
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Transverse single spin asymmetry in the Drell-Yan process
Jian Zhou and Andreas Metz

Phys. Rev. D 86, 014001 — Published  5 July 2012
DOI: 10.1103/PhysRevD.86.014001

http://dx.doi.org/10.1103/PhysRevD.86.014001


DR10849

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

Transverse single spin asymmetry in the Drell-Yan process

Jian Zhou, Andreas Metz

Department of Physics, Barton Hall, Temple University, Philadelphia, PA 19122-6082, USA

June 6, 2012

Abstract

We revisit the transverse single spin asymmetry in the angular distribution of a Drell-Yan dilepton
pair. We study this asymmetry by using twist-3 collinear factorization, and we obtain the same
result both in covariant gauge and in the light-cone gauge. Moreover, we have checked the electro-
magnetic gauge invariance of our calculation. Compared to previous calculations we properly treat
the transverse momentum expansion, and as a consequence our final expression for the asymmetry
differs from all the previous results given in the literature. The overall sign of this asymmetry is
as important as the sign of the Sivers asymmetry in Drell-Yan.

1 Introduction

The observation of transverse single spin asymmetries (SSAs) in various hard scattering processes has
stimulated new remarkable developments both on the theoretical and the experimental side. As a
consequence, the study of SSAs currently represents a very active field of research [1–3]. The interest
in such effects is essentially twofold: first, SSAs allow one to address the parton structure of the
nucleon beyond the collinear parton model approximation. Second, SSAs are ideal observables in
order to further explore in which cases the machinery of QCD factorization still applies and in which
cases, in its simplest form, it breaks down (see [4] and references therein).

For what concerns the parton structure of the nucleon, in the present work we focus on collinear
twist-3 quark-gluon-quark correlations. To be more precise, the central non-perturbative correlator
is the so-called ETQS (Efremov-Teryaev-Qiu-Sterman) matrix element [5–7] TF — and its chiral-odd

partner T
(σ)
F — which typically appears when describing transverse SSAs in the context of collinear

higher-twist factorization. The machinery of collinear twist-3 factorization was pioneered already in
the early 1980’s [5, 8, 9], and in the meantime frequently applied to transverse spin effects in hard
semi-inclusive reactions (see, e.g., Refs. [6, 7, 10–12]).

In this paper, we revisit the transverse single spin asymmetry in the angular distribution of a
Drell-Yan dilepton pair. This asymmetry is defined as the difference of two spin dependent cross
sections with opposite directions of transverse polarization divided by their sum,

AN =

(

dσ(ST )

dΩdQ2
− dσ(−ST )

dΩdQ2

)/(

dσ(ST )

dΩdQ2
+
dσ(−ST )
dΩdQ2

)

, (1)

where dΩ = d cos θdφS is a solid angle element of the leptons in a dilepton rest frame, and the azimuthal
angle φS is measured relative to the transverse spin vector. Note that the transverse momentum QT of
the dilepton pair is integrated out, and we emphasize that integrating over QT is essential for applying
the collinear factorization approach in the present case.
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The asymmetry AN was already studied in several previous articles, and various different results
were obtained. The first calculation, carried out in the light-cone gauge, can be found in Ref. [13].
The authors obtained 1

A
(HTS)
N = − 1

Q

sin 2θ sinφS
1 + cos2 θ

∑

q e
2
q

∫

dx
(

T q
F (x, x) − x d

dx
T q
F (x, x)

)

f q̄1 (x
′)

∑

q e
2
q

∫

dx f q1 (x)f
q̄
1 (x

′)
, (2)

where f q1 is the standard unpolarized twist-2 parton distribution for quark flavor q. The momentum
fraction x′ is given by x′ = Q2/(xS), with S = (P + P̄ )2 denoting the square of the cm energy of the
process. Later on the presence of the derivative term in the numerator of (2) was doubted, and it was
corrected as [14,15]

