This is the accepted manuscript made available via CHORUS. The article has been published as:

Production of $\wedge^{\wedge}\{0\}, \wedge\left[\text { over }^{-}\right]^{\wedge}\{0\}, \equiv \wedge\{ \pm\}$, and $\Omega^{\wedge}\{ \pm\}$ hyperons in pp[over ${ }^{-}$] collisions at sqrt[s]=1.96 TeV
T. Aaltonen et al. (CDF Collaboration)

Phys. Rev. D 86, 012002 - Published 13 July 2012
DOI: 10.1103/PhysRevD.86.012002

Production of $\Lambda^{0}, \bar{\Lambda}^{0}, \Xi^{ \pm}$, and $\Omega^{ \pm}$Hyperons in $p \bar{p}$ Collisions at $\sqrt{s}=1.96 \mathrm{TeV}$

T. Aaltonen, ${ }^{22}$ B. Álvarez González ${ }^{v},{ }^{10}$ S. Amerio, ${ }^{42}$ D. Amidei, ${ }^{33}$ A. Anastassov, ${ }^{37}$ A. Annovi, ${ }^{18}$ J. Antos, ${ }^{13}$ G. Apollinari, ${ }^{16}$ J.A. Appel, ${ }^{16}$ A. Apresyan, ${ }^{47}$ T. Arisawa, ${ }^{56}$ A. Artikov, ${ }^{14}$ J. Asaadi, ${ }^{52}$ W. Ashmanskas, ${ }^{16}$ B. Auerbach, ${ }^{59}$ A. Aurisano, ${ }^{52}$ F. Azfar, ${ }^{41}$ W. Badgett, ${ }^{16}$ A. Barbaro-Galtieri, ${ }^{27}$ V.E. Barnes, ${ }^{47}$ B.A. Barnett, ${ }^{24}$ P. Barria ${ }^{e e},{ }^{45}$ P. Bartos, ${ }^{13}$ M. Bauce ${ }^{c c},{ }^{42}$ G. Bauer, ${ }^{31}$ F. Bedeschi, ${ }^{45}$ D. Beecher, ${ }^{29}$ S. Behari, ${ }^{24}$ G. Bellettini ${ }^{d d}$, ${ }^{45}$ J. Bellinger, ${ }^{58}$ D. Benjamin, ${ }^{15}$ A. Beretvas, ${ }^{16}$ A. Bhatti, ${ }^{49}$ M. Binkley*, ${ }^{*}{ }^{16}$ D. Bisello ${ }^{c c},{ }^{42}$ I. Bizjak ${ }^{i i},{ }^{29}$ K.R. Bland, ${ }^{5}$ C. Blocker, ${ }^{7}$ B. Blumenfeld,,24 A. Bocci, ${ }^{15}$ A. Bodek, ${ }^{48}$ D. Bortoletto, ${ }^{47}$ J. Boudreau, ${ }^{46}$ A. Boveia, ${ }^{12}$ B. Brau ${ }^{a},{ }^{16}$ L. Brigliadori ${ }^{b b},{ }^{6}$ A. Brisuda, ${ }^{13}$ C. Bromberg, ${ }^{34}$ E. Brucken, ${ }^{22}$ M. Bucciantonio ${ }^{d d},{ }^{45}$ J. Budagov, ${ }^{14}$ H.S. Budd, ${ }^{48}$ S. Budd, ${ }^{23}$ K. Burkett, ${ }^{16}$ G. Busetto ${ }^{c c},{ }^{42}$ P. Bussey, ${ }^{20}$ A. Buzatu, ${ }^{32}$ S. Cabrera ${ }^{x},{ }^{15}$ C. Calancha, ${ }^{30}$ S. Camarda, ${ }^{4}$ M. Campanelli, ${ }^{34}$ M. Campbell, ${ }^{33}$ F. Canelli ${ }^{12},{ }^{16}$ A. Canepa, ${ }^{44}$ B. Carls, ${ }^{23}$ D. Carlsmith, ${ }^{58}$ R. Carosi, ${ }^{45}$ S. Carrillo ${ }^{k},{ }^{17}$ S. Carron,,16 B. Casal, ${ }^{10}$ M. Casarsa, ${ }^{16}$ A. Castro ${ }^{\text {bb }},{ }^{6}$ P. Catastini, ${ }^{16}$ D. Cauz, ${ }^{53}$ V. Cavaliere ${ }^{e e},{ }^{45}$ M. Cavalli-Sforza, ${ }^{4}$ A. Cerri ${ }^{f},{ }^{27}$ L. Cerrito ${ }^{q},{ }^{29}$ Y.C. Chen, ${ }^{1}$ M. Chertok, ${ }^{8}$ G. Chiarelli, ${ }^{45}$ G. Chlachidze, ${ }^{16}$ F. Chlebana, ${ }^{16}$ K. Cho,,26 D. Chokheli, ${ }^{14}$ J.P. Chou, ${ }^{21}$ W.H. Chung, ${ }^{58}$ Y.S. Chung, ${ }^{48}$ C.I. Ciobanu, ${ }^{43}$ M.A. Ciocci ${ }^{e e},{ }^{45}$ A. Clark,,${ }^{19}$ D. Clark, ${ }^{7}$ G. Compostella ${ }^{c c},{ }^{42}$ M.E. Convery, ${ }^{16}$ J. Conway, ${ }^{8}$ M.Corbo, ${ }^{43}$ M. Cordelli, ${ }^{18}$ C.A. Cox,${ }^{8}$ D.J. Cox, ${ }^{8}$ F. Crescioli ${ }^{d d},{ }^{45}$ C. Cuenca Almenar, ${ }^{59}$ J. Cuevas ${ }^{v},{ }^{10}$ R. Culbertson, ${ }^{16}$ D. Dagenhart, ${ }^{16}$ N. d'Ascenzo ${ }^{t},{ }^{43}$ M. Datta, ${ }^{16}$ P. de Barbaro, ${ }^{48}$ S. De Cecco, ${ }^{50}$ G. De Lorenzo, ${ }^{4}$ M. Dell'Orso ${ }^{d d},{ }^{45}$ C. Deluca, ${ }^{4}$ L. Demortier, ${ }^{49}$ J. Deng ${ }^{c},{ }^{15}$ M. Deninno, ${ }^{6}$ F. Devoto, ${ }^{22}$ M. d'Errico ${ }^{c c},{ }^{42}$ A. Di Canto ${ }^{d d},{ }^{45}$ B. Di Ruzza, ${ }^{45}$
J.R. Dittmann, ${ }^{5}$ M. D'Onofrio, ${ }^{28}$ S. Donati ${ }^{d d},{ }^{45}$ P. Dong, ${ }^{16}$ T. Dorigo, ${ }^{42}$ K. Ebina, ${ }^{56}$ A. Elagin, ${ }^{52}$ A. Eppig, ${ }^{33}$ R. Erbacher, ${ }^{8}$ D. Errede, ${ }^{23}$ S. Errede, ${ }^{23}$ N. Ershaidat ${ }^{a a},{ }^{43}$ R. Eusebi, ${ }^{52}$ H.C. Fang, ${ }^{27}$ S. Farrington, ${ }^{41}$ M. Feindt, ${ }^{25}$ J.P. Fernandez, ${ }^{30}$ C. Ferrazza ${ }^{f f},{ }^{45}$ R. Field, ${ }^{17}$ G. Flanagan ${ }^{r},{ }^{47}$ R. Forrest, ${ }^{8}$ M.J. Frank, ${ }^{5}$ M. Franklin, ${ }^{21}$ J.C. Freeman, ${ }^{16}$ I. Furic, ${ }^{17}$ M. Gallinaro, ${ }^{49}$ J. Galyardt, ${ }^{11}$ J.E. Garcia, ${ }^{19}$ A.F. Garfinkel, ${ }^{47}$ P. Garosi ${ }^{e e},{ }^{45}$ H. Gerberich, ${ }^{23}$ E. Gerchtein,,${ }^{16}$ S. Giagu ${ }^{g g},{ }^{50}$ V. Giakoumopoulou, ${ }^{3}$ P. Giannetti, ${ }^{45}$ K. Gibson, ${ }^{46}$ C.M. Ginsburg, ${ }^{16}$ N. Giokaris, ${ }^{3}$ P. Giromini, ${ }^{18}$ M. Giunta, ${ }^{45}$ G. Giurgiu, ${ }^{24}$ V. Glagolev, ${ }^{14}$ D. Glenzinski, ${ }^{16}$ M. Gold, ${ }^{36}$ D. Goldin, ${ }^{52}$ N. Goldschmidt,,${ }^{17}$ A. Golossanov, ${ }^{16}$ G. Gomez, ${ }^{10}$ G. Gomez-Ceballos, ${ }^{31}$ M. Goncharov, ${ }^{31}$ O. González, ${ }^{30}$ I. Gorelov, ${ }^{36}$ A.T. Goshaw, ${ }^{15}$ K. Goulianos, ${ }^{49}$ A. Gresele, ${ }^{42}$ S. Grinstein, ${ }^{4}$ C. Grosso-Pilcher, ${ }^{12}$ R.C. Group, ${ }^{16}$ J. Guimaraes da Costa, ${ }^{21}$ Z. Gunay-Unalan, ${ }^{34}$ C. Haber, ${ }^{27}$ S.R. Hahn, ${ }^{16}$ E. Halkiadakis,,${ }^{51}$ A. Hamaguchi, ${ }^{40}$ J.Y. Han, ${ }^{48}$ F. Happacher, ${ }^{18}$ K. Hara, ${ }^{54}$ D. Hare, ${ }^{51}$ M. Hare, ${ }^{55}$ R.F. Harr, ${ }^{57}$ K. Hatakeyama, ${ }^{5}$ C. Hays, ${ }^{41}$ M. Heck, ${ }^{25}$
