObB. These diagrams yield a factor of Vtb, which is very close to unity for
three generations, and can be ignored. The operators in Eqs. (2)-(10) also give rise to nonstandard effects
such as flavor-changing neutral currents, right-handed charged currents, etc. [24]. We do not explore the
constraints on the operators from bounds on these processes.

The paper is organized as follows. In Section 2, we discuss the oblique parameters and use them to
constrain one operator as an illustration. In Section 3, we show all major precision electroweak measurements
that we will use to obtain bounds. In section 4, we calculate the corrections to all observables from these
operators, and perform the global fit. We present our conclusions in Section 5. Finally, we show the
self-energy corrections from each operator in Appendix A, and some numerical results of the global fit in
Appendix B.

2 Oblique parameters

The operators listed in Eqs. (2)-(10) affect the precision electroweak measurements in two different ways:

• O
(3)
φq , O

(1)
φq and Oφb modify the Z → bb̄ measurements at LEP at tree-level.

• All operators modify the self-energies ofW , Z and γ at loop-level, and therefore affect all measurements
indirectly.

The first effect is equivalent to a correction to the Zbb̄ couplings:

δgbL = −1

2

v2

Λ2

(

C
(3)
φq + C

(1)
φq

)

, (11)

δgbR = −1

2

v2

Λ2
Cφb, (12)

where gbL, g
b
R are the left- and right-handedZbb̄ couplings. This correction is easily included in the calculation.

Operators listed in Eqs. (2)-(10) modify the gauge boson self-energies through the loop diagrams shown
in Figure 1.1 They affect all quarks and leptons universally through gauge boson self-energies. This kind
of effect is referred to as “oblique”. Traditionally three parameters, S, T and U , are used to describe the
oblique new physics [20, 21]. The idea is to Taylor-expand the four self-energies ΠWW , ΠZZ , Πγγ and ΠγZ ,
which only include the new physics contributions, to order q2. Requiring the photon to be massless, Πγγ

1There is also a diagram contributing to the W -boson self energy, with a top-quark loop, constructed from the four-point
contact interaction given by OtW and ObW . Since this interaction is antisymmetric in µ, ν, this diagram does not contribute
to the self energy.
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and ΠγZ must be zero at q2 = 0, so there will be six non-zero coefficients. Three of them are absorbed in
the definition of g, g′ and v. This leaves three independent parameters. The definitions of the S, T and U
parameters are given in [25].

Figure 1: Corrections to gauge boson self-energy. The black dots indicate the dimension-six vertex.

We list the contribution of the nine dimension-six operators to the gauge boson self-energies in Appendix
A. The coefficients Ci may be taken to be real because an imaginary part of Ci violates CP and will not
contribute to any self-energy. It is straightforward to calculate the three oblique parameters using these
expressions, and to compare with the existing bounds on the S, T and U parameters.

We presented this analysis for the operator OtW in Ref. [26]. We found that the S parameter is divergent,
which is not surprising because in an effective theory there are two dimension-six operators that contribute
to the S and T parameters, respectively, at tree level:

OWB = (φ†τIφ)W I
µνB

µν , (13)

O
(3)
φ = (φ†Dµφ)[(Dµφ)

†φ]. (14)

The divergent terms in the S and T parameters are absorbed by renormalization of the coefficients of these
two operators, so S and T do not give useful information on the size of OtW .2 On the other hand, the
U parameter is finite, because there is no dimension-six operator that contributes at tree level. Using the
experimental bound U = 0.06± 0.10 given in [25], we found

CtW

Λ2
= −0.7± 1.1 TeV−2. (15)

Unfortunately, this kind of analysis is not appropriate for all nine operators. The S, T , and U parameters
are defined by assuming a linear q2 dependence of the self-energies. However, once loop-level contributions
are included, the self-energies contain terms like ln q2 and q2 ln q2. In particular, in a diagram with a bottom
quark loop, the self-energies can have very different q2 dependence in the regions q2 < 4m2

b and q2 > 4m2
b .

An example is shown in Figure 2. Since the precision electroweak measurements include data measured at
both q2 ≈ 0 and q2 ≥ m2

Z , it is not reasonable to use a bound obtained by assuming a linear q2 dependence.
In addition, this calculation does not make full use of the obtained q2 dependence of the self-energies. By
calculating the U parameter, one can only put a constraint on one special linear combination of the operators.
The precision measurements, on the other hand, contain much more information.

In order to fully study the effects of the nine operators, we will explicitly calculate the effect of self-energy
corrections on all electroweak measurements, and perform a fit including all operators in Eqs. (2)-(10) and
Eqs. (13)-(14). The self-energy corrections given in Appendix A contain divergent terms. Since all divergent
terms are either constant or proportional to q2, they can contribute at most through the three oblique

parameters. Therefore all divergences can be properly absorbed once we include OWB and O
(3)
φ in our

analysis. An effective field theory is renormalizable in this sense.

2We found that, rather than being divergent, the contribution of OtW to the T parameter vanishes [26]. A top-quark model
that gives a nonvanishing contribution to the T parameter is discussed in Ref. [11].
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illustration. A linear part in q2 is subtracted so that ΠγZ(0) = Π′
γZ(0) = 0. There is a branch point at

q2 = 4m2
b .

3 Experiments

The measurements we use to constrain the coefficients of the operators are listed in Table 1. Detailed
descriptions for individual experiments can be found in the corresponding references.

For a given observable X , the prediction of the effective field theory can be written as

Xth = XSM +
∑

i

CiX
dim6
i , (16)

where Xth is the prediction in the presence of the operators, XSM is the Standard Model prediction, and
∑

iCiX
dim6
i are the corrections from the new operators. Since only dimension-six operators are included,

higher-order terms in Ci/Λ
2 are dropped.

The SM predictions are computed to the required accuracy, and can be found in the literature shown in
Table 1. The three most precisely measured electroweak observables, α, GF , and mZ , are taken to be the
input parameters, from which the SM gauge couplings and the Higgs VEV are inferred. In addition, the
following input parameters are used:

mHiggs = 90+27
−22 GeV, mt = 173.2± 1.3 GeV, αs(mZ) = 0.1183± 0.0015, (17)

except for LEP2. The sensitivities of the SM predictions to the input parameters for the fermion pair
production and W pair production cross sections at LEP2 are negligible compared to the experimental
errors [29]. Therefore, we use the SM prediction given in the corresponding references.

