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Light sterile neutrinos have been introduced as an explanation for a number of oscillation signals
at ∆m2 ∼ 1 eV2. Neutrino oscillations at relatively short baselines provide a probe of these possible
new states. This paper describes an accelerator-based experiment using neutral current coherent
neutrino-nucleus scattering to strictly search for active-to-sterile neutrino oscillations. This exper-
iment could, thus, definitively establish the existence of sterile neutrinos and provide constraints
on their mixing parameters. A cyclotron-based proton beam can be directed to multiple targets,
producing a low energy pion and muon decay-at-rest neutrino source with variable distance to a
single detector. Two types of detectors are considered: a germanium-based detector inspired by the
SuperCDMS design and a liquid argon detector inspired by the proposed CLEAR experiment.

I. INTRODUCTION

Sterile neutrino models have been invoked to explain a
series of intriguing oscillation signals at ∆m2 ∼ 1 eV2 [1–
4]. These signals have relied on neutrino detection
through charged current interactions. In the case of
charged current appearance, the signal is interpreted as
an active flavor oscillating to another active flavor, which
can occur at these high ∆m2 values if one or more neu-
trino mass states with m4, ... ∼ 1 eV is added to the
neutrino mass spectrum. The extra mass states are as-
sumed to participate in neutrino oscillations, and must
therefore be small admixtures of weakly-interacting neu-
trino flavor states, with the remaining flavor composition
being sterile (i.e. non-weakly-interacting). In the case of
charged current disappearance, the signal is interpreted
as arising from active-flavor neutrino (e, µ, τ) oscillation
to any other neutrino flavor (e, µ, τ , or s, with s being
the sterile flavor).

The oscillation probabilities for appearance and disap-
pearance through charged current searches are expressed
as functions of the active flavor content of the extra mass
eigenstate(s) [1, 2]. In this paper, we assume that only
one such extra mass state, m4, exists. In that case, the
oscillation probabilities are given by

P (να → νβ 6=α) = 4|Uα4|2|Uβ4|2 sin2(1.27∆m2
41L/E)

(1)
in the case of active appearance searches, and

P (να → ν 6α) = 4|Uα4|2(1− |Uα4|2) sin2(1.27∆m2
41L/E)

(2)
in the case of active disappearance searches, where α, β =
e, µ, τ ; 6 α corresponds to all flavors other than α, includ-
ing active and sterile; |Uα4|2 corresponds to the α-flavor
content of the fourth mass eigenstate; and L and E repre-
sent the neutrino travel distance and energy, respectively.
Note that neither search case is purely sensitive to the
sterile neutrino content of the extra neutrino mass state,
|Us4|2. In this paper, we discuss a strictly neutral current

search using coherent neutrino scattering that allows for
pure active-to-sterile oscillation sensitivity.

Coherent neutrino-nucleus scattering is a well-
predicted neutral current weak process with a high cross
section in the standard model, as compared to other neu-
trino interactions at similar energies. Despite this, the
coherent interaction has never been observed as the keV-
scale nuclear recoil signature is difficult to detect. The
newest generation of ∼10 keVr recoil energy threshold
dark matter detectors provides sensitivity to coherent
scattering [5] as the interaction signal is nearly identi-
cal to that which is expected from WIMP interactions.

An active-to-sterile neutrino oscillation search is moti-
vated in Section II. We describe an experimental design
which makes use of a high intensity pion- and muon-
decay-at-rest (DAR) neutrino source in Section III. The
coherent scattering process is introduced and the exper-
imental design is discussed in Section IV. Sensitivities
to neutrino oscillations at ∆m2 ∼ 1 eV2 are shown in
Section V.

II. MOTIVATION FOR AN
ACTIVE-TO-STERILE OSCILLATION SEARCH

A decade ago, sterile neutrino oscillation models were
largely motivated by the LSND anomaly [1, 6–9]. This
result presented a 3.8σ excess of ν̄e events consistent with
ν̄µ → ν̄e oscillations described by Eq. 1 at ∆m2 ∼ 1 eV2

and sin2 2θµe = 4|Ue4|2|Uµ4|2 ∼ 0.003. The apparent ap-
pearance signal is thus interpreted as indirect evidence
for at least one additional neutrino carrying the ability
to mix with active flavors. Being mostly sterile, an ad-
ditional neutrino avoids conflict with measurements of
the Z invisible width [10] (characteristic of three weakly-
interacting light neutrino states) and the three-neutrino
oscillation model established by solar [11–13] and atmo-
spheric/accelerator [14–17] experiments.

