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| describe a procedure by which one can transform scattenimglitudes computed in the four
dimensional helicity scheme into properly renormalizeglimdes in the 't Hooft-Veltman scheme.
| describe a new renormalization program, based upon ththeafimensional reduction scheme and
explain how to remove both finite and infrared-singular cbotions of the evanescent degrees of

freedom to the scattering amplitude.

I. INTRODUCTION

The Four Dimensional Helicity (FDH) scheme [1, 2] is widelsed for computing QCD corrections at
next-to-leading order in perturbation theory. It is park&ly convenient for use with the helicity method
and the techniques of generalized unitarity. Unfortuiyates | have recently shown [3], the FDH is not
a unitary regularization scheme. The standard renormlizgrescription [2] fails to remove all of the
ultraviolet poles, leading to incorrect results at two Is@md beyond. Thus the FDH cannot be viewed as a
regularization scheme in which one can compute scattermgitudes. Instead, it should be looked upon
as a shortcut for obtaining scattering amplitudes in a pnitegularization scheme. Indeed, this is how the
FDH has always been used at one-loop; final results have sllbegn presented in the 't Hooft-Veltman
(HV) scheme [4] using the prescription of Kunszt, et al. [pitansform the FDH scheme result, but it was
not clear whether this conversion was necessary or merggdéent, allowing one to match onto standard
definitions of the running coupling, etc.

It is now certain that one must convert the results of a catmrn in the FDH scheme into results in a
properly defined scheme. A first step in this direction wasenaly Boughezal, et al. [6], who put forward
a prescription for constructing the correct counterterorsrénormalization. For inclusive calculations,
performed using the optical theorem, like those considardrefs. [3, 6], such a prescription is sufficient.
Experiments, however, measure differential cross sextiand the power of the FDH scheme is that it
facilitates the calculation of loop-level amplitudes,igyaccess to the differential information they contain.
To make use of the full amplitude, one must control of bothitii@red and ultraviolet structure.

In this paper, | will exploit the close relationship betwedts® FDH and the dimensional reduction

(DRED) [7] schemes to develop a prescription for transfogri-rDH scheme amplitudes, which may be



easier to compute using unitarity methods, into HV schemglitudes that can actually be used in calcu-
lations. The plan of the paper is: In Section Il | will revieletregularization schemes that will be used;
in Section Il | will review the infrared structure of QCD atitpdes; in Section IV | will define the FDH
scheme in terms of the DR scheme (a variation on the DRED seltigem | will define below), compute the
anomalous dimensions that control the ultraviolet anchirefl structure of DR scheme amplitudes through

two loops and specify the procedure for transforming FDHesoh results into HV scheme amplitudes.

II. REGULARIZATION SCHEMES

All of the schemes that | will be working with are variations dimensional regularization [4], which
specifies that loop-momenta are treateddas= 4 — 2¢ dimensional. In dimensional regularization, the
singularities (both ultraviolet and infrared) that appaafour-dimensional calculations are transformed
into poles in the parameter The ultraviolet poles are removed through renormaliratichile the infrared

poles cancel when one performs “sufficiently inclusive’codations.

A. The 't Hooft-Veltman and conventional dimensional regubrization schemes

In the original dimensional regularization scheme [4], Hié scheme, observed states are treated as
four-dimensional, while internal states (both their motaeand their spin degrees of freedom) are treated
asD, dimensional. Internal states include states that ciredfetide of loop diagrams as well as nominally
external states that have infrared overlaps with other nallyi external states. It turns out that one can treat
internal fermions as having exactly two degrees freedost gs they have in four dimensions, even though
their momenta ar®,, dimensional, but massless internal gauge bosons mustBayve 2) spin degrees of
freedom, while massive internal gauge bosons li&e— 1).

The conventional dimensional regularization (CDR) sch¢&jes closely related to the HV scheme.
In the CDR scheme, all states and momenta, both internal bseheed, are taken to &, dimensional.
This often turns out to be computationally more conveniespecially in infrared sensitive theories like
QCD, since one set of rules governs all interactions. BecthesHV and CDR schemes handle ultraviolet
singularities in the same manner, their behavior underehermalization group, anomalous dimensions,
running coupling, etc., are identical.

In the HV and CDR schemes, internal momenta are taken @.be 4 — 2¢ dimensional. In general,
€ is a complex number and it's exact value is unimportant, &king € to be real and positive (negative)

is preferred by ultraviolet (infrared) power-counting @amgents. It is important, however, that thg,-



dimensional vector space in which momenta take valukesgsr than the standard four-dimensional space-
time. This means that the standard four-dimensional me&grisorn“¥ spans a smaller space than the
D, dimensional metric tensor, and the four-dimensional Diraatricesy®22 form a subset of the full
y*. These considerations are of particular importance whasidering chiral objects involvings and the
Levi-Civita tensor, but cannot be neglected when, as in tilestheme, one restricts observed states to be

strictly four-dimensional.

