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I describe a procedure by which one can transform scatteringamplitudes computed in the four

dimensional helicity scheme into properly renormalized amplitudes in the ’t Hooft-Veltman scheme.

I describe a new renormalization program, based upon that ofthe dimensional reduction scheme and

explain how to remove both finite and infrared-singular contributions of the evanescent degrees of

freedom to the scattering amplitude.

I. INTRODUCTION

The Four Dimensional Helicity (FDH) scheme [1, 2] is widely used for computing QCD corrections at

next-to-leading order in perturbation theory. It is particularly convenient for use with the helicity method

and the techniques of generalized unitarity. Unfortunately, as I have recently shown [3], the FDH is not

a unitary regularization scheme. The standard renormalization prescription [2] fails to remove all of the

ultraviolet poles, leading to incorrect results at two loops and beyond. Thus the FDH cannot be viewed as a

regularization scheme in which one can compute scattering amplitudes. Instead, it should be looked upon

as a shortcut for obtaining scattering amplitudes in a unitary regularization scheme. Indeed, this is how the

FDH has always been used at one-loop; final results have always been presented in the ’t Hooft-Veltman

(HV) scheme [4] using the prescription of Kunszt, et al. [5] to transform the FDH scheme result, but it was

not clear whether this conversion was necessary or merely expedient, allowing one to match onto standard

definitions of the running coupling, etc.

It is now certain that one must convert the results of a calculation in the FDH scheme into results in a

properly defined scheme. A first step in this direction was taken by Boughezal, et al. [6], who put forward

a prescription for constructing the correct counterterms for renormalization. For inclusive calculations,

performed using the optical theorem, like those consideredin Refs. [3, 6], such a prescription is sufficient.

Experiments, however, measure differential cross sections, and the power of the FDH scheme is that it

facilitates the calculation of loop-level amplitudes, giving access to the differential information they contain.

To make use of the full amplitude, one must control of both theinfrared and ultraviolet structure.

In this paper, I will exploit the close relationship betweenthe FDH and the dimensional reduction

(DRED) [7] schemes to develop a prescription for transforming FDH scheme amplitudes, which may be
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easier to compute using unitarity methods, into HV scheme amplitudes that can actually be used in calcu-

lations. The plan of the paper is: In Section II I will review the regularization schemes that will be used;

in Section III I will review the infrared structure of QCD amplitudes; in Section IV I will define the FDH

scheme in terms of the DR scheme (a variation on the DRED scheme that I will define below), compute the

anomalous dimensions that control the ultraviolet and infrared structure of DR scheme amplitudes through

two loops and specify the procedure for transforming FDH scheme results into HV scheme amplitudes.

II. REGULARIZATION SCHEMES

All of the schemes that I will be working with are variations on dimensional regularization [4], which

specifies that loop-momenta are treated asDm = 4− 2ε dimensional. In dimensional regularization, the

singularities (both ultraviolet and infrared) that appearin four-dimensional calculations are transformed

into poles in the parameterε . The ultraviolet poles are removed through renormalization, while the infrared

poles cancel when one performs “sufficiently inclusive” calculations.

A. The ’t Hooft-Veltman and conventional dimensional regularization schemes

In the original dimensional regularization scheme [4], theHV scheme, observed states are treated as

four-dimensional, while internal states (both their momenta and their spin degrees of freedom) are treated

asDm dimensional. Internal states include states that circulate inside of loop diagrams as well as nominally

external states that have infrared overlaps with other nominally external states. It turns out that one can treat

internal fermions as having exactly two degrees freedom, just as they have in four dimensions, even though

their momenta areDm dimensional, but massless internal gauge bosons must have(Dm−2) spin degrees of

freedom, while massive internal gauge bosons have(Dm−1).

The conventional dimensional regularization (CDR) scheme[8] is closely related to the HV scheme.

In the CDR scheme, all states and momenta, both internal and observed, are taken to beDm dimensional.

This often turns out to be computationally more convenient,especially in infrared sensitive theories like

QCD, since one set of rules governs all interactions. Because the HV and CDR schemes handle ultraviolet

singularities in the same manner, their behavior under the renormalization group, anomalous dimensions,

running coupling, etc., are identical.

In the HV and CDR schemes, internal momenta are taken to beDm = 4−2ε dimensional. In general,

ε is a complex number and it’s exact value is unimportant, but taking ε to be real and positive (negative)

is preferred by ultraviolet (infrared) power-counting arguments. It is important, however, that theDm-
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dimensional vector space in which momenta take values islarger than the standard four-dimensional space-

time. This means that the standard four-dimensional metrictensorη µν spans a smaller space than the

Dm dimensional metric tensor, and the four-dimensional Diracmatricesγ0,1,2,3 form a subset of the full

γµ . These considerations are of particular importance when considering chiral objects involvingγ5 and the

Levi-Civita tensor, but cannot be neglected when, as in the HV scheme, one restricts observed states to be

strictly four-dimensional.

B. The dimensional reduction Scheme

The DRED scheme was devised for application to supersymmetric theories. In supersymmetry, it is

essential that the number of bosonic degrees of freedom is exactly equal to the number of fermionic degrees

of freedom. In the DRED scheme, the continuation toDm dimensions is taken as acompactificationfrom

four dimensions. Thus, while space-time is taken to be four-dimensional and particles have the standard

number of degrees of freedom, momenta are regularized dimensionally and span aDm dimensional vector

space which issmallerthan four-dimensional space-time.

Because the Ward Identity only applies in theDm dimensional vector space in which momenta are

defined, the extra 2ε spin degrees of freedom of gauge bosons are not protected by the Ward Identity and

must renormalize differently than the 2− 2ε degrees of freedom that are protected. In supersymmetric

theories, the supersymmetry provides the missing part of the Ward Identity which demands that the 2ε

spin degrees of freedom be treated as gauge bosons. In non-supersymmetric theories, however, they must

be considered to be distinct particles, with distinct couplings and renormalization properties. These extra

degrees of freedom are referred to as “ε-scalars” or as “evanescent” degrees of freedom.

Since the evanescent degrees of freedom are independent of the gauge bosons, their self-couplings and

their coupling to fermions are independent of the gauge coupling and of one another. The quartic self-

coupling splits into multiple independent terms; if the gauge theory isSU(2), there are two independent

quartic self-couplings, inSU(3), there are three independent quartic self-couplings, and if the gauge theory

is SU(N);N ≥ 4, there are four independent quartic self-couplings [9]. These new couplings run differently

from the gauge coupling under the renormalization group andcannot consistently be identified with it.