The corrections from the new operators include the tree-level contribution to the self-energies from

OWB and O
(3)
φ , the tree-level correction to the Zbb̄ couplings from O

(3)
φq , O

(1)
φq and Oφb, and the loop-level

contribution from all nine operators in Eqs. (2)-(10) to the self-energies. Once the self-energies are given,
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Notation Measurement Reference
Z-pole ΓZ Total Z width [25, 27]

σhad Hadronic cross section
Rf (f = e, µ, τ, b, c) Ratios of decay rates

A
0,f
FB(f = e, µ, τ, b, c, s) Forward-backward asymmetries

s̄2l Hadronic charge asymmetry
Af (f = e, µ, τ, b, c, s) Polarized asymmetries

Fermion pair σf (f = q, µ, τ, e) Total cross sections for e+e− → ff̄ [28]

production at LEP2 A
f
FB(f = µ, τ) Forward-backward asymmetries for e+e− → ff̄

W mass mW W mass from LEP and Tevatron [25]
and decay rate ΓW W width from Tevatron

DIS QW (Cs) Weak charge in Cs [25]
and QW (T l) Weak charge in Tl

atomic parity violation QW (e) Weak charge of the electron
g2L, g

2
R νµ-nucleon scattering from NuTeV

gνeV , gνeA ν-e scattering from CHARM II
W pair production σW Total cross section for e+e− → W+W− [28]

Table 1: Major precision electroweak measurements used in this analysis. The total cross section for e+e− →
e+e− is divergent. We use the cross section in the angular range cos θ ∈ [−0.9, 0.9] instead.

the corrections Xdim6
i to all the experiments can be obtained from the modified tree-level formulae for each

observable. This will be discussed in the next section.
Given these results, we can calculate the total χ2 as a function of Ci:

χ2 =
∑

X

(Xth −Xexp)
2

σ2
X

=
∑

X

(XSM −Xexp +
∑

iCiX
dim6
i )2

σ2
X

, (18)

where Xexp is the experimental value for observable X and σX is the total error which consists of both
experimental and theoretical uncertainties. The χ2 is a quadratic function of Ci. The fit for the coefficients
of the new operators is given by minimizing χ2. The one-sigma bounds on the coefficients are given by
χ2 − χ2

min = 1.
Eq. (18) needs to be modified to account for the correlations between different measurements. There

are two sets of data for which the correlations between measurements cannot be neglected. These are the
correlations between Z-pole observables [27], and the experimental error correlations for the hadronic total
cross sections at LEP2 [28]. To include correlations, Eq. (18) should be modified to

χ2 =
∑

p,q

(Xp
SM −Xp

exp +
∑

i

CiX
p,dim6
i )(σ2)−1

pq (X
q
SM −Xq

exp +
∑

i

CiX
q,dim6
i ) (19)

where Xp,q denotes different observables. The error matrix σ2 is related to the error σp and the correlation
matrix ρpq by

σ2
pq = σpρpqσq (20)

The correlations for theoretical and experimental errors should be taken into account separately.

4 Calculations

In the presence of the new operators, the corrections to the self-energies of W , Z and γ can be written as

ΠXY =
∑

i

CiΠXY i, (21)

where ΠXY only includes the contributions from the new operators. (XY ) = (ZZ),(WW ),
(γγ),(γZ).

For the operators in Eqs. (2)-(10), the ΠXY i’s are given in Appendix A. We also include OWB and O
(3)
φ

in our calculation, so that the divergences can be absorbed. For these two operators, the contributions at
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tree-level are:

ΠWW = 0, (22)

ΠZZ = CWB
2v2

Λ2
sW cW q2 + C

(3)
φ

v2

2Λ2
m2

Z , (23)

Πγγ = −CWB
2v2

Λ2
sW cW q2, (24)

ΠγZ = −CWB
v2

Λ2
(c2W − s2W )q2, (25)

where sW = sin θW and cW = cos θW .
In this section, we discuss the effect of self-energy corrections on each experiment. We will show how to

obtain the CiX
dim6
i term in Eq. (18). We first illustrate the idea with an example.

For processes involving light fermions as external particles, Peskin and Takeuchi have shown in Ref. [21]
that the corrections to the gauge boson self-energies can be incorporated by a change in the couplings and
gauge boson parameters. For example, for electromagnetic interactions, the coupling should be replaced by

α∗(q
2) = α0(1 + Π′

γγ(q
2)), (26)

where α0 is the renormalized coupling, not including contributions from dimension-six operators. The self
energy Πγγ(q

2) contains only the contributions from the dimension-six operators, and Π′
γγ(q

2) is defined as

Π′
γγ(q

2) =
Πγγ(q

2)

q2
. (27)

In the presence of a dimension-six operator, the renormalized coupling, α0, is different from the coupling
measured in experiments. Therefore, the self-energy corrections affect the theoretical predictions in two
different ways, which we will call direct correction and indirect correction. The direct correction is simply
described by Eq. (26). Any observable in an electromagnetic process is affected by a change in the coupling.
The indirect correction arises from the fact that we take the fine structure constant as one of the input
parameters. The parameter α0 is then shifted from the measured fine structure constant α, which is measured
at q2 = 0. Thus, from Eq. (26),

α = α0(1 + Π′
γγ(0)). (28)

Therefore any observable that depends on the fine structure constant as an input parameter is affected by
Eq. (28). We can now eliminate α0 by combining Eqs. (26) and (28), to obtain

α∗(q
2) = α

[

1 + Π′
γγ(q

2)−Π′
γγ(0)

]

, (29)

which can be used to calculate the correction to any electromagnetic observable.
We will show the direct correction and indirect correction to all observables in Section 4.1 and 4.2,

respectively, and combine them to calculate the total effects on all electroweak measurements, except for
the cross section for W pair production. The W pair production cross section at LEP2 has relatively low
statistics, and thus we will only consider the tree-level contribution, i.e. the contribution from OWB and

O
(3)
φ .

4.1 Direct correction

In the SM, the matrix elements of the charged- and neutral-current interactions mediated by electroweak
gauge bosons can be written at tree level as

MNC = e2
QQ′

q2
+

e2

s2W c2W
(I3 − s2WQ)

1

q2 −m2
Z

(I ′3 − s2WQ′), (30)

MCC =
e2

2s2W
I+

1

q2 −m2
W

I−. (31)
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Peskin and Takeuchi have shown in Ref. [21] that the modification of the gauge boson self-energies can
be included by writing

MNC = e2∗
QQ′

q2
+

e2∗
s2W∗c

2
W∗

(I3 − s2W∗Q)
ZZ∗

q2 −m2
Z∗

(I ′3 − s2W∗Q
′), (32)

MCC =
e2∗

2s2W∗

I+
ZW∗

q2 −m2
W∗

I−, (33)

where the starred quantities are functions of q2:

m2
W∗(q

2) = (1− ZW )q2 + ZW

(

m2
W0 +ΠWW (q2)

)

, (34)

m2
Z∗(q

2) = (1− ZZ)q
2 + ZZ

(

m2
Z0 +ΠZZ(q

2)
)

, (35)

ZW = 1 +
d

dq2
ΠWW (q2)|q2=m2

W
, (36)

ZZ = 1 +
d

dq2
ΠZZ (q

2)|q2=m2
Z
, (37)

ZW∗(q
2) = 1 +

d

dq2
ΠWW (q2)|q2=m2

W
−Π′

γγ(q
2)− cW

sW
Π′

γZ(q
2), (38)

ZZ∗(q
2) = 1 +

d

dq2
ΠZZ (q

2)|q2=m2
Z
−Π′

γγ(q
2)− c2W − s2W

sW cW
Π′

γZ(q
2), (39)

s2W∗(q
2) = s2W0 − sW cWΠ′

γZ(q
2), (40)

e2∗(q
2) = e20 + e2Π′

γγ(q
2), (41)

where Π′
XY (q

2) is defined as
Π′

XY (q
2) =

(

ΠXY (q
2)−ΠXY (0)