A
(BMT )
N = − 1

Q

sin 2θ sinφS
1 + cos2 θ

∑

q e
2
q

∫

dxT q
F (x, x)f

q̄
1 (x

′)
∑

q e
2
q

∫

dx f q1 (x)f
q̄
1 (x

′)
. (3)

Afterwards, in Ref. [16] AN was considered in the collinear twist-3 approach, and the result of that
study agreed with the expression in (3). Then AN was computed by using factorization in terms
of transverse momentum dependent correlators [17]. The final outcome of that work neither agreed
with (2) nor with (3). More recently, AN was again considered in Ref. [18], where the authors claimed
that the spin-dependent hadronic tensor should be multiplied by a factor of 2 compared to previous
work [13–16].

This somewhat unclear situation motivated us to revisit this topic. We computed AN in (1) by
means of twist-3 collinear factorization and came up with yet another result. To be specific, our result
is just half of the one quoted in Eq. (3), and a quarter of that obtained in Ref. [18]. In order to gain
further confidence we checked our calculation in a few different ways. Technically, the most important
difference in comparison to previous work is that, when performing the collinear expansion in the
twist-3 formalism, we take into account the dependence on transverse parton motion (kT -dependence)
not only in the hadronic tensor but also in the lepton tensor. We emphasize that the contribution
from the kT expansion of the lepton tensor has been overlooked in [14–16, 18]. One symptom of
this shortcoming is that existing results obtained in the light-cone gauge [14–16, 18] depend on the
boundary condition for the gluon field.

The rest of the paper is organized as follows. In the next section, we introduce our notation, and
give some details about the kinematics. In Section 3, we derive the asymmetry in a covariant gauge as
well as in the light cone gauge, and the two results agree with each other. In addition, we have checked
the electromagnetic gauge invariance by explicit calculation. We summarize the paper in Section 4.

2 Kinematics and notation

We focus on lepton pair production in hadronic scattering which comes from the decay of a virtual
photon, Ha+Hb → γ∗+X → ℓ++ℓ−+X. The 4-momenta of the leptons are l1 and l2, and q = l1+ l2
denotes the momentum of the virtual photon. The invariant mass of the dilepton pair is Q with
Q2 = q2. For the following calculation we need to introduce the vector R = l1 − l2. In any dilepton
rest frame, R reads

R = Q
(

0, sin θ cosφ, sin θ sinφ, cos θ
)

, (4)

where the numerical values of θ and φ depend on the frame. The correlation associated with AN in (1)
is εµνρσP

µP̄ νSρRσ, while the asymmetry usually associated with the Sivers effect [19] is related to

1To shorten the notation we suppress throughout terms where quarks and antiquarks are interchanged.
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the correlation εµνρσP
µP̄ νSρqσ. The latter requires to measure the transverse momentum QT of the

dilepton pair.
A convenient way of sorting out the different angular dependences of the Drell-Yan cross section

is to decompose the lepton tensor in terms of individual independent orthogonal tensors [20–22],

Lµν =
(

(q +R)µ(q −R)ν + (q +R)ν(q −R)µ − 2Q2gµν
)

=
9

∑

i

LiV
µν
i . (5)

(A discussion of the general structure of the polarized Drell-Yan cross section can be found in Ref. [23].)
The Li represent the angular structures, and the basis tensors V µν

i can be constructed from a set of
(4-dimensional) basis vectors T µ, Xµ, Y µ, Zµ, which are mutually orthogonal to each other and are
normalized according to T 2 = 1, X2 = Y 2 = Z2 = −1. For the case of AN , the relevant angular
structures appear in the terms associated with V3 = −1

2(Z
µXν+ZνXµ) and V8 = −1

2(Z
µY ν+ZνY µ),

Lµν = Q2 sin 2θ cosφ V µν
3 +Q2 sin 2θ sinφ V µν

8 + ... . (6)

As in the case of (4), the decomposition (6) holds in any dilepton rest frame.
For QT = 0 (in the hadronic cm frame), we choose the following dilepton rest frame: z-axis along

the direction of the polarized hadron, and x-axis along the direction of the polarization vector ST . To
be fully specific, the 4-dimensional basis vectors are given by