Notwithstanding its semantic appeal, the insistence on a proper compactification, so thatDm ⊂ 4 in the

DRED scheme, is problematic when dealing with chiral theories [10]. Chirality is a four-dimensional con-

cept and one cannot consistently define chiral operators in avector space with fewer than four dimensions.

One way around this is to adopt a hierarchy of vector spacesDs ⊃ Dm ⊃ 4 (whereDm = 4−2ε andDs is

assigned the valueDs= 4), as in the FDH scheme (described below). In such a scheme, chiral operators can
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be defined in the four-dimensional subspace ofDm, just as they are in the HV/CDR schemes. Stöckinger

and Signer [11, 12] have long advocated that this is the proper definition of the DRED scheme. Aside

from the treatment of chiral operators, there are no important computational distinctions betweenDm ⊃ 4

andDm ⊂ 4. In this paper, I will adopt theDm ⊃ 4 convention and refer to this variation of dimensional

reduction as the DR scheme.

C. The four dimensional helicity Scheme

In the four-dimensional helicity scheme, one again defines avector space of dimensionalityDm ⊃ 4

(againDm= 4−2ε), in which loop momenta take values, and a still larger vector spaceDs⊃ Dm, (Ds= 4),

in which internal spin degrees of freedom take values. Note that the relative numerical values ofDs, Dm and

4 are not important. What is important is that as vector spaces, Ds ⊃ Dm ⊃ 4.

The FDH scheme, like the HV scheme, treats observed states asfour-dimensional, except, as in inclu-

sive calculations, where there are infrared overlaps amongexternal states. When infrared overlaps occur,

external states are taken to beDs dimensional.

As in the DRED scheme, spin degrees of freedom take values in avector space that is larger than that in

which momenta take values. It would seem, therefore, that the same remarks regarding the Ward Identity

and the conclusion that theDx = Ds−Dm dimensional components of the gauge fields and their couplings

must be considered as distinct from theDm dimensional gauge fields and couplings would apply.

That is not, however, how the FDH scheme has been used. All field components in theDs dimensional

space are treated as gauge fields and no distinction is made between the couplings. The reason for doing

this is to facilitate the use of helicity amplitudes in conjunction with unitarity methods, the idea being to

“sew together” (four dimensional) tree-level helicity amplitudes into loop-level amplitudes. While helicity

methods can be used in the CDR scheme [13], they are most transparently and compactly represented using

four-dimensional external states. Thus, the FDH scheme demands that the gluons circulating through loop

amplitudes have the same number of spin degrees of freedom asthe external gluons of helicity amplitudes.

Unfortunately, this framework fails to subtract all of the ultraviolet poles [3] and generates incorrect

results. The evanescent couplings and degrees of freedom need to be renormalized separately from their

gauge boson counterparts, but there is no mechanism within the FDH for doing so. The errors, however, are

only of orderO(ε1) in NLO calculations (which is the level at which the FDH has been used in practical

calculations to date) and therefore do not adversely affectthose results. At NNLO the errors would be of

orderO(ε0) and at N3LO and beyond the errors would be singular inε .
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III. THE INFRARED STRUCTURE OF QCD AMPLITUDES

The infrared structure of QCD amplitudes is governed by a setof anomalous dimensions which allow

one to predict, for any amplitude, the complete infrared structure [14, 15]. These anomalous dimensions

are known completely, in both the massless and massive casesfor one and two loop amplitudes, and their

properties beyond the two-loop level are being actively studied [16–25].

For a generaln parton scattering process, the set of partons is labeled byf = { fi}i=1...n. In the formulation

of Refs. [15–17], a renormalized amplitude may be factorized into three functions: the jet functionJf,

which describes the collinear dynamics of the external partons that participate in the collision; the soft

functionSf, which describes soft exchanges between the external partons; and the hard-scattering function

|Hf〉, which describes the short-distance scattering process,

∣∣∣Mf

(
pi ,

Q2

µ2 ,αs(µ2),ε
)〉

= Jf
(
αs(µ2),ε

)
Sf

(
pi ,

Q2

µ2 ,αs(µ2),ε
) ∣∣∣Hf

(
pi ,

Q2

µ2 ,αs(µ2)
)〉

. (1)

The notation indicates that|Hf〉 is a vector andSf is a matrix in color space [14, 26, 27]. As with any

factorization, there is considerable freedom to move termsabout from one function to another. It is conve-

nient [16, 17] to define the jet and soft functions,Jf andSf, so that they contain all of the infrared poles but

only contain infrared poles, while all infrared finite terms, including those at higher-order inε , are absorbed

into |Hf〉.

A. The jet function in the HV/CDRschemes

The jet functionJf is found to be the product of individual jet functionsJ fi for each of the external

partons,

Jf
(
αs(µ2),ε

)
= ∏

i∈f
Ji
(
αs(µ2),ε

)
. (2)

Each individual jet function is naturally defined in terms ofthe anomalous dimensions of the Sudakov form

factor [15],

lnJ CDR
i

(
αs(µ2),ε

)
=−

(
αMS

s

π

)[
1

8ε2γ(1)K i +
1

4ε
G

(1)
i (ε)

]

+

(
αMS

s

π

)2{
β MS

0

8
1
ε2

[
3

4ε
γ(1)K i +G

(1)
i (ε)

]
−

1
8

[
γ(2)K i

4ε2 +
G

(2)
i (ε)

ε

]}
+ . . . ,

(3)
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where

γ(1)K i = 2Ci , γ(2)K i =Ci K =Ci

[
CA

(
67
18

−ζ2

)
−

10
9

Tf Nf

]
, Cq ≡CF , Cg ≡CA,

G
(1)
q =

3
2
CF +

ε
2

CF (8−ζ2) , G
(1)
g = 2β MS

0 −
ε
2

CA ζ2,

G
(2)
q =C2

F

(
3
16

−
3
2

ζ2+3ζ3

)
+CF CA

(
2545
432

+
11
12

ζ2−
13
4

ζ3

)
−CF Tf Nf

(
209
108

+
1
3

ζ2

)
,

G
(2)
g = 4β MS

1 +C2
A

(
10
27

−
11
12

ζ2−
1
4

ζ3

)
+CATf Nf

(
13
27

+
1
3

ζ2

)
+

1
2
CF Tf Nf .

(4)

AlthoughGi andγK i are defined through the Sudakov form factor, they can be extracted from fixed-order

calculations [28–34].γK i is the cusp anomalous dimension and represents a pure pole term. TheGi anoma-

lous dimensions contain terms at higher order inε , but I only keep terms in the expansion that contribute

poles to ln(Ji). CF = (N2
c −1)/(2Nc) denotes the Casimir operator of the fundamental representation of

SU(Nc), whileCA = Nc denotes the Casimir of the adjoint representation.Nf is the number of quark flavors

andTf = 1/2 is the normalization of the QCD charge of the fundamental representation.ζn = ∑∞
k=11/kn

represents the Riemann zeta-function of integer argumentn.