J. Heinrich, ${ }^{44}$ M. Herndon, ${ }^{58}$ S. Hewamanage, ${ }^{5}$ D. Hidas, ${ }^{51}$ A. Hocker, ${ }^{16}$ W. Hopkins ${ }^{g},{ }^{16}$ D. Horn, ${ }^{25}$ S. Hou, ${ }^{1}$ R.E. Hughes, ${ }^{38}$ M. Hurwitz, ${ }^{12}$ U. Husemann, ${ }^{59}$ N. Hussain, ${ }^{32}$ M. Hussein, ${ }^{34}$ J. Huston, ${ }^{34}$ G. Introzzi, ${ }^{45}$ M. Iori ${ }^{g g},{ }^{50}$ A. Ivanov ${ }^{o},{ }^{8}$ E. James, ${ }^{16}$ D. Jang, ${ }^{11}$ B. Jayatilaka, ${ }^{15}$ E.J. Jeon, ${ }^{26}$ M.K. Jha, ${ }^{6}$ S. Jindariani, ${ }^{16}$ W. Johnson, ${ }^{8}$ M. Jones, ${ }^{47}$ K.K. Joo, ${ }^{26}$ S.Y. Jun, ${ }^{11}$ T.R. Junk, ${ }^{16}$ T. Kamon, ${ }^{52}$ P.E. Karchin, ${ }^{57}$ Y. Kato ${ }^{n},{ }^{40}$ W. Ketchum, ${ }^{12}$ J. Keung, ${ }^{44}$ V. Khotilovich, ${ }^{52}$ B. Kilminster, ${ }^{16}$ D.H. Kim, ${ }^{26}$ H.S. Kim, ${ }^{26}$ H.W. Kim, ${ }^{26}$ J.E. Kim, ${ }^{26}$ M.J. Kim, ${ }^{18}$ S.B. Kim, ${ }^{26}$ S.H. Kim, ${ }^{54}$ Y.K. Kim, ${ }^{12}$ N. Kimura, ${ }^{56}$ S. Klimenko, ${ }^{17}$ K. Kondo, ${ }^{56}$ D.J. Kong, ${ }^{26}$ J. Konigsberg, ${ }^{17}$ A. Korytov, ${ }^{17}$ A.V. Kotwal, ${ }^{15}$ M. Kreps,,${ }^{25}$ J. Kroll, ${ }^{44}$ D. Krop, ${ }^{12}$ N. Krumnack ${ }^{l},{ }^{5}$ M. Kruse, ${ }^{15}$ V. Krutelyov ${ }^{d},{ }^{52}$ T. Kuhr, ${ }^{25}$ M. Kurata, ${ }^{54}$ S. Kwang, ${ }^{12}$ A.T. Laasanen, ${ }^{47}$ S. Lami, ${ }^{45}$ S. Lammel, ${ }^{16}$ M. Lancaster, ${ }^{29}$ R.L. Lander, ${ }^{8}$ K. Lannon ${ }^{u},{ }^{38}$ A. Lath,,${ }^{51}$ G. Latino ${ }^{e e},{ }^{45}$ I. Lazzizzera, ${ }^{42}$ T. LeCompte, ${ }^{2}$ E. Lee,,${ }^{52}$ H.S. Lee, ${ }^{12}$ J.S. Lee, ${ }^{26}$ S.W. Lee ${ }^{w},{ }^{52}$ S. Leo ${ }^{d d},{ }^{45}$ S. Leone, ${ }^{45}$ J.D. Lewis, ${ }^{16}$ C.-J. Lin, ${ }^{27}$ J. Linacre, ${ }^{41}$ M. Lindgren, ${ }^{16}$ E. Lipeles, ${ }^{44}$ A. Lister, ${ }^{19}$ D.O. Litvintsev,,16 C. Liu, ${ }^{46}$ Q. Liu, ${ }^{47}$ T. Liu, ${ }^{16}$ S. Lockwitz, ${ }^{59}$ N.S. Lockyer, ${ }^{44}$ A. Loginov, ${ }^{59}$ D. Lucchesi ${ }^{c c},{ }^{42}$ J. Lueck,,${ }^{25}$ P. Lujan, ${ }^{27}$ P. Lukens, ${ }^{16}$ G. Lungu, ${ }^{49}$ J. Lys, ${ }^{27}$ R. Lysak, ${ }^{13}$ R. Madrak, ${ }^{16}$ K. Maeshima, ${ }^{16}$ K. Makhoul, ${ }^{31}$ P. Maksimovic, ${ }^{24}$ S. Malik, ${ }^{49}$ G. Manca ${ }^{b},{ }^{28}$ A. Manousakis-Katsikakis, ${ }^{3}$ F. Margaroli, ${ }^{47}$ C. Marino, ${ }^{25}$ M. Martínez, ${ }^{4}$ R. Martínez-Ballarín, ${ }^{30}$ P. Mastrandrea, ${ }^{50}$ M. Mathis, ${ }^{24}$ M.E. Mattson, ${ }^{57}$ P. Mazzanti, ${ }^{6}$ K.S. McFarland, ${ }^{48}$ P. McIntyre, ${ }^{52}$ R. McNulty ${ }^{i},{ }^{28}$ A. Mehta, ${ }^{28}$ P. Mehtala, ${ }^{22}$ A. Menzione, ${ }^{45}$ C. Mesropian, ${ }^{49}$ T. Miao, ${ }^{16}$ D. Mietlicki, ${ }^{33}$ A. Mitra, ${ }^{1}$ H. Miyake, ${ }^{54}$ S. Moed, ${ }^{21}$ N. Moggi, ${ }^{6}$ M.N. Mondragon ${ }^{k},{ }^{16}$ C.S. Moon, ${ }^{26}$ R. Moore, ${ }^{16}$ M.J. Morello, ${ }^{16}$ J. Morlock, ${ }^{25}$ P. Movilla Fernandez, ${ }^{16}$ A. Mukherjee, ${ }^{16}$ Th. Muller, ${ }^{25}$ P. Murat, ${ }^{16}$ M. Mussini ${ }^{b b}$, ${ }^{6}$ J. Nachtman ${ }^{m},{ }^{16}$ Y. Nagai, ${ }^{54}$ J. Naganoma, ${ }^{56}$ I. Nakano, ${ }^{39}$ A. Napier, ${ }^{55}$ J. Nett, ${ }^{58}$ C. Neu ${ }^{z},{ }^{44}$ M.S. Neubauer, ${ }^{23}$ J. Nielsen ${ }^{e},{ }^{27}$ L. Nodulman, ${ }^{2}$ O. Norniella, ${ }^{23}$ E. Nurse, ${ }^{29}$ L. Oakes, ${ }^{41}$ S.H. Oh, ${ }^{15}$ Y.D. Oh, ${ }^{26}$ I. Oksuzian, ${ }^{17}$ T. Okusawa, ${ }^{40}$ R. Orava, ${ }^{22}$ L. Ortolan, ${ }^{4}$ S. Pagan Griso ${ }^{c c},{ }^{42}$ C. Pagliarone, ${ }^{53}$ E. Palencia ${ }^{f},{ }^{10}$ V. Papadimitriou, ${ }^{16}$ A.A. Paramonov, ${ }^{2}$ J. Patrick, ${ }^{16}$ G. Pauletta ${ }^{h h},{ }^{53}$ M. Paulini, ${ }^{11}$ C. Paus, ${ }^{31}$ D.E. Pellett, ${ }^{8}$ A. Penzo, ${ }^{53}$ T.J. Phillips, ${ }^{15}$ G. Piacentino, ${ }^{45}$ E. Pianori, ${ }^{44}$ J. Pilot, ${ }^{38}$ K. Pitts, ${ }^{23}$ C. Plager, ${ }^{9}$ L. Pondrom, ${ }^{58}$ K. Potamianos,,47 O. Poukhov*, ${ }^{14}$ F. Prokoshin,14 A. Pronko, ${ }^{16}$ F. Ptohos ${ }^{h},{ }^{18}$ E. Pueschel, ${ }^{11}$ G. Punzi ${ }^{d d},{ }^{45}$ J. Pursley, ${ }^{58}$ A. Rahaman, ${ }^{46}$ V. Ramakrishnan, ${ }^{58}$ N. Ranjan, ${ }^{47}$ I. Redondo, ${ }^{30}$ P. Renton, ${ }^{41}$ M. Rescigno, ${ }^{50}$ F. Rimondi ${ }^{b b},{ }^{6}$ L. Ristori ${ }^{45},{ }^{16}$ A. Robson, ${ }^{20}$ T. Rodrigo, ${ }^{10}$ T. Rodriguez, ${ }^{44}$ E. Rogers, ${ }^{23}$ S. Rolli, ${ }^{55}$ R. Roser, ${ }^{16}$
M. Rossi, ${ }^{53}$ F. Ruffini ${ }^{e e}$, ${ }^{45}$ A. Ruiz, ${ }^{10}$ J. Russ, ${ }^{11}$ V. Rusu, ${ }^{16}$ A. Safonov, ${ }^{52}$ W.K. Sakumoto, ${ }^{48}$ L. Santi ${ }^{h h}$, ${ }^{53}$
L. Sartori, ${ }^{45}$ K. Sato, ${ }^{54}$ V. Saveliev ${ }^{t},{ }^{43}$ A. Savoy-Navarro, ${ }^{43}$ P. Schlabach, ${ }^{16}$ A. Schmidt, ${ }^{25}$ E.E. Schmidt, ${ }^{16}$ M.P. Schmidt*, ${ }^{59}$ M. Schmitt, ${ }^{37}$ T. Schwarz, ${ }^{8}$ L. Scodellaro, ${ }^{10}$ A. Scribano ${ }^{e e},{ }^{45}$ F. Scuri, ${ }^{45}$ A. Sedov, ${ }^{47}$ S. Seidel, ${ }^{36}$ Y. Seiya, ${ }^{40}$ A. Semenov, ${ }^{14}$ F. Sforza ${ }^{d d},{ }^{45}$ A. Sfyrla, ${ }^{23}$ S.Z. Shalhout, ${ }^{8}$ T. Shears, ${ }^{28}$ P.F. Shepard, ${ }^{46}$ M. Shimojima ${ }^{5}$, ${ }^{54}$ S. Shiraishi, ${ }^{12}$ M. Shochet, ${ }^{12}$ I. Shreyber, ${ }^{35}$ A. Simonenko, ${ }^{14}$ P. Sinervo, ${ }^{32}$ A. Sissakian* ${ }^{14}$ K. Sliwa, ${ }^{55}$ J.R. Smith, ${ }^{8}$
