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A major contribution to the uncertainty of finite-order perturbative QCD predictions is the per-
ceived ambiguity in setting the renormalization scale µr. For example, by using the conventional
way of setting µr ∈ [mt/2, 2mt], one obtains the total tt̄ production cross-section σtt̄ with the

uncertainty ∆σtt̄/σtt̄ ∼
(

+3%
−4%

)

at the Tevatron and LHC even for the present NNLO level.

The Principle of Maximum Conformality (PMC) eliminates the renormalization scale ambiguity
in precision tests of Abelian QED and non-Abelian QCD theories. By using the PMC, all non-
conformal {βi}-terms in the perturbative expansion series are summed into the running coupling
constant, and the resulting scale-fixed predictions are independent of the renormalization scheme.
The correct scale-displacement between the arguments of different renormalization schemes is auto-
matically set, and the number of active flavors nf in the {βi}-function is correctly determined.

The PMC is consistent with the renormalization group property that a physical result is inde-
pendent of the renormalization scheme and the choice of the initial renormalization scale µinit

r . The
PMC scale µPMC

r is unambiguous at finite order. Any residual dependence on µinit
r for a finite-order

calculation will be highly suppressed since the unknown higher-order {βi}-terms will be absorbed
into the PMC scales’ higher-order perturbative terms. We find that such renormalization group
invariance can be satisfied to high accuracy for σtt̄ at the NNLO level.

In this paper we apply PMC scale setting to predict the tt̄ cross-section σtt̄ at the Tevatron
and LHC colliders. It is found that σtt̄ remains almost unchanged by varying µinit

r within the
region of [mt/4, 4mt]. The convergence of the expansion series is greatly improved. For the
(qq̄)-channel, which is dominant at the Tevatron, its NLO PMC scale is much smaller than the
top-quark mass in the small x-region, and thus its NLO cross-section is increased by about a
factor of two. In the case of the (gg)-channel, which is dominant at the LHC, its NLO PMC
scale slightly increases with the subprocess collision energy

√
s, but it is still smaller than mt for√

s <∼ 1 TeV, and the resulting NLO cross-section is increased by ∼ 20%. As a result, a larger
σtt̄ is obtained in comparison to the conventional scale setting method, which agrees well with
the present Tevatron and LHC data. More explicitly, by setting mt = 172.9 ± 1.1 GeV, we pre-
dict σTevatron, 1.96 TeV = 7.626+0.265

−0.257 pb, σLHC, 7TeV = 171.8+5.8
−5.6 pb and σLHC, 14 TeV = 941.3+28.4

−26.5 pb.

PACS numbers: 12.38.Aw, 14.65.Ha, 11.15.Bt, 11.10.Gh
Keywords: PMC, Renormalization Scale, Top-quark pair production

I. INTRODUCTION

Physical predictions in Quantum Chromodynamics
(QCD) are in principle invariant under any choice of
renormalization scale and renormalization scheme. It is
common practice to simply guess a renormalization scale
µr = Q and keep it fixed during the calculation, Q be-
ing the typical momentum transfer of the process, and
then vary it over the range [Q/2, 2Q] to show the scale-
uncertainty 1. However, this procedure leads to scheme-
dependent theoretical predictions at any finite order in
perturbation theory, and it gives the wrong result when
applied to QED processes. In the case of the W plus
three-jet production at the Tevatron and LHC, this pro-
cedure can even predict negative QCD cross sections at

∗ email:sjbth@slac.stanford.edu
† email:wuxg@cqu.edu.cn
1 It is often argued that by varying the renormalization scale, one
can estimate contributions from higher-order terms. However,
this procedure only exposes the {βi}-dependent non-conformal
terms, not the entire perturbative series.

the next-to-leading-order [1] because of uncancelled large
logarithms as well as the “renormalon” terms which di-
verge as (n!βn

i α
n
s ) and can give sizable contributions.

As we shall discuss, the optimal procedure for obtain-
ing precise QCD predictions is to choose the renormal-
ization scale so that the result is scheme-independent at
any fixed order in αs. The Brodsky-Lepage-Mackenzie
method (BLM) [2] and the Principle of Maximum Con-
formality (PMC) [3–5] provide the solution to this prob-
lem. The PMC is the principle underlying BLM scale
setting, and they are equivalent to each other through
the PMC - BLM correspondence principle [4], so if not
specifically stated, we shall treat them on equal footing.
The main idea of PMC scale setting is that, after

proper procedures, all non-conformal {βi}-terms in the
perturbative expansion are summed into the running cou-
pling so that the remaining terms in the perturbative se-
ries are identical to that of a conformal theory; i.e., the
corresponding theory with {βi} ≡ {0}. After PMC scale
setting, the divergent “renormalon” series with n!-growth
does not appear in the conformal series. QCD predictions
using PMC are then independent of the choice of renor-
malization scheme. Since renormalon terms are absent,
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one obtains a more convergent perturbative expansion
series, and thus the full next-to-leading-order (NLO), or
even the leading-order (LO) calculation, is often enough
to achieve the required accuracy.
The PMC method satisfies all self-consistent condi-

tions, including the existence and uniqueness of the scale,
reflexivity, symmetry and transitivity [6]. In particular,
the transitivity property shows that the relation between
any two physical observables is independent of the choice
of intermediate renormalization scheme. The transitiv-
ity is thus equivalent to the renormalization group prop-
erty that shows the predictions in pQCD are indepen-
dent of the choice of an intermediate renormalization
scheme [7–9]. In the limit NC → 0 at fixed α = CFαs

with CF = (N2
c − 1)/2Nc [10, 11], the PMC method

also agrees with the standard Gell Mann-Low procedure
for setting the renormalization scale in Abelian QED. It
should be recalled that there is no ambiguity in setting
the renormalization scale in QED. In the standard Gell-
Mann-Low scheme for QED, the renormalization scale is
the virtuality of the virtual photon [9]. For example, the
renormalization scale for the electron-muon elastic scat-
tering through one-photon exchange can be set as the
virtuality of the exchanged photon, i.e. µ2

r = q2 = t.
Thus, we have

α(t) =
α(t0)

1−Π(t, t0)
, (1)

where Π(t, t0) = (Π(t, 0)−Π(t0, 0))/(1−Π(t0, 0)) which
sums all vacuum polarization contributions to the dressed
photon propagator. Because final result when summed
up to all orders is independent of t0, one can choose
any initial renormalization scale t0. Of course in QCD,
the question is much more complicated due to its non-
Abelian nature. However its scales can also be unam-
biguously set at each finite order by the PMC procedure.
Formally, as a starting point, one needs to introduce an

initial renormalization scale µinit
r for PMC scale setting,

which in practice can be set as a typical physical scale
(Q) of the process, i.e. µinit

r = Q. However, the final
result will be independent of µinit

r after we have summed
the relevant {βi}-terms; i.e. for any physical observable
O, we have

∂O
(

µPMC
r

)

∂µinit
r

≡ 0, (2)

where µPMC
r stands for the PMC scale 2.