B. The soft function in the HV/CDRschemes

The soft function is determined entirely by the soft anomalous dimension matrixΓΓΓSf ,

Sf
CDR

(
pi ,

Q2

µ2 ,αs(µ2),ε
)
= 1+

1
2ε

(
αMS

s

π

)
ΓΓΓ(1)

Sf
+

1
8ε2

(
αMS

s

π

)2

ΓΓΓ(1)
Sf

×ΓΓΓ(1)
Sf

−
β MS

0

4ε2

(
αMS

s

π

)2

ΓΓΓ(1)
Sf

+
1

4ε

(
αMS

s

π

)2

ΓΓΓ(2)
Sf

+ . . . .

(5)

In the color-space notation of Refs. [14, 26, 27], the soft anomalous dimension is given by [16, 17]

ΓΓΓ(1)
Sf

=
1
2 ∑

i∈f
∑
j 6=i

T i ·T j ln

(
µ2

−si j

)
, ΓΓΓ(2)

Sf
=

K
2

ΓΓΓ(1)
Sf

, (6)

whereK =CA (67/18−ζ2)−10Tf Nf/9 is the same constant that relates the one- and two-loop cuspanoma-

lous dimensions. TheT i are the color generators in the representation of partoni (multiplied by (−1) for

incoming quarks and gluons and outgoing anti-quarks).

IV. THE FDH SCHEME AT TWO LOOPS

The failure of the FDH scheme as a unitary regularization scheme does not mean that it is of no value in

computing higher-order corrections beyond the next-to-leading order. Even at NLO, the FDH scheme has
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always been used as a means of obtaining scattering amplitudes in the HV scheme. There is no reason for

that to change at two loops. The only difference is that one must recognize that the FDH scheme result is

not a physical scattering amplitude, but only an intermediate step toward obtaining one.

In formulating a prescription for converting FDH scheme amplitudes into HV scheme amplitudes, the

first problem to address, of course, is that of renormalization. One solution to the renormalization problem,

dubbed “dimensional reconstruction,” has been proposed byBoughezal, et al. [6]. The idea behind dimen-

sional reconstruction is that if one knows the the one-loop behavior of an amplitude with arbitrary (integer)

numbers of extra spin dimensions (momenta are alwaysDm dimensional) then the correct two-loop ampli-

tude can be determined from the renormalization constants at different integer spin dimensions. Note that it

is a basic assumption of dimensional reconstruction that when one is computing a two-loop amplitude, the

tree-level and one-loop terms that contribute via renormalization are essentially trivial, and that there is no

appreciable cost to performing extra one-loop calculations if doing so saves effort on the two-loop piece.

The transformations that I will develop will also subscribeto this viewpoint.

While dimensional reconstruction is a completely valid approach to the renormalization problem of the

FDH scheme, it does have some drawbacks. One drawback is thatit appears that one must determine new

renormalization constants for each process at each order ofperturbation theory. This is quite different from

working within a renormalizable theory, where the renormalization constants can be determined in advance

through the study of corrections to one-particle-irreducible Green functions. A more serious drawback is

that dimensional reconstruction does not address the infrared structure of amplitudes computed in the FDH

scheme.

It is certain that the infrared structure of FDH scheme amplitudes is not equal to that of HV scheme

amplitudes. It is also clear from optical theorem calculations [3, 6] that once the renormalization problem is

fixed, one could proceed with FDH scheme calculations because the infrared overlaps will sort themselves

out. For differential calculations, one needs to know the soft and collinear factorization properties of FDH

scheme amplitudes in order to implement a subtraction scheme, but this has already been worked out [35–

37]. The problem is that all of the FDH scheme amplitudes, real and virtual, contain errors, though the

structure of the errors is such that, after renormalization, they cancel in the inclusive sum. Even if one

were willing to live with such circumstances, one would still want to match onto standard definitions of

the running coupling and would have to face the fact that parton distribution functions are only available in

the CDR scheme. A far better choice is to transform the resultto a framework like the HV scheme that is

known to be unitary and correct and which can be easily connected to the parton distribution functions.
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A. The connection between theFDH and DR schemes

In order to develop a rigorous set of rules for transforming FDH amplitudes, it is necessary to define

the FDH scheme in terms of a renormalizable scheme. One can dothis by exploiting the close connection

between the FDH and DR schemes. When formulating the QCD Lagrangians in these schemes, one starts

with the standard Yang-Mills Lagrangian and then extends the fields intoDs-dimensions. In the FDH

scheme, one proceeds directly to the development of Feynmanrules involving theDs-dimensional metric

tensor and Dirac matrices [1, 2]. In the DR scheme, however, one first splits the gluon field into two

independent components, theDm-dimensional gauge field and theDx-dimensional evanescent field [9, 38,

39]. The metric tensor and Dirac matrices also decompose into orthogonal components. Those new terms in

the Lagrangian that do not involve gauge fields are assigned new, independent couplings. The evanescent-

quark-antiquark coupling is given the valuege (g2
e = 4π αe) and the quartic evanescent boson couplings are

given valuesηi ,i=1,2,3, whereη1 represents the quartic interaction that has the same color flow as the quartic

gluon coupling, whileη2,3 represent the non-QCD-like interactions.

Thus, all of the DR scheme interactions are contained in those of the FDH scheme, they are simply not

labeled by independent couplings and evanescent Lorentz structures. The only exception to this statement

concerns the quartic evanescent boson couplings. Because the evanescent bosons are not protected by gauge

symmetry, new quartic interactions, with new color-flows among the evanescent bosons, are generated by

higher-order corrections which must be renormalized independently of the QCD-like quartic coupling that

appears in the classical Lagrangian. In recognition of the fact that such terms will occur, they are usu-

ally assigned independent couplings and added to the effective DR Lagrangian. The FDH scheme doesn’t

have such couplings, but this does not present a problem. Theextra quartic terms introduced to the DR

Lagrangian clean up the renormalization procedure, but there is no reason that the couplings assigned to

these terms could not be chosen such that they do not contribute to a DR scattering process until radiative

corrections to the QCD-like interactions demand that they appear.