F.D. Snider,,16 A. Soha, ${ }^{16}$ S. Somalwar, ${ }^{51}$ V. Sorin, ${ }^{4}$ P. Squillacioti, ${ }^{16}$ M. Stanitzki, ${ }^{59}$ R. St. Denis, ${ }^{20}$ B. Stelzer, ${ }^{32}$
O. Stelzer-Chilton, ${ }^{32}$ D. Stentz, ${ }^{37}$ J. Strologas, ${ }^{36}$ G.L. Strycker, ${ }^{33}$ Y. Sudo, ${ }^{54}$ A. Sukhanov, ${ }^{17}$ I. Suslov, ${ }^{14}$
K. Takemasa, ${ }^{54}$ Y. Takeuchi, ${ }^{54}$ J. Tang, ${ }^{12}$ M. Tecchio, ${ }^{33}$ P.K. Teng, ${ }^{1}$ J. Thom ${ }^{g},{ }^{16}$ J. Thome, ${ }^{11}$ G.A. Thompson, ${ }^{23}$
E. Thomson, ${ }^{44}$ P. Ttito-Guzmán, ${ }^{30}$ S. Tkaczyk, ${ }^{16}$ D. Toback,,${ }^{52}$ S. Tokar, ${ }^{13}$ K. Tollefson, ${ }^{34}$ T. Tomura, ${ }^{54}$ D. Tonelli, ${ }^{16}$ S. Torre, ${ }^{18}$ D. Torretta, ${ }^{16}$ P. Totaro ${ }^{h h},{ }^{53} \mathrm{M}$. Trovato ${ }^{f f},{ }^{45} \mathrm{Y}$. Tu, ${ }^{44} \mathrm{~N}$. Turiniee ${ }^{45}$ F. Ukegawa, ${ }^{54}$ S. Uozumi, ${ }^{26}$ A. Varganov, ${ }^{33}$ E. Vataga ${ }^{f f},^{45}$ F. Vázquez ${ }^{k},{ }^{17}$ G. Velev, ${ }^{16}$ C. Vellidis, ${ }^{3}$ M. Vidal, ${ }^{30}$ I. Vila, ${ }^{10}$ R. Vilar, ${ }^{10}$ M. Vogel, ${ }^{36}$ G. Volpi ${ }^{d d},{ }^{45}$ P. Wagner, ${ }^{44}$ R.L. Wagner, ${ }^{16}$ T. Wakisaka, ${ }^{40}$ R. Wallny, ${ }^{9}$ C. Wang, ${ }^{15}$ S.M. Wang, ${ }^{1}$ A. Warburton, ${ }^{32}$ D. Waters, ${ }^{29}$ M. Weinberger, ${ }^{52}$ A. Wen, ${ }^{15}$ W.C. Wester III, ${ }^{16}$ B. Whitehouse, ${ }^{55}$ D. Whiteson ${ }^{c},{ }^{44}$ A.B. Wicklund, ${ }^{2}$ E. Wicklund, ${ }^{16}$ S. Wilbur, ${ }^{12}$ F. Wick, ${ }^{25}$ H.H. Williams, ${ }^{44}$ J.S. Wilson, ${ }^{38}$ P. Wilson, ${ }^{16}$ B.L. Winer, ${ }^{38}$ P. Wittich ${ }^{g},{ }^{16}$ S. Wolbers, ${ }^{16}$ H. Wolfe, ${ }^{38}$ T. Wright, ${ }^{33}$ X. Wu, ${ }^{19} \mathrm{Z}$. Wu, ${ }^{5}$ K. Yamamoto, ${ }^{40}$ J. Yamaoka, ${ }^{15}$ U.K. Yang ${ }^{p},{ }^{12}$ Y.C. Yang, ${ }^{26}$ W.-M. Yao, ${ }^{27}$ G.P. Yeh, ${ }^{16} \mathrm{~K}$. Yi ${ }^{m},{ }^{16}$ J. Yoh, ${ }^{16}$ K. Yorita, ${ }^{56}$ T. Yoshida ${ }^{j}{ }^{40}$ G.B. Yu, ${ }^{15}$ I. Yu, ${ }^{26}$ S.S. Yu, ${ }^{16}$ J.C. Yun, ${ }^{16}$ A. Zanetti, ${ }^{53}$ Y. Zeng, ${ }^{15}$ and S. Zucchelli ${ }^{b b 6}$ (CDF Collaboration ${ }^{\dagger}$)
${ }^{1}$ Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China
${ }^{2}$ Argonne National Laboratory, Argonne, Illinois 60439, USA
${ }^{3}$ University of Athens, 15771 Athens, Greece
${ }^{4}$ Institut de Fisica d'Altes Energies, Universitat Autonoma de Barcelona, E-08193, Bellaterra (Barcelona), Spain
${ }^{5}$ Baylor University, Waco, Texas 76798, USA
${ }^{6}$ Istituto Nazionale di Fisica Nucleare Bologna, ${ }^{b b}$ University of Bologna, I-40127 Bologna, Italy
${ }^{7}$ Brandeis University, Waltham, Massachusetts 02254, USA
${ }^{8}$ University of California, Davis, Davis, California 95616, USA
${ }^{9}$ University of California, Los Angeles, Los Angeles, California 90024, USA
${ }^{10}$ Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain
${ }^{11}$ Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
${ }^{12}$ Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA
${ }^{13}$ Comenius University, 84248 Bratislava, Slovakia; Institute of Experimental Physics, 04001 Kosice, Slovakia
${ }^{14}$ Joint Institute for Nuclear Research, RU-141980 Dubna, Russia
${ }^{15}$ Duke University, Durham, North Carolina 27708, USA
${ }^{16}$ Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
${ }^{17}$ University of Florida, Gainesville, Florida 32611, USA
${ }^{18}$ Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy
${ }^{19}$ University of Geneva, CH-1211 Geneva 4, Switzerland
${ }^{20}$ Glasgow University, Glasgow G12 8QQ, United Kingdom
${ }^{21}$ Harvard University, Cambridge, Massachusetts 02138, USA
${ }^{22}$ Division of High Energy Physics, Department of Physics, University of Helsinki and Helsinki Institute of Physics, FIN-00014, Helsinki, Finland ${ }^{23}$ University of Illinois, Urbana, Illinois 61801, USA
${ }^{24}$ The Johns Hopkins University, Baltimore, Maryland 21218, USA
${ }^{25}$ Institut für Experimentelle Kernphysik, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany
${ }^{26}$ Center for High Energy Physics: Kyungpook National University,
Daegu 702-701, Korea; Seoul National University, Seoul 151-742, Korea; Sungkyunkwan University, Suwon 440-746,
Korea; Korea Institute of Science and Technology Information, Daejeon 305-806, Korea; Chonnam National University, Gwangju 500-757, Korea; Chonbuk National University, Jeonju 561-756, Korea
${ }^{27}$ Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
${ }^{28}$ University of Liverpool, Liverpool L69 7ZE, United Kingdom
${ }^{29}$ University College London, London WC1E 6BT, United Kingdom
${ }^{30}$ Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, E-28040 Madrid, Spain
${ }^{31}$ Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
${ }^{32}$ Institute of Particle Physics: McGill University, Montréal, Québec,
Canada H3A 2T8; Simon Fraser University, Burnaby, British Columbia,
Canada V5A 1S6; University of Toronto, Toronto, Ontario,
Canada M5S 1A7; and TRIUMF, Vancouver, British Columbia, Canada V6T 2 A3
${ }^{33}$ University of Michigan, Ann Arbor, Michigan 48109, USA