T µ =
qµ

√

Q2
,

Zµ =
1

Q

(

xPµ − x′P̄µ
)

,

Xµ = Sµ
T ,

Y µ = εµνρσTνZρXσ . (7)

Because of the specific definition of Zµ, this frame can actually be considered as partonic cm frame.
If QT 6= 0, one may work in the Collins-Soper frame [24] for which the basis vectors read

T µ =
qµ

√

Q2
,

Zµ =
2

√

Q2 +Q2
T

(

qp̄P̃
µ − qp

˜̄P
µ)

,

Xµ = − Q

QT

2
√

Q2 +Q2
T

(

qp̄P̃
µ + qp

˜̄P
µ)

,

Y µ = εµνρσTνZρXσ . (8)

In (8) we use the further definitions P̃µ = [Pµ − (P · q)/q2qµ]/
√
S, ˜̄P

µ
= [P̄µ − (P̄ · q)/q2qµ]/

√
S,

with qp = P · q/
√
S, qp̄ = P̄ · q/

√
S. At tree level, QT is equal to the sum of the intrinsic transverse

momenta of the two incoming partons. This implies that for QT 6= 0 a kT -dependence is sitting in the
unit vectors Xµ, Y µ and T µ. (The kT -dependence of Zµ is of the order k2T and therefore irrelevant
for our twist-3 calculation.) As a result, the terms containing cosφ and sinφ are kT -dependent. This
kT -dependence must be taken into account when performing the collinear expansion.

For QT 6= 0, instead of using the Collins-Soper frame, one can alternatively perform the calculation,
for instance, in the Gottfried-Jackson frame [25]. Keeping track of all kT -dependent terms in the
Gottfried-Jackson frame is more involved. Nevertheless, we carried out the calculation, and our final
result agrees with what we find in the Collins-Soper frame.
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3 Calculation in twist-3 collinear factorization

In order to calculate AN in Eq. (1) one needs both the unpolarized cross section (in the parton model)
and the spin-dependent cross section. The former is well-known and given by

dσ

dQ2dΩ
=

4πα2
em

9Q2

∑

q

e2q

∫

dx dx′ f q1 (x) f
q̄
1 (x

′)

[

3

16π
(1 + cos2 θ) δ

(

Q2 − xx′S
)

]

. (9)

The polarized cross section is a twist-3 effect and depends on quark-gluon-quark correlations, which
contain interesting physics beyond the parton model. In fact, such twist-3 correlations associated with
both hadrons can give rise to AN leading to the generic expression [14]

AN ∝ 1

Q

TF (x, x)⊗ f1(x
′) + h1(x)⊗ T

(σ)
F (x′, x′)

f1(x)⊗ f1(x′)
, (10)

where h1 is the transversity distribution. The second (chiral-odd) term in the numerator, which we
have not included in Eqs. (2) and (3), was first considered in Ref. [14]. In our calculation we treat
both the chiral-even and the chiral-odd contribution to AN .

The ETQS matrix element TF and its chiral-odd partner T
(σ)
F are defined as 2

TF (x, x1) =

∫

dy−dy−1
4π

e−ixP+y−+i(x1−x)P+y−
1 〈PS|ψ̄(y−) γ+ ενµT STν gF

+
µ(y

−

1 )ψ(0)|PS〉 ,

T
(σ)
F (x, x1) =

∫

dy−dy−1
4π

e−ixP+y−+i(x1−x)P+y−
1 〈PS|ψ̄(y−)σµ+ gF+

µ(y
−

1 )ψ(0)|PS〉 , (11)

where a summation over color is implicit, and gauge links has been suppressed. In the following two
subsections we compute the hard coefficients associated with these matrix elements both in covariant

gauge and in the light-cone gauge. It is worthwhile to mention that TF (x, x) and T
(σ)
F (x, x) are

related to particular kT -moments of the transverse momentum dependent Sivers function [19] and
Boer-Mulders function [26], respectively [17,27].