2 This is different from the Principle of Minimum Sensitivity
(PMS) [12] which chooses µr at the stationary point of O, i.e.
dO(µPMS

r )/dµPMS
r = 0. It is noted that PMS does not satisfy

the transitivity property of the renormalization group [6]; i.e. it
predicts different correlations between two physical observables
when they are related through different intermediate schemes.
Moreover, it gives unphysical results for 2-jet and 3-jet produc-
tion in e+e− annihilation within the small jet-invariant-mass re-
gion [13] since it sums the contributions not associated with the
renormalization into the running coupling.

The essential steps for implementing the PMC are as
follows: Consider the perturbative expansion for a phys-
ical quantity at an arbitrary initial scale µinit

r ,

ρn = C0αp
s(µ

init
r ) +

n
∑

i=1

Ci(µinit
r )αp+i

s (µinit
r ) (3)

expanded to n-th order in αs. Its NLO coefficient C1 can
be generally written as

C1(µinit
r ) = C10(µinit

r ) + C11(µinit
r ) nf

= C̃10(µinit
r ) + C̃11(µinit

r ) β0 ,

where β0 = 11 − 2/3nf , the coefficients C10 and C11 are

nf -independent, C̃10 = C10 + 33
2
C11, and C̃11 = − 3

2
C11.

The LO PMC scale µPMC
r is then set by the condition

C̃11(µPMC
r ) = 0. (4)

This prescription ensures that, as in QED, all vacuum
polarization contributions due to the light-fermion pairs
are absorbed into the coupling constant. The resulting
series is conformal since the nonzero {βi}-terms are now
absent. Moreover the PMC prediction is independent
of the choice of renormalization scheme, as required by
the renormalization group invariance. The specific value
of the PMC scale will depend on the scheme, but the
physical result is the same; i.e., the displacement between
the arguments of different schemes is accounted for. Note
that because C11 ∝ C̃11, one can in practice obtain the
PMC scale by using the equation C11(µPMC

r ) ≡ 0, which
is usually adopted in the BLM-literature 3.
The PMC scale setting fixes the final renormaliza-

tion scale at any finite order and it is consistent with
this renormalization group equation theorem. This is
also the invariance principle used to derive the renor-
malization group results such as the Callan-Symanzik
equations [14, 15]. The physical observable O

(

µPMC
r

)

is independent of the choice of different renormaliza-
tion scheme such as the MS-scheme, the momentum-
subtraction scheme and etc. Such scheme-independence
can be adopted to derive commensurate scale relations
among different observables and to find proper scale-
displacements among the PMC scales which are derived
under different schemes or conventions [16]. After PMC
scale setting, the number of active flavors nf in the {βi}-
function is correctly determined [17].
As a fixed-order QCD calculation, there is some resid-

ual initial-scale dependence because of the unknown-
higher-order {βi}-terms. Such residual renormalization
scale-uncertainty can be greatly suppressed due to the
fact that those higher-order {βi}-terms will be absorbed
into the PMC scales’ higher-order αs-terms. Recently, we

3 This should be used with care, since if C10 is a constant free of
scale, then one will obtain the wrong NLO coefficient instead of
the correct one C̃10.
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have demonstrated a systematic and scheme-independent
treatment of PMC up to next-to-next-to-leading order
(NNLO) [4]. A brief report on PMC is presented in
Ref.[5] 4. As an important application, we shall in this
paper predict the total top-quark pair production cross-
section up to NNLO without renormalization scheme or
scale ambiguity.
The top quark is the heaviest elementary particle

within the Standard Model, and because of its large cou-
pling to the Higgs, the top-quark production processes
provide a sensitive probe of electroweak symmetry break-
ing. The precise measurement of the top-quark proper-
ties is an important task for the Tevatron and the LHC
hadron colliders. The top-quark pair production cross-
section can be used as a basic quantity to measure the
top-quark pole mass mt, to constrain new physics and
to extract useful information on the parton distribution
function (PDF) of the proton. Thus the top-quark pro-
duction cross-section is of central and fundamental inter-
est, both theoretically and experimentally.
The total top-pair production cross-section σtt̄ has

been measured at the Tevatron with a precision
∆σtt̄/σtt̄ ∼ ±7% [20, 21] and the two LHC experiments
have already reached similar sensitivity [22, 23]. With
more statistics forthcoming, a more precise theoretical
prediction is required.
The total cross-section for the top-pair production has

been calculated up to NLO within the MS-scheme in
Refs. [24–27]; explicit analytical results are provided in
Ref. [28]. Large logarithmic corrections associated with
the soft gluon emission have been investigated and re-
summed up to next-to-next-to-leading-logarithmic cor-
rections [29–35]. Even though the complete NNLO fixed-
order results are not available at present, parts of the
full NNLO fixed order results have been derived through
resummation [35–38]. This NNLO approximation is sup-
ported by the observation that the production of a top-
quark pair with an additional jet is small [39, 40]. These
results provide the foundation for approximating the
NNLO results.
The dependence on the renormalization and factoriza-

tion scales at the NNLO accuracy has been discussed
using conventional procedures in Refs. [34, 37]. In this
paper, we will provide a new perspective using PMC scale
setting. We shall first set the PMC scales up to NLO
with the help of the NNLO analytic expressions, and we
will then give a detailed discussion on how this procedure
improves the predictability of pQCD. For this purpose,
we shall adopt the analytical expressions up to NNLO
provided in the literature, e.g. Ref. [41].
The remaining parts of this paper are organized as fol-

lows: in Sec.II, we give the PMC scale setting for the
top-quark pair production. In Sec.III, we present numer-
ical results and discussions. Sec.IV provides a summary.

4 Another way of treating the {βi}-series to set the PMC/BLM
scale can be found in Refs.[18, 19].

H1

H2

i

j
Lij

fi/H1
(x1, µf)

fj/H2
(x2, µf)

t

t̄
σ̂ij

FIG. 1. Diagram for the top-quark pair production obtained
from the convolution of the partonic subprocess cross-section
σ̂ij with the parton luminosities Lij .

II. PMC SCALE SETTING FOR THE

TOP-QUARK PAIR PRODUCTION

In this section, we shall give the general formulae for
setting the PMC scales for the top-quark pair produc-
tion cross-section up to NLO. We will then compute the
scales for each production channel and discuss their spe-
cific properties.