${ }^{34}$ Michigan State University, East Lansing, Michigan 48824, USA
${ }^{35}$ Institution for Theoretical and Experimental Physics, ITEP, Moscow 117259, Russia
${ }^{36}$ University of New Mexico, Albuquerque, New Mexico 87131, USA
${ }^{37}$ Northwestern University, Evanston, Illinois 60208, USA
${ }^{38}$ The Ohio State University, Columbus, Ohio 43210, USA
${ }^{39}$ Okayama University, Okayama 700-8530, Japan
${ }^{40}$ Osaka City University, Osaka 588, Japan
${ }^{41}$ University of Oxford, Oxford OX1 3RH, United Kingdom
${ }^{42}$ Istituto Nazionale di Fisica Nucleare, Sezione di Padova-Trento, ${ }^{c c}$ University of Padova, I-35131 Padova, Italy
${ }^{43}$ LPNHE, Universite Pierre et Marie Curie/IN2P3-CNRS, UMR7585, Paris, F-75252 France
${ }^{44}$ University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
${ }^{45}$ Istituto Nazionale di Fisica Nucleare Pisa, ${ }^{\text {dd }}$ University of Pisa,
${ }^{\text {ee }}$ University of Siena and ${ }^{\text {ff }}$ Scuola Normale Superiore, I-56127 Pisa, Italy
${ }^{46}$ University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
${ }^{47}$ Purdue University, West Lafayette, Indiana 47907, USA
${ }^{48}$ University of Rochester, Rochester, New York 14627, USA
${ }^{49}$ The Rockefeller University, New York, New York 10065, USA
${ }^{50}$ Istituto Nazionale di Fisica Nucleare, Sezione di Roma 1, ${ }^{g g}$ Sapienza Università di Roma, I-00185 Roma, Italy
${ }^{51}$ Rutgers University, Piscataway, New Jersey 08855, USA
${ }^{52}$ Texas A $\mathcal{M} M$ University, College Station, Texas 77843, USA
${ }^{53}$ Istituto Nazionale di Fisica Nucleare Trieste/Udine, I-34100 Trieste, ${ }^{\text {hh }}$ University of Trieste/Udine, I-33100 Udine, Italy
${ }^{54}$ University of Tsukuba, Tsukuba, Ibaraki 305, Japan
${ }^{55}$ Tufts University, Medford, Massachusetts 02155, USA
${ }^{56}$ Waseda University, Tokyo 169, Japan
${ }^{57}$ Wayne State University, Detroit, Michigan 48201, USA
${ }^{58}$ University of Wisconsin, Madison, Wisconsin 53706, USA
${ }^{59}$ Yale University, New Haven, Connecticut 06520, USA