B. The dimensional reduction Scheme

The DRED scheme was devised for application to supersynortbtories. In supersymmetry, it is
essential that the number of bosonic degrees of freedonadlgxequal to the number of fermionic degrees
of freedom. In the DRED scheme, the continuatiodtp dimensions is taken asa@mpactificatiorfrom
four dimensions. Thus, while space-time is taken to be fmensional and particles have the standard
number of degrees of freedom, momenta are regularized diomally and span B, dimensional vector
space which ismallerthan four-dimensional space-time.

Because the Ward ldentity only applies in tbg, dimensional vector space in which momenta are
defined, the extra & spin degrees of freedom of gauge bosons are not protectdteivdrd Identity and
must renormalize differently than the-22¢ degrees of freedom that are protected. In supersymmetric
theories, the supersymmetry provides the missing parteftard Identity which demands that the 2
spin degrees of freedom be treated as gauge bosons. In persgmmetric theories, however, they must
be considered to be distinct particles, with distinct congd and renormalization properties. These extra
degrees of freedom are referred to asstalars” or as “evanescent” degrees of freedom.

Since the evanescent degrees of freedom are independéd ghtige bosons, their self-couplings and
their coupling to fermions are independent of the gauge lougi@nd of one another. The quartic self-
coupling splits into multiple independent terms; if the gauheory isSU(2), there are two independent
quartic self-couplings, iBU(3), there are three independent quartic self-couplings, fathé gauge theory
is SU(N);N > 4, there are four independent quartic self-couplings [BleSe new couplings run differently
from the gauge coupling under the renormalization groupcamihot consistently be identified with it.

Notwithstanding its semantic appeal, the insistence ompgrrcompactification, so th&,, C 4 in the
DRED scheme, is problematic when dealing with chiral theofiL0]. Chirality is a four-dimensional con-
cept and one cannot consistently define chiral operatorvéttar space with fewer than four dimensions.
One way around this is to adopt a hierarchy of vector spBges Dy, D 4 (WhereDy, =4 — 2¢ andDg is

assigned the values = 4), as in the FDH scheme (described below). In such a schérmal aperators can



be defined in the four-dimensional subspac®gf just as they are in the HV/CDR schemes. Stockinger
and Signer [11, 12] have long advocated that this is the prdpénition of the DRED scheme. Aside
from the treatment of chiral operators, there are no impbrtamputational distinctions betweén, > 4
andDp, C 4. In this paper, | will adopt th®,, > 4 convention and refer to this variation of dimensional

reduction as the DR scheme.

C. The four dimensional helicity Scheme

In the four-dimensional helicity scheme, one again defingecior space of dimensionality, O 4
(againDy, = 4— 2¢), in which loop momenta take values, and a still larger vespaceDs O Dy, (Ds = 4),
in which internal spin degrees of freedom take values. Nwethe relative numerical valuesB§, D, and
4 are not important. What is important is that as vector spdze> Dy, D 4.

The FDH scheme, like the HV scheme, treats observed stafesiiadimensional, except, as in inclu-
sive calculations, where there are infrared overlaps anestgrnal states. When infrared overlaps occur,
external states are taken to Bgdimensional.

As in the DRED scheme, spin degrees of freedom take valueséntar space that is larger than that in
which momenta take values. It would seem, therefore, tleséme remarks regarding the Ward Identity
and the conclusion that thg, = Ds— Dy, dimensional components of the gauge fields and their cayglin
must be considered as distinct from bg dimensional gauge fields and couplings would apply.

That is not, however, how the FDH scheme has been used. Alld@hponents in thBs dimensional
space are treated as gauge fields and no distinction is maaedrethe couplings. The reason for doing
this is to facilitate the use of helicity amplitudes in camjtion with unitarity methods, the idea being to
“sew together” (four dimensional) tree-level helicity dityrdes into loop-level amplitudes. While helicity
methods can be used in the CDR scheme [13], they are mospar@msly and compactly represented using
four-dimensional external states. Thus, the FDH schemeddathat the gluons circulating through loop
amplitudes have the same number of spin degrees of freedtme agternal gluons of helicity amplitudes.

Unfortunately, this framework fails to subtract all of thkraviolet poles [3] and generates incorrect
results. The evanescent couplings and degrees of freedethtaebe renormalized separately from their
gauge boson counterparts, but there is no mechanism whthiRDH for doing so. The errors, however, are
only of order&(¢) in NLO calculations (which is the level at which the FDH haebeised in practical
calculations to date) and therefore do not adversely affexse results. At NNLO the errors would be of

order (%) and at NLO and beyond the errors would be singulagin



lll. THE INFRARED STRUCTURE OF QCD AMPLITUDES

The infrared structure of QCD amplitudes is governed by atanomalous dimensions which allow
one to predict, for any amplitude, the complete infraredcstire [14, 15]. These anomalous dimensions
are known completely, in both the massless and massive fmsase and two loop amplitudes, and their
properties beyond the two-loop level are being activeldis [16—25].