A. General formulae

Hadronic cross section for the top-quark pair produc-
tion, as illustrated in Fig.(1), can be obtained from the
convolution of the factorized partonic cross-section σ̂ij

with the parton luminosities Lij :

σH1H2→tt̄X =
∑

i,j

S
∫

4m2

t

ds Lij(s, S, µf )σ̂ij(s, αs(µr), µr, µf ),

(5)
with the parton luminosity

Lij =
1

S

S
∫

s

dŝ

ŝ
fi/H1

(x1, µf ) fj/H2
(x2, µf ) ,

where x1 = ŝ/S and x2 = s/ŝ. Here S denotes the
hadronic center-of-mass energy squared and s = x1x2S is
the subprocess center-of-mass energy squared. we denote
the renormalization scale as µr and the factorization scale
as µf . The functions fi/H1,2

(xα, µf ) (α = 1, 2) are the
PDFs describing the probability to find a parton of type
i with a momentum fraction between xα and xα + dxα

in the hadron H1,2. The top-quark mass mt is the mass
renormalized in the on-shell (pole-mass) scheme. Setting
s = 4m2

t (S/4m
2
t )

y1 and ŝ = s(S/s)y2 , we can transform
the two-dimensional integration over s and ŝ into the
integration over two variables y1,2 ∈ [0, 1]. These inte-
grals can be performed numerically using the VEGAS
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program [42] 5.
The partonic subprocess cross-sections σ̂ij can be de-

composed in terms of the dimensionless scaling functions
fm
ij , where (ij) = {(qq̄), (gg), (gq), (gq̄)} stands for the
four production channels and m = 0, 1, 2 stands for the
LO, NLO and NNLO functions respectively 6. Up to
NNLO, they takes the following form

σ̂ij =
1

m2
t

{

f0
ij(ρ,Q)a2s(Q) + f1

ij(ρ,Q)a3s(Q)

+f2
ij(ρ,Q)a4s(Q)

}

, (6)

where ρ = 4m2
t/s, and we have, for convenience, tem-

porarily set µf = µr = Q, as(Q) = αs(Q)/π. The ana-

lytic expressions of the scale functions f0,1,2
ij (ρ,Q), which

shows the full renormalization and factorization scale de-
pendence, can be directly read from the HATHOR pro-
gram 7.
We will apply the PMC scale setting procedure to each

renormalizable hard subprocess which enters the pQCD
leading-twist factorization procedure; the initial and fi-
nal quark and gluon lines are taken to be on-shell so
that the calculation of each hard subprocess amplitude
is gauge invariant. Thus the application of PMC to hard
subprocesses does not involve the factorization scale.
According to the PMC scale setting, we need to iden-

tify the explicit terms that are nf - or n
2
f - dependent. One

must be careful that only those nf -terms associated with
the {βi}-terms will be absorbed into the running of αs.
Coulomb-type corrections will lead to sizable contribu-
tions in the threshold region [46, 47] which are enhanced
by factors of π and the PMC scale can be relatively soft
for v → 0 (v =

√
1− ρ, the heavy quark velocity). Thus

the terms which are proportional to (π/v) or (π/v)2 will
be treated separately [48].
The NLO and NNLO scaling functions can be written

as

f1
ij(ρ,Q) = [A1ij +B1ijnf ] +D1ij

(π

v

)

(7)

f2
ij(ρ,Q) =

[

A2ij +B2ijnf + C2ijn
2
f

]

+

[D2ij + E2ijnf ]
(π

v

)

+ F2ij

(π

v

)2

. (8)

5 An improvement of the VEGAS program to derive precise nu-
merical results can be found in the generators BCVEGPY [43]
and GENXICC [44].

6 There are also (qq)- and (q̄q̄)- channels at the NLO and NNLO
orders. However, because of the large suppression coming from
the parton luminosities and the phase-space (due to more jets in
the final state), their cross-sections are much smaller than the
(gq)- or (gq̄)-channel. We will not discuss these channels here.

7 Note that in the appendix of the HATHOR manual [41], the scal-

ing function f
(0)
qq̄,gg in the functions f21

qq̄,gg and f22
qq̄,gg (which are

not proportional to n2
f
) should be replaced by its limiting form

at ρ → 1 [45], since all the coefficients of the scaling functions are
fitted to per mil accuracy through such parameterization [34].

Shift scale of αs to µPMC
R to eliminate {βR

i } − terms

Conformal Series

Choose renormalization scheme; e.g. αR
s (µ

init
R )

Choose µinit
R ; arbitrary initial renormalization scale

Identify {βR
i } − terms using nf − terms

through the PMC −BLM correspondence principle

Result is independent of µinit
R and scheme at fixed order

FIG. 2. A “flow chart” which illustrates the PMC procedure.

Substituting these scaling functions into Eq.(6), the par-
tonic cross-section σ̂ij becomes

m2
t σ̂ij = A0ija

2
s(Q) +

{

[A1ij +B1ijnf ] +D1ij

(π

v

)}

a3s(Q) +
{[

A2ij +B2ijnf + C2ijn
2
f

]

+

[D2ij + E2ijnf ]
(π

v

)

+ F2ij

(π

v

)2
}

a4s(Q),(9)

where A0ij = f0
ij(ρ,Q).

Following the same procedures as described in Ref. [4],
the PMC scales can be set order-by-order, treating the
Coulomb and non-Coulomb contributions separately. A
“flow chart” which illustrates the PMC procedure is
shown in Fig.(2). More explicitly, the first step is to
set the effective scale Q∗

1 and Q∗
2 at LO:

m2
t σ̂ij = A0ija

2
s(Q

∗
1) +

[

Ã1ij

]

a3s(Q
∗
1) +

[

Ã2ij + B̃2ijnf

]

a4s(Q
∗
1) +D1ij

(π

v

)

a3s(Q
∗
2) +

[

D̃2ij

] (π

v

)

a4s(Q
∗
2) + F2ij

(π

v

)2

a4s(Q
∗
2). (10)

The second step is to set the effective scale Q∗∗
1 at NLO:

m2
t σ̂ij = A0ija

2
s(Q

∗
1) +

[

Ã1ij

]

a3s(Q
∗∗
1 ) +

[

˜̃A2ij

]

a4s(Q
∗∗
1 ) +D1ij

(π

v

)

a3s(Q
∗
2) +

[

D̃2ij

(π

v

)

+ F2ij

(π

v

)2
]

a4s(Q
∗
2)