B. The connection between theDR and CDR schemes

From the formulation of the Lagrangians, one can also draw a connection between the structure of the

amplitudes in the DR and CDR schemes. In particular, the DR scheme Lagrangian contains all of the

interactions that the CDR scheme Lagrangian does, plus a host of interactions involving the evanescent

bosons. This means that the amplitudes in the DR scheme can bepartitioned into a part that is identical to

the CDR scheme amplitude and a part that involves the exchange of one or more evanescent bosons. One
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need not consider the case of external evanescent bosons since the DR scheme renormalization program

ensures that such terms contribute to the S-matrix at orderε [9, 40]. The DR scheme sub-amplitude that

involves evanescent exchanges will necessarily include a spin-sum over the evanescent degrees of freedom,

with the result that this sub-amplitude will be weighted by afactor ofDx = 2ε . The only way that a term

from the evanescent sub-amplitude can make a finite (or singular) contribution to the full amplitude is if

it is weighted by ultraviolet or infrared poles. Thus, the full evanescent contribution to an amplitude up

to orderε0 is part of the universal (ultraviolet or infrared) structure of the amplitude, and is controlled by

anomalous dimensions. This means that the evanescent contribution to ann-loop amplitude (that is the part

that is different from the CDR amplitude) can be determined entirely in terms of ultraviolet counterterms,

jet and soft functions and lower-order (0 to(n− 1)-loop) hard-scattering functions. Thus, with a proper

rearrangement of terms (thêDR scheme defined below), at any ordern the hard-scattering functions in the

two schemes are related by

∣∣∣H(n)
f

〉
D̂R

=
∣∣∣H(n)

f

〉
HV

+O(ε). (7)

C. A new definition of the FDH scheme

Clearly, if one can draw a close connection between the FDH and DR schemes, one should be able to

develop a prescription for the direct transformation of an amplitude computed in the FDH scheme to one

that is computed in the HV scheme. From the above considerations, it is quite simple to state the connection.

The four-dimensional helicity schemeis the DR scheme with two extra conditions:

1. External states are taken to be four dimensional.

2. The evanescent couplings (αe andη1) are identified withαs.

The first condition asserts the same distinction between theFDH and DR schemes as exists between the

HV and CDR schemes. The restriction to four-dimensional external states does not affect the anomalous

dimensions of the theory. The ultraviolet counterterms andthe jet and soft functions are unchanged. The

only changes are to the exact form of the finite hard-scattering matrix elements. The four-dimensional con-

dition also forbids the appearance of external evanescent states. As mentioned before, the renormalization

program of the DR scheme ensures that evanescent external states can only contribute to the S-matrix at

orderε or higher, so this restriction is of no consequence.

The second condition is the one that violates unitarity and renders the FDH non-renormalizable. The

evanescent couplings need to be renormalized differently than the QCD coupling, but there is no means of
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doing so once the couplings have been identified. Therefore,the FDH can only be used to compute bare

(unrenormalized) loop amplitudes.

In the DR scheme, on the other hand, one can determine the correct ultraviolet counterterms, and the

infrared counterterms needed to remove the evanescent contribution, leaving the HV scheme result. By

computing these counterterms in the DR scheme and then identifying the couplings, one obtains the coun-

terterms needed to shift from the FDH to the HV scheme.

D. Ultraviolet counterterms for the FDH

When working within massless QCD, it is only necessary to renormalize the couplings. It is common

in dimensional reduction to determine ultraviolet counterterms using modified minimal subtraction (this is

known as theDR scheme), dropping evanescent terms, even if they containultraviolet poles, because the

factor ofDx renders them finite. This procedure means that the renormalized coupling in theDR scheme,

αDR
s differs from the standard couplingαMS

s that appears in HV/CDR calculations by a finite renormal-

ization. This finite renormalization corresponds precisely to theDx/ε terms that were dropped from the

β -function. My goal is to remove all evanescent contributions, so I will include(Dx/ε)n terms in my defi-

nitions of theβ -functions and anomalous dimensions. To distinguish it from theDR scheme, I will call this

theD̂R scheme.

Because there are so many independent couplings in the DR scheme, and because they mix under renor-

malization, the simpleβ0,1,2,... labeling of theMS scheme is insufficient. Instead, I write,

β D̂R = µ2 d
dµ2

α D̂R
s

π
=−

(
ε

α D̂R
s

π
+

α D̂R
s

Zα D̂R
s

∂Zα D̂R
s

∂α D̂R
e

β D̂R
e +

α D̂R
s

Zα D̂R
s

∂Zα D̂R
s

∂η D̂R
i

β D̂R
ηi

)(
1+

α D̂R
s

Zα D̂R
s

∂Zα D̂R
s

∂α D̂R
s

)−1

=−ε
α D̂R

s

π
− ∑

i, j,k,l ,m

β D̂R
i jklm

(
α D̂R

s

π

)i(
α D̂R

e

π

) j(
η D̂R

1

π

)k(
η D̂R

2

π

)l(
η D̂R

3

π

)m

.

(8)

Similar equations yield

β D̂R
e = µ2 d

dµ2

α D̂R
e

π
=−ε

α D̂R
e

π
− ∑

i, j,k,l ,m

β D̂R
e, i jklm

(
α D̂R

s

π

)i(
α D̂R

e

π

) j(
η D̂R

1

π

)k(
η D̂R

2

π

)l(
η D̂R

3

π

)m

,

β D̂R
ηs

= µ2 d
dµ2

η D̂R
s

π
=−ε

η D̂R
s

π
− ∑

i, j,k,l ,m

β D̂R
s, i jklm

(
α D̂R

s

π

)i(
α D̂R

e

π

) j(
η D̂R

1

π

)k(
η D̂R

2

π

)l(
η D̂R

3

π

)m

.

(9)

The values of the coefficients through three loops (forβ D̂R andβ D̂R
e ) are given in Appendix A. Note that

with the rearrangement of the evanescent contributions, the terms inβ D̂R that are not proportional toDx

are identical to the coefficients of theβ -function in theMS scheme. This indicates that the renormalized

coupling of theD̂R scheme coincides with that of theMS scheme.
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The ultraviolet counterterms for FDH amplitudes are computed as follows. First, one computes the

lower loop amplitudes in the DR scheme and then expands the bare couplings in terms of the renormalized

couplings using theβ -functions of theD̂R scheme. Finally, the evanescent couplings are identifiedwith the

QCD coupling and the factors ofDx are evaluated (Dx = 2ε).

|M (αs)〉
CT
FDH = |M (αs,αe,η1)〉

CT
D̂R

∣∣∣ αe,η1→αs
Dx→2ε

(10)

This will remove all of the ultraviolet terms, including theevanescent terms that appear to be finite because

of the factor ofDx.