The LSND signal was not present in a similar but less
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sensitive ν̄µ → ν̄e oscillation search by the KARMEN ex-
periment [18]. More recently, however, the MiniBooNE
experiment [19] has explored the ∆m2 ∼ 1 eV2 parameter
space and yielded a number of interesting results. Mini-
BooNE features a higher beam energy and larger distance
than LSND but preserves the L/E oscillation probabil-
ity dependence, allowing for an independent cross check
of the signal. In searching for νe appearance in a pure
νµ beam, MiniBooNE has excluded νµ → νe oscillations
in the LSND ∆m2 range at the 90% CL [20]. However,
MiniBooNE’s search for ν̄µ → ν̄e oscillations in “anti-
neutrino-mode” is only consistent with the no oscillation
hypothesis at the 0.5% level [21]. The anti-neutrino re-
sult is consistent with LSND and ν̄µ → ν̄e oscillations in

the ∆m2 = 0.1 − 1.0 eV2 range. The statistics-limited
measurement is expected to improve with additional data
being taken through at least 2012.

Recently, further results for ν̄e disappearance at high
∆m2 have been reported from short-baseline reactor anti-
neutrino experiments. More specifically, a re-analysis of
the anti-neutrino spectra produced by fission products in
a reactor core [22] has led to an effect termed “the reactor
anti-neutrino anomaly”, where the ratio of the observed
anti-neutrino rate to the predicted rate deviates below
unity at 98.6% CL [23]. This can be interpreted as dis-
appearance according to Eq. 2, where charged current
interactions of active flavors other than e are kinemati-
cally forbidden, and/or where the oscillation was into a
non-interacting sterile neutrino. Assuming CPT conser-
vation, which requires that Eq. 2 holds for both neutrinos
and anti-neutrinos, the strongest limits on ν̄e disappear-
ance come from a joint analysis of KARMEN and LSND
νe + 12C → 12Ngs + e− scattering events, analyzed for
evidence of νe disappearance [24]. The reactor-anomaly
signal is found to be marginally consistent with the KAR-
MEN and LSND νe disappearance results.

The above experiments feature a single source, sin-
gle detector design. An alternative approach is a near-
far detector configuration, where the measured flux in
the near detector replaces the first-principles flux pre-
diction. A near-far design removes a significant source
of uncertainty due to the flux prediction, especially if
the detectors are built to be nearly identical. Using the
near-far technique, the CDHS [25], CCFR [26], and Sci-
BooNE/MiniBooNE [27] experiments have probed neu-
trino disappearance at ∆m2 ∼ 1 eV2 using νµ charged
current interactions. Among the recent near-far compar-
ison data sets, the MINOS experiment has set the only
limits on active-to-sterile oscillations using neutral cur-
rent interactions [28]. The resulting limits using both
charged current and neutral current interactions present
a challenge in fitting sterile neutrino oscillation mod-
els [29].

The aforementioned results underscore the experimen-
tal and theoretical need for acquiring further data in ad-
dressing the possibility of sterile neutrinos [30].

III. THE NEUTRINO SOURCE

A DAR neutrino source can be employed to search for
active-to-sterile neutrino oscillations through the neutral
current coherent scattering interaction. DAR neutrinos
have been identified as an excellent source for neutrino-
nucleus coherent scattering studies [31–33] because the
neutrinos are produced in an energy region (<52.8 MeV)
where the coherent neutrino scattering cross section is
higher than all others by about one order of magnitude.

A search for active-to-sterile oscillations is envisioned
with a series of measurements at different values of L
from the DAR source. In our design, a cyclotron directs a
proton beam to two graphite targets embedded in a single
iron shield. As the DAR neutrino flavor content and
energy distribution are driven by the weak interaction,
the well understood flux emitted isotropically from each
target will be effectively identical, barring oscillations, at
each baseline L.

As discussed in Ref. [5], an ideal neutrino interaction
target for a DAR source is a direct dark matter detection
device sensitive to keV-scale nuclear recoils. We consider
two dark matter detector technologies; a germanium-
based SuperCDMS-style detector [34] and a liquid argon-
based one similar to the CLEAN [35] and CLEAR [33]
designs.

IV. DETECTING COHERENT NEUTRINO
SCATTERING

Coherent neutrino-nucleus scattering, in which an in-
coming neutrino scatters off an entire nucleus via neu-
tral current Z exchange [36], has never been observed
despite its well predicted and comparatively large stan-
dard model cross section. The coherent scattering cross
section is

dσ

dT
=
G2
F

4π
Q2
WM

(
1− MT

2E2
ν

)
F (Q2)2 , (3)

where GF is the Fermi constant; QW is the weak charge
[QW = N − (1 − 4 sin2θW )Z, with N , Z, and θW as
the number of neutrons, number of protons, and weak
mixing angle, respectively]; M is the nuclear target mass;
T is the nuclear recoil energy; and Eν is the incoming
neutrino energy. The ∼5% cross section uncertainty, the
actual value depending on the particular nuclear target
employed, is dominated by the form factor [F (Q2)] [37].