3.1 Asymmetry derived in covariant gauge

In covariant gauge, the leading contribution of the gluon field is from the component parallel to
the direction of its momentum. If one considers P+ (with P being the momentum of the polarized
nucleon) and P̄− as the large light-cone momenta, then the dominant component of the gluon field
for the diagrams shown in Fig. 1 is A+. Before making the collinear expansion, the incoming partons
carry a transverse momentum kiT , which is much smaller than the dominant longitudinal momentum.
In order to extract the twist-3 contributions from the diagrams with one-gluon-exchange, one needs to
get one power of kiT from the hard scattering part and combine kiT with A+ in order to convert the
gluon field in the matrix element into the corresponding part of the field strength tensor (∂TA

+) [7].
As stated above, the kT -flow may go through the lepton lines via the virtual photon. Therefore, we
have to expand the hadronic tensor as well as the lepton tensor in terms of kiT around kiT = 0.

Only the two diagrams in Fig. 1 contribute to AN in covariant gauge. To be more precise, these
two diagrams provide the chiral-even TF part of the asymmetry. In order to get the chiral-odd
contribution one has to consider the corresponding two diagrams for which the gluon is associated
with the unpolarized hadron. As an example, for the left cut-diagram in Fig. 1 we have the following

2For a generic 4-vector v, we define light-cone coordinates according to v± = (v0 ± v3)/
√
2 and ~vT = (v1, v2).
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ST ST

x′P̄

(b)(a)

A+

x′P̄ x′P̄

xP + kT

x′P̄

x1P + k1T
xP + kT

A+

x1P + k1T

Figure 1: Diagrams contributing to AN in covariant gauge. The gluon attached to the hard scattering
part is longitudinally polarized. In order to extract the twist-3 contribution, one has to expand in kT
and k1T , and to pick up the linear terms.

expansion,

Hµν,ρ(xp + kT , x1p+ k1T , ST )Pρ Lµν(q = x1p+ k1T + x′p̄, R)

= Hµν,ρ(xp, x1p, ST )Pρ Lµν(q = x1p+ x′p̄, R)

+Q2 sin 2θ

[

∂
(

cosφV CS
3,µν H

µν,ρ Pρ

)

∂kσ1T
+
∂
(

sinφV CS
8,µν H

µν,ρ Pρ

)

∂kσ1T

]

kT=k1T=0

kσ1T

+Q2 sin 2θ

[

sinφS V
CM
8,µν

∂Hµν,ρ Pρ

∂kσT

]

kT=k1T=0

kσT + ... , (12)

where the superscripts CM and CS refer to the partonic cm frame and the Collins-Soper frame
specified in (7) and in (8), respectively. The azimuthal angle φ is understood in the Collins-Soper
frame, while the azimuthal angle in the cm frame is just what we defined above as φS , namely the
angle between RT and ST . There is no need to distinguish between the polar angle θ in the two frames
when expanding around kiT = 0 and keeping only the linear terms. For the left cut-diagram in Fig. 1,
the lepton tensor is independent of kT , but it depends on k1T . The used tensor decomposition of the
lepton tensor is rather convenient in order to treat this k1T -dependence. This dependence is sitting
in three parts: the angular dependences cosφ and sinφ, the tensors V CS

3,µν and V CS
8,µν , and the hadronic

tensor Hµν,ρ Pρ.
The first term of the Taylor expansion in (12) corresponds to the eikonal line contribution to the

twist-2 quark distribution, which does not contribute to the asymmetry. One can extract the desired
twist-3 term by picking up the terms linear in kT (and k1T ) from the above expansion. Note that in
Hµν,ρ Pρ also a delta function of the form δ(Q2 − (xp + k1T + x′p̄)2) is hidden. It is easy to see that
this delta-function cannot provide a term linear in k1T , and therefore its k1T -dependence is irrelevant
for the calculation of AN . This is actually the reason why the derivative term of TF , which we briefly
discussed in the Introduction, does not show up in AN . Note that the second term on the r.h.s. of (12)
has been overlooked in the previous calculations [14–16]. This term gives rise to half the contribution
of the third term, however with a minus sign. This is the reason why our final result for AN is just
half of the one obtained in Refs. [14–16]. In general, the collinear expansion enables one to integrate
out three of the four components of the parton loop momenta, and as a result the non-perturbative

part can be expressed through the collinear twist-3 correlations TF and T
(σ)
F .