E. The infrared structure of the DR scheme

The next step is to remove the unwanted evanescent componentof the infrared structure of FDH scheme

amplitudes. As with the ultraviolet counterterms, the terms to be removed can be identified by studying

the structure of DR scheme amplitudes. The basic form of the infrared structure in the DR scheme is the

same as in HV/CDR, but the anomalous dimensions receive evanescent corrections. In addition, there are

newG anomalous dimensions that depend on the evanescent couplings. Through two-loops, the corrections

and new anomalous dimensions depend only on the fermion-evanescent coupling, not the quartic evanes-

cent couplings. Furthermore, because the evanescent couplings are not gauge couplings, there are no new

counterparts to the cusp or soft anomalous dimensions, which are associated with the exchange of gauge

bosons.

I have determined the values of the infrared anomalous dimensions in the DR scheme by the direct

calculation of two-loop amplitudes. I first determine the anomalous dimensions for external quarks from

the Drell-Yan amplitude. I then obtain the anomalous dimensions for external gluons from theqq → gγ

amplitude [41–43]. In principle, it would be easier to extract the gluon jet function by calculating the

amplitude forgg→ H, but the Higgs - gluon coupling is governed by a set of effective operators generated

by integrating out the top quark. This system, involving operator mixing and higher-order corrections to

the Wilson coefficients, has been studied to high order in theCDR scheme [44, 45], but not in the non-

supersymmetric DR scheme.

The calculations of the infrared anomalous dimensions as well as the wave-function and vertex correc-

tions used to extract theβ -functions were all calculated within the same framework. The Feynman diagrams

were generated with QGRAF [46] and the symbolic algebra program FORM [47] was used to implement

the Feynman rules and perform algebraic manipulations to reduce the result to a set of Feynman integrals
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and their coefficients. The method of Ref. [48] was used to reduce the calculation of the vertex corrections

to propagator integrals. The full set of Feynman integrals was reduced to master integrals using the program

REDUZE-2 [49]. REDUZE-2 offers significant improvements over the previous version [50] and was par-

ticularly effective at reducing the non-planar double-boxintegrals that contribute to theqq→ gγ amplitude.

All of the master integrals needed for these calculations are known in the literature [51–57].

The jet function in the DR scheme takes the form,

lnĴ DR
i

(
αs(µ2),αe(µ2),ε

)
=−

(
αMS

s

π

)[
1

8ε2 γ̂(1)K i +
1

4ε
Ĝ

(1)
i (ε)

]
−

(
α D̂R

e

π

)
Ĝ

(0,1)
i,e (ε)

4ε

+

(
αMS

s

π

)2[
β D̂R

20

8
1
ε2

(
3

4ε
γ̂(1)K i + Ĝ

(1)
i (ε)

)
−

1
8

(
γ̂(2)K i

4ε2 +
Ĝ

(2)
i (ε)

ε

)]

+

(
αMS

s

π

)(
α D̂R

e

π

)
1
8

[
β D̂R

e,11 Ĝ
(0,1)
i,e (ε)

ε2 −
Ĝ

(1,1)
i,e (ε)

ε

]

+

(
α D̂R

e

π

)2
1
8

[
β D̂R

e,02 Ĝ
(0,1)
i,e (ε)

ε2 −
Ĝ

(0,2)
i,e (ε)

ε

]
+ . . . ,

(11)

where the anomalous dimensions in thêDR scheme are

γ̂(1)K i = 2Ci , γ̂(2)K i =Ci K̂ =Ci

[
CA

(
67
18

−ζ2

)
−

10
9

Tf Nf −
2
9

DxCA

]
, Cq ≡CF , Cg ≡CA,

Ĝ
(1)
q =

3
2

CF +
ε
2

CF (8−ζ2) , Ĝ
(1)
g = 2β D̂R

20 −
ε
2

CAζ2,

Ĝ
(0,1)
q,e =−

1
4

DxCF , Ĝ
(0,1)
g,e = 0,

Ĝ
(2)
q =C2

F

(
3
16

−
3
2

ζ2+3ζ3

)
+CACF

(
2545
432

+
11
12

ζ2−
13
4

ζ3

)
−CF Tf Nf

(
209
108

+
1
3

ζ2

)

−DxCACF

(
311
864

+
1
24

ζ2

)
,

Ĝ
(2)
g = 4β D̂R

30 +C2
A

(
10
27

−
11
12

ζ2−
1
4

ζ3

)
+CATf Nf

(
13
27

+
1
3

ζ2

)
+

1
2
CF Tf Nf

+DxC2
A

(
7
54

+
1
24

ζ2

)
,

Ĝ
(1,1)
q,e = Dx

(
−

11
16

CACF +
1
4
C2

F +
1
4

C2
F ζ2

)
, Ĝ

(1,1)
g,e = 2β D̂R

21 ,

Ĝ
(0,2)
q,e =

3
16

DxCF Tf Nf , Ĝ
(0,2)
g,e = 0,

β D̂R
20 =

11
12

CA−
1
6

Nf −
1
24

DxCA ,

β D̂R
30 =

17
24

C2
A−

5
24

CANf −
1
8
CF Nf −

7
48

DxC2
A , β D̂R

21 =
1
16

DxCF Nf ,

β D̂R
e,02 =

1
2

CA−CF −
1
4

Nf −
1
4

Dx (CA−CF) , β D̂R
e,11 =

3
2
CF .

(12)

Note that the QCD coupling isαMS
s , the same coupling used in HV/CDR calculations. Since I extract the
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anomalous dimensions from amplitude calculations, I cannot separate the orderε part of the one-loopĜ

anomalous dimensions, which contributes at two-loops whenmultiplied by aβ -function coefficient, from

the pure two-loopĜ anomalous dimensions. This merely constitutes a rearrangement of terms and does not

affect the prediction of the infrared structure.

The soft function changes very little in going to the DR scheme. This is because evanescent exchanges

do not add new soft anomalous dimensions, they only add corrections to the existing terms.

Ŝf
DR(

pi ,
Q2

µ2 ,αs(µ2),ε
)
= 1+

1
2ε

(
αMS

s

π

)
Γ̂ΓΓ
(1)
Sf

+
1

8ε2

(
αMS

s

π

)2

Γ̂ΓΓ
(1)
Sf

× Γ̂ΓΓ
(1)
Sf

−
β D̂R

20

4ε2

(
αMS

s

π

)2

Γ̂ΓΓ
(1)
Sf

+
1

4ε

(
αMS

s

π

)2

Γ̂ΓΓ
(2)
Sf

,

(13)

Γ̂ΓΓ
(1)
Sf

=
1
2 ∑

i∈f
∑
j 6=i

T i ·T j ln

(
µ2

−si j

)
, Γ̂ΓΓ

(2)
Sf

=
K̂
2

Γ̂ΓΓ
(1)
Sf

, (14)

whereK̂ = CA (67/18−ζ2)− 10/9Tf Nf − 2/9DxCA is again the same constant that relates the one- and

two-loop cusp anomalous dimensions, this time in theD̂R scheme.