For a generah parton scattering process, the set of partons is label&e-Hyf; }i—1. . In the formulation
of Refs. [15-17], a renormalized amplitude may be factorireo three functions: the jet functiorys,
which describes the collinear dynamics of the externalgparthat participate in the collision; the soft
function S, which describes soft exchanges between the externalngaad the hard-scattering function

|Ht), which describes the short-distance scattering process,
"%f (piv %>US(U2)>5>> = jf (Cfs(ﬂz)as) S <pi> 8_2708(“2)75) ‘Hf <pi> %>as(ﬂz)>> . (1)

The notation indicates thdH) is a vector ands is a matrix in color space [14, 26, 27]. As with any
factorization, there is considerable freedom to move texbmit from one function to another. It is conve-
nient [16, 17] to define the jet and soft functiong; andS;, so that they contain all of the infrared poles but
only contain infrared poles, while all infrared finite terirecluding those at higher-order & are absorbed

into [H).

A. The jet function in the HV/CDR schemes

The jet function_¢; is found to be the product of individual jet functiongy, for each of the external

partons,

i (as(p?),€) = |'| i (as(p?), ) - )

Each individual jet function is naturally defined in termdlodé anomalous dimensions of the Sudakov form

factor [15],
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Although%; andy; are defined through the Sudakov form factor, they can beagttdrom fixed-order
calculations [28-34]y;i is the cusp anomalous dimension and represents a pure puoleftbe’; anoma-
lous dimensions contain terms at higher ordeg,itout | only keep terms in the expansion that contribute
poles to In(_#). Ce = (N2 —1)/(2Nc) denotes the Casimir operator of the fundamental repretsemiaf
SU(Ng), while Ca = N denotes the Casimir of the adjoint representatidnis the number of quark flavors
andTs = 1/2 is the normalization of the QCD charge of the fundamentategentation.l, = 5’ ; 1/k"

represents the Riemann zeta-function of integer argument

B. The soft function in the HV/CDR schemes

The soft function is determined entirely by the soft anomaldimension matriX's;,

VS N\ 2
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In the color-space notation of Refs. [14, 26, 27], the softmalous dimension is given by [16, 17]
w_1 R @ _ Ko
rsf_§|e TI.TJIn<_j>, FSf_EFSf, (6)

whereK =Ca (67/18— {2) — 10T Nt /9 is the same constant that relates the one- and two-loopatwuspa-
lous dimensions. Th&; are the color generators in the representation of partowultiplied by (—1) for

incoming quarks and gluons and outgoing anti-quarks).

IV. THE FDH SCHEME AT TWO LOOPS

The failure of the FDH scheme as a unitary regularizatiomstwhdoes not mean that it is of no value in

computing higher-order corrections beyond the next-#olileg order. Even at NLO, the FDH scheme has



always been used as a means of obtaining scattering angditndhe HV scheme. There is no reason for
that to change at two loops. The only difference is that onstmecognize that the FDH scheme result is
not a physical scattering amplitude, but only an intermteditep toward obtaining one.

In formulating a prescription for converting FDH scheme #tages into HV scheme amplitudes, the
first problem to address, of course, is that of renormabtipatOne solution to the renormalization problem,
dubbed “dimensional reconstruction,” has been proposdgidmghezal, et al. [6]. The idea behind dimen-
sional reconstruction is that if one knows the the one-loglpalvior of an amplitude with arbitrary (integer)
numbers of extra spin dimensions (momenta are aiMyslimensional) then the correct two-loop ampli-
tude can be determined from the renormalization constautifferent integer spin dimensions. Note that it
is a basic assumption of dimensional reconstruction th&wine is computing a two-loop amplitude, the
tree-level and one-loop terms that contribute via renozatbn are essentially trivial, and that there is no
appreciable cost to performing extra one-loop calculatibrloing so saves effort on the two-loop piece.
The transformations that | will develop will also subscrtbehis viewpoint.

While dimensional reconstruction is a completely validraggh to the renormalization problem of the
FDH scheme, it does have some drawbacks. One drawback i dpgears that one must determine new
renormalization constants for each process at each orgrfrbation theory. This is quite different from
working within a renormalizable theory, where the renoiiradlon constants can be determined in advance
through the study of corrections to one-particle-irretieciGreen functions. A more serious drawback is
that dimensional reconstruction does not address the@afrstructure of amplitudes computed in the FDH
scheme.

It is certain that the infrared structure of FDH scheme amgés is not equal to that of HV scheme
amplitudes. Itis also clear from optical theorem calcoladi[3, 6] that once the renormalization problem is
fixed, one could proceed with FDH scheme calculations bectuesinfrared overlaps will sort themselves
out. For differential calculations, one needs to know theaad collinear factorization properties of FDH
scheme amplitudes in order to implement a subtraction sehbut this has already been worked out [35—
37]. The problem is that all of the FDH scheme amplitudesl, aed virtual, contain errors, though the
structure of the errors is such that, after renormalizattbry cancel in the inclusive sum. Even if one
were willing to live with such circumstances, one wouldlstibnt to match onto standard definitions of
the running coupling and would have to face the fact thatpadistribution functions are only available in
the CDR scheme. A far better choice is to transform the réswdtframework like the HV scheme that is

known to be unitary and correct and which can be easily cdedeo the parton distribution functions.