A first detection of coherent scattering promptly fol-
lowed by the collection of a large sample is attainable
with currently available dark matter style technology [5].
As demonstrated here, neutrino oscillations can also be
cleanly probed using coherent scattering with a large
sample of events. Furthermore, coherent neutrino scat-
tering is relevant for the understanding of type II super-
nova evolution and the future description of terrestrial
supernova neutrino spectra. Measuring the cross section
of the process also provides sensitivity to non-standard
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neutrino interactions (NSI) and a sin2 θW measurement
at low Q [31]. Cross section measurements as a function
of energy on multiple nuclear targets can allow the cross
section dependence on NSI and θW to be isolated and
understood.

The difficulty of coherent neutrino scattering detection
arises from the extremely low energy of the nuclear recoil
signature. For example, a 20 MeV neutrino produces a
maximum recoil energy of about 21 keVr when scattering
on argon. Both a SuperCDMS-style germanium detec-
tor [34] and a single phase liquid argon detector, such
as the one proposed for the CLEAR experiment [33],
are considered as examples in this paper for detecting
these low energy events. Other dark matter style detec-
tor technologies, especially those with ultra-low energy
thresholds, can be effective for studying coherent neu-
trino scattering as well.

A. Experimental Setup

In the DAR source described here, neutrino production
begins with 800 MeV protons impinging on a target to
produce low energy charged pions primarily through the
∆ resonance decay. The pion decay chain π+ → µ+νµ,
µ+ → e+ν̄µνe, produces the neutrino flux shown in Fig. 1.
The ν̄e content that arises from π− production and subse-
quent decay-in-flight (DIF) is well below 10−3 [6, 18] due
to π− capture. These features provide an ideal source
for neutrino appearance searches [6, 18, 38, 39], active-
to-sterile searches relying on the charged current inter-
action [24, 40], and an active-to-sterile neutral current
search [41] as discussed in this paper.

A high intensity source of 800 MeV protons is being de-
veloped by the DAEδALUS collaboration [39]. This de-
sign utilizes cyclotron-based accelerators [42, 43] installed
at three sites near a very large water- or scintillator-based
detector. The experiment described here could use one
of these DAEδALUS cyclotrons combined with a dual-
target configuration as a neutrino source.

In a baseline scenario, the cyclotron-based beam will
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FIG. 1: Energy distribution of neutrinos from a DAR source.

be diverted between the two targets so that no target re-
ceives more than 1 MW average power. The beam will
be directed at 90◦ with respect to the detector, so as
to minimize DIF backgrounds. Notably, a multi-target
design can also be exploited for a charged current neu-
trino interaction oscillation measurement with a common
detector and multiple baselines.

Many of the technical challenges associated with the
cyclotron design are discussed in Ref. [42]. The challenges
related to the additional proton target are less notewor-
thy. Instantaneous cycling between targets is important
for target cooling and removes systematics between near
and far baselines associated with detector changes over
time. The protons can be split between the two tar-
gets using a simple and inexpensive switching electro-
magnet. This can be done cleanly if the switch occurs
during periods of beam-off. The main technical issue in
the two-target cyclotron design is maintaining a good
vacuum in the two-prong extraction line. The beam will
be “painted” across the face of each target in order to
prevent hot spots in the graphite, an effect which will
dominate the ±25 cm uncertainty on the experimental L
from each neutrino source. The targets will be arranged
in a row enveloped within a single iron shield, with the
detector located 20 m downstream of the near target and
40 m downstream of the far target. This configuration
has been found to provide the best overall sensitivity to
the LSND allowed region. A schematic of the experimen-
tal design is shown in Fig. 2.

The envisioned experimental setup is consistent with
the current DAEδALUS accelerator proposal and follows
a realistic detector design. A single DAEδALUS cy-
clotron will produce 4× 1022 ν/flavor/year running with
a duty cycle between 13% and 20% [39, 42]. A duty cy-
cle of 13% and a physics run exposure of five total years
are assumed here. With baselines of 20 m and 40 m, the
beam time exposure distribution at the two baselines is
optimal in a 1 : 4 ratio: one cycle to near (20 m), four
cycles to far (40 m).

The analysis below exploits the L dependence of neu-
trino oscillations. Therefore, the flux of protons on each
target must be well understood in time; standard proton
beam monitors allow a 0.5% measurement precision. The
absolute neutrino flux is less important, as sensitivity to
the oscillation signal depends on relative detected rates
at the various distances. The systematic uncertainty as-
sociated with the flux normalization is 10% if there is no
large water- or scintillator-based detector available and
1.1% if such a detector does exist [38].