)

/q2. (42)

The subscript 0 denotes the renormalized parameter, not including contributions from dimension-six op-
erators. When calculating the corrections due to dimension-six operators, we can use tree-level relations
between the renormalized parameters, such as

m2
W0 =

e20
s2W0

v2

4
, m2

Z0 =
e20

s2W0c
2
W0

v2

4
. (43)

Eqs. (32) and (33) have exactly the same form as the tree-level SM amplitudes, except that all the
couplings and gauge-boson parameters are replaced by starred parameters. This shows that the oblique
corrections affect electroweak interaction observables only via the starred parameters. In other words, given
an observable in terms of renormalized parameters at tree-level, we only need to replace the renormalized
parameters with their starred counterparts evaluated at the appropriate momentum to incorporate the
corrections from the self-energy diagrams. For example, at tree-level the left-right asymmetry Ae at the
Z-pole is given by

Ae(m
2
Z) =

2
(

1− 4s2W0

)

1 + (1− 4s2W0)
2 . (44)

This is modified to

Ae(m
2
Z) =

2
(

1− 4s2W∗(m
2
Z)
)

1 + (1− 4s2W∗(m
2
Z))

2 (45)

after the self-energy corrections are included. Similarly, the Z to e+e− partial width is now corrected to

Γe+e− =
e2∗(m

2
Z)ZZ∗(m

2
Z)mZ

192πs2W∗(m
2
Z)c

2
W∗(m

2
Z)

(

(

1− 4s2W∗(m
2
Z)
)2

+ 1
)

. (46)

Note that these corrections come from the difference between quantities with subscript ∗ and quantities with
subscript 0, therefore these are direct corrections.
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For low energy measurements, it is more convenient to write

MNC = −4
√
2GF0

(

1− 1

m2
Z

ΠZZ(0)

)

(

I3 − s2W∗(0)Q
) (

I ′3 − s2W∗(0)Q
′
)

, (47)

MCC = −2
√
2GF0

(

1− 1

m2
W

ΠWW (0)

)

I+I−, (48)

where

GF0 =
1√
2v2

(49)

is the Fermi constant, not including contributions from dimension-six operators. The direct corrections to
any low energy observables are thus incorporated by replacing sW0 by sW∗(0) and including an overall factor
of (1−ΠZZ(0)/m

2
Z) for neutral-current observables, and (1−ΠWW (0)/m2

W ) for charged-current observables.

4.2 Indirect correction

The indirect corrections arise from the shifts in the renormalized parameters. The electroweak parameters
(g, g′, v) are not directly measured. Instead, we derive them from the most precisely measured observables
(α, mZ , GF ). When calculating the SM predictions for these observables, the tree-level relations between
(g, g′, v) and (α, mZ , GF ) are used. When we include the new operators, the SM relations are altered. This
corresponds to a correction to all three input parameters.

To consider the indirect corrections, we use (α0, mZ0, GF0) to denote the renormalized electroweak
parameters, not including contributions from dimension-six operators. The relation between α and α0 can
be read off from Eqs. (32) and (41) [see Eq. (28)]:

α =
e2∗(0)

4π
= α0(1 + Π′

γγ(0)). (50)

The Z mass mZ can be obtained by solving m2
Z∗(m

2
Z) = m2

Z ; this gives

m2
Z = m2

Z0 +ΠZZ (m
2
Z). (51)

The Fermi constant can be read off from Eq. (48):

GF = GF0

(

1− 1

m2
W

ΠWW (0)

)

. (52)

Observables measured at energy scales above the Z pole are expressed in terms of (α, mZ , s
2
W ) rather than

(α, mZ , GF ). To include indirect correction due to s2W , we need

s2W0 =
1

2

(

1−
√

1− 4πα0√
2GF0m2

Z0

)

=
1

2

(

1−
√

1− 4πα√
2GFm2

Z

)

[

1− c2W
c2W − s2W

(

Π′
γγ(0) +

1

m2
W

ΠWW (0)− 1

m2
Z

ΠZZ(m
2
Z)

)]

= s2W

[

1− c2W
c2W − s2W

(

Π′
γγ(0) +

1

m2
W

ΠWW (0)− 1

m2
Z

ΠZZ(m
2
Z)

)]

. (53)

where

s2W =
1

2

(

1−
√

1− 4πα√
2GFm2

Z

)

(54)

is the value for s2W calculated at tree level using the observed values for (α, mZ , GF ).
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Combining Eqs. (34)-(41) with Eqs. (50)-(53) to eliminate α0, mZ0, GF0, and sW0, we conclude that,
for q2 > 0, the total effect of direct and indirect corrections can be incorporated by making the following
replacement to the renormalized parameters in the tree-level expressions for any observable:

α → α∗ = α+ δα = α
(

1 + Π′
γγ(q

2)−Π′
γγ(0)

)

×







1 for interactions mediated by photon
ZZ∗(q

2) for interactions mediated by Z boson
ZW∗(q

2) for interactions mediated by W boson
,(55)

m2
Z → m2

Z∗ = m2
Z + δm2

Z = m2
Z −ΠZZ(m

2
Z) + ΠZZ(q

2)− (q2 −m2
Z)

d

dq2
ΠZZ(q

2)|q2=m2
Z
, (56)

s2W → s2W∗ = s2W + δs2W = s2W

[

1− cW
sW

Π′
γZ(q

2)− c2W
c2W − s2W

(

Π′
γγ(0) +

1

m2
W

ΠWW (0)− 1

m2
Z

ΠZZ(m
2
Z)

)]

.(57)

The renormalized parameters (subscript 0) are now completely eliminated, and served only as intermediate
quantities in the derivation.

For any observable measured at the Z-pole or above, we can write it at tree level in terms of α, m2
Z and

s2W :
Xtree

th = Xtree
th (α,m2

Z , s
2
W ). (58)

Therefore the contribution from the self-energy corrections can be written as

δX = CiX
dim6
i =

∂Xtree
th

∂α
δα+

∂Xtree
th

∂m2
Z

δm2
Z +

∂Xtree
th

∂s2W
δs2W . (59)

Note that Eq. (58) is a tree-level relation, and we will not use it to compute the entire theoretical prediction.
Instead, we use Eq. (59) to find the corrections which arise from the new operators. Since these are already
small corrections, the tree-level calculation is enough. We then add them to the SM predictions including
radiative corrections, which are provided in the references shown in Table 1.