A. The connection between thé=DH and DR schemes

In order to develop a rigorous set of rules for transformimyHFamplitudes, it is necessary to define
the FDH scheme in terms of a renormalizable scheme. One ctrisdioy exploiting the close connection
between the FDH and DR schemes. When formulating the QCDabggans in these schemes, one starts
with the standard Yang-Mills Lagrangian and then extendsfiglds intoDs-dimensions. In the FDH
scheme, one proceeds directly to the development of Feymuhes involving theDs-dimensional metric
tensor and Dirac matrices [1, 2]. In the DR scheme, howevss, fo'st splits the gluon field into two
independent components, tBg-dimensional gauge field and tig-dimensional evanescent field [9, 38,
39]. The metric tensor and Dirac matrices also decomposeititogonal components. Those new terms in
the Lagrangian that do not involve gauge fields are assigaedindependent couplings. The evanescent-
quark-antiquark coupling is given the valge(g2 = 4 1tae) and the quartic evanescent boson couplings are
given valuesy; j—1 23, wheren; represents the quartic interaction that has the same coloefl the quartic
gluon coupling, whilen, 3 represent the non-QCD-like interactions.

Thus, all of the DR scheme interactions are contained irethdshe FDH scheme, they are simply not
labeled by independent couplings and evanescent Lorantzstes. The only exception to this statement
concerns the quartic evanescent boson couplings. Bedaisgdnescent bosons are not protected by gauge
symmetry, new quartic interactions, with new color-flowsoaig the evanescent bosons, are generated by
higher-order corrections which must be renormalized iedépntly of the QCD-like quartic coupling that
appears in the classical Lagrangian. In recognition of gt that such terms will occur, they are usu-
ally assigned independent couplings and added to the ig#doR Lagrangian. The FDH scheme doesn'’t
have such couplings, but this does not present a problem.efiine@ quartic terms introduced to the DR
Lagrangian clean up the renormalization procedure, buttrseno reason that the couplings assigned to
these terms could not be chosen such that they do not caetiiba DR scattering process until radiative

corrections to the QCD-like interactions demand that thapear.

B. The connection between th®R and CDR schemes

From the formulation of the Lagrangians, one can also draanaection between the structure of the
amplitudes in the DR and CDR schemes. In particular, the DiRrese Lagrangian contains all of the
interactions that the CDR scheme Lagrangian does, plus taohasteractions involving the evanescent
bosons. This means that the amplitudes in the DR scheme gaartiteoned into a part that is identical to

the CDR scheme amplitude and a part that involves the exehahgne or more evanescent bosons. One



need not consider the case of external evanescent bosaastsgnDR scheme renormalization program
ensures that such terms contribute to the S-matrix at ard@r 40]. The DR scheme sub-amplitude that
involves evanescent exchanges will necessarily inclugénasasim over the evanescent degrees of freedom,
with the result that this sub-amplitude will be weighted bfaetor of Dy = 2¢. The only way that a term
from the evanescent sub-amplitude can make a finite (or kirjgeontribution to the full amplitude is if

it is weighted by ultraviolet or infrared poles. Thus, thdl fvanescent contribution to an amplitude up
to ordere? is part of the universal (ultraviolet or infrared) struawf the amplitude, and is controlled by
anomalous dimensions. This means that the evanescenibotiomm to ann-loop amplitude (that is the part
that is different from the CDR amplitude) can be determinetirely in terms of ultraviolet counterterms,
jet and soft functions and lower-order (0 to— 1)-loop) hard-scattering functions. Thus, with a proper
rearrangement of terms (tlﬁ/ﬁ? scheme defined below), at any ordehe hard-scattering functions in the

two schemes are related by

‘Hf(n>>|ﬁe - ‘Hf(n>>Hv +O(e). (7)

C. A new definition of the FDH scheme

Clearly, if one can draw a close connection between the FOHDHR schemes, one should be able to
develop a prescription for the direct transformation of expbtude computed in the FDH scheme to one
that is computed in the HV scheme. From the above consideratit is quite simple to state the connection.

The four-dimensional helicity schengethe DR scheme with two extra conditions:
1. External states are taken to be four dimensional.
2. The evanescent couplings.(andn;) are identified withas.

The first condition asserts the same distinction betweeR ¢ and DR schemes as exists between the
HV and CDR schemes. The restriction to four-dimensionatrend states does not affect the anomalous
dimensions of the theory. The ultraviolet counterterms thedjet and soft functions are unchanged. The
only changes are to the exact form of the finite hard-scatjenatrix elements. The four-dimensional con-
dition also forbids the appearance of external evanestatass As mentioned before, the renormalization
program of the DR scheme ensures that evanescent exteaited sain only contribute to the S-matrix at
ordere or higher, so this restriction is of no consequence.

The second condition is the one that violates unitarity amtlers the FDH non-renormalizable. The

evanescent couplings need to be renormalized differeimély the QCD coupling, but there is no means of
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doing so once the couplings have been identified. Therefoeei-DH can only be used to compute bare
(unrenormalized) loop amplitudes.