The strong interaction phase necessary for having a nonzero SSA arises from the partonic scattering
amplitude with an extra gluon. As is evident from the diagrams in Fig. 1, this amplitude interferes
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xP + kT

x′P̄

ST

Figure 2: Contribution from the kT -expansion in the light cone gauge. The kT -flow goes also through
the lepton lines via the virtual photon propagator.

with the real scattering amplitude without a gluon. The imaginary part is due to the pole of the quark
(antiquark) propagator and arises when integrating over the longitudinal gluon momentum fraction
xg. In the present case, one has a pole for xg = 0 (“soft gluon pole” from initial state interaction),
while there is no contribution from so-called hard gluon poles or soft fermion poles. We extract the
imaginary part of the pole by using the formula

Im
1

xg ± iǫ
= ∓ iπδ(xg). (13)

Collecting all the pieces we finally arrive at the following polarized differential cross section,

dσ(ST )

dQ2dΩ
=

4πα2
em

9Q2

∑

q

e2q

∫

dx dx′
(

T q
F (x, x) f

q̄
1 (x

′) + hq1(x)T
(σ) q̄
F (x′, x′)

)

× 1

Q

[

3

32π
(− sin 2θ sinφ) δ

(

Q2 − xx′S
)

]

. (14)

This provides the asymmetry

AN = − 1

2Q

sin 2θ sinφS
1 + cos2 θ

∑

q e
2
q

∫

dx
(

T q
F (x, x) f

q̄
1 (x

′) + hq1(x)T
(σ) q̄
F (x′, x′)

)

∑

q e
2
q

∫

dx f q1 (x)f
q̄
1 (x

′)
, (15)

which, as already stated above, is just half of the result (3) obtained in Refs. [14–16].

3.2 Asymmetry derived in the light-cone gauge

To test the color gauge invariance of our result, we derived the asymmetry also in the color light-cone
gauge. In general, in the light-cone gauge both the first order kT -expansion of the born diagram
(see Fig. 2) and the diagrams with one additional exchange of a transversely polarized gluon (see
Fig. 3) contribute to the spin dependent cross section at the twist-3 level. The associated twist-3 non-
perturbative parts are the matrix elements for which the operators ψ̄∂Tψ and ψ̄ATψ are sandwiched
between the hadron state [8]. Apparently, these two correlators are not QCD gauge invariant. However,
if one entirely fixes the light-cone gauge, i.e., if one carries out the calculation using a specific boundary
condition for the transverse gluon field at the light-cone infinity, then the two matrix elements can be

uniquely related to the gauge invariant quark-gluon-quark correlators TF and T
(σ)
F [12, 29].

There exist three frequently used boundary conditions: the retarded boundary condition, the
advanced boundary condition, and the anti-symmetric boundary condition. For the Drell-Yan process
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ST ST

x′P̄

(d)(c)

x′P̄ x′P̄

AT

ST ST

x′P̄

(b)(a)

AT

x′P̄ x′P̄ x′P̄

x′P̄

x1Px1P

AT

xPxP x1P

xP xP

AT

x1P

Figure 3: Feynman diagrams with one-gluon-exchange relevant for the calculation of AN in the light-
cone gauge.

the retarded boundary condition AT (−∞−) = 0 is the most convenient choice [30]. Exploiting this
particular boundary condition, the operators ψ̄∂Tψ and ψ̄ATψ can be readily rewritten in a gauge
invariant form. For example, one has [14,27]