If the observables depend on the Zbb̄ couplings, we will need to add to the r.h.s of Eq. (59) the following
terms:

− v2

2Λ2

(

C
(3)
φq + C

(1)
φq + Cφb

) ∂Xtree
th

∂gbV
− v2

2Λ2

(

C
(3)
φq + C

(1)
φq − Cφb

) ∂Xtree
th

∂gbA
. (60)

This accounts for the tree-level correction to the Zbb̄ couplings from C
(3)
φq , C

(1)
φq and Cφb, given in Eqs. (11)

and (12).
For low energy measurements, we can now write

MNC = −4
√
2GF ρ∗(0)

(

I3 − s2W∗(0)Q
) (

I ′3 − s2W∗(0)Q
′
)

, (61)

MCC = −2
√
2GF I+I−, (62)

where

ρ∗(0) = 1− 1

m2
Z

ΠZZ(0) +
1

m2
W

ΠWW (0). (63)

The results of DIS and atomic parity violation experiments are usually expressed in terms of the effective
couplings in the neutral-current interactions. The corrections to these results can thus be obtained by
replacing s2W by

s2W∗(0) = s2W

[

1− cW
sW

Π′
γZ(0)−

c2W
c2W − s2W

(

Π′
γγ(0) +

1

m2
W

ΠWW (0)− 1

m2
Z

ΠZZ(m
2
Z)

)]

(64)

and including an overall factor of ρ∗(0) to the couplings.

4.3 Observables

Now we proceed to consider the correction to each observable. We will give the tree-level expressions for
each observable, and then use Eq. (59) to find the corrections that arise from the new operators.
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4.3.1 Z-pole process

The process e+e− → f f̄ was studied around the Z-pole at SLC and LEP1. At tree-level, the measured cross
sections and asymmetries can be derived from two quantities: the partial width of Z → f f̄ , Γff , and the
polarized asymmetry Af . The expressions are

Γff =
αmZ

12s2W c2W

(

gfV
2
+ gfA

2
)

, (65)

Af =
2gfV g

f
A

gfV
2
+ gfA

2 , (66)

where the Z-fermion couplings gfV and gfA are given by

f gfV gfA
νe, νµ, ντ + 1

2 + 1
2

e, µ, τ − 1
2 + 2s2W − 1

2
u, c, t + 1

2 − 4
3s

2
W + 1

2
d, s, b − 1

2 + 2
3s

2
W − 1

2

(67)

The Z-pole observables include:

• Total width
ΓZ =

∑

f

Γff . (68)

• Total hadronic cross-section

σ0
h =

12π

m2
Z

ΓeeΓhad

Γ2
Z

. (69)

• Ratios of decay rates

Rf =

{

Γhad

Γff
for f = e, µ, τ

Γff

Γhad
for f = b, c

. (70)

• Forward-backward asymmetries

A0,f
FB =

3

4
AeAf , f = e, µ, τ, b, c, s. (71)

• Effective angle extracted from the hadronic charge asymmetry at LEP and from the combined lepton
asymmetry from CDF and D0

s̄2l = s2W . (72)

• Polarized asymmetries
Af , f = e, µ, τ, b, c, s. (73)

With these tree-level expressions, we can apply Eq. (59) to derive the correction from the new operators.
For example, for the ratio Rb, we find

δRb = −24
16s4W − 36s2W + 9

(88s4W − 84s2W + 45)2

[

cW
sW

Π′
γZ(m

2
Z) +

c2W
c2W − s2W

(

Π′
γγ(0) +

1

m2
W

ΠWW (0)− 1

m2
Z

ΠZZ(m
2
Z)

)]

−24
v2

Λ2

(

C
(3)
φq + C

(1)
φq

) 40s6W − 96s4W + 72s2W − 27

(88s4W − 84s2W + 45)2
− 48

v2

Λ2
Cφb

20s4W − 18s2W + 9

(88s4W − 84s2W + 45)2
. (74)

Using the expressions for the ΠXY ’s given in Appendix A, this can be written in the form of CiX
dim6
i .

In practice, instead of deriving the above equation for all observables, we actually did the following: for
any given operator, we first give a small value to its coefficient Ci, then numerically compute all starred
quantities using Eqs. (55, 56, 57) and (63, 64). We then take the tree-level expressions for all observables and
substitute in the starred quantities, to obtain the tree-level predictions for all these observables, including
contributions from dimension-six operators. Finally, we compare them with the SM tree-level predictions,
to identify the corrections from dimension-six operators.
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4.3.2 Fermion pair production at LEP2

The observables are the total cross-sections and forward-backward asymmetries for fermion pair production,
measured at different center of mass energies. The matrix element for e+e− → f f̄ (f 6= e) is given by

M =
4πα

(p+ p′)2 −m2
Z + iΓZmZ

1

4c2W s2W
v̄(p′)γµ

(

geV − geAγ
5
)

u(p)ū(k)γµ

(

gfV − gfAγ
5
)

v(k′)

− 4παQ

(p+ p′)2
v̄(p′)γµu(p)ū(k)γµv(k

′), (75)

where p, p′ are the momenta of the incoming e+e−, and k, k′ are the momenta of the outgoing fermions. The
cross-sections and forward-backward asymmetries can be calculated from M, and Eq. (59) can be applied
to obtain the corrections from the operators.

For f = e, there are additional contributions from the t-channel diagrams. The matrix element is

M =
4πα

(p+ p′)2 −m2
Z + iΓZmZ

1

4c2W s2W
v̄(p′)γµ

(

geV − geAγ
5
)

u(p)ū(k)γµ
(

geV − geAγ
5
)

v(k′)

− 4πα

(p− k)2 −m2
Z + iΓZmZ

1

4c2W s2W
ū(k)γµ

(

geV − geAγ
5
)

u(p)v̄(p′)γµ
(

geV − geAγ
5
)

v(k′)

+
4πα

(p+ p′)2
v̄(p′)γµu(p)ū(k)γµv(k

′)− 4πα

(p− k)2
ū(k)γµu(p)v̄(p′)γµv(k

′). (76)

4.3.3 W mass

The W mass is measured both at the Tevatron and LEP2. For the tree-level expression of mW , we first solve
mW∗(m

2
W ) = m2

W , which gives
m2

W = m2
W0 +ΠWW (m2

W ). (77)

Combining Eqs. (43), (51) and (53) with Eq. (77), we find that the correction to the W mass is

δm2
W = ΠWW (m2

W ) +
s2W

c2W − s2W
ΠWW (0)− c4W

c2W − s2W
ΠZZ(m

2
Z) +

s2W c2W
c2W − s2w

m2
ZΠ

′
γγ(0). (78)

The W width is measured at the Tevatron. The tree level expression is

ΓW =
3αmW

4s2W
. (79)

The correction can be calculated using Eq. (59).