In the DR scheme, on the other hand, one can determine thectoittraviolet counterterms, and the
infrared counterterms needed to remove the evanescermibtian, leaving the HV scheme result. By
computing these counterterms in the DR scheme and therifidiegtthe couplings, one obtains the coun-

terterms needed to shift from the FDH to the HV scheme.

D. Ultraviolet counterterms for the FDH

When working within massless QCD, it is only necessary tonerlize the couplings. It is common
in dimensional reduction to determine ultraviolet coutgiens using modified minimal subtraction (this is
known as theDR scheme), dropping evanescent terms, even if they coulixaviolet poles, because the
factor of Dy renders them finite. This procedure means that the renarasatioupling in thdOR scheme,
crs'TR differs from the standard couplingé"TS that appears in HV/CDR calculations by a finite renormal-
ization. This finite renormalization corresponds pregidel the Dy/e terms that were dropped from the
B-function. My goal is to remove all evanescent contribusioso | will include(Dy/¢€)" terms in my defi-
nitions of thef-functions and anomalous dimensions. To distinguish itftbeDR scheme, | will call this
the DR scheme.

Because there are so many independent couplings in the iRsgland because they mix under renor-

malization, the simplgy 12 labeling of theMS scheme is insufficient. Instead, | write,

— — — — — -1
[B'ﬁ e d abR - <£asDR . abR azo@ Bﬁ—i- abR azo@ B'ﬁ> <1+ abR aza§R>
= = R Sl — OF

n ZaDAR (9GDR ¢ Zagﬁ (9!']iDR

Similar equations vyield

_ i .k O __
e d o s () () (22%) (22 (25
e =M dl«lz T Ij; e,ijklm T T T T
or_ 2 d noR nsDR GDR "(afR\ PR\ (2R (n5R\"
B = H d—uzT: IJ; B m m m |

The values of the coefficients through three loops ﬁBAP and BEAR) are given in Appendix A. Note that

m

9)

with the rearrangement of the evanescent contributiorsteims inBDAR that are not proportional tBy
are identical to the coefficients of tifg2function in theMS scheme. This indicates that the renormalized

coupling of theDR scheme coincides with that of tVS scheme.
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The ultraviolet counterterms for FDH amplitudes are coraguas follows. First, one computes the
lower loop amplitudes in the DR scheme and then expands tieecbaplings in terms of the renormalized
couplings using thg-functions of theDR scheme. Finally, the evanescent couplings are identifigdthe

QCD coupling and the factors @y are evaluatedy = 2¢).

’%(GS»ESH = ‘%(aSa Qe, ’71)>8A; ae,N1—0s (10)
Dx—2¢

This will remove all of the ultraviolet terms, including teganescent terms that appear to be finite because

of the factor ofDy.

E. The infrared structure of the DR scheme

The next step is to remove the unwanted evanescent compairteetinfrared structure of FDH scheme
amplitudes. As with the ultraviolet counterterms, the tetim be removed can be identified by studying
the structure of DR scheme amplitudes. The basic form ofrifrared structure in the DR scheme is the
same as in HV/CDR, but the anomalous dimensions receiveesgant corrections. In addition, there are
new¥ anomalous dimensions that depend on the evanescent agaiplihrough two-loops, the corrections
and new anomalous dimensions depend only on the fermiameseant coupling, not the quartic evanes-
cent couplings. Furthermore, because the evanescentimgsiplre not gauge couplings, there are no new
counterparts to the cusp or soft anomalous dimensions,ivdrie associated with the exchange of gauge
bosons.

| have determined the values of the infrared anomalous dioes in the DR scheme by the direct
calculation of two-loop amplitudes. | first determine thermralous dimensions for external quarks from
the Drell-Yan amplitude. | then obtain the anomalous dinerssfor external gluons from thgg — gy
amplitude [41-43]. In principle, it would be easier to egtréhe gluon jet function by calculating the
amplitude forgg— H, but the Higgs - gluon coupling is governed by a set of efiectiperators generated
by integrating out the top quark. This system, involving raper mixing and higher-order corrections to
the Wilson coefficients, has been studied to high order inB&R scheme [44, 45], but not in the non-
supersymmetric DR scheme.

The calculations of the infrared anomalous dimensions disase¢he wave-function and vertex correc-
tions used to extract thg-functions were all calculated within the same framewortie Feynman diagrams
were generated with QGRAF [46] and the symbolic algebranarmg-ORM [47] was used to implement

the Feynman rules and perform algebraic manipulationsdoce the result to a set of Feynman integrals
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and their coefficients. The method of Ref. [48] was used tocedhe calculation of the vertex corrections
to propagator integrals. The full set of Feynman integrals veduced to master integrals using the program
REDUZE-2 [49]. REDUZE-2 offers significant improvementsothe previous version [50] and was par-
ticularly effective at reducing the non-planar double-lrtegrals that contribute to thggj — gy amplitude.

All of the master integrals needed for these calculatiorskapwn in the literature [51-57].