(Dated: June 22, 2012)
We report a set of measurements of inclusive invariant p_{T} differential cross sections of $\Lambda^{0}, \bar{\Lambda}^{0}, \Xi^{ \pm}$, and $\Omega^{ \pm}$hyperons reconstructed in the central region with pseudorapidity $|\eta|<1$ and p_{T} up to 10 GeV / c. Events are collected with a minimum-bias trigger in $p \bar{p}$ collisions at a center-of-mass energy of 1.96 TeV using the CDF II detector at the Tevatron Collider. As p_{T} increases, the slopes of the differential cross sections of the three particles are similar, which could indicate a universality of the particle production in p_{T}. The invariant differential cross sections are also presented for different charged-particle multiplicity intervals.

PACS numbers: $14.70 . \mathrm{Pw}, 13.85 . \mathrm{Rm}, 13.85 . \mathrm{Qk}, 14.80 .-\mathrm{j}$
${ }^{\dagger}$ With visitors from ${ }^{a}$ University of Massachusetts Amherst, ${ }^{34}$ Amherst, Massachusetts 01003, ${ }^{b}$ Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, 09042 Monserrato (Cagliari), Italy, ${ }^{36}$ ${ }^{c}$ University of California Irvine, Irvine, CA 92697, ${ }^{d}$ University of ${ }^{37}$ California Santa Barbara, Santa Barbara, CA $93106{ }^{e}$ University 38 of California Santa Cruz, Santa Cruz, CA 95064, ${ }^{f}$ CERN, CH- ${ }_{39}$ 1211 Geneva, Switzerland, ${ }^{g}$ Cornell University, Ithaca, NY 14853,
${ }^{h}$ University of Cyprus, Nicosia CY-1678, Cyprus, ${ }^{i}$ University Col- ${ }^{40}$ lege Dublin, Dublin 4, Ireland, ${ }^{j}$ University of Fukui, Fukui City, ${ }^{41}$ Fukui Prefecture, Japan 910-0017, ${ }^{k}$ Universidad Iberoamericana, 42 Mexico D.F., Mexico, ${ }^{l}$ Iowa State University, Ames, IA 50011, ${ }_{4}$ ${ }^{m}$ University of Iowa, Iowa City, IA 52242, ${ }^{n}$ Kinki University, ${ }_{44}$ Higashi-Osaka City, Japan 577-8502, ${ }^{\circ}$ Kansas State University, ${ }^{44}$ Manhattan, KS 66506, ${ }^{p}$ University of Manchester, Manchester M13 ${ }^{45}$ 9PL, England, ${ }^{q}$ Queen Mary, University of London, London, E1 ${ }^{46}$ 4NS, England, ${ }^{r}$ Muons, Inc., Batavia, IL 60510, ${ }^{s}$ Nagasaki In- 47 stitute of Applied Science, Nagasaki, Japan, ${ }^{t}$ National Research 48 Nuclear University, Moscow, Russia, ${ }^{u}$ University of Notre Dame, ${ }_{49}$ Notre Dame, IN 46556, ${ }^{v}$ Universidad de Oviedo, E-33007 Oviedo, ${ }^{49}$ Spain, ${ }^{w}$ Texas Tech University, Lubbock, TX 79609, ${ }^{x}$ IFIC(CSIC- ${ }^{50}$ Universitat de Valencia), 56071 Valencia, Spain, ${ }^{y}$ Universidad Tec-

I. INTRODUCTION

Ever since their discovery in cosmic ray interactions [1], particles containing strange quarks have been extensively studied at particle colliders $\left(e^{+} e^{-}[2], e p[3], p \bar{p}[4,5]\right.$ and $p p[6])$. The process by which hadrons in general are produced from interactions is an unsolved problem in the standard model, and a detailed analysis of production properties of particles with different quark flavors and numbers of quarks could pave the way to understanding the process from first principles. The data on strange particle production can also be used to refine phenomenological models and set parameters, such as the strange quark suppression constant in event generators, which have become an integral part of any data analysis. Interest in particles containing strange quarks increased with the introduction of the quark-gluon plasma (QGP). Formation of quark-gluon plasma in a collision could manifest itself as an enhanced production of strange particles such as kaons and hyperons [7]. To isolate QGP sig-
natures in heavy-ion collision data, understanding the 56 particle production properties from simple nucleon inter- 57 actions is necessary.

There are ample data on the production of particles 59 with one strange quark, but very little available on par- 60 ticles with two or more [8, 9]. Previous studies of hyper- 61 ons from colliders such as RHIC [6], $S p \bar{p} S$ [10], and the 62 Tevatron $[5,11,12]$ were limited by low sample statistics ${ }_{63}$ and the limited accessible range of hyperon momentum 64 component transverse to the beam direction $\left(p_{T}\right)$. In 65 this analysis, we report on a study of the hyperons $\Lambda^{0}{ }_{66}$ (quark content uds), $\Xi^{-}(d s s)$, and $\Omega^{-}(s s s)$ and their 67 corresponding antiparticles $\left(\bar{\Lambda}^{0}, \Xi^{+}\right.$, and $\left.\Omega^{+}\right)$. For these hyperons, the inclusive invariant p_{T} differential cross sections are measured up to p_{T} of $10 \mathrm{GeV} / c$, based on ~ 10068 million minimum-bias events collected with the CDF II detector. The measurements reported here for $\Xi^{ \pm}$and ${ }_{69}$ $\Omega^{ \pm}$are the current best from any hadron collider exper- ${ }_{70}$ iment in terms of statistics and p_{T} range.