4.3.4 DIS and atomic parity violation

These are experiments performed at q2 ≈ 0. These low energy observables are usually expressed in terms of
the effective couplings gfV and gfA, which depend on s2W . For the tree-level expressions, we will also include
the factor ρ∗(0), which is 1 in the SM, and takes the value of Eq. (63) in the presence of new operators:

ρ∗(0) = 1 + δρ(0) = 1− 1

m2
Z

ΠZZ(0) +
1

m2
W

ΠWW (0). (80)

The correction to an observable X is then given by

δX = CiX
dim6
i =

∂Xtree
th

∂s2W

∣

∣

∣

∣

ρ∗(0)=1

δs2W (0) +
∂Xtree

th

∂ρ∗(0)

∣

∣

∣

∣

ρ∗(0)=1

δρ(0). (81)

The observables include:
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• The weak charges for Cs and Tl, measured in atomic parity violation experiments. The weak charge
is given by

QW (Z,N) = −2 [(2Z +N)C1u + (Z + 2N)C1d] , (82)

where Z and N are the proton number and the neutron number of the atom. The tree-level expressions
for C1u and C1d are

C1u = 2ρ∗(0)g
e
Ag

u
V , C1d = 2ρ∗(0)g

e
Ag

d
V . (83)

• The weak charge of the electron, QW (e) , measured in polarized Møller scattering:

QW (e) = −2C2e = −4ρ∗(0)g
e
Ag

e
V . (84)

• The effective couplings gL and gR for ν-nucleon scattering, measured at NuTeV. These are defined as

g2L = gu2L,eff + gd2L,eff, g2R = gu2R,eff + gd2R,eff . (85)

where guL,eff , g
u
R,eff , g

d
L,eff and gdR,eff are the effective couplings between the Z boson and the up and

down quarks. The tree-level expressions are

guL,eff = ρ∗(0)
guV + guA

2
, gdL,eff = ρ∗(0)

gdV + gdA
2

, (86)

guR,eff = ρ∗(0)
guV − guA

2
, gdR,eff = ρ∗(0)

gdV − gdA
2

. (87)

(88)

• The effective couplings gνeV and gνeA for ν-e scattering, measured at CHARM II. The expressions are

gνeV = ρ∗(0)g
e
V , gνeA = ρ∗(0)g

e
A. (89)

4.3.5 W pair production

So far we have been using the approach of Peskin and Takeuchi to study the effects of new operators.
However, this approach only applies to processes involving light fermions as external particles, and cannot
be used to study W pair production. Due to the relatively low statistics in the measurements, the constraints
from W pair production are weak compared to other electroweak observables. Therefore we will ignore all

loop effects, and only focus on the effects of operators OWB and O
(3)
φ .

Using Eqs. (22)-(25) and Eq. (53), we have

s2W0 =
1

2

(

1−
√

1− 4πα√
2GFm2

Z

)

[

1 +
c2W

c2W − s2W

(

4CWB
v2

Λ2
sW cW +

1

2
C

(3)
φ

v2

Λ2

)]

. (90)

Note that Eq. (53) only has to do with the indirect corrections, so it is still valid.
The operator OWB changes the mixing of the W 3 and B bosons. We then define sW∗ and cW∗ as the

new mixing angle,

sW∗ = sW0 − CWB
v2

Λ2
s2W cW , cW∗ =

√

1− s2W∗, (91)

so that the W+W−Z and W+W−γ vertices from the kinetic term − 1
4W

I
µνW

Iµν have the same form as in
the SM. Note that this definition of sW∗ is different from the one in Eq. (40), which was only valid for light

fermions. In this way, the operators OWB and O
(3)
φ have the following effects:

• The SM Zff̄ vertices are modified to:

LZff̄ =
e

sW∗cW∗

(

1 + CWB
v2

Λ2

sW
cW

)

Zµf̄γ
µ

(

T 3PL − s2W∗

(

1 + CWB
v2

Λ2

cW
sW

)

Qf

)

f, (92)

where PL = (1 − γ5)/2.
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• The SM W+W−Z and W+W−γ vertices are modified. The contribution comes from OWB :

OWB → −igCWB
v2

Λ2
cWAµνW+

µ W−
ν + igCWB

v2

Λ2
sWZµνW+

µ W−
ν . (93)

• The W mass is changed to:

m2
W = m2

Z

(

1

2

(

1 +

√

1− 4πα√
2GFm2

Z

)

− 2CWB
v2

Λ2

sW c3W
c2W − s2W

− 1

2
C

(3)
φ

v2

Λ2

c4W
c2W − s2W

)

. (94)

Using these results we can write down the matrix element. The process has a t-channel contribution Mt

and s-channel contributions Mγ and MZ , which come from photon and Z boson exchange. They are given
by

Mt = −i
e2

2s2W∗

v̄(p′)γµ 1

/k − /p′
γνPLu(p)ǫ

∗λ1

µ ǫ∗λ2

ν , (95)

Mγ = −ie2v̄(p′)γρu(p)
1

q2
×

[

(gµν(k′ − k)ρ − gνρ(q + k′)µ + gµρ(q + k)ν) + CWB
v2

Λ2

cW
sW

(gµρqν − gνρqµ)

]

ǫ∗λ1

µ ǫ∗λ2

ν , (96)

MZ = −i
e2

s2W∗

(

1 + CWB
v2

Λ2

sW
cW

)

v̄(p′)γρ

[

1

2
PL −

(

1 + CWB
v2

Λ2

cW
sW

)

s2W∗

]

u(p)
1

q2 −m2
Z

×
[

(gµν(k′ − k)ρ − gνρ(q + k′)µ + gµρ(q + k)ν)− CWB
v2

Λ2

sW
cW

(gµρqν − gνρqµ)

]

ǫ∗λ1

µ ǫ∗λ2

ν . (97)

where p, p′ are the momenta of the incoming e+e−, q = p + p′, k, k′ are the momenta of the outgoing
W+W−, and ǫ∗λ1

µ , ǫ∗λ2
ν are the polarization vectors of the W+W−. q = p + p′. The cross section can be

calculated from the matrix element. The correction due to OWB and O
(3)
φ is obtained by taking the linear

part in CWB and C
(3)
φ . Higher order terms in C/Λ2 are neglected.

4.4 Total χ2

In the calculation of χ2, we choose the MS scheme, with the renormalization scale µ2 = m2
Z , even for processes

in which the characteristic scale is not m2
Z . This is done for ease of calculation. The error introduced by

this choice is of higher order and negligible.
We find that the contribution from the operator Oφφ is suppressed by the bottom quark mass, as can

be seen from Eq. (134). Therefore we neglect this operator. The contributions from operators ObW and
ObB also have a factor of mb. However, their effects can still be large, because the expressions contain the
function b0(m

2
b ,m

2
b , q

2), and its derivative with respect to q2 is inversely proportional to m2
b :

d

dq2
b0(m

2
b ,m

2
b , q

2)

∣

∣

∣

∣

q2=0

= − 1

6m2
b

. (98)

Therefore, we will consider 10 operators:

OWB , O
(3)
φ , O

(3)
φq , O

(1)
φq , Oφt, Oφb, OtW , ObW , OtB , ObB. (99)

Using Eq. (18), χ2 can be written as a quadratic function of Ci:

χ2 = χ2
min + (Ci − Ĉi)Mij(Cj − Ĉj). (100)

Here χ2
min is the minimum χ2 in the presence of the new operators. Ĉi corresponds to the best fit value for

Ci.
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In our calculation, we used the following input parameters:

α(m2
Z) = 1/128.91, GF = 1.166364× 10−5 GeV−2, mZ = 91.1876 GeV,

mt = 172.9 GeV, mb = 4.79 GeV. (101)

We find χ2
min = 80.04, the χ2

min per degree of freedom is 0.80, compared with the SM value 0.84. The matrix

Mij and the best fit values Ĉi are given in Appendix B.