= A0ija
2
s(Q

∗
1) +

[

Ã1ij

]

a3s(Q
∗∗
1 ) +

[

˜̃A2ij

]

a4s(Q
∗∗
1 )

+
(π

v

)

D1ij

[

2κ

1− exp(−2κ)

]

a3s(Q
∗
2), (11)

where κ =
D̃2ij

D1ij
as(Q

∗
2)+

F2ij

D1ij

(

π
v

)

as(Q
∗
2). Q

∗
1 and Q∗∗

1 are

LO and NLO PMC scales for the usual non-Coulomb part
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and Q∗
2 is the LO PMC scale for the Coulomb part. Note

that the effective scales will be a perturbative series of as
so as to absorb all nf -dependent terms properly [4, 16].
When performing these scale shifts, we eliminate the nf -
terms completely. At the same time, the correspond-
ing coefficients at the given αs-order are modified, since
the changes to the coefficients are proportional to {βi}-
functions.
For the usual non-Coulomb terms, the two PMC scales

Q∗,∗∗
1 satisfy

ln
Q∗2

1

Q2
= ln

Q∗2
10

Q2
+

χ

4
β0 ln

Q∗2
10

Q2
as(Q)

ln
Q∗2

10

Q2
=

3B1ij

A0ij
, χ =

9B2
1ij − 12A0ijC2ij

2A0ijB1ij
(12)

and

ln
Q∗∗2

1

Q∗2
1

=
2B̃2ij

Ã1ij

. (13)

Here β0 = 11
3
CA − 4

3
Tnf = 11− 2nf/3, where CA = Nc

and T = 1/2 for a general SU(Nc) color-group. The
PMC procedure is independent of Nc, and here we have
set Nc = 3. The order-by-order coefficients are

Ã1ij =
2A1ij + 33B1ij

2
(14)

Ã2ij =
1

8A0ij
[99B1ij(2A1ij + 33B1ij)+

A0ij(8A2ij + 306B1ij − 2178C2ij)] (15)

B̃2ij =
1

4A0ij
[4A0ij(B2ij + 33C2ij)−

B1ij(19A0ij + 6A1ij + 99B1ij)] (16)

˜̃A2ij =
2Ã2ij + 33B̃2ij

2
(17)

In the case of the Coulomb terms, we adopt the Som-
merfeld rescattering formula to sum up the higher-order
(π/v)-terms. Notice that the overall factor (π/v) in the
last line of Eq.(11) will be canceled by a v1-factor in D1ij

ensuring a finite result at v = 0. The LO PMC scale Q∗
2

satisfies

ln
Q∗2

2

Q2
=

2E2ij

D1ij
(18)

with the coefficient

D̃2ij = (2D2ij + 33E2ij)/2. (19)

Since the channels (ij) = {(qq̄), (gg), (gq), (gq̄)} are
distinct and non-interfering, their PMC scales should be
set separately. The procedure is gauge invariant.

B. (qq̄)-channel

For the (ij) = (qq̄) channel, all the coefficients A0qq̄,
A1qq̄ and etc. are non-zero. The corresponding contri-
butions to the cross-section are conveniently expressed

α3
s; (π/v);D1qq̄α3

s;nf ;B1qq̄ α4
s;n

2
f ;C2qq̄

α4
s;n

2
f ;C2qq̄ α4

s;nf ;B2qq̄ α4
s;nf ;B2qq̄

t

t̄

q

q̄

α4
s;nf ;B2qq̄ α4

s; (π/v)
2;F2qq̄ α4

s; (π/v);D2qq̄

α4
s;nf ;B2qq̄α4

s;nf(π/v);E2qq̄ α4
s;nf(π/v);E2qq̄

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

FIG. 3. Cut diagrams for the n
(1,2)
f -terms and the Coulomb-

terms for the (qq̄)-channel up to NNLO, where the solid circles
stand for the light-quark loops.

200 400 600 800 1000 1200 1400 1600 1800 2000
-20

-10

0

10

20

30

 A1qq

 B2qq

 2B2qq/A1qq

 

 

s

FIG. 4. PMC coefficients of the (qq̄)-channel versus the sub-
process collision energy

√
s, which determine the behavior of

the NLO PMC scale Q∗∗
1 . Q = mt = 172.9 GeV.

by the absorptive contributions (cuts) of the Feynman
diagrams. We present the typical cut diagrams for the
nf -terms and the Coulomb-terms in Fig.(3).
Following PMC scale setting, all nf -terms which are

associated with the {βi}-terms are absorbed into the αs-
coupling step-by-step:

• When performing the scale shifts, the terms A1ij ,
A2ij , D2ij , etc. are modified so that the final ex-
pression is conformal.

• When performing the scale shift Q → Q∗
1, the

first type of {βi}-terms B1qq̄ (Fig.(3a)) and C2qq̄

(Fig.(3c,3d)) are eliminated exactly. The part of
B2qq̄ , i.e. Fig.(3h) which contains the same type
of {βi}-term is also absorbed into αs-running. The
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s

FIG. 5. Comparison with of the PMC coefficients for the (gg)-
and (qq̄)- channels versus the subprocess collision energy

√
s.

Q = mt = 172.9 GeV.

remaining part of B2qq̄ (Fig.(3e,3f,3j)) is compen-
sated by A1qq̄ and B1qq̄ to ensure that the first type
of {βi}-terms are absorbed into αs-coupling ex-

actly, which results in a new variable B̃2qq̄. Because
(B1qq̄/A0qq̄) increases monotonically with

√
s, the

scale Q∗
1 shows the same trend versus

√
s.

• When performing the scale shift Q∗
1 → Q∗∗

1 , the

second type of {βi}-terms, i.e. B̃2qq̄ (Fig.(3e,3f,3j))
are eliminated. As shown in Fig.(4), the value of

B̃2qq̄ is always negative and Ã1qq̄ has a minimum
value at small

√
s. With the help of Eq.(13), one

finds that the NLO scale Q∗∗
1 is smaller than Q.

Note especially that there is a concave dependence
for Q∗∗

1 versus
√
s as shown in Fig.(6).

• Similarly, when performing the scale shift Q → Q∗
2

for the Coulomb type contribution, the term E2qq̄

(Fig.(3g,3i)) is eliminated.

C. (gg)-channel

For the (ij) = (gg) channel, we have C2gg = 0, and the
other coefficients A0gg, A1gg, etc. are non-zero. Thus the
(gg)-channel can be treated in a similar way as the (qq̄)-
channel. As can be seen from Fig.(5), in contrast to the

(qq̄)-channel, both 2B̃2gg/Ã1gḡ and 3B1gg/A0gḡ are close
to zero, thus its LO and NLO PMC scales (Q∗

1 and Q∗∗
1 )

are close to Q and are changed more smoothly with
√
s.