II. EVENT SELECTION

The CDF II detector is described in detail else- 76 where [13]. The components most relevant to this anal- 77 ysis are those that comprise the tracking system, which 78 is within a uniform axial magnetic field of 1.4T. The in- 79 ner tracking volume is composed of a system of eight 80 layers of silicon microstrip detectors ranging in radius 81 from 1.5 to 28.0 cm [14] in the pseudorapidity region 82 $|\eta|<2$ [15]. The remainder of the tracking volume ${ }_{83}$ is occupied by the Central Outer Tracker (COT). The 8_{4} COT is a cylindrical drift chamber containing 96 sense- 85 wire layers grouped in eight alternating superlayers of 86 axial and stereo wires [16]. Its active volume covers 4087 to 140 cm in radius and $|z|<155 \mathrm{~cm}$. The transverse- 88 momentum resolution of tracks reconstructed using COT 89 hits is $\sigma\left(p_{T}\right) / p_{T}^{2} \sim 0.0017 /(\mathrm{GeV} / c)$.

Events for this analysis are collected with a "minimum-91 bias" (MB) trigger, which selects beam crossings with at 92 least one $p \bar{p}$ interaction by requiring a timing coincidence 93 for signals in both forward and backward gas Cherenkov 94 counters [17] covering the regions $3.7<|\eta|<4.7$. The 95 MB trigger is rate-limited to keep the final trigger out-96 put at 1 Hz . Primary event vertices are identified by the 97 convergence of reconstructed tracks along the beam axis. 98 Events are accepted that contain a reconstructed vertex 99 in the fiducial region $\left|z_{v t x}\right| \leq 60 \mathrm{~cm}$ centered around the100 nominal CDF origin $(z=0)$. When an event has more101 than one vertex, the highest quality vertex, usually the102 one with the most associated tracks, is selected and it103 is required that there be no other vertices within $\pm 5 \mathrm{~cm}_{104}$ of this vertex. This selection introduces a bias toward ${ }_{105}$ high multiplicity events as the instantaneous luminos-106 ity increases. To combine events collected at different ${ }_{107}$ average instantaneous luminosities, we determine a per-108 event weight as a function of the charged-track multiplic-109 ity $N_{c h}$ in order to match the multiplicity distribution of f_{10}
a data sample where the average number of interactions is less than 0.3 per bunch crossing. For the $N_{c h}$ calculation, tracks are required to have a high track-fit quality with χ^{2} per degree-of-freedom $\left(\chi^{2} / d o f\right)$ less than 2.5 , and more than five hits in at least two axial and two stereo COT segments. It is further required that tracks satisfy $|\eta|<1$, impact parameter d_{0} less than 0.25 cm , the distance along the z-axis $\left(\delta Z_{0}\right)$ between the event vertex and the track position at the point of closest approach to the vertex in the $r-\phi$ plane be less than 2 cm , and $p_{T}>0.3$ GeV / c. The p_{T} selection is to minimize the inefficiency of the track-finding algorithm for low momentum tracks.

III. RESONANCE RECONSTRUCTION

We search for $\Lambda^{0} \rightarrow p \pi^{-}$decays using tracks with opposite-sign charge and $p_{T}>0.325 \mathrm{GeV} / c$ that satisfy the $\chi^{2} /$ dof and COT segment requirements. In this paper, any reference to a specific hyperon state implies the antiparticle state as well. For each two-track combination we calculate their intersection coordinate in the $r-\phi$ plane. Once this intersection point, referred to as the secondary vertex, is found, the z-coordinate of each track $\left(Z_{1}\right.$ and $\left.Z_{2}\right)$ is calculated at that point. If the distance $\left|Z_{1}-Z_{2}\right|$ is less than 1.5 cm , the tracks are considered to originate from a Λ^{0} candidate decay. The pair is traced back to the vertex and we require δZ_{0} be less than 2 cm , and the d_{0} be less than 0.25 cm . To reduce backgrounds further, we require the Λ^{0} decay length $L_{\Lambda^{0}}$, the distance in the $r-\phi$ plane between the primary and secondary vertices, to be greater than 2.5 cm and less than 50 cm .

The invariant mass $M_{p \pi}$ of the two-track system is calculated by attributing the proton mass to the track with the higher p_{T}, as preferentially expected by the kinematics of a Λ^{0} decay. Figure 1 shows the invariant mass for Λ^{0} candidates with $|\eta|<1$. This distribution is divided into $23 p_{T}$ intervals [18] and the number of Λ^{0} in each p_{T} interval is determined by fitting the invariant mass distributions using a Gaussian function with three parameters for the signal and a third-order polynomial for the underlying combinatorial background. The data in the mass range $1.10-1.16 \mathrm{GeV} / c^{2}$ are fitted. The polynomial fit to the background is subtracted bin-by-bin from the data entries in the Λ^{0} mass window ($1.111-1.121 \mathrm{GeV} / c^{2}$) to obtain the number of Λ^{0} hyperons. This number is divided by the acceptance to obtain the invariant differential p_{T} distribution as described later. With our minimum track p_{T} requirement, the $\Lambda^{0} p_{T}$ resolution decreases from $\sim 0.8 \%$ at $1.5 \mathrm{GeV} / c$ to $\sim 0.6 \%$ at $3 \mathrm{GeV} / c$ and slowly increases to $\sim 1.1 \%$ at $10 \mathrm{GeV} / c$.

The fitting procedure is one source of systematic uncertainty. This uncertainty is estimated by separately varying the mass range of the fit, the functional form for the signal to a double Gaussian, and the background modeling function to a second-order polynomial. The number of Λ^{0} is recalculated in all p_{T} intervals for each
variation. The systematic uncertainty is determined as 59 the sum in quadrature of the fractional change in the 60 number of Λ^{0} from each modified fit. It decreases from ${ }_{61}$ $\pm 10 \%$ at the lowest $p_{T}(1.2 \mathrm{GeV} / c)$ to less than $\pm 5 \%$ for ${ }_{62}$ $p_{T}>1.75 \mathrm{GeV} / c$.