4.5 Global fit

The one-sigma bounds on the operators are given by χ2 − χ2
min = 1. By diagonalizing the matrix Mij , we

find ten linear combinations of Ci that are statistically independent. Their best fit values and one-sigma
bounds are given by:

































−0.961 −0.273 +0.029 −0.004 +0.024 +0.000 +0.012 −0.000 +0.015 +0.001
−0.064 +0.159 −0.701 −0.680 −0.015 +0.130 +0.001 −0.000 +0.001 +0.000
+0.268 −0.940 −0.063 −0.182 +0.088 +0.002 −0.022 +0.002 −0.005 −0.001
−0.008 +0.019 −0.095 −0.086 −0.003 −0.991 −0.019 +0.001 −0.000 −0.000
−0.014 −0.065 −0.336 +0.344 −0.389 +0.017 −0.768 +0.057 −0.135 −0.039
+0.009 −0.107 −0.326 +0.322 −0.590 −0.009 +0.623 −0.065 −0.194 +0.014
−0.016 +0.030 +0.137 −0.137 +0.128 −0.000 −0.003 +0.138 −0.935 −0.229
−0.004 +0.008 +0.034 −0.034 +0.039 +0.001 −0.094 −0.745 −0.244 +0.610
−0.001 +0.001 −0.003 +0.003 +0.007 −0.000 +0.025 +0.646 −0.090 +0.757
−0.001 +0.001 +0.505 −0.505 −0.689 −0.000 −0.108 +0.014 +0.054 +0.009

































× 1

Λ2



































CWB

C
(3)
φ

C
(3)
φq

C
(1)
φq

Cφt

Cφb

CtW

CbW

CtB

CbB



































=

































−0.0004 ±0.0029
−0.013 ±0.014
+0.011 ±0.023
+0.59 ±0.27
−0.22 ±1.10
−1.76 ±1.63
−2.2 ±11.9
−9.2 ±21.1

+102.4 ±50.4
−1.36e+3 ±1.38e+3

































TeV−2. (102)

where the 10 × 10 matrix is orthogonal. We can see that in the first row and the third row, the first two
components are much larger than the other components. This means that these two rows approximately

correspond to constraints on the coefficients CWB and C
(3)
φ , or equivalently, the S and T parameters. Since

we are interested in the other eight operators, we can assume that CWB and C
(3)
φ always take the values

that minimize the χ2. This doesn’t mean that we fix CWB and C
(3)
φ . The values that minimize the total χ2

depend on the values of the other eight coefficients. In other words, we let these two coefficients freely float.
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In this way, we find the following constraints on the eight operators:

























−0.702 −0.701 −0.000 +0.128 −0.003 +0.000 −0.000 −0.000
−0.094 −0.087 −0.002 −0.992 −0.019 +0.001 −0.001 −0.000
−0.342 +0.349 −0.398 +0.017 −0.761 +0.056 −0.136 −0.039
−0.326 +0.323 −0.591 −0.009 +0.632 −0.065 −0.191 +0.015
+0.137 −0.137 +0.128 −0.000 −0.003 +0.138 −0.935 −0.229
+0.034 −0.034 +0.039 +0.001 −0.094 −0.745 −0.244 +0.610
−0.003 +0.003 +0.007 −0.000 +0.025 +0.646 −0.090 +0.757
+0.505 −0.505 −0.689 −0.000 −0.108 +0.014 +0.054 +0.009

























× 1

Λ2



























C
(3)
φq

C
(1)
φq

Cφt

Cφb

CtW

CbW

CtB

CbB



























=

























−0.011 ±0.014
+0.59 ±0.27
−0.23 ±1.10
−1.75 ±1.62
−2.2 ±11.9
−9.2 ±21.1

+102.4 ±50.4
−1.36e+3 ±1.38e+3

























TeV−2. (103)

This is the main result of this paper. We can see that the first row is approximately a constraint on

(O
(3)
φq + O

(1)
φq )/

√
2, which corresponds to the left-handed Zbb̄ coupling, while the second row corresponds

to a constraint on Oφb, which is the right-handed Zbb̄ coupling. These are the tightest bounds, since the
contribution arises at tree-level. The other constraints are mainly from loop-level effects. The third row is
approximately a bound on CtW . This can be compared with the bound obtained from the U parameter,
Eq. (15). The results are in close agreement. The remaining five rows yield bounds on linear combinations
of operators.

5 Conclusions

In this paper, we have studied the effects of non-standard top quark couplings on precision electroweak
measurements. The top quark plays a role as a virtual particle in these measurements. Our study is based
on an effective field theory approach, which allows us to calculate the self-energies of the electroweak gauge
bosons at loop-level.

We have examined the effects of nine dimension-six operators that generate non-standard couplings
between electroweak gauge bosons and the third generation quarks. These operators mainly contribute
through loop corrections to the gauge boson self-energies, but some of them also have a tree-level contribution
to the Zbb̄ couplings. The contribution of one of the operators is suppressed by mb and is hence negligible.

We have also included the operators OWB and O
(3)
φ , in order to deal with the divergences that appear in

our calculation.
We have calculated the total χ2 and performed a global fit including these ten operators. We allow CWB

and C
(3)
φ to vary, and thus obtain bounds on eight dimension-six operators. The result is shown in Eq. (103).

The two tightest bounds are from tree-level contributions to the Zbb̄ couplings, gbL and gbR, and the other
bounds are from loop-level contributions. The best bound from loop-level contribution constrains C

Λ2 to be

of order 1 TeV−2.
If the bound on some linear combination of Ci is too weak, this bound cannot be trusted, because the

linear analysis is not applicable if the coefficients are large. The contribution from dimension-six operators

relative to the SM contribution is of order g2/(4π)2 × Civ
2

Λ2 . This should be less than unity, thus

Ci

Λ2
≪ 6.1× 103 TeV−2 (104)

Even the weakest bound from our results does not exceed this limit, therefore all bounds can be trusted.
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Using Eq. (100), one can put constraints on a subset of these operators. For example, the one-sigma bound

on the coefficient Ci, assuming only one coefficient deviates from its best fit value, is given by Ĉi ±M
−1/2
ii ,

where Mii is the diagonal element of the matrix M and is not summed over i.
We can also consider only one coefficient to be nonzero at a time. In this case, we found the constraints

on each individual coefficient are:

C
(3)
φq

Λ2
+

C
(1)
φq

Λ2
= 0.016± 0.021 TeV−2 (105)

C
(3)
φq

Λ2
−

C
(1)
φq

Λ2
= 2.0± 2.7 TeV−2 (106)

Cφt

Λ2
= 1.8± 1.9 TeV−2 (107)

Cφb

Λ2
= −0.16± 0.10 TeV−2 (108)

CtW

Λ2
= −0.4± 1.2 TeV−2 (109)

CbW

Λ2
= 11± 13 TeV−2 (110)

CtB

Λ2
= 4.8± 5.3 TeV−2 (111)

CbB

Λ2
= 8± 19 TeV−2 (112)

Some of these operators are already constrained from other measurements. The operator OtW modifies
the top-quark branching ratio to zero-helicity W bosons [12]. Recently, the combination of CDF and D0
measurements of the W -boson helicity in top-quark decays reports a measurement of f0, the zero-helicity
fraction [30]:

f0 = 0.685± 0.057[±0.035(stat.)± 0.045(syst.)] (113)

This yields the constraint on CtW :
CtW

Λ2
= 0.03± 0.94 TeV−2 (114)

We see that Eqs. (15), (109), and (114) give similar constraints.