∫

dy−

4π
eixP

+y−〈PS|ψ̄(0) γ+ ενµT STν i∂Tµ ψ(y
−)|PS〉ret = TF (x, x) , (16)

as well as

∫

dy−dy−1
4π

P+eixP
+y−ei(x−x1)P+y−

1 〈PS|ψ̄(0) γ+ ενµT STν gATµ(y
−

1 )ψ(y
−)|PS〉ret

=
i

x− x1 + iǫ

∫

dy−dy−1
4π

eixP
+y−ei(x−x1)P+y−

1 〈PS|ψ̄(0) γ+ ενµT STν gF
+
µ(y

−

1 )ψ(y
−)|PS〉 . (17)

One has to organize the contributions associated with ψ̄∂Tψ and ψ̄ATψ in a different way when
using different boundary conditions [12, 29]. Though the final result is independent of the boundary
condition, the calculation of the hard part associated with ψ̄ATψ in Drell-Yan is much more involved
for both the advanced and the anti-symmetric boundary condition. For example, if one carries out the
calculation in the advanced boundary condition, the above two equations should be replaced by [14,27]

∫

dy−

4π
eixP

+y−〈PS|ψ̄(0) γ+ ενµT STν i∂Tµ ψ(y
−)|PS〉adv = −TF (x, x) , (18)

∫

dy−dy−1
4π

P+eixP
+y−ei(x−x1)P+y−

1 〈PS|ψ̄(0) γ+ ενµT STν gATµ(y
−

1 )ψ(y
−)|PS〉adv

=
i

x− x1 − iǫ

∫

dy−dy−1
4π

eixP
+y−ei(x−x1)P+y−

1 〈PS|ψ̄(0) γ+ ενµT STν gF
+
µ(y

−

1 )ψ(y
−)|PS〉 . (19)
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One notices that the relation between the operator ψ̄∂Tψ, the gluonic pole part of the operator ψ̄ATψ
and the correlator TF (x, x) differs from that in the retarded boundary condition by a minus sign.
Therefore, the individual contributions from ψ̄∂Tψ and ψ̄ATψ change, while the sum of these two
contributions matches with the result in the retarded boundary condition. However, in the advanced
boundary condition one has to compute the hard part associated with the operator ψ̄ATψ with extreme
care, as the kT dependence needs to be kept throughout the calculation in order to generate the correct
gluonic pole structure. Corresponding arguments apply in the case of the anti-symmetric boundary
condition. For a general discussion about these issues and some more technical details we refer the
interested reader to Refs. [12, 29] and a forthcoming paper [31].

The calculation of the hard part associated ψ̄ATψ follows the standard twist-3 approach. There
are a total of four diagrams contributing to this hard part, which are illustrated in the Fig. 3 (compare
also Ref. [16]). The diagrams (c) and (d) represent the contribution from the so-called special fermion
propagator introduced in Ref. [28]. Note that the special propagator actually provides the same
contribution to the hard coefficients of both the operator ψ̄∂Tψ and the operator ψ̄ATψ [28]. Because
of this, after relating these operators to TF as explained above, these two contributions exactly cancel
each other. This argument applies to both the retarded and the advanced boundary condition. In
the case of the anti-symmetric boundary condition, the relation ψ̄∂Tψ = 0 [27] and the absence of an
imaginary part from the AT contribution (because of the corresponding principal value prescription)
give rise to a vanishing result for these two diagrams.

For the chiral-even contribution, the generalized factorization formula takes the form

dσ(ST )

dQ2dΩ
∝ α2

em

12Q2

∑

q

e2q

∫

dx dx′ T q
F (x, x) f

q̄
1 (x

′) ερσT STρ

×
[

∂

∂kσT

(

Hµν
Born(xp + kT , x

′p̄)V CS
3,µν sin 2θ cosφ

+Hµν
Born(xp+ kT , x

′p̄)V CS
8,µν sin 2θ sinφ

)

kT=0

+
1

π

∫

dx1
i

x− x1 + iǫ
Hµν

σ (xp, x1p, x
′p̄)V CM

8,µν sin 2θ sinφS

]