The accelerator and detector location is envisioned
close to a large water- or scintillator-based detector [44–
49]. The neutrino flux normalization uncertainty at
each baseline is conservatively expected at 1.5%, given
a O(100 kton) device. We assume the flux has been con-
strained to this level by an independent measurement
of ν-electron scattering with a large detector assumed
to be running concurrently. The 1.5% uncertainty esti-
mate takes into consideration the theoretical uncertainty
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ν source 4 × 1022 ν/flavor/year
Duty factor 13%

Baseline correlation 0.99
ν flux norm. uncertainty 1.5%
Uncorr. sys. uncertainty 0.5%
Distances from ν source 20 m, 40 m

Exposure 5 years: 1 near, 4 far
Depth 300 ft

TABLE I: The experimental configuration assumptions.
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Shielding
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Detector
(shielding)

protons

ν

FIG. 2: A schematic of the experimental configuration.

in the ν-electron scattering cross section and the statis-
tics achievable with a large detector [38]. The flux nor-
malization correlation coefficient between the near and
far baselines is conservatively set to 0.99, its deviation
from unity being dominated by differences between the
two beam dumps. An uncorrelated systematic uncer-
tainty of 0.5% at each baseline, is also included. The
general experimental assumptions can be seen in Table I.

We also consider a “dedicated” physics run scenario
in which the duty factor is raised from 13% to 50% for
all five years. With the instantaneous power achiev-
able remaining constant, this change leads to an aver-
age power increase of a factor of 3.8. Steady-state and
beam-related backgrounds also increase by this factor in
a dedicated scenario. The nominal duty factor of 13% is
driven by the requirement that the various DAEdALUS
accelerator baseline beam windows do not overlap in
time. A dedicated scenario is possible in consideration
of maintaining sufficient target cooling and the phased
DAEδALUS deployment timeline. The timeline calls for
a cyclotron or set of cyclotrons installed exclusively at
a single “near” baseline, close to a large detector, for at
least five years [39]. With a 13% duty factor only required
when all baselines have operational accelerators, a longer
duty factor and higher average power seems possible in
DAEδALUS single-baseline-only operation. Note that al-
though only two targets are required for the experimen-
tal design described here, supplementing the beamline
with more targets can ensure optimal use of beam time
in consideration of cooling requirements and ultimately
increase neutrino oscillation sensitivity.

1. Germanium detector – signal and backgrounds

A low-threshold germanium-based detector, such as
SuperCDMS, measures phonons and ionization from elec-
tronic and nuclear recoils [50]. A SuperCDMS detec-
tor consists of a large germanium crystal (0.25 − 1 kg)
with superconducting transition-edge sensors (TESs)
photolithographically patterned on the top and bottom
surfaces. Approximately 500 TESs are wired in parallel
to form each of four readout channels on each surface,
and which measure phonons created in particle interac-
tions. The particle-induced ionization is also measured
by electrodes on the crystal surface. The ratio of the
energy in these two channels is a powerful discriminator
between nuclear and electronic recoils. The devices are
operated in a dilution refrigerator at a base temperature
near 50 mK using TESs with critical temperatures in the
range 70-100 mK.

A 100 kg active mass of germanium is considered for
the experiment described here, similar to proposed dark
matter searches [51]. The detection efficiency above a
10 keVr threshold is set to 0.67 with a 3% energy res-
olution near the threshold. These assumptions are rea-
sonably conservative and consistent with future expecta-
tions [52, 53].

Two classes of background events are considered for a
germanium detector:

1. Misidentified electronic recoils - Electronic recoils
can be produced by photons and beta parti-
cles interacting with the active detection medium.
Misidentification of such events is particularly
problematic near the detector surfaces, where
the collection of electron-hole pairs is suppressed
and discrimination is less effective. Existing ex-
periments have demonstrated an electronic recoil
misidentification rate of less than 1 event per
100 kg·days exposure [34]. Upgrades to detector de-
sign are expected to improve discrimination of beta
particles from neutrons by a factor of > 103 [53].
The assumed rate of radiogenic background detec-
tion (∼2 events/year) is negligible.

2. Cosmogenic neutrons - Single scatter neutrons can
produce a signal identical to a coherent neutrino
scattering event, and the rate of these events would
be significant at a shallow site. As a point of ref-
erence for surface experiments, the CDMS I ex-
periment located at the Stanford Underground Fa-
cility with 16 m.w.e. of overburden measured a
neutron background of 0.67 events/(kg·day) [54].
This figure could be significantly reduced with
additional active and passive shielding and the
larger overburden envisioned for the DAEδALUS
site. A cosmogenic-induced background of 0.1 de-
tected events/(10 kg·day), after correcting for effi-
ciency and during beam-on, is assumed. This value
is considered a design goal and can be met with a
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300 ft overburden and modest active and passive
shielding.

In this study, the estimated radiogenic and cosmogenic
background rates are distributed evenly across the ger-
manium nuclear recoil energy range considered, 10 keVr
to 100 keVr. We neglect other sources of background,
such as radiogenic neutrons from the rock cavern sur-
rounding the experiment. Dark matter experiments with
large exposure, such as CDMS II, have typically not been
limited by this source of background.