The cascade reconstruction decay mode is $\Xi^{-} \rightarrow$ $\Lambda^{0} \pi^{-} \rightarrow\left(p \pi^{-}\right) \pi^{-}$. The previously reconstructed Λ^{0} candidates are used, but without the d_{0} and δZ_{0} require- ${ }_{64}$ ments. We select Λ^{0} candidates in the Λ^{0} mass window 65 and calculate the coordinate of the intersection point in the $r-\phi$ plane between the Λ^{0} candidate and a third ${ }_{66}$ track. The z-axis coordinates at this point are calculated ${ }_{67}{ }_{67}$ for the third track $\left(Z_{3}\right)$ and the Λ^{0} candidate $\left(Z_{4}\right)$. The ${ }_{68}$ three-track system is considered a Ξ^{-}candidate decay if ${ }_{69}$ the distance $\left|Z_{3}-Z_{4}\right|<1.5 \mathrm{~cm}$. We also require $L_{\Xi^{-}}>1_{70}^{69}$ cm and that of the Λ^{0} candidate to be between 2.5 and ${ }_{71}$ 50 cm . To enhance the selection of Λ^{0} from Ξ^{-}decays, ${ }_{72}$ we require the difference between the Ξ^{-}and Λ^{0} decay ${ }_{73}$ lengths to be greater than 1 cm . Finally, it is required ${ }_{74}$ that the d_{0} of the Ξ^{-}candidate be less than 0.25 cm and ${ }_{75}^{74}$ the distance δZ_{0} along the z-axis between the Ξ^{-}and ${ }_{76}^{75}$ the primary vertex be less than 2 cm .

The invariant mass $M_{\Lambda^{0} \pi}$ is calculated by fixing the ${ }_{78}$ mass of the Λ^{0} candidate to $1.1157 \mathrm{GeV} / c^{2}[19]$ and as- ${ }_{79}$ signing the pion mass to the third track. Figure 1 shows 80 the invariant mass for Ξ^{-}candidates with $|\eta|<1$ over- ${ }_{81}$ laid with the fitted curve.

As for the Λ^{0} case, the Ξ^{-}candidates are divided into ${ }_{83}$ $17 p_{T}$ intervals and the number of Ξ^{-}in each interval is ${ }_{84}$ determined by fitting the corresponding $M_{\Lambda^{0} \pi}$ invariant ${ }_{85}$ mass distribution using a Gaussian function for the signal ${ }_{86}$ and a third-order polynomial for the background. The ${ }_{87}$ fitted background is then subtracted bin-by-bin from the ${ }_{88}$ data entries in the signal region (1.31 to $1.33 \mathrm{GeV} / c^{2}$) to 89 obtain the Ξ^{-}yield in every p_{T} interval. The systematic 90 uncertainty of the fit procedure is estimated the same ${ }_{91}$ way as for the Λ^{0} and is found to change by no more ${ }_{92}$ than $\pm 5 \%$ in all p_{T} intervals.

To reconstruct Ω^{-}decays we follow the same proce- 94 dure as for the Ξ^{-}and apply the same selection criteria ${ }_{95}$ except that the third track is assigned the kaon mass. 96 The search decay mode is $\Omega^{-} \rightarrow \Lambda^{0} K^{-} \rightarrow\left(p \pi^{-}\right) K^{-}$. 97 Because of the larger background, the procedure to ex- 98 tract the Ω^{-}signal yield is slightly different from that in 99 the previous cases. Track pairs with $M_{p \pi^{-}}$in the mass ${ }_{100}$ ranges $1.095-1.105$ and $1.127-1.137 \mathrm{GeV} / c^{2}$ are com-101 bined with the third track to obtain the invariant mass ${ }_{102}$ distribution of the combinatorial background. This dis-103 tribution is subtracted from the $M_{\Lambda^{0} K^{-}}$distribution after ${ }_{104}$ normalizing to the number of events in the mass window ${ }_{105}$ $1.69<M_{\Lambda^{0} K^{-}}<1.74 \mathrm{GeV} / c^{2}$. The background sub-106 tracted $M_{\Lambda^{0} K^{-}}$invariant mass distribution is shown in_{107} Figure 1.

The distribution is divided into $10 p_{T}$ intervals, and we109 use the method described above to extract the Ω^{-}signal110 from the corresponding invariant mass distributions in 111 each p_{T} interval within the mass window 1.66 to 1.68_{112} GeV / c^{2}. The systematic uncertainty due to the fitting ${ }_{113}$
procedure is also calculated in a similar manner as Ξ^{-}, with the exception of using a double Gaussian variation because of low Ω^{-}statistics. The overall uncertainties are about $\pm 10 \%$ for all p_{T} intervals. The p_{T} resolution of Ξ^{-}and Ω^{-}as a function of p_{T} is similar to Λ^{0}.

IV. ACCEPTANCE CALCULATION AND SYSTEMATIC UNCERTAINTIES

The geometric and kinematic acceptance is estimated with Monte Carlo (MC) simulations. The MC data of a resonance state are generated with fixed p_{T} corresponding to 14 points [18] ranging from 0.75 to $10 \mathrm{GeV} / c$ and flat in rapidity $|y|<2$. A generated resonance is combined with either one or four non-diffractive inelastic MB events generated with the PYTHIA [20] generator. Although the average number of interactions in our data sample is a little less than two, the default acceptance is calculated from the MC sample with four MB events and the difference of the acceptance values between the two samples is one of our systematics. This is because PYTHIA underestimates the average event multiplicity and based on a study with tracks from K_{S}^{0} decay, the sample with four MB events reproduces the low p_{T} tracking efficiency in data well within the systematic uncertainty.

The detector response to particles produced in the simulation is modeled with the CDF II detector simulation that in turn is based on the GEANT-3 MC program [21]. Simulated events are processed and selected with the same analysis code used for the data. The acceptance is defined as the ratio of the number of reconstructed resonances with the input p_{T} over the generated number, including the branching ratio. Acceptance values are calculated separately for the particles and their corresponding antiparticles and the average of the two is used as the default value, since the acceptances for the two states are similar. Figure 2 shows the acceptance for the three particles including the branching ratio.

The acceptance values obtained for the $14 p_{T}$ points are fitted with a fourth order polynomial function and the fitted curve is used to correct the numbers of each hyperon state in the data as a function of p_{T}. The modeling of the MB events overlapping with the examined resonance and the selection criteria applied contribute as a systematic uncertainty to the acceptance calculation. The contribution from the former has already been mentioned. Acceptance uncertainties due to the selection criteria are studied by changing the selection values of the variables used to reconstruct the resonances. The variables examined are $p_{T},\left|Z_{1}-Z_{2}\right|,\left|Z_{3}-Z_{4}\right|, \delta Z_{0}, d_{0}$ and the decay lengths. For each variable other than p_{T}, two values around the default value are typically chosen. One value is such that it has little effect on the signal, and the other reduces the signal by ~ 20 to 30%. The default minimum p_{T} selection value is $0.325 \mathrm{GeV} / c$, and it is changed to $0.3 \mathrm{GeV} / c$ and to $0.35 \mathrm{GeV} / c$.

For each considered variation, a new acceptance curve

FIG. 1: Reconstructed invariant mass distributions for $M_{p \pi}$ (left), $M_{\Lambda^{0} \pi}$ (center), and $M_{\Lambda^{0} K}$ (right). The background has been subtracted from the $M_{\Lambda^{0}}{ }_{K}$ distribution. The solid lines are fitted curves, a third-degree polynomial for the background and either a double ($M_{p \pi}$ and $M_{\Lambda^{0} \pi}$) or single ($M_{\Lambda^{0} K}$) Gaussian function to model the peak. The widths reflect the tracking resolution and are consistent with the widths from MC simulation.