, (20)

where, in the end, only the kT -expansion of the hadronic tensor contracted with the tensor V CS
3,µν

contributes to the asymmetry, while the corresponding expression associated with V CS
8,µν vanishes due

to parity conservation. This point is exactly reversed in the case of the chiral-odd part related with

T
(σ)
F . We point out that the third term on the r.h.s. of Eq. (20) has been taken into account in the

previous calculations [14–16], while the other two terms are missing. The latter lead to just half
the contribution of the third term, but comes with a relative minus sign. Note that the required
imaginary part in the hard term coupled with the operator ψ̄ATψ can arise from the (artificial) pole
1/(x− x1 + iǫ), which is generated by partial integration in Eq. (17). Moreover, the diagrams with a
special propagator contribute to the hard parts resulting from both the kT -expansion and the gluon-
exchange. However, these two contributions cancel each other. The perturbative calculation is rather
straightforward. The final result for AN of the calculation in the light-cone gauge exactly matches
with the final result (15) we found in covariant gauge.

4 Summary

In summary, we recalculated the transverse single spin asymmetry AN in the angular distribution
of a Drell-Yan dilepton pair by using twist-3 collinear factorization. Compared to previous work on
this topic, we payed particular attention to the kT -dependence of the lepton tensor when making the
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collinear expansion. Our final result for AN in Eq. (15) differs from all the previous results given in the
literature. For instance, we find an asymmetry which is just half of what was obtained in Refs. [14–16].
As a side-remark we would like to point out that the kT -dependence of the lepton tensor might also
influence twist-4 (1/Q2) corrections to the unpolarized cross section in Eq. (9). In view of this, we
consider it worthwhile to carefully revisit the collinear twist-4 framework for the unpolarized Drell-Yan
process [33].

We made various checks in order to gain further confidence in our calculation. First, we verified
QCD gauge invariance by performing the calculation both in covariant gauge and in the light-cone
gauge. Second, we tested the electromagnetic gauge invariance by recalculating the asymmetry in
two specific QED light-cone gauges. Third, we computed the NLO real emission corrections in the
leading-log approximation. In a certain sense, this calculation is more straightforward than the lowest
order treatment, since the kT -flow can go through the unobserved parton line. The outcome of this
study fully supports our result for AN presented in the present work. A complete NLO analysis will
be presented elsewhere.

At this point we would like to briefly comment on the result obtained in [18]: It may be tempting
to assume that the factor of 2 found in [18] (relative to the result in Refs. [14–16]), together with
the factor 1/2 in the present work, could perhaps be combined and ultimately lead back to the result
of [14–16]. We consider such a scenario as very unlikely, also in view of the aforementioned NLO result
for the real gluon emission. Moreover, as far as we understand, the authors of [18] merely recalculate
the special propagator contribution treated in [16], but emphasize the need for a specific boundary
condition for the gluon field. While particular boundary conditions may be convenient for doing the
calculation, the final result should not depend on them. Why the result of [18] actually differs from [16]
is therefore not really obvious to us.

It is important to notice that measuring the sign of AN can be considered to be equally important
as checking the predicted sign reversal of the Sivers effect in Drell-Yan [32]. In either case the physics
of initial state gluon interactions would be tested.

The formalism developed in this paper can be extended in order to study similar observables
which represent a correlation between the transverse spin and the relative transverse momentum of
final state particles. For instance, transverse SSAs for dihadron production in semi-inclusive DIS can,
in principle, be treated along the same lines. We plan to address this point in a future work.

Note added: After we finished the calculation a new paper appeared on the very same topic, where
parton states are used for the target [34]. The authors find exact agreement with our result in Eq. (15).
The treatment in [34] is restricted to the term in (15) which involves the chiral-even functions.

Acknowledgements: We thank F. Yuan and D. Boer for helpful discussion. This work is supported
by the NSF under Grant No. PHY-0855501.
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