2. Liquid argon detector – signal and backgrounds

A single phase liquid argon detector can be used to de-
tect the scintillation light created by WIMP- or coherent
neutrino-induced nuclear recoils. Such detectors employ
a large, homogeneous liquid argon volume surrounded by
photomultiplier tubes (PMTs). Inner detector surfaces
as well as the PMTs themselves are usually covered in a
wavelength shifting substance which converts the 128 nm
scintillation light into the visible spectrum for detection.

A 456 kg active mass of liquid argon with a flat effi-
ciency of 0.50 above a 30 keVr energy threshold is con-
sidered for the experiment described here. The detec-
tion volume and efficiency are consistent with the pro-
posed CLEAR design [33]. An 18% energy resolution
near threshold is used, assuming resolution slightly worse
than what would be expected from photoelectron Pois-
son statistics [55], 6 photoelectrons/keVee light collec-
tion, and a quenching factor of 0.25 [56].

The 30 keVr energy threshold employed here is larger
than the oft-chosen 20 keVr threshold in single phase liq-
uid argon detectors in order to mitigate the steeply falling
39Ar contamination (see below). If 39Ar discrimination
improves in a future design, adjusting the threshold to
(e.g.) 20 keVr would allow a 60% larger signal sample.
In this study, the estimated surface and cosmogenic back-
ground rates are distributed evenly across the argon nu-
cleus recoil energy range considered, 30 keVr to 200 keVr.

There are three primary sources of background that
are considered for a single phase liquid argon detector:

1. Cosmogenic neutrons - The muon-induced neu-
tron background is contingent on the geometry of
the site, overburden, and active/passive detector
shielding. Muon events and muon-induced neu-
trons can be vetoed with high efficiency and low de-
tector dead time in a liquid argon detector near the
surface [33]. The target design cosmogenic back-
ground is 0.1 detected events/(10 kg·day).

2. 39Ar contamination - 39Ar is a naturally occurring
radioisotope with an isotopic abundance of 39Ar/Ar
= 8× 10−16, corresponding to a specific activity of
1.01 Bq/kg [57]. The isotope is a beta emitter with
an energy endpoint of 565 keV.
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FIG. 3: The expected 39Ar background energy spectrum un-
der two sets of assumptions. The line labeled “Measured”
corresponds to an ERC that was obtained in a detector with
4.85 photoelectrons/keVee. The line labeled “Theoretical”
is the ERC simulated in an ideal detector with 6 photoelec-
trons/keVee and represents the background ERC used for this
study. Both lines correspond to a 50% efficiency for detecting
nuclear recoils in the fiducial volume.

Pulse-shape discrimination (PSD) can be used to
separate the 39Ar-induced electronic recoils from
the nuclear recoils produced in WIMP and coher-
ent neutrino scattering events [58]. The electronic
recoil contamination (ERC) of the nuclear recoils
decreases exponentially as the number of photo-
electrons detected increases. Reference [59] mea-
sures the ERC for PSD in the single phase liq-
uid argon DEAP-1 detector (4.85 photoelectrons
per keVee) and also provides a “theoretical” Monte
Carlo estimate of the ERC attainable for an ideal
detector with 4π PMT coverage and 6 photoelec-
trons/keVee. Both scenarios correspond to a 50%
efficiency for nuclear recoil detection in the fiducial
volume. Note that, according to Ref. [60], the Mi-
croCLEAN experiment has achieved 6 photoelec-
trons/keVee sensitivity. The abundant 39Ar back-
ground could further be alleviated with the use of
depleted argon from underground sources, which
has an isotopic abundance of 39Ar that is <5% of
natural argon at the surface [61]. Figure 3 shows
the rate of 39Ar after PSD with 13% on-time, for
two assumptions of ERC reported in Ref. [59]. The
theoretical ERC with non-depleted liquid argon is
employed for this study.

3. Surface contamination - Radioactive impurities on
the detector surfaces can decay and contribute to
the background. These surface backgrounds have
been measured in the DEAP-1 detector and were
found to have an activity of 1.3×10−4 Bq [62]. De-
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76Ge 40Ar
Active mass 100 kg 456 kg
Efficiency 0.67 (flat) 0.50 (flat)
Threshold 10 keV 30 keV

∆E
E

at threshold 3% 18%
Radiogenic background 2/year See text
Cosmogenic background 0.1/(10 kg·day) 0.1/(10 kg·day)

Beam-related background 0/year 0/year

TABLE II: The assumptions relevant for the specific detector
technologies considered.

pending on the origin of these events, the scaling
and resulting background prediction can differ. If
the events are due exclusively to 210Pb surface con-
tamination, the DEAP-1 figure can be scaled by de-
tector surface area to yield 1.3 × 104 events/year.
However, this rate may be substantially reduced
by the use of cleaner materials, scrubbing of the
surface, and fiducialization. A surface background
contamination of 100 detected events/year is as-
sumed here and can be considered a design goal.