The jet function in the DR scheme takes the form,

MS DR g?(m
In ADR(Gs(MZ),OIe(HZ),S):— (Cf ) {882%((' gf(l (cr )
1
8

alls ARG
() [ L (o) - (V<— )
11
<_> <aDR> e11!(!?(01)(8) %Ai%’l)(s)] (11)

g2 €
NEQIE LT

£
where the anomalous dimensions in Bie scheme are

« - 10 2
i =2C, % =cR=c {CA ( Zz) — g TtNi = §DXCA:| Ca=Cr, Cy=Ca,
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5

3 F
G = 5Cr +5Cr (8- 2). %" = 2B ——CAZ&
Z%Y :—%Dxcp, g% ~ o,
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27 12 4 27 3 2 (12)
;
DyC3
+Dx A(54+24ZZ>
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3
ae” = 16DxCr Te Ny, Jge” =0,
11 1 1
Bzo 12 - éNf - Z_DXCA7
DR _ DR
= C CaN C N ——D c3 = —DyCeN
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Note that the QCD coupling is_L}TS, the same coupling used in HV/CDR calculations. Since lagttthe
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anomalous dimensions from amplitude calculations, | casaparate the order part of the one-looﬁ?
anomalous dimensions, which contributes at two-loops whathiplied by aB-function coefficient, from
the pure two—looﬁ? anomalous dimensions. This merely constitutes a reamaggieof terms and does not
affect the prediction of the infrared structure.

The soft function changes very little in going to the DR schefhis is because evanescent exchanges

do not add new soft anomalous dimensions, they only addat@mns to the existing terms.

DR 2 ) 1 {aMS\.ay 1 [aMs 2A(1) ~(1)
S (pi,%ﬂs(ﬂ)@):l*'g T + 55| — Fs xTs

m 8e2\ m
(13)
2 2
B (o) g 1 (o) R
4¢2\ S T4e\ m S
1 1 . u? =2 K=
=33 3T In(—s,-)’ re = 5Fs. (14)

whereK = Ca(67/18—(2) — 10/9T; N — 2/9D«Ca is again the same constant that relates the one- and

two-loop cusp anomalous dimensions, this time indBikescheme.

F. Transforming FDH amplitudes into HV amplitudes

I have now assembled all of the pieces needed to convert bggitedes computed in the FDH scheme
into renormalized amplitudes in the HV scheme. To obtaimdwmop amplitude in the HV scheme, one

needs
1. The baren-loop amplitude in the FDH scheme.
2. The renormalized+loop amplitudesr e {0,...,n—1}) to ordere2(™™ in the HV scheme.
3. The jet and soft functions to ordeiin the HV scheme.
4. The renormalized+loop amplitudesrfi€ {0,...,n—1}) to order2(™™ in theDR scheme.
5. The jet and soft functions to ordetin the DR scheme.

Note that computing the-loop squared amplitude to orde? already required the higher-orderarcontri-
butions to the lower-loop amplitudes in the HV scheme. The/ewsion procedure requires them in DR

scheme as well.
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The first step is to expand Eq. (1) by ordersogf

n

) 3o,

" . (15)
[#0) =3, [ 728" )
i=
I now define the “renormalized” FDH scheme amplitude as
A o= e = [ o L
From this I find that
‘%(n)>ﬁ o e - ‘//l(n)>FDH_ii [j®§} ' “%ﬂ(nii)>DR oo e ' a7)
Finally, using Eq. (7), | obtain
R L e AP P B R S C R

The infrared structure of the HV scheme amplitude can beaetad from\/// >FDH in a similar way
or constructed directly in terms of the lower order hard tecatg matrix elements and the jet and soft
functions.

Let me now write out explicitly the transformation of a orm®p bare amplitude in the FDH scheme,
involving ngq quarks and anti-quarks amg gluons, into a renormalized one-loop amplitude in the HV

scheme. Starting with

Bare

‘%(1>>HV - ‘%(1)>FDH+ ‘.//(1 >FDH [/+S] ‘ ( )>DR

| add in the infrared parts of the HV amplitude (note that the-tbop soft functions of the HV andR

(19)

ae nlﬁﬂs + ﬁ(g) )

scheme are identical) to obtain

) = (57 ) (g2t o,

o _ 7 (0)
- 20)
Bare aMs\ n Ng—2 = (
| [ 9 g+ Ny MS | ,(0)
_‘% >FDH < n) 2¢ Fo ‘%ﬂ >HV
afS\ (ng+ng—=2_ ng. ng
+< n)( Sa—Ca— 5iCe — 3 c:A ‘%” >Hv+ﬁ(s)

The first line is just the bare one-loop amplitude with staddiaS ultraviolet counterterm, while the second
line is the finite shift, broken into ultraviolet, infrareg and infraredny pieces, identified by Kunszt, et
al. [5]. Beyond one loop, the transformations are not so Erapd involve the structure of the amplitudes

in addition to the identities of the external states.
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V. CONCLUSION

In this paper, | have described a procedure for transforrharg loop amplitudes computed in the four
dimensional helicity scheme into renormalized amplituthethe 't Hooft-Veltman scheme. One of the
simplifying features of the FDH, the treatment of the evaees states as if they were gluons, renders the
scheme non-renormalizable. Nevertheless, the FDH canfireden terms of a renormalizable scheme, a
variant of the dimensional reduction scheme. Through thimection to the DR scheme, | have shown that
the differences between amplitudes calculated in the FDidree and the HV scheme (up to order) are
either ultraviolet or infrared in origin and are therefoatmf the universal structure of the amplitude which
is controlled by anomalous dimensions. By computing theseralous dimensions in tHeR scheme,
defined above, through two loops, | provide concrete fornfatathe transformation of the amplitudes.