F. Transforming FDH amplitudes into HV amplitudes

I have now assembled all of the pieces needed to convert bare amplitudes computed in the FDH scheme

into renormalized amplitudes in the HV scheme. To obtain ann-loop amplitude in the HV scheme, one

needs

1. The baren-loop amplitude in the FDH scheme.

2. The renormalizedm-loop amplitudes (m∈ {0, . . . ,n−1}) to orderε2(n−m) in the HV scheme.

3. The jet and soft functions to ordern in the HV scheme.

4. The renormalizedm-loop amplitudes (m∈ {0, . . . ,n−1}) to orderε2(n−m) in theD̂R scheme.

5. The jet and soft functions to ordern in theD̂R scheme.

Note that computing then-loop squared amplitude to orderε0 already required the higher-order inε contri-

butions to the lower-loop amplitudes in the HV scheme. The conversion procedure requires them in thêDR

scheme as well.
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The first step is to expand Eq. (1) by orders ofαs,
∣∣∣M (n)

〉
HV

=
n

∑
i=0

[J ⊗S](i)
∣∣∣H (n−i)

〉
HV

∣∣∣M (n)
〉

D̂R
=

n

∑
i=0

[
Ĵ ⊗ Ŝ

](i) ∣∣∣H (n−i)
〉

D̂R

(15)

I now define the “renormalized” FDH scheme amplitude as
∣∣∣M (n)

〉
FDH

=
∣∣∣M (n)

〉Bare

FDH
+
∣∣∣M (n)

〉CT

FDH
=
∣∣∣M (n)

〉
D̂R

∣∣∣ αe,η1→αs
Dx→2ε

. (16)

From this I find that
∣∣∣H (n)

〉
D̂R

∣∣∣ αe,η1→αs
Dx→2ε

=
∣∣∣M (n)

〉
FDH

−
n

∑
i=1

[
Ĵ ⊗ Ŝ

](i) ∣∣∣H (n−i)
〉

D̂R

∣∣∣ αe,η1→αs
Dx→2ε

. (17)

Finally, using Eq. (7), I obtain
∣∣∣H (n)

〉
HV

=
∣∣∣M (n)

〉Bare

FDH
+
∣∣∣M (n)

〉CT

FDH
−

n

∑
i=1

[
Ĵ ⊗ Ŝ

](i) ∣∣∣H (n−i)
〉

D̂R

∣∣∣ αe,η1→αs
Dx→2ε

+O(ε) . (18)

The infrared structure of the HV scheme amplitude can be extracted from
∣∣M (n)

〉Bare
FDH in a similar way

or constructed directly in terms of the lower order hard scattering matrix elements and the jet and soft

functions.

Let me now write out explicitly the transformation of a one-loop bare amplitude in the FDH scheme,

involving nq quarks and anti-quarks andng gluons, into a renormalized one-loop amplitude in the HV

scheme. Starting with
∣∣∣H (1)

〉
HV

=
∣∣∣M (1)

〉Bare

FDH
+
∣∣∣M (1)

〉CT

FDH
−
[
Ĵ + Ŝ

](1) ∣∣∣H (0)
〉

D̂R

∣∣∣ αe,η1→αs
Dx→2ε

+O(ε) , (19)

I add in the infrared parts of the HV amplitude (note that the one-loop soft functions of the HV and̂DR

scheme are identical) to obtain

∣∣∣M (1)
〉

HV
=
∣∣∣M (1)

〉Bare

FDH
−

(
αMS

s

π

)(
nq+ng−2

2ε
β D̂R

20

)∣∣∣H (0)
〉

HV

+
(
J (1)−Ĵ (1)

)
αe,η1→αs
Dx→2ε

∣∣∣H (0)
〉

HV
+O(ε)

=
∣∣∣M (1)

〉Bare

FDH
−

(
αMS

s

π

)
nq+ng−2

2ε
β MS

0

∣∣∣H (0)
〉

HV

+

(
αMS

s

π

)(
nq+ng−2

24
CA−

nq

8
CF −

ng

24
CA

)∣∣∣H (0)
〉

HV
+O(ε)

(20)

The first line is just the bare one-loop amplitude with standard MS ultraviolet counterterm, while the second

line is the finite shift, broken into ultraviolet, infrarednq and infraredng pieces, identified by Kunszt, et

al. [5]. Beyond one loop, the transformations are not so simple and involve the structure of the amplitudes

in addition to the identities of the external states.
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V. CONCLUSION

In this paper, I have described a procedure for transformingbare loop amplitudes computed in the four

dimensional helicity scheme into renormalized amplitudesin the ’t Hooft-Veltman scheme. One of the

simplifying features of the FDH, the treatment of the evanescent states as if they were gluons, renders the

scheme non-renormalizable. Nevertheless, the FDH can be defined in terms of a renormalizable scheme, a

variant of the dimensional reduction scheme. Through this connection to the DR scheme, I have shown that

the differences between amplitudes calculated in the FDH scheme and the HV scheme (up to orderε−) are

either ultraviolet or infrared in origin and are therefore part of the universal structure of the amplitude which

is controlled by anomalous dimensions. By computing these anomalous dimensions in thêDR scheme,

defined above, through two loops, I provide concrete formulæfor the transformation of the amplitudes.

The utility of such transformations lies in the close connection between the FDH scheme and the tech-

niques of generalized unitarity and the helicity method. These techniques are a natural fit for the FDH

scheme, but the results need to be transformed into a renormalizable scheme so that they can be used in

practical calculations. With the procedures described in this paper, such transformations can be performed.

Acknowledgments: This research was supported by the U.S. Department of Energyunder Contract

No. DE-AC02-98CH10886.

Appendix A: D̂R Schemeβ -functions

In this appendix, I present the QCD and evanescentβ -functions in theD̂R subtraction scheme. In the DR

regularization scheme, momenta are dimensionally regularized and taken to beDm = 4−2ε dimensional.

Spin degrees of freedom are defined in aDs = 4 dimensional vector space. Despite the numerical values

assigned to the dimensionalities, as vector spacesDs ⊃ Dm ⊃ 4. The symbolDx = 2ε is used to denote the

difference between theDs andDm dimensional vector spaces.