The germanium/argon inner detector would be
shielded using a combination of active and passive layers
in a similar configuration to that which is used by dark
matter searches. We envision using lead and polyethy-
lene to surround the inner volume and act as a shield
from fast neutrons. An inner layer of ancient lead could
be used to further shield from the radioactivity of the
outer active shielding. The entire volume would then be
surrounded by an active cosmic ray muon veto of plastic
scintillator.

One additional possibility that would significantly re-
duce non-beam-related background would be to use a
pulsed source of neutrinos, such as at the Spallation Neu-
tron Source (SNS). The SNS produces protons in very
short bunches of <750 nsec at a rate of about 60 Hz,
so that the time window for expected signal events is a
small fraction of the total running time. Combining a
pulsed DAR beam structure with a liquid argon detector
was previously proposed by the CLEAR experiment [33],
allowing them to claim an additional rejection of 6×10−4

for steady-state, non-beam-related backgrounds using a
timing cut. Although the DAEδALUS proposal does not
include this timing structure, the experimental concept
described here could be employed at other facilities.

The detector-specific assumptions are summarized in
Table II and the expected signal and background rates
are shown in Fig. 4.

3. Neutron flux from the source

DAR sources produce a large flux of neutrons, aris-
ing from spallation reactions of protons with the beam
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nologies considered in the baseline physics run scenario. The
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dump material. For the DAR source considered here,
the neutrons have energies up to 800 MeV. In a 1 MW
beam, the neutron production rate is ∼1016/s and at-
tenuation lengths may be as high as tens of centimeters.
Single scatter neutrons can produce elastic recoils in the
detector volume that are indistinguishable from coherent
neutrino scattering on an event-by-event basis. More-
over, because the neutron flux is attenuated by matter,
underestimating the neutron background in the detec-
tor could mimic a deviation from the 1/r2-dependence of
the neutrino flux, similar to what is expected for neutrino
disappearance. It is therefore essential to locate the de-
tector far enough from the source that the beam-related
neutron flux is negligible.

A precise estimate of the neutron flux would require
detailed knowledge of the experimental site, beam con-
figuration, and shielding. The neutron flux is estimated
with a Monte Carlo simulation of the experimental geom-
etry consistent with the DAEδALUS proposal [39] and
several simplifying assumptions. Instead of simulating
the passage of neutrons through the beam dump shield-
ing, we simply assume that a cubic shield with sides of
length 6 m is sufficient to reduce the escaping neutron
flux to a level consistent with safety regulations. Also,
we assume that this cube of shielding is adjacent to a
rock (SiO2) cliff. The maximum permissible annual dose
for workers in a restricted area with a neutron beam is
100 mRem [63]. The neutron flux escaping the shielding
is set to a rate equivalent to an exposure of 100 mRem
in 40 hours.

Using a Geant4-based simulation [64], neutrons are in-
jected at the edge of the shielding cube. The neutrons
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are simulated in energy bins from 0-30 MeV. The flux
is tallied at 20 cm intervals into the rock cliff, and the
fluxes beyond 1 m into the cliff are fit to the functional
form

Φ(z) =
Ae−z/λ

z2
, (4)

where A and λ are fit parameters, and z is the distance
from each flux tally point to the DAR source. The neu-
tron fluxes are in reasonable agreement with this func-
tional form. The fit function is then used to extrapolate
the flux to a full year of running and larger distances from
the source. A simulation is also employed to estimate the
fraction of incident neutrons that produce single-scatter
nuclear recoils in the detection volume. Less than 0.2
beam-related events are expected per year for a 456 kg
liquid argon detector at a 12 m baseline. The beam-
related background at 20 m from the source, the shortest
relevant detector baseline considered here, is therefore
assumed to be negligible.

V. MEASUREMENT STRATEGY AND
SENSITIVITY

A. Overall strategy

Neutrino oscillations depend upon neutrino energy and
distance traveled. Since the neutrino energy cannot be
reconstructed precisely with the coherent interaction, our
sensitivity to the oscillatory behavior arises mainly from
L, a value which is well determined by the location of the
target being used at any given time and its distance to
the common detector. In the case that a disappearance
signal is detected, the target exposure priorities for the
two baselines can be optimized to maximize sensitivity.

The purely neutral current experiment described is
sensitive to the effective disappearance of all three types
of neutrinos present in the beam, νµ, ν̄µ, and νe, into
νs. We assume this disappearance can be approximated
by a two-neutrino oscillation driven by a ∆m2 in the
LSND allowed region, and that the oscillation proba-
bility under the approximation is the same for neutri-
nos and anti-neutrinos. The baselines for the experi-
ment, 20 m and 40 m, have been chosen in order to
provide the best sensitivity to the LSND allowed param-
eter space, given the neutrino energy spectrum of each
flavor in the beam. The experiment described here pro-
vides indirect sensitivity to the LSND allowed param-
eter space by simultaneously measuring terms describ-
ing the amplitude of active neutrino mixing to a sterile
neutrino: 4|Ue4|2|Us4|2 in the case of νe in the beam,
and 4|Uµ4|2|Us4|2 in the case of νµ and ν̄µ in the beam.
These terms are then translated to the appearance am-
plitude measured by LSND, sin2 2θµe = 4|Ue4|2|Uµ4|2.