In Refs. [49, 50], the authors have suggested another
way to set the effective coupling for the three-gluon ver-
tex which depends on its input three momenta and gives
rise to an effective scale Q2

eff which governs the behav-
ior of the three-gluon vertex up to one-loop level. Such
effective scale is consistent with the PMC scale setting
in principle, however its momenta must be space-like or
time-like, and it cannot be adopted for the present case

when the two initial gluon momenta are set to be on mass
shell.

D. (gq)- or (gq̄)- channel

For the (i, j) = (g, q) or (g, q̄) channel, we have A0ij =
0, D1gq = 0, E2gq = F2gq = 0, which shows that the
Coulomb type corrections start only at the NNLO order.
Thus its scale setting is greatly simplified, and we only
need one LO PMC scale for these two channels, i.e.

m2
t σ̂ij = [A1ij ] a

3
s(Q) + [A2ij +B2ijnf ] a

4
s(Q)

+ [D2ij ]
(π

v

)

a4s(Q)

= A1ija
3
s(Q

∗
1) +

[

Ã2ij

]

a4s(Q
∗
1) +

D2ij

(π

v

)

a4s(Q), (20)

where (i, j) = (g, q) or (g, q̄),

ln
Q∗2

1

Q2
=

2B2ij

A1ij

Ã2ij = A2ij +
33

2
B2ij .

III. NUMERICAL RESULTS AND

DISCUSSIONS

The basic input parameters are chosen with the fol-
lowing values: for the top-quark mass, we adopt the
present PDG value [51], which includes the most recent
Tevatron Run II result 173.1 ± 0.6 ± 1.1 GeV [20], i.e.
mt = 172.9± 1.1 GeV.
It should be emphasized that the factorization scale µf

which enters into the predictions for QCD inclusive re-
actions is introduced to match nonperturbative and per-
turbative aspects of the parton distributions in hadrons.
The factorization scale should be chosen to match the
nonperturbative bound state dynamics with perturbative
DGLAP evolution. This could be done by using the non-
perturbative models such as AdS/QCD and light-front
holography, a recent report can be found in Ref.[52]. At
present, to keep attention on the renormalization scale,
we set µf ≡ mt. With such a choice, the dependence on
the large logarithms lnµ2

f/m
2
t is eliminated.

To apply PMC scale setting, one has to introduce an
initial value for the renormalization scale, i.e. µinit

r . As
a reasonable choice for µinit

r , we take µinit
r = Q, where

Q stands for the typical momentum transfer of the pro-
cess. For example, Q can be taken as mt, 2mt,

√
s, etc.

As the default choice, we take Q = mt. In principle,
the prediction will not depend on the choice of the ini-
tial renormalization scale µinit

r after we have summed the
{βi}-terms up to all orders. There is some residual initial-
scale dependence at fixed order because of the unknown-
higher-order {βi}-terms; however we will show that such
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residual scale dependence can be greatly suppressed by
using the PMC.

As is conventional, we have set µf ≡ µr = Q in Sec.II.
When µf is not equal to Q, the formulas listed in the
above section should be used with care, i.e. all the Q-
terms in the scaling functions that exactly correspond to
µf should be picked out and fixed during the PMC scale
setting. Especially, the terms at NNLO which involve
the factor lnQ2/µ2

f must be separated into two parts,

one is proportional to lnµ2
f/m

2
t which should be kept in

its original form, and the other one is proportional to

lnQ2/m2
t which should be absorbed into the lower-order

αs-terms through the standard PMC scale setting. In
such a way, we can isolate the correct nf -terms from the
NLO and NNLO scaling functions.
For the PDFs, we adopt CTEQ version 2010, i.e.

CT10 [53], for our discussion. The effects from the PDF
uncertainty and normalization of the QCD coupling will
be determined by adopting different PDF sets determined
by varying αs(mZ) ∈ [0.113, 0.230]. The NNLO αs-
running is adopted whose behavior is determined by us-
ing the same value of αs(mZ) used in the chosen PDF
set [54].

Conventional scale setting PMC scale setting

LO NLO NNLO total LO NLO NNLO total

(qq̄)-channel 4.989 0.975 0.489 6.453 4.841 1.756 -0.063 6.489

(gg)-channel 0.522 0.425 0.155 1.102 0.520 0.506 0.148 1.200

(gq)-channel 0.000 -0.0366 0.0050 -0.0316 0.000 -0.0367 0.0050 -0.0315

(gq̄)-channel 0.000 -0.0367 0.0050 -0.0315 0.000 -0.0366 0.0050 -0.0316

sum 5.511 1.326 0.654 7.489 5.361 2.188 0.095 7.626

TABLE I. Total cross-sections (in unit: pb) for the top-quark pair production at the Tevatron with
√
S = 1.96 TeV. For the

conventional scale setting, we set the renormalization scale µr ≡ Q. For the PMC scale setting, we set the initial renormalization
scale µinit

r = Q. Here Q = mt = 172.9 GeV and the central CT10 as the PDF [53].

Conventional scale setting PMC scale setting

LO NLO NNLO total LO NLO NNLO total

(qq̄)-channel 23.283 3.374 1.842 28.527 22.244 7.127 -0.765 28.429

(gg)-channel 78.692 45.918 10.637 135.113 78.399 53.570 8.539 142.548

(gq)-channel 0.000 -0.401 1.404 1.025 0.000 -0.408 1.403 1.006

(gq̄)-channel 0.000 -0.420 0.235 -0.186 0.000 -0.424 0.235 -0.188

sum 101.975 48.471 14.118 164.594 100.643 59.865 9.414 171.796

TABLE II. Total cross-sections (in unit: pb) for the top-quark pair production at the LHC with
√
S = 7 TeV. For the

conventional scale setting, we set the renormalization scale µr ≡ Q. For the PMC scale setting, we set the initial renormalization
scale µinit

r = Q. Here Q = mt = 172.9 GeV and the central CT10 as the PDF [53].

We first present the total cross-sections for the top- quark pair production under the PMC scale setting by
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FIG. 6. PMC scales versus the sub-process collision energy
√
s for the top-quark pair production up to

√
s = 7 TeV, where we

have set the initial renormalization scale µinit
r = Q. Here Q = mt = 172.9 GeV.