Theβ -functions are defined as

β D̂R = µ2 d
dµ2

α D̂R
s

π
=−ε

α D̂R
s

π
− ∑

i, j,k,l ,m

β D̂R
i jklm

(
α D̂R

s

π

)i(
α D̂R

e

π

) j(
η D̂R

1

π

)k(
η D̂R

2

π

)l (
η D̂R

3

π

)m

,

β D̂R
e = µ2 d

dµ2

α D̂R
e

π
=−ε

α D̂R
e

π
− ∑

i, j,k,l ,m

β D̂R
e, i jklm

(
α D̂R

s

π

)i(
α D̂R

e

π

) j(
η D̂R

1

π

)k(
η D̂R

2

π

)l(
η D̂R

3

π

)m

,

β D̂R
ηs

= µ2 d
dµ2

η D̂R
s

π
=−ε

η D̂R
s

π
− ∑

i, j,k,l ,m

β D̂R
s, i jklm

(
α D̂R

s

π

)i(
α D̂R

e

π

) j(
η D̂R

1

π

)k(
η D̂R

2

π

)l(
η D̂R

3

π

)m

,

(A1)
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whereβ D̂R, β D̂R
e andβ D̂R

ηs
are the QCD, evanescent-quark-antiquark, and quatic evanescentβ -functions,

respectively.

The non-vanishing coefficients forβ D̂R through three loops are:

β D̂R
20 =

11
12

CA−
1
6

Nf −
1
24

DxCA ,

β D̂R
30 =

17
24

C2
A−

5
24

CANf −
1
8
CF Nf −

7
48

DxC2
A , β D̂R

21 =
1
16

DxCF Nf

β D̂R
40 =

2857
3456

C3
A−

1415
3456

C2
ANf −

205
1152

CACF Nf +
1
64

C2
F Nf +

79
3456

CAN2
f +

11
576

CF N2
f

+Dx

(
−

2749
6912

C3
A+

13
432

C2
ANf +

23
2304

CACF Nf

)
+

145
13824

D2
xC3

A

β D̂R
31 = Dx

(
5

256
C2

ANf +
7
32

CACF Nf +
3

128
C2

F Nf

)

β D̂R
22 = Dx

(
−

1
64

C2
ANf +

7
128

CACF Nf −
3
64

C2
F Nf +

1
256

CAN2
f −

7
256

CF N2
f

)

+D2
x

(
1

256
C2

ANf −
5

256
CACF Nf

)

β D̂R
30100=

27
512

Dx(1−Dx) , β D̂R
30010=−

45
126

Dx (2+Dx) , β D̂R
30001=−

9
256

Dx(1−Dx)

β D̂R
20200=−

81
512

Dx (1−Dx) , β D̂R
20101=

27
128

Dx (1−Dx) ,

β D̂R
20020=

45
64

Dx (2+Dx) , β D̂R
20002=−

63
256

Dx(1−Dx) ,

(A2)

where I omit the last three indices if they all vanish.

The coefficients ofβ D̂R
e through two loops are:

β D̂R
e,02 =

1
2

CA−CF −
1
4

Nf −
1
4

Dx (CA−CF) , β D̂R
e,11 =

3
2
CF ,

β D̂R
e,03 =

3
8

C2
A−

5
4

CACF +C2
F −

3
16

CANf +
3
8

CF Nf +Dx

(
−

1
2

C2
A+

3
2

CACF −C2
F +

3
32

CANf

)

+D2
x

(
3
32

C2
A−

1
4

CACF +
9
64

C2
F

)
,

β D̂R
e,12 =−

3
8

C2
A+

7
4

CACF −2C2
F −

5
16

CF Nf +Dx

(
−

11
16

CACF +
1
2

C2
F

)
,

β D̂R
e,21 =−

7
64

C2
A+

61
48

CACF +
3
16

C2
F +

1
16

CANf −
5
24

CF Nf +Dx

(
1
64

C2
A−

11
96

CACF

)
,

β D̂R
e,02100=−

9
8
(1−Dx) , β D̂R

e,02010=
5
8
(2+Dx) , β D̂R

e,02001=
3
4
(1−Dx) ,

β D̂R
e,01200=

27
64

(1−Dx) , β D̂R
e,01020=−

15
8
(2+Dx) , β D̂R

e,01002=
21
32

(1−Dx) ,

β D̂R
e,01101=−

9
16

(1−Dx) ,

(A3)
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The three-loop coefficients that do not involve the quartic couplings are:

β D̂R
e,04 =

9
16

C3
A ζ3−C2

ACF

(
5
16

+
69
16

ζ3

)
+CAC2

F

(
5
4
+

15
2

ζ3

)
−C3

F

(
5
4
+

9
4

ζ3

)

+C2
ANf

(
3

128
−

9
32

ζ3

)
−CACF Nf

(
15
32

−
51
32

ζ3

)
+C2

F Nf

(
27
32

−
33
16

ζ3

)
+N2

f

(
1

256
CA−

1
128

CF

)

+Dx

[
−C3

A

(
7
32

+
3
8

ζ3

)
+C2

ACF

(
91
64

+
135
32

ζ3

)
−CAC2

F

(
13
4

+
249
32

ζ3

)
+C3

F

(
41
16

+
27
16

ζ3

)

+C2
ANf

(
21
128

+
3
64

ζ3

)
−CACF Nf

(
37
256

+
33
64

ζ3

)
−C2

F Nf

(
47
128

−
27
32

ζ3

)
−N2

f

(
1

512
CA+

3
64

CF

)]

+D2
x

[
+

9
64

C3
A−C2

ACF

(
35
64

+
69
64

ζ3

)
+CAC2

F

(
461
512

+
147
64

ζ3

)
−C3

F

(
189
256

+
9
32

ζ3

)

−C2
ANf

(
29
512

−
3

128
ζ3

)
+CACF Nf

(
49
512

−
9

128
ζ3

)
−C2

F Nf

(
43

1024
−

3
64

ζ3

)]

+D3
x

[
−C3

A

(
1
32

−
3

128
ζ3

)
+

33
256

C2
ACF −CAC2

F

(
189
1024

+
9

128
ζ3

)
+C3

F

(
109
1024

−
3
64

ζ3

)]
,

β D̂R
e,13 =−C3

A

(
25
64

−
3
4

ζ3

)
+C2

ACF

(
85
32

−
15
4

ζ3

)
−CAC2

F

(
11
2

−6ζ3

)
+C3

F

(
7
2
−3ζ3

)

+C2
ANf

(
7
32

−
3
8

ζ3

)
−CACF Nf

(
27
32

−
9
8

ζ3

)
+C2

F Nf

(
13
16

−
3
4

ζ3

)
+

3
64

CAN2
f

+Dx

[
−C3

A

(
13
32

+
3
4

ζ3

)
+C2

ACF

(
1+

63
16

ζ3

)
+CAC2

F

(
5
64

−
105
16

ζ3

)
−C3

F

(
29
32

−
27
8

ζ3

)