Sensitivity to sin2 2θµe, along with simultaneous sensi-

tivity to sin2 2θee = 4|Ue4|2(1 − |Ue4|2) and sin2 2θµµ =
4|Uµ4|2(1 − |Uµ4|2), are considered the figures of merit

here, as they can be easily compared to existing charged
current appearance and disappearance measurements.
Of course, distinguishing between sin2 2θee and sin2 2θµµ
in the case of an observed disappearance is not possi-
ble in a flavor-blind experiment. Therefore, we rely on
marginalizing over the full parameter space of |Uµ4| and
|Ue4| explored, in the most conservative case possible,
when drawing sensitivity contours for each case.

The sensitivity to any particular set of oscillation pa-
rameters is obtained by simultaneously fitting the ex-
pected flavor-summed coherent signal events as a func-
tion of recoil energy at the near and far baselines. The
events at each baseline are distributed among bins of nu-
clear recoil energy (1 bin/10 keVr); however, the sensitiv-
ity results are largely insensitive to the number of recoil
energy bins used in the comparison.

B. Sensitivities

The signal predictions are evaluated for each set of os-
cillation parameters, ∆m2

41 ≡ ∆m2, |Uµ4|, and |Ue4|. A
χ2 is calculated by comparing the oscillations-predicted
spectra, including backgrounds, to the no-oscillations
prediction.

The χ2 is constructed as

χ2 =

Nbins∑
i,j=1

(Pi −Ni)(Pj −Nj)M−1ij , (5)

where i and j denote the energy bins at the near and
far baselines, respectively; Pi is the oscillations-predicted
event spectrum as a function of Nbins = 1, ..., 10, 11, ..., 20
bins, corresponding to (e.g.) 10 energy bins for the two
baselines appended side by side; Ni is the correspond-
ing no-oscillations spectrum; and M−1ij is the inverse co-
variance matrix including statistical and systematic un-
certainties and normalization systematic correlations be-
tween the two baselines and different recoil energy bins.
Note that the background contributions to Pi andNi can-
cel. The background-contributed statistical uncertainty,
however, is accounted for in Mij . The background contri-
bution can be measured with high statistics during beam-
off cycles, and so systematic uncertainties associated with
background are small relative to statistical uncertainties.

The oscillations-predicted spectra, Pi, are obtained by
summing over all neutrino flavors predicted in each recoil
energy bin of the unoscillated spectrum, and reweighting
each neutrino according to its flavor α = e, µ by the
following “active” survival probability

P (να → νactive) = 1− P (να → νs)

= 1− sin2 2θαs sin2(1.27∆m2L/E) ,(6)

where νactive can be any active state including να, and
sin2 2θαs = 4|Uα4|2|Us4|2. By unitarity assumptions,
|Us4|2 is a function of

∑
α=e,µ,τ |Uα4|2,

|Us4|2 = 1−
∑

α=e,µ,τ

|Uα4|2 . (7)
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During the fit, we vary |Ue4|, |Uµ4|, and ∆m2. For sim-
plicity, however, we assume |Uτ4| = 0. Note that a non-
zero |Uτ4| would increase the active survival probability
for any given |Ue4| and |Uµ4|, and would therefore make
this search slightly less sensitive to oscillations in terms
of sin2 2θµe. On the other hand, if non-zero |Ue4| and
|Uµ4| were to be established independently by other short
baseline experiments, the type of neutral current search
outlined in this paper may offer sensitivity to Uτ4, de-
pending on the sizes of |Ue4|, |Uµ4| and |Uτ4|.

Figures 5, 6 and 7 show the expected sensitivity to
the LSND allowed region with a germanium detector in
the baseline and dedicated physics run scenarios and an
argon detector in the baseline scenario, respectively. In
obtaining the sensitivity curves, the 3D search grid is
reduced from (∆m2, |Ue4|2, |Uµ4|2) to a 2D space of

∆m2 and sin2 2θµe = 4|Ue4|2|Uµ4|2. Note that a non-

zero sin2 2θµe requires both νe and νµ disappearance.

The sin2 2θµe sensitivity curves are obtained using a
raster scan in ∆m2 space. That is, each curve maps out
the maximum sin2 2θµe = 4|Ue4|2|Uµ4|2 which satisfies
χ2 ≤ ∆χ2

cut at a given confidence level, for each point
in ∆m2. The 90%, 99%, and 3σ confidence level curves
shown in this paper correspond to ∆χ2

cut =1.64, 6.63,
and 9.00 for a one degree of freedom, one-sided raster
scan (90%), and a one degree of freedom, two-sided raster
scan (99% and 3σ), respectively.
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FIG. 5: Sensitivity to the LSND 90% CL allowed parameter
space with a germanium-based detector under the baseline
physics run scenario.