Conventional scale setting PMC scale setting

LO NLO NNLO total LO NLO NNLO total

(qq̄)-channel 73.445 9.003 5.159 87.580 69.334 21.075 -2.976 86.961

(gg)-channel 487.517 262.960 49.869 800.675 485.505 303.692 37.353 835.410

(gq)-channel 0.000 9.299 7.685 16.996 0.000 9.369 7.687 16.967

(gq̄)-channel 0.000 0.023 1.919 1.947 0.000 -0.031 1.919 17.056

sum 560.962 281.285 64.632 907.434 554.839 334.105 43.983 941.256

TABLE III. Total cross-sections for the top-quark pair production at the LHC with
√
S = 14 TeV. For the conventional scale

setting, we set the renormalization scale µr ≡ Q. For the PMC scale setting, we set the initial renormalization scale µinit
r = Q.

Here Q = mt = 172.9 GeV and the central CT10 as the PDF [53].

fixing all the input parameters to their central values.
The results are presented in Tables I, II and III, where
for comparison, the total cross-sections for the “conven-
tional scale setting” method are also presented. Here
“conventional scale setting” means we will directly use
Eq.(6) to do the numerical calculation, which stands for
the conventional way of setting the renormalization scale;
i.e. µr ≡ Q. Three typical hadron collision energies at
the Tevatron and LHC are adopted, i.e.

√
S = 1.96 TeV,

7 TeV and 14 TeV respectively. The results for the four
mentioned production channels, i.e. (qq̄)-, (gg)-, (gq)-
and (gq̄)-channels, are presented. Note that the result
listed in the total-column is not a simple summation of
the corresponding LO, NLO and NNLO results; since
they are obtained by using the Sommerfeld re-scattering
formula to treat the Coulomb part; i.e., all (π/v)-terms
have been summed up. It is found that such resummed
Coulomb term provides an extra ∼ ±1% contribution to
the total cross-sections.

• Tables I, II and III show that at the Tevatron

the total cross-section is dominated by the (qq̄)-
channel, while at the LHC the dominant channel is
the (gg)-channel. This is reasonable, since one may
observe that the parton luminosity Lgg > Lqq̄,gq,gq̄

in the small x-region which is favored at the LHC.

• Tables I, II and III show that the pQCD conver-
gence is improved after PMC scale setting, espe-
cially since the NNLO contribution becomes small.
This is due to the fact that we have resummed the
universal and gauge invariant higher-order correc-
tions associated with the {βi}-terms into the LO
and NLO -terms by suitable choice of PMC scales.
It is also the reason why after PMC scale setting,
the total cross-section σtt̄ is increased by ∼ 2% at
the Tevatron and ∼ 4% at the LHC. Such a small
increment of the total cross-section after PMC scale
setting in some sense means that the naive choice
of µr ≡ mt is a viable approximation for estimating
the total cross-section. However as will be shown
later, by using PMC, the renormalization scale un-
certainty is greatly suppressed and essentially elim-
inated at the NNLO level.
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(a) (b) (c) (d)

FIG. 7. Typical n2
f -terms for the electron-muon elastic scat-

tering process at α4-order, where the solid circles stand for the
light-lepton loops. Diagrams (a) and (b) are vacuum polar-
ization contributions to the dressed photon propagator which
will be absorbed into α(t) as shown by Eq.(1). Diagrams
(c) and (d) introduce new type of {βi}-terms and new PMC
scales must be introduced.

• Since different channels have quite different behav-
iors, it is necessary to use different PMC scales for
each channel. The PMC scales are functions of√
s, whose behaviors up to

√
s = 7 TeV are pre-

sented in Fig.(6). Because of the behaviors of the
PMC coefficients shown in Fig.(5), the LO PMC
scale for the (qq̄)-channel increases with

√
s and is

much larger than mt for large
√
s. As a result, its

LO cross-sections at the Tevatron and LHC are de-
creased by 3%− 5% relative to the standard guess
of setting µr ≡ mt under the conventional scale set-
ting method. Because |B1gg/A0gg| << 1, the LO
PMC scale for the (gg)-channel is slightly different
from mt and its LO cross-section remains almost
unchanged. It is noted that there is a dip for the
NLO scale of the (qq̄)-channel, which is caused by

the fact that B̃2qq̄/Ã1qq̄ reaches its smallest value

when
√
s ≃ [

√
2 exp(5/6)]mt ∼ 563 GeV. The NLO

PMC scale for the (qq̄)-channel is smaller than mt

by about one order of magnitude in the low x-
region. As a result, its NLO cross-section will be
greatly increased; i.e. it is a factor of two times
larger than its value derived without PMC scale
setting. As for the (gg)-channel, its NLO PMC
scale slightly increases with

√
s, but it is smaller

than mt for
√
s <∼ 1 TeV, so that its NLO cross-

sections at the Tevatron and LHC are increased by
15% − 20%. These points are shown explicitly in
Tables I, II and III.

• As has been mentioned in the Introduction, there
is residual initial renormalization scale dependence
because of the unknown-higher-order {βi}-terms.
For the simpler QED process such as the electron-
muon elastic scattering through the one-photon ex-
change only, there is one type of {βi}-terms, which
can be conveniently summed up to all orders and
its renormalization scale can be unambiguously set
as the virtuality of the exchanged photon as shown
by Eq.(1). Thus there is no residual initial scale
dependence for the one-photon exchange process.
When two or more photon exchange diagrams are
involved, more than one types of {βi}-terms will
emerge; i.e. Fig.(7c,7d) shows the diagrams with
two-photon exchange, and there are two types of
{βi}-terms which must be absorbed into two differ-
ent PMC scales. Because of the unknown higher-
order corrections for these two types of {βi}-terms,
there is still residual initial scale dependence.
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FIG. 8. The ratio RPMC
Q =

µPMC
r |

µinit
r =Q

µPMC
r |

µinit
r =mt

versus the sub-process collision energy
√
s up to 14 TeV, where Q = 10mt, 20mt

and
√
s respectively. Here mt = 172.9 GeV. These results show that the renormalization scales for tt̄ production determined

by PMC scale setting at finite order is insensitive to the choice of very disparate initial scales.
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FIG. 9. A comparison of the “effective” differential cross-sections dσtt̄/d
√
s ∝

(

2
√
sLij σ̂ij

)

derived from Eq.(5) for Q = mt,

20mt and
√
s respectively. Here mt = 172.9 GeV. At the Tevatron, the (gq)- and (gq̄)-channels give the same contributions

and are negative, for convenience, we have put their absolute values in the figure. For each channels, the differential cross-
sections with different Q almost coincide with each other. These results thus show that the total cross-sections for tt̄ production
determined by PMC scale setting at finite order is insensitive to the choice of a wide range of initial renormalization scales.