The utility of such transformations lies in the close conimecbetween the FDH scheme and the tech-
niques of generalized unitarity and the helicity method.e§ehtechniques are a natural fit for the FDH
scheme, but the results need to be transformed into a relipairia scheme so that they can be used in

practical calculations. With the procedures describedimpaper, such transformations can be performed.

Acknowledgments: This research was supported by the U.S. Department of Enerdgr Contract

No. DE-AC02-98CH10886.

Appendix A: DR Schemef-functions

In this appendix, | present the QCD and evanesfefnctions in theDR subtraction scheme. In the DR
regularization scheme, momenta are dimensionally regelhand taken to bB,, = 4 — 2¢ dimensional.
Spin degrees of freedom are defined iDa= 4 dimensional vector space. Despite the numerical values
assigned to the dimensionalities, as vector spBges Dy, O 4. The symboDy = 2¢ is used to denote the
difference between thes andD,, dimensional vector spaces.

The B-functions are defined as

k — \ | —~\ m
ﬁﬁZMZLGSDR__ aDR 50 aDR alR noR noR\' [ noR
du2 m u; tjkim T T T T
N ek, el s ey m
e d o o) () (1) (1) (28)"
e — H duz T ; eljklm T T T T )
i
poR _ 2 neR_ | aDR ag® )" (n2®\ (n2®) [n3®
e —H g2 u; Bsikim i i i T/
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whereBﬁ, [BEAR and [3,5?* are the QCD, evanescent-quark-antiquark, and quatic sgang3-functions,
respectively.
The non-vanishing coefficients f@ﬁ through three loops are:

R 11 1 1

20 12C éNf —ﬂDxCA,
17 5 1 7 1
= CaN CeNf — —D,C2 = D,CeN
Bso 24 — 54CANr = gCr Nt — 72DyCR, B 6fo
e 2857 5 1415 205 79
bR 2
== C3__""C2N CaCeN CZN CaN? Cr N2
40 345627 3456 A 1 1152 AF er64 FINTY 3256 er576 R
2749 , 13 23 145
DX< 6912C 432(:’*'\'f+2304CACF Nf> 3824°< O
N= 3
PR _
1 7 3 1 7
=D C2Ns+ ——CaCe Nf — —C2N ——CaN ——CN
B X( 64 A er128AF f = gaCF N+ oggaNi = 5ggCr Ni >
D? CZN CaCeN
* X<256A - :256A F f>
27 45 9
1330100 512Dx(1 Dx) [330010 126D x(2+Dx) , [330001 256D x(1—Dx)
81 27
Bzozoo 512D x(1—Dx), 320101 128Dx(1—Dx)>
45 63
1320020— 6 4Dx(2+ Dx) , Bzoooz 256D x(1—Dx) ,
where | omit the last three indices if they all vanish.
The coefficients oB(EAR through two loops are:
1 1 1 = 3
B 02_ CF_4Nf_ZDX(CA_CF)7 el?]'_?lZECF,
N= 3 5 3 3 1 3 3
bR 2 2 2 2
= _—C;—-CpCr +C£ ——CaN CeNs +Dy [ —=C —CaCe-C —CaN
603 = g~A 4AF—|-|: 16Af-|-8|: f + Dx 2A+2AF |:—|-32Af>
3 1 9
2
+DX <32CA 4CACF + 64CF> ;
3 7 5 11 1
Belz _§C,§+ZCACF—2CF—1_6CFNf+Dx< 16CACF+§C§>>
= 61 3 1 (A3)
bR 2
C CaC C2 CaN CeNs +D C CaC
621~ ~ g2 A+48AF+16 |:+16Af 24F f+ X<64A 96AF>7
BR 9 BR 5 BR 3
Beo2100= ~3 (1-Dy), Beo2010= 3 (2+Dx) , Be02001= 2 (1-Dy),

= 27 N 15 = 21
BE61200= 64(1 Dx) , nglozo:—g(erDx)’ Be61002= 32(1 Dx) ,

= 9
Bet1101= 16 (1-Dy),



The three-loop coefficients that do not involve the quarbiegings are:

9
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5 5 15 5 9
Bel? CAZS CA F (E 1653> +CAC|: <Z+?Z3> <4 4Z>

3 15 51 27 33
2 > - Y- 2 Y
+CANs (128 32 Z3> CaCr Ny <32 32 Z3> (32 16 Z3> +Nf

7 91 135 13 249
+ Dy [—Ci <32 +3 Zs) +CACr (@ Zs) —CaC <— +55

4

21 37 47
2 —_— fe— —_—
FCANs <128 64 Z3> CaCr Ny <256 64 Z3> (128 2 Z3>

9 35 69 461 147
2 2 it =Y 2 -t
+D? 64CA C2Ck (64 6453> +CaC2 <512 53>

—C3Ng

( Ca~ 128 >
41 27Z

> (16+16 3>
N (520 1) |
T\s2A 62

1—89+Z
256 ' 32°°

29 49 43
<5_12_ @@ FCaCr Nr <5_12_ @@ <—1024‘ a@ﬂ

' 1 33 189
D2 |-C3 ~—— CACr —CaC?
x| <32 12853> 256 AF T AYF (1024 12853>

109
(m‘aéﬂ !