Figure 8 shows the oscillation sensitivity for a germa-
nium detector in terms of the disappearance amplitudes
which would be accessible in charged current searches,
sin2 2θee = 4|Ue4|2(1−|Ue4|2) and sin2 2θµµ = 4|Uµ4|2(1−
|Uµ4|2) overlaid with the region allowed by LSND at
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FIG. 6: Sensitivity to the LSND 90% CL allowed parameter
space with a germanium-based detector under the dedicated
physics run scenario.
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FIG. 7: Sensitivity to the LSND 90% CL allowed parameter
space with an argon-based detector under the baseline physics
run scenario.

90% CL, assuming the LSND best-fit ∆m2 = 1.2 eV2.
The curves are obtained using a one-sided raster scan
in sin2 2θee with the ∆χ2

cut values defined above. The
figure also shows the approximate region of sin2 2θee val-
ues allowed at 90% CL by fits to the reactor anomaly
and gallium experiment calibration data sets in Ref. [23].
The “reactor” allowed contour is for ∆m2 &1.5 eV2 and
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FIG. 8: Sensitivity to disappearance amplitudes accessible
with charged current searches, assuming the LSND best-fit
∆m2 = 1.2 eV2. The sensitivity corresponds to a germanium-
based detector under the baseline physics run scenario. The
LSND band represents the 90% CL allowed values of sin2 2θµe
at ∆m2 = 1.2 eV2. “Reactor” refers to the result reported in
Ref. [23] and indicates the range of sin2 2θee values preferred
by a joint fit to reactor and gallium experiment calibration
measurements. The reactor result is nearly independent of
∆m2, for ∆m2 values near and above 1.5 eV2.

is relatively independent of ∆m2 in this region. As a
reference, limits on sin2 2θµµ from the MINOS neutral-

current oscillation search correspond to sin2 2θµµ < 0.1

at 90% CL, for ∆m2 = 1.2 eV2 [28].
Figures 5 and 7 show that, despite the difference in

fiducial mass, the 100 kg germanium detector performs
slightly better than the 456 kg liquid argon one. The
difference is in part due to the difference in nuclear re-
coil energy threshold; 10 keVr for germanium, 30 keVr
for argon. This emphasizes the fact that a low detec-
tor energy threshold is important for obtaining a high-
statistics sample of coherent neutrino scattering events
as the rate is dominated by events with very low energy
recoils (.10 keVr).

In a baseline physics run scenario, an experiment
featuring a germanium- or argon-based detector can ex-
clude the LSND best-fit mass splitting (∆m2 = 1.2 eV2)
at 3.8σ or 3.4σ, respectively. The LSND best-fit
mass splitting is excluded at 4.8σ in the dedicated,

germanium-based physics run scenario considered.
For sensitivity in terms of sin2 2θee and sin2 2θµµ, a
germanium-based experiment in the baseline scenario
could exclude nearly all of the available 90% CL LSND
parameter space at the 3σ level and large portions of
the available reactor anomaly allowed region, assuming
∆m2 ∼ 1.2 eV2.

VI. CONCLUSIONS

This paper has described a method to search for
active-to-sterile neutrino oscillations at relatively short
baselines using neutral current coherent neutrino-nucleus
scattering. Detection of such a process could definitively
establish the existence of sterile neutrinos and measure
their mixing parameters.

An experiment that relies on the high statistics detec-
tion of an as-yet-undetected process is obviously difficult.
However, all of the technology required for such an ex-
periment either exists or has been proposed with realistic
assumptions. A cyclotron-based proton beam can be di-
rected to a set of targets, producing a low energy neutrino
source with multiple baselines. This allows a measure-
ment of the distance dependence of an oscillation signal
without moving detectors or instrumenting multiple de-
vices. Both a germanium-based detector inspired by the
SuperCDMS design and a liquid argon detector inspired
by the proposed CLEAR experiment would be effective
for performing these measurements.

Along with relevance in understanding Type II super-
nova evolution and supernova neutrino detection, coher-
ent neutrino-nucleus scattering can provide sensitivity to
non-standard neutrino interactions, the weak mixing an-
gle, and, as shown in this paper, neutrino oscillations
at ∆m2 ∼ 1 eV2. Depending on the detector technology
and run scenario, the experiment described is sensitive to
the LSND best-fit mass splitting at the level of 3-5σ and
can probe large regions of the LSND and reactor anomaly
allowed regions. The experiment offers a pure and unique
analysis of neutrino oscillations that is complementary
to charged current-based appearance and disappearance
searches.
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