The PMC scales should be a perturbative series of
αs so as to absorb all {βi}-dependent terms prop-
erly. Therefore, the residual initial renormalization
scale uncertainty can be greatly suppressed due to
the fact that those higher-order {βi}-terms can be
absorbed into the PMC scales’ higher-order terms.
We define a ratio RPMC

Q to show how the change of
initial renormalization scale affects the PMC scales;
i.e.

RPMC
Q =

µPMC
r |µinit

r =Q

µPMC
r |µinit

r =mt

, (21)

where µPMC
r |µinit

r =Q stands for the PMC scales de-

termined under the condition of µinit
r = Q, which is

Q∗
1 (LO scale for the non-Coulomb part), Q∗∗

1 (NLO
scale for the non-Coulomb part) or Q∗

2 (LO scale
for the Coulomb part) respectively. In Fig.(8), we
present the value of RPMC

Q versus
√
s up to 14 TeV.

In order to amplify the differences, we take three
disparate scales to draw the curves, i.e. Q = 10mt,
20mt and

√
s respectively. In Fig.(8), the ratios for

the dominant qq̄- and gg- channels are presented,
and the ratios for the LO/NLO non-Coulomb PMC

scales and LO Coulomb PMC scale are presented
in a separate way.

As shown in Fig.(8), the LO PMC scale Q∗
2 for

the Coulomb-term in both channels are unchanged
under different choice of Q. Among these choices,
Q =

√
s usually gives the largest deviation from

the case of Q = mt. The residual initial scale de-
pendence for the (gg)-channel is small, RPMC

Q ∼ 1,
only for the LO non-Coulomb PMC scale Q∗

1, it
has sizable effect. As an example, for the case of
Q =

√
s, its Q∗

1 deviates from that of Q = mt

by ∼ 1% at
√
s = 7 TeV, and it is raised only

up to ∼ 7% at
√
s = 14 TeV. In the case of the

(qq̄)-channel, the residual scale dependence of the
LO/NLO PMC scale for the non-Coulomb part is
somewhat larger; i.e. the deviation is about 12%
for the case of Q =

√
s at

√
s = 2 TeV, and the de-

viation reaches up to ∼ 60% at
√
s = 14 TeV. (We

expect that this dependence on Q will be greatly
reduced at NNNLO.) However in such high collision
region (

√
s > 2 TeV), the total cross-sections are

highly suppressed by the parton luminosities and
their values are almost unchanged by using very
different initial scales.

To show this point more clearly, we draw the “ef- fective” differential cross-sections dσtt̄/d
√
s versus
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the subprocess collision energy
√
s in Fig.(9), where

dσtt̄/d
√
s ∝ (2

√
sLij σ̂ij) for a specific (ij)-channel

which can be derived from Eq.(5). At the Teva-
tron, the (gq)- and (gq̄)- channels give the same
contributions and are negative, so we have put their
absolute values in the figure for easy comparison.
The differential cross-sections almost coincide with
each other. These results thus show that the total
cross-sections σtt̄ determined by PMC scale setting

are insensitive to the difference choices of the initial
renormalization scale. More over, Fig.(9) explicitly
shows the relative importance of different produc-
tion channels, i.e. at the Tevatron the total cross-
section is dominated by the (qq̄)-channel, while at
LHC the dominant one is the (gg)-channel. This
agrees with the previous observation from Tables I,
II and III.

PMC scale setting Conventional scale setting

Q = mt/4 Q = mt/2 Q = mt Q = 2mt Q = 4mt µr ≡ mt/2 µr ≡ mt µr ≡ 2mt

Tevatron (1.96 TeV) 7.620(5) 7.622(5) 7.626(3) 7.622(6) 7.623(6) 7.742(5) 7.489(3) 7.199(5)

LHC (7 TeV) 171.6(1) 171.7(1) 171.8(1) 171.7(1) 171.7(1) 168.8(1) 164.6(1) 157.5(1)

LHC (14 TeV) 941.8(8) 941.9(8) 941.3(5) 941.4(8) 941.4(8) 923.8(7) 907.4(4) 870.9(6)

TABLE IV. Dependence on the initial renormalization scale of the total tt̄ production cross-sections (in unit: pb) at the
Tevatron and LHC. Here mt = 172.9 GeV and the central CT10 as the PDF [53]. The number in the parenthesis shows the
Monte Carlo uncertainty in the last digit.

µPMC
r → µPMC

r /2 µPMC
r → µPMC

r µPMC
r → 2µPMC

r

Tevatron (1.96 TeV) 9.683 7.626 6.163

LHC (7 TeV) 223.0 171.8 136.4

LHC (14 TeV) 1221.0 941.3 748.9

TABLE V. A comparison of the tt̄ production cross-sections (in unit: pb) under “wrong PMC scales”, i.e. all PMC scales µPMC
r

are changed by 2 or 1/2. Here mt = 172.9 GeV and the central CT10 as the PDF [53]. Such “PMC scale uncertainty” shows
explicitly how the breaking of conformal symmetry affects the final results.

Total cross-sections with several typical initial
renormalization scale µinit

r = Q are presented in
Table IV. For the present considered NNLO level,
it is found that the residual scale uncertainty to
the total cross-section is less than 10−3 by setting
Q = 4mt or Q = mt/4. In fact, even by set-
ting Q = 20mt and

√
s, such residual scale un-

certainty is still less than 10−3. As a compari-
son, we also present the results for the conventional
scale setting in Table IV; by varying the renor-
malization scale within the region of [mt/2, 2mt],
we obtain a large renormalization scale-uncertainty
(

+3%

−4%

)

at the Tevatron and LHC, which agrees with

the previous results derived in the literature, c.f.
Refs. [34, 37]. This shows that the renormalization

scale uncertainty is greatly suppressed and essen-
tially eliminated using PMC at the NNLO level.

• Even though the present NNLO result is an ap-
proximation, it contains the necessary {βi}-terms
for determining the lower-order PMC scales. After
doing the PMC scale setting, the LO- and NLO-
terms are conformally invariant and do not depend
on the renormalization schemes. However, because
the NNNLO {βi}-contribution is not available at
the present, we do not have enough information to
set the NNLO PMC scale, so we have set it as Q∗∗

1 .
The NNLO-term is then the only term which con-
tains a non-conformal contribution. However, after
PMC scale setting, such remaining non-conformal
contribution is negligible; e.g., at the Tevatron it is
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FIG. 10. Total cross-section σtt̄ for the top-pair production, with or without PMC scale setting, versus top-quark mass. The
experimental data are adopted from Refs. [20–23].

found that the NNLO contribution itself is reduced
to be ∼ 1%.