Constraints may also be gleaned from B physics. The operators O
(3)
φq −O

(1)
φq and Oφφ affect the branching

ratio for B̄ → Xsγ. The following constraints are obtained in Ref. [23]:

C
(3)
φq

Λ2
−

C
(1)
φq

Λ2
= −1.6± 1.3 TeV−2 (115)

Cφφ

Λ2
= 0.030± 0.026 TeV−2 . (116)

There are also contributions from OtW and ObW , but these are ultraviolet divergent. Thus there must be a
tree-level contribution from another dimension-six operator, which masks the contributions from OtW and
ObW . Therefore one cannot obtain bounds on these two operators.

In addition, constraints on the operator OtW can also be obtained from Bd,s − B̄d,s mixing [31]:

CtW

Λ2
= −0.06± 0.79 TeV−2 . (117)

This is comparable to the bounds given in Eqs. (15), (109), and (114). There is also a contribution from

O
(3)
φq −O

(1)
φq that is divergent and requires a tree-level contribution, so this operator cannot be bounded from

Bd,s − B̄d,s mixing.
Finally, we summarize all these constraints in Table 2.
We can see that for most operators our analysis gives the best bounds available, because electroweak

data is the only way to access these operators so far. For the other operators, our bounds are comparable
to the best bounds obtained from colliders and B physics.
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Coefficients Electroweak data W helicity B̄ → Xsγ Bd,s − B̄d,s mixing
(

C
(3)
φq + C

(1)
φq

)

/Λ2 0.016± 0.021
(

C
(3)
φq − C

(1)
φq

)

/Λ2 2.0± 2.7 −1.6± 1.3

Cφt/Λ
2 1.8± 1.9

Cφb/Λ
2 −0.16± 0.10

Cφφ/Λ
2 0.030± 0.026

CtW /Λ2 −0.4± 1.2 0.03± 0.94 −0.06± 0.79
CbW /Λ2 11± 13
CtB/Λ

2 4.8± 5.3
CbB/Λ

2 8± 19

Table 2: Bounds on operators, in units of TeV−2.
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A Gauge boson self-energies

Here we give ΠXY for all 9 operators.

• O
(3)
φq

ΠWW = −Nc
g2

4π2

v2

Λ2

[(

1

6
q2 − 1

4
(m2

t +m2
b)

)

E

−q2b2(m
2
t ,m

2
b , q

2) +
1

2

(

m2
bb1(m

2
t ,m

2
b , q

2) +m2
t b1(m

2
b ,m

2
t , q

2)
)

]

(118)

ΠZZ = −Nc
g2

cos2 θW

1

4π2

v2

Λ2

[(

1

6
(1 − sin2 θW )q2 − 1

4
(m2

t +m2
b)

)

E

−q2
((

1

2
− 2

3
sin2 θW

)

b2(m
2
t ,m

2
t , q

2) +

(

1

2
− 1

3
sin2 θW

)

b2(m
2
b ,m

2
b , q

2)

)

+
1

4

(

m2
t b0(m

2
t ,m

2
t , q

2) +m2
bb0(m

2
b ,m

2
b , q

2)
)

]

(119)

Πγγ = 0 (120)

ΠγZ = −Ncg
2 sin θW
cos θW

1

8π2

v2

Λ2

[

1

6
E − 2

3
b2(m

2
t ,m

2
t , q

2)− 1

3
b2(m

2
b ,m

2
b , q

2)

]

q2 (121)
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• O
(1)
φq

ΠWW = 0 (122)

ΠZZ = Nc
g2

cos2 θW

1

4π2

v2

Λ2

[

−
(

1

4
m2

t −
1

4
m2

b +
1

18
q2 sin2 θW

)

E

−q2
((

1

2
− 2

3
sin2 θW

)

b2(m
2
t ,m

2
t , q

2)−
(

1

2
− 1

3
sin2 θW

)

b2(m
2
b ,m

2
b , q

2)

)

+
1

4

(

m2
t b0(m

2
t ,m

2
t , q

2)−m2
bb0(m

2
b ,m

2
b , q

2)
)

]

(123)

Πγγ = 0 (124)

ΠγZ = Ncg
2 sin θW
cos θW

1

8π2

v2

Λ2

[

1

18
E − 2

3
b2(m

2
t ,m

2
t , q

2) +
1

3
b2(m

2
b ,m

2
b , q

2)

]

q2 (125)

• Oφt

ΠWW = 0 (126)

ΠZZ = Nc
g2

cos2 θW

1

4π2

v2

Λ2

[(

1

4
m2

t −
1

9
q2 sin2 θW

)

E

−
(

1

4
m2

t b0(m
2
t ,m

2
t , q

2)− 2

3
q2 sin2 θW b2(m

2
t ,m

2
t , q

2)

)]

(127)

Πγγ = 0 (128)

ΠγZ = Ncg
2 sin θW
cos θW

1

12π2

v2

Λ2

(

1

6
E − b2(m

2
t ,m

2
t , q

2)

)

q2 (129)

• Oφb

ΠWW = 0 (130)

ΠZZ = Nc
g2

cos2 θW

1

4π2

v2

Λ2

[

−
(

1

4
m2

b −
1

18
q2 sin2 θW

)

E

+

(

1

4
m2

bb0(m
2
b ,m

2
b , q

2)− 1

3
q2 sin2 θW b2(m

2
b ,m

2
b , q

2)

)]

(131)

Πγγ = 0 (132)

ΠγZ = −Ncg
2 sin θW
cos θW

1

24π2

v2

Λ2

(

1

6
E − b2(m

2
b ,m

2
b , q

2)

)

q2 (133)

• Oφφ

ΠWW = −Ncg
2 1

16π2

v2

Λ2
mtmb

(

E − b0(m
2
t ,m

2
b , q

2)
)

(134)

ΠZZ = 0 (135)

Πγγ = 0 (136)

ΠγZ = 0 (137)

• OtW

ΠWW = −Ncg

√
2

4π2

vmt

Λ2

(

1

2
E − b1(m

2
b ,m

2
t , q

2)

)

q2 (138)

ΠZZ = −Ncg

√
2

4π2

vmt

Λ2

(

1

2
− 4

3
sin2 θW

)

(

E − b0(m
2
t ,m

2
t , q

2)
)

q2 (139)

Πγγ = −Ncg

√
2

4π2

vmt

Λ2

4

3
sin2 θW

(

E − b0(m
2
t ,m

2
t , q

2)
)

q2 (140)

ΠγZ = −Ncg

√
2

4π2

vmt

Λ2

sin θW
cos θW

(

11

12
− 4

3
sin2 θW

)

(

E − b0(m
2
t ,m

2
t , q

2)
)

q2 (141)
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• ObW

ΠWW = −Ncg

√
2

4π2

vmb

Λ2

(

1

2
E − b1(m

2
t ,m

2
b , q

2)

)

q2 (142)

ΠZZ = −Ncg

√
2

4π2

vmb

Λ2

(

1

2
− 2

3
sin2 θW

)