Ok 25 3 85 15 1
o3 = —CA (64 453>+CE\CF <3—2 4zs> CaC? (——6zs>+c3 (2—3za>

27_9, 3

one (L _32.) - 2/

+CaN¢ <32 853) CaCr N¢ <32 3 > < Z3> + 4CANf
13 3 ) 105 29 27
+ Dy [_CA <32+4Z3> +CaCr <1+—53> ( > <3—2—§53>
1 51 25

2 - Y 2 e~y v

FCANs <128+ 1GZ3> +CaCr Nr <128 1GZ3> CEN (128 853”

13 25 3
0% [+C’3* <128 16 Z3> CaCr <E; 32 Z3> <128 32 Z3>

= 121 45 167 207 131
DR __ o 2 2 _
252 = Ca (512 1GZ3> (256 16 Z3> +CaCE (128 1863>

1 15
(é‘l—e@ﬂ’

85 27
(a7 )

AN (%— 3—253> +CaCe Ny (i—;g— ﬂl@) (%— i—i@) (}%CA 116CF>
+0u|-ct (o2 2—3@ <%'2741— » zg> et (o 32 4)
TGP <21536 4112(3> 1024CANf+6 CaCrNi + 16CF Nf]
+D2{ 10124CAJr 13:;4CACF :fchCE] ’
p5 = _22(232 A 1324650610’iCF - %CACE - %’c& * ;37(;34CANf CaCr Nr <117521£;Jr 4 Z3>
i (2-20) - gy
+ Dy [+% S %CKCF - Z—ZGCACE 11 4CANf 5 694CACF Nf]
05 [ 9;6CA 13224CACF] ’

(A4)
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while the three-loop coefficients that do involve the quairiteractions are:

B<5A§3100 —%(1 7D><—|—6D)—|—%Nf(l Dx) ,

BEa010= oy (818D~ 11D2)—%Nf<2+Dx)

§3°°1:%(2 19Dx+17D2)—aNf (1-Dy) ,

BelZlOO—_S_Sl(l Dy, 3512010 24(2+DX)7 Bﬁzoolzlz?(l—Dx)a
Beznoo %(1—@), Bg?lmo 2;2(2+DX)7 Bg?lom 2(1);(1 Dx)
;3352200 15’2 4(422 553Dx+131D2)—%Nf (1-Dy),

R 020 = ~= 4(652+136DX 95D5) + T5o Nt (2-+Dx)

B s002= To2z (394— 731D, +337D) - gigN (1-Dy),

BgAchzno Zg (2—Dx— Dz)

DR 1 2y, 135 (A3)
BEBo101= g (622- 773Dx+151D)+ﬁ3Nf(1 D),

B8011= — e (2 Dy~ D)

eE,)1R1200 ig:(l Dx) 5?1020: 2126 (2+Dy),

Fioor= oy (1D BRuor= —op (1-Dy).

BG?AC')?BOO 13;4(11 10Dy — D7) , Be0121o ;2:(2 Dx—Dj)
13(575{1201 52172(11 10Dx — D)%), B£1120: 64(2 Dx— D>2<)7

DR 131= 32(2 D«-D2),  BRiie= 226(14 25D, + 11D2) ,
B$103022(16+10DX+D>2<)> 301021 :;(115(2 Dx—D%) ,

105 — 7
Be01012 61 (2-Dyx-D?), Bet1003= 256(14 25Dy + 11D3) ,

A consistent description qﬁﬁ and [BQAR through three loops only requires knowledge of ﬂﬁ@‘s
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through one loop. These coefficients are:

BITZOOOOZ —g> Br?IQOZOOO: %Nf ; Br?lomoz ; Br???OllOO: —%Nf ;

Bnl 00200 = %1 - % Dx, BITOOHOZ —2—Dx, BrTOONl: ; - % Dx,

an 20000= 1_96’ ﬁr?fozooo: 2—14Nf ; Br?j 10010= g ; an 01010= ;Nf ;

BrSTOOZOO 136 (1-Dy), Brf{oono: %(1— Dy) , BrETOOlOl: —% (1-Dy), (A6)
qu 00020 = %2 - g Dx, qu 00011 = —g (1-Dy), qu 00002= 75 (1 Dy)

Br?lOOOl: gv Brf{omm: —%Nf ; Brfzoono: 2+ Dy, Bn3,00101: g — Dy,

_ 5 == 10 DR 71
B o0020= 3 (2+Dy) By 00011 = 3 (2+Dx) Prs 00002~ 5 12 Dx;
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