• After PMC scale setting, the effective PMC scales
are unique at each order. Slight change of PMC
scales may lead to large effects due to the ex-
plicit breaking of the conformal invariance. This,
inversely, can be adopted as a check of whether
the renormalization scales have been set cor-
rectly or not. To see this point more clearly,
we make a discussion on the “PMC scale uncer-
tainty” by varying the PMC scale within the re-
gion of [µPMC

r /2, 2µPMC
r ], where µPMC

r stands for
the canonical renormalization scale after PMC scale
setting. The results are presented in Table V.
Large “PMC scale uncertainty” shows explicitly
how the breaking of conformal symmetry affects
the final results.

• We can analyze the combined PDF and αs un-
certainty by using different CTEQ PDF sets, i.e.
CT10 [53], which are global fits of experimental

data with varying αs(mZ) ∈ [0.113, 0.230]. As for
the total cross-section after PMC scale setting, we
obtain

σTevatron, 1.96TeV = 7.626+0.705
−0.610 pb (22)

σLHC, 7TeV = 171.8+19.5
−16.2 pb (23)

σLHC, 14TeV = 941.3+83.3
−77.1 pb (24)

where the errors are caused by the PDF+αs uncer-
tainty. Here a larger PDF+αs error than that of
Refs. [34, 36] is due to the choice of PDFs with a
wider range of αs(mZ). If taking the present world
average αs(mZ) ≃ 0.118±0.001 [51], we will obtain
a much smaller PDF+αs error; i.e.

σTevatron, 1.96TeV = 7.626+0.143
−0.130 pb (25)

σLHC, 7TeV = 171.8+3.8
−3.5 pb (26)

σLHC, 14TeV = 941.3+14.6
−15.6 pb (27)

• The total cross-section σtt̄ is sensitive to the top-
quark mass, and it is found that the total cross-
sections decrease with the increment of top-quark
mass. After the PMC scale setting, by varying
mt = 172.9± 1.1 GeV [51], we predict

σTevatron, 1.96TeV = 7.626+0.265
−0.257 pb (28)

σLHC, 7TeV = 171.8+5.8
−5.6 pb (29)

σLHC, 14TeV = 941.3+28.4
−26.5 pb (30)

where the errors are caused by the top-quark mass

uncertainty. In Fig.(10) we present the total cross-
section σtt̄ as a function of mt, where σtt̄ with or
without PMC scale setting are shown explicitly. Af-
ter PMC scale setting, the value of σtt̄ is more closer
to the central value of the experimental data [20–
23], which shows a better agreement with the ex-
perimental data.
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IV. SUMMARY

The renormalization scales can be set unambiguously
by PMC scale setting, which allows us to set the renor-
malization scale at any required order. The correct scale-
displacement between the arguments of different renor-
malization schemes is automatically set, and the number
of active flavors nf in the {βi}-function is correctly de-
termined in any scheme. In the present paper, we have
presented an explicit example of using PMC scale setting
to eliminate the renormalization scale ambiguity and the
scheme dependence.
Through PMC scale setting, we have set the LO/NLO

PMC scales to the top-quark pair production with the
help of the analytic NNLO expressions provided in the
literature. After PMC scale setting, all the higher-order
{βi}-terms have been absorbed into the LO- and NLO-
αs running, and we have

• A larger value for the total tt̄ cross-section σtt̄ is
obtained, which agrees with the present Tevatron
and LHC experimental data well. More explic-
itly, by setting mt = 172.9 ± 1.1 GeV, we predict
σTevatron, 1.96TeV = 7.626+0.265

−0.257 pb, σLHC, 7TeV =

171.8+5.8
−5.6 pb and σLHC, 14TeV = 941.3+28.4

−26.5 pb.
This is achieved because we have resummed the
universal and gauge invariant higher-order correc-
tions which are associated with the running of the
coupling into the LO- and NLO- terms by using
suitable PMC scales.

• A more convergent pQCD series expansion is ob-
tained. In contrast to the usual convention of set-
ting µr ≡ mt, the effective LO and NLO PMC
scales vary with the subprocess collision energy

√
s.

Different channels are distinct and non-interfering,
so their PMC scales have been set separately. The
procedure is gauge invariant. For the (qq̄)-channel,
its NLO PMC scale is much smaller than mt in
the dominant small x-region, and its NLO con-
tribution is largely increased by about a factor of
two. In the case of the (gg)-channel, its NLO PMC
scale slightly increases with increasing

√
s, but it

is smaller than mt for
√
s <∼ 1 TeV, and its NLO

contribution is increased by ∼ 20%.

• After PMC scale setting, the resulting LO- and
NLO- terms are conformally invariant and do
not depend on the choice of renormalization
scheme. Since the non-conformal contributions in
the NNLO-terms have been suppressed, especially
at the Tevatron the NNLO contribution itself is

reduced to be ∼ 1%. However, slight change of
PMC scales will lead to large effects due to the ex-
plicit breaking of the conformal invariance. This,
inversely, can be adopted as a check of whether the
renormalization scales have been set correctly or
not. The PDF+αs uncertainty and the top-quark
mass uncertainty have been discussed in detail.

• In principle, the PMC scale and the resulting renor-
malized amplitude is independent of the choice
of the initial renormalization scale µinit

r . There
is residual initial renormalization-scale dependence
caused by the lack of information on even higher-
order {βi}-terms. Such residual scale-uncertainty
will be greatly suppressed when the PMC scales
have been set suitably. At the NNLO level, it is
found that the total tt̄ cross-sections σtt̄ remain al-
most unchanged by varying the initial scale within
a large region of [mt/4, 4mt], which is shown ex-
plicitly in Table IV. Then, the usual renormaliza-

tion scale uncertainty ∆σtt̄/σtt̄ ∼
(

+3%

−4%

)

at the

Tevatron and LHC is greatly suppressed or even
eliminated by PMC scale setting. More explicitly,
at the LHC with

√
S = 14 TeV, it is found that

σtt̄ = 941− 942 pb for µinit
r ∈ [mt/4, 4mt], whereas

the conventional scale setting leads to a variation
of ∼ 6%, from 871− 924 pb, even when the renor-
malization scale varies within a smaller region of
[mt/2, 2mt].

• The determination of the factorization scale is a
completely separate issue from the renormalization
scale setting. We expect that the factorization scale
ambiguity may also be reduced by applying the
PMC scale setting in the DGLAP evolution equa-
tions.

• The PMC can be applied to a wide-variety of
perturbatively-calculable collider and other pro-
cesses. Since the renormalization scale and scheme
ambiguities are removed, this procedure can im-
prove the precision of tests of the Standard Model
and enhance sensitivity to new phenomena.
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