(

E − b0(m
2
b ,m

2
b , q

2)
)

q2 (143)

Πγγ = −Ncg

√
2

4π2

vmb

Λ2

2

3
sin2 θW

(

E − b0(m
2
b ,m

2
b , q

2)
)

q2 (144)

ΠγZ = −Ncg

√
2

4π2

vmb

Λ2

sin θW
cos θW

(

7

12
− 2

3
sin2 θW

)

(

E − b0(m
2
b ,m

2
b , q

2)
)

q2 (145)

• OtB

ΠWW = 0 (146)

ΠZZ = Ncg

√
2

4π2

vmt

Λ2

sin θW
cos θW

(

1

2
− 4

3
sin2 θW

)

(

E − b0(m
2
t ,m

2
t , q

2)
)

q2 (147)

Πγγ = −Ncg

√
2

4π2

vmt

Λ2

4

3
sin θW cos θW

(

E − b0(m
2
t ,m

2
t , q

2)
)

q2 (148)

ΠγZ = −Ncg

√
2

4π2

vmt

Λ2

(

1

4
− 4

3
sin2 θW

)

(

E − b0(m
2
t ,m

2
t , q

2)
)

q2 (149)

• ObB

ΠWW = 0 (150)

ΠZZ = −Ncg

√
2

4π2

vmb

Λ2

sin θW
cos θW

(

1

2
− 2

3
sin2 θW

)

(

E − b0(m
2
b ,m

2
b , q

2)
)

q2 (151)

Πγγ = Ncg

√
2

4π2

vmb

Λ2

2

3
sin θW cos θW

(

E − b0(m
2
b ,m

2
b , q

2)
)

q2 (152)

ΠγZ = Ncg

√
2

4π2

vmb

Λ2

(

1

4
− 2

3
sin2 θW

)

(

E − b0(m
2
b ,m

2
b , q

2)
)

q2 (153)

Here θW is the weak angle, Nc = 3 is the number of colors. E = 2
4−d − γ + ln 4π, and the functions bi

are given by

b0(m
2
1,m

2
2, q

2) =

∫ 1

0

ln
(1− x)m2

1 + xm2
2 − x(1 − x)q2

µ2
dx, (154)

b1(m
2
1,m

2
2, q

2) =

∫ 1

0

x ln
(1− x)m2

1 + xm2
2 − x(1− x)q2

µ2
dx, (155)

b2(m
2
1,m

2
2, q

2) =

∫ 1

0

x(1− x) ln
(1− x)m2

1 + xm2
2 − x(1− x)q2

µ2
dx, (156)

where µ is the ’t Hooft mass. They have the following analytical expressions:

b0(m
2
1,m

2
2, q

2) = −2 + log
m1m2

µ2
+

m2
1 −m2

2

q2
log

(

m1

m2

)

+
1

q2

√

|(m1 +m2)2 − q2||(m1 −m2)2 − q2|f(m2
1,m

2
2, q

2), (157)

where

f(m2
1,m

2
2, q

2) =























log

√
(m1+m2)2−q2−

√
(m1−m2)2−q2√

(m1+m2)2−q2+
√

(m1−m2)2−q2
q2 ≤ (m1 −m2)

2

2 arctan
√

q2−(m1−m2)2

(m1+m2)2−q2 (m1 −m2)
2 < q2 < (m1 +m2)

2

log

√
q2−(m1−m2)2+

√
q2−(m1+m2)2√

q2−(m1−m2)2−
√

q2−(m1+m2)2
q2 ≥ (m1 +m2)

2

, (158)
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and

b1(m
2
1,m

2
2, q

2) = −1

2

[

m2
1

q2

(

log
m2

1

µ2
− 1

)

− m2
2

q2

(

log
m2

2

µ2
− 1

)]

+
1

2

m2
1 −m2

2 + q2

q2
b0(m1,m2, q),(159)

b2(m
2
1,m

2
2, q

2) =
1

18
+

1

6

[

m2
1(2m

2
1 − 2m2

2 − q2)

(q2)2
log

m2
1

µ2
+

m2
2(2m

2
2 − 2m2

1 − q2)

(q2)2
log

m2
2

µ2

]

−1

3

(

m2
1 −m2

2

q2

)2

− 1

6

[

2

(

m2
1 −m2

2

q2

)2

−
(

m2
1 +m2

2 + q2

q2

)

]

b0(m1,m2, q). (160)

B The matrix Mij and the best fit values Ĉi

The matrix Mij and the best fit values Ĉi in Eq. (100) are given by

M =
(1 TeV)4

Λ4
× 10−2 ×









































CWB C
(3)
φ C

(3)
φq C

(1)
φq Cφt Cφb CtW CbW CtB CbB

OWB +1.10e7 +3.06e6 −3.16e5 +5.47e4 −2.70e5 −6.16e3 −1.35e5 +3.11e3 −1.71e5 −1.40e4

O
(3)
φ +3.06e6 +1.07e6 −1.40e5 −1.03e4 −9.49e4 +9.46e3 −3.39e4 +4.04e2 −4.77e4 −3.85e3

O
(3)
φq −3.16e5 −1.40e5 +2.58e5 +2.40e5 +1.28e4 −4.55e4 +3.99e3 −4.49e1 +4.96e3 +4.35e2

O
(1)
φq +5.47e4 −1.03e4 +2.40e5 +2.39e5 +1.16e3 −4.42e4 −1.28e2 +3.21e0 −8.20e2 −3.34e1

Oφt −2.70e5 −9.49e4 +1.28e4 +1.16e3 +8.49e3 −9.17e2 +2.98e3 −3.34e1 +4.21e3 +3.40e2
Oφb −6.16e3 +9.46e3 −4.55e4 −4.42e4 −9.17e2 +9.83e3 +1.13e2 −1.46e1 +9.24e1 +3.20e0
OtW −1.35e5 −3.39e4 +3.99e3 −1.28e2 +2.98e3 +1.13e2 +1.78e3 −5.16e1 +2.11e3 +1.76e2
ObW +3.11e3 +4.04e2 −4.49e1 +3.21e0 −3.34e1 −1.46e1 −5.16e1 +2.49e0 −4.89e1 −4.42e0
OtB −1.71e5 −4.77e4 +4.96e3 −8.20e2 +4.21e3 +9.24e1 +2.11e3 −4.89e1 +2.67e3 +2.19e2
ObB −1.40e4 −3.85e3 +4.35e2 −3.34e1 +3.40e2 +3.20e0 +1.76e2 −4.42e0 +2.19e2 +1.82e1









































(161)

and

Ci CWB C
(3)
φ C

(3)
φq C

(1)
φq Cφt Cφb CtW CbW CtB CbB

Ĉi/Λ
2 +0.93 −1.63 −689 +689 +939 −0.60 +149 +53.9 −78.3 +60.3

(162)

in units of TeV−2.
The numerical values of Ĉi depend on both the experimental values and the SM predictions. The matrix

M is symmetric and positive definite, and its value only depends on the errors of different measurements.
If any of the SM input parameters changes, the best values Ĉi will be affected, but the matrix M will not.
The sizes of the one-sigma bounds on the operators only depend on the matrix M .
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