+C2
ANf

(
1

128
+

3
16

ζ3

)
+CACF Nf

(
51
128

−
9
16

ζ3

)
−C2

F Nf

(
25
128

−
3
8

ζ3

)]

+D2
x

[
+C3

A

(
13
128

+
3
16

ζ3

)
−C2

ACF

(
25
128

+
33
32

ζ3

)
−CAC2

F

(
3

128
−

57
32

ζ3

)
+C3

F

(
1
8
−

15
16

ζ3

)]
,

β D̂R
e,22 =C3

A

(
121
512

−
45
16

ζ3

)
−C2

ACF

(
167
256

−
207
16

ζ3

)
+CAC2

F

(
131
128

−18ζ3

)
−C3

F

(
85
64

−
27
4

ζ3

)

−C2
ANf

(
899
1024

−
45
32

ζ3

)
+CACF Nf

(
273
128

−
171
32

ζ3

)
−C2

F Nf

(
641
256

−
99
16

ζ3

)
−N2

f

(
1

256
CA−

1
16

CF

)

+Dx

[
−C3

A

(
4355
1024

−
45
32

ζ3

)
+C2

ACF

(
21071
1024

−
99
16

ζ3

)
−CAC2

F

(
3381
128

−
261
32

ζ3

)

+C3
F

(
13
256

−
45
16

ζ3

)
+

1
1024

C2
ANf +

15
64

CACF Nf +
1
16

C2
F Nf

]

+D2
x

[
−

1
1024

C3
A+

83
1024

C2
ACF −

33
512

CAC2
F

]
,

β D̂R
e,31 =−

3025
4608

C3
A+

12601
3456

C2
ACF −

453
128

CAC2
F +

129
64

C3
F +

475
2304

C2
ANf −CACF Nf

(
151
1728

+
3
4

ζ3

)

−C2
F Nf

(
23
32

−
3
4

ζ3

)
−

5
576

CAN2
f −

35
864

CF N2
f

+Dx

[
+

643
9216

C3
A−

883
1728

C2
ACF −

5
256

CAC2
F −

1
144

C2
ANf −

19
864

CACF Nf

]

+D2
x

[
−

11
9216

C3
A−

5
13824

C2
ACF

]
,

(A4)
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while the three-loop coefficients that do involve the quartic interactions are:

β D̂R
e,03100=−

9
64

(
1−7Dx+6D2

x

)
+

135
128

Nf (1−Dx) ,

β D̂R
e,03010=

5
64

(
8−18Dx−11D2

x

)
−

75
128

Nf (2+Dx) ,

β D̂R
e,03001=

3
64

(
2−19Dx+17D2

x

)
−

45
64

Nf (1−Dx) ,

β D̂R
e,12100=−

51
8
(1−Dx) , β D̂R

e,12010=
85
24

(2+Dx) , β D̂R
e,12001=

17
4
(1−Dx) ,

β D̂R
e,21100=−

801
1024

(1−Dx) , β D̂R
e,21010=

375
256

(2+Dx) , β D̂R
e,21001=

507
512

(1−Dx) ,

β D̂R
e,02200=

3
1024

(
422−553Dx+131D2

x

)
−

405
1024

Nf (1−Dx) ,

β D̂R
e,02020=−

5
384

(
652+136Dx−95D2

x

)
+

225
128

Nf (2+Dx) ,

β D̂R
e,02002=

1
1536

(
394−731Dx+337D2

x

)
−

315
512

Nf (1−Dx) ,

β D̂R
e,02110=

55
32

(
2−Dx−D2

x

)
,

β D̂R
e,02101=−

1
256

(
622−773Dx+151D2

x

)
+

135
256

Nf (1−Dx) ,

β D̂R
e,02011=−

205
96

(
2−Dx−D2

x

)
,

β D̂R
e,11200=

405
128

(1−Dx) , β D̂R
e,11020=−

225
16

(2+Dx) ,

β D̂R
e,11002=

315
64

(1−Dx) , β D̂R
e,11101=−

135
32

(1−Dx) ,

β D̂R
e,01300=−

27
1024

(
11−10Dx−D2

x

)
, β D̂R

e,01210=−
135
256

(
2−Dx−D2

x

)
,

β D̂R
e,01201=

27
512

(
11−10Dx−D2

x

)
, β D̂R

e,01120=−
45
64

(
2−Dx−D2

x

)
,

β D̂R
e,01111=

45
32

(
2−Dx−D2

x

)
, β D̂R

e,01102=
9

256

(
14−25Dx+11D2

x

)
,

β D̂R
e,01030=

5
4

(
16+10Dx+D2

x

)
, β D̂R

e,01021=
105
64

(
2−Dx−D2

x

)
,

β D̂R
e,01012=−

105
64

(
2−Dx−D2

x

)
, β D̂R

e,01003=−
7

256

(
14−25Dx+11D2

x

)
,

(A5)

A consistent description ofβ D̂R and β D̂R
e, through three loops only requires knowledge of theβ D̂R

ηi
’s
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through one loop. These coefficients are:

β D̂R
η1,20000=−

3
8
, β D̂R

η1,02000=
1
3

Nf , β D̂R
η1,10100=

9
2
, β D̂R

η1,01100=−
1
2

Nf ,

β D̂R
η1,00200=−

11
8

−
1
8

Dx , β D̂R
η1,00110=−2−Dx , β D̂R

η1,00101=
7
2
−

1
2

Dx ,

β D̂R
η2,20000=−

9
16

, β D̂R
η2,02000=

1
24

Nf , β D̂R
η2,10010=

9
2
, β D̂R

η2,01010=−
1
2

Nf ,

β D̂R
η2,00200=

3
16

(1−Dx) , β D̂R
η2,00110=

1
2
(1−Dx) , β D̂R

η2,00101=−
1
2
(1−Dx) ,

β D̂R
η2,00020=−

32
3

−
4
3

Dx , β D̂R
η2,00011=−

7
6
(1−Dx) , β D̂R

η2,00002=
7
12

(1−Dx) ,

β D̂R
η3,10001=

9
2
, β D̂R

η3,01001=−
1
2

Nf , β D̂R
η3,00110= 2+Dx , β D̂R

η3,00101=
5
2
−Dx ,

β D̂R
η3,00020=

5
3
(2+Dx) , β D̂R

η3,00011=−
10
3
(2+Dx) , β D̂R

η3,00002=−
7
6
+

11
12

Dx ,

(A6)
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