FIG. 2: Acceptances for the three particles, Λ^{0}, and Ξ^{-}and ${ }_{34}^{33}$ Ω^{-}. The values include the branching ratio to our final states ${ }^{34}$ and are averaged acceptances of particles and corresponding ${ }^{35}$ antiparticles.
and the number of resonances as a function of p_{T} are ${ }^{41}$ obtained, and the percentage change between the new ${ }^{42}$ p_{T} distribution and the one with the default selection ${ }^{43}$ requirements is taken as the uncertainty in the accep- 44 tance for the specific p_{T} interval. The square root of the 45 quadratic sum of the uncertainties from each variation is 46 taken as the total conservative uncertainty on the accep- ${ }^{47}$ tance in a given p_{T} bin. The systematic uncertainty as- 48 sociated with the Ω^{-}hyperon acceptance is derived from ${ }_{49}$ the Ξ^{-}uncertainty estimate since the reconstruction fol- 50 lows the same criteria. This acceptance uncertainty is 51 added quadratically to the systematic uncertainty due to ${ }_{52}$ the fitting procedure, described earlier, to give the total ${ }_{53}$ systematic uncertainty.

For the Λ^{0} case, the acceptance uncertainty decreases 56 from about 25% at $p_{T} \sim 1 \mathrm{GeV} / c$ to 10% at $p_{T} \sim 2{ }_{57}$ GeV / c and then rises again slowly to 15% for $p_{T}>7_{58}$ GeV / c. The corresponding acceptance uncertainty for ${ }_{59}$ the $\Xi^{-}\left(\Omega^{-}\right)$case decreases from about $15 \%(20 \%)$ at 60 $p_{T} \sim 2 \mathrm{GeV} / c$ to $10 \%(15 \%)$ for $p_{T}>4 \mathrm{GeV} / c$.

V. INVARIANT DIFFERENTIAL CROSS SECTION

The inclusive invariant p_{T} differential cross section for each hyperon resonance is calculated as $E d^{3} \sigma / d p^{3}=\left(\sigma_{m b} / N_{\text {event }}\right) d^{3} N / A p_{T} d p_{T} d y d \phi=$ $\left(\sigma_{m b} / 2 \pi N_{\text {event }}\right) \Delta N / A p_{T} \Delta p_{T} \Delta y$ where $\sigma_{m b}$ is our MB trigger cross section, $N_{\text {event }}$ is the number of weighted events, ΔN is the number of hyperons observed in each p_{T} interval $\left(\Delta p_{T}\right)$ after background subtraction, A is the acceptance in the specific p_{T} interval, and Δy is the rapidity range used in the acceptance calculation (-2 to 2).

Figure 3 shows the results for the p_{T} differential cross section for the three hyperon resonances. The uncertainties shown for each data point include the statistical and all systematic uncertainties described above, except the one associated with $\sigma_{m b}$ [22]. The cross sections are listed in Table I. The p_{T} values are the weighted averages within the p_{T} intervals calculated according to the cross section as a function of p_{T}, which is obtained from the fit parameters described below.

The p_{T} differential cross section is modeled by a power law function, $A\left(p_{0}\right)^{n} /\left(p_{T}+p_{0}\right)^{n}$, for $p_{T}>2 \mathrm{GeV} / c$. In order to compare with the previous CDF K_{S}^{0} result [5, 24], p_{0} is fixed at $1.3 \mathrm{GeV} / c$, and the results are shown in Table II. The data $p_{T} \sim<2 \mathrm{GeV} / c$ cannot be described well by the power law function even if p_{0} is allowed to float. For this region, the data are better described by an exponential function, $B \exp \left[-b \cdot p_{T}\right]$. The results of this fit are shown in Table III, and the slope b of Λ is consistent with previous measurements [11, 12]. The b values depend on the range of the fit but are about two, which corresponds to an average p_{T} of $1 \mathrm{GeV} / c$ under the assumption that the fit can be extrapolated down to $p_{T}=0 \mathrm{GeV} / c$.

The bottom plot in Figure 3 shows the ratio of the p_{T} differential cross sections for Ξ^{-}and Λ^{0}, and Ω^{-}and Λ^{0}. For the ratio plots, Λ^{0} cross sections are recalculated at the Ξ^{-}and $\Omega^{-} p_{T}$ values. In the Ξ^{-} / Λ^{0} ratio there is a rise at low p_{T}, and the ratio reaches a plateau at $p_{T}>4$ GeV / c. It should be noted that the Λ^{0} cross section also

TABLE I: The values of inclusive invariant p_{T} differential cross sections ($E d^{3} \sigma / d p^{3}$) in Figure 3. The uncertainties include both statistical and systematic uncertainties.

$p_{T}(\mathrm{GeV} / \mathrm{c})$	$\Lambda^{0}\left(\mathrm{mb} / \mathrm{GeV}^{2} \mathrm{c}^{3}\right)$	$p_{T}(\mathrm{GeV} / \mathrm{c})$	$\Xi^{ \pm}\left(\mathrm{mb} / \mathrm{GeV}^{2} c^{3}\right)$	$p_{T}(\mathrm{GeV} / \mathrm{c})$	$\Omega^{ \pm}\left(\mathrm{mb} / \mathrm{GeV}^{2} \mathrm{c}^{3}\right)$
1.24	$4.15 \times 10^{-1} \pm 1.07 \times 10^{-1}$	2.11	$4.96 \times 10^{-3} \pm 1.25 \times 10^{-3}$	1.96	$1.19 \times 10^{-3} \pm 2.92 \times 10^{-4}$
1.34	$2.55 \times 10^{-1} \pm 6.36 \times 10^{-2}$	2.36	$2.76 \times 10^{-3} \pm 6.41 \times 10^{-4}$	2.46	$2.88 \times 10^{-4} \pm 5.68 \times 10^{-5}$
1.44	$1.95 \times 10^{-1} \pm 4.69 \times 10^{-2}$	2.61	$1.64 \times 10^{-3} \pm 3.32 \times 10^{-4}$	2.96	$9.89 \times 10^{-5} \pm 1.85 \times 10^{-5}$
1.54	$1.72 \times 10^{-1} \pm 3.97 \times 10^{-2}$	2.86	$1.03 \times 10^{-3} \pm 1.89 \times 10^{-4}$	3.43	$7.54 \times 10^{-5} \pm 1.34 \times 10^{-5}$
1.69	$1.11 \times 10^{-1} \pm 2.44 \times 10^{-2}$	3.11	$7.26 \times 10^{-4} \pm 1.12 \times 10^{-4}$	3.91	$2.07 \times 10^{-5} \pm 4.37 \times 10^{-6}$
1.89	$6.54 \times 10^{-2} \pm 1.33 \times 10^{-2}$	3.36	$4.46 \times 10^{-4} \pm 6.94 \times 10^{-5}$	4.47	$6.77 \times 10^{-6} \pm 2.10 \times 10^{-6}$
2.09	$4.03 \times 10^{-2} \pm 7.67 \times 10^{-3}$	3.61	$2.96 \times 10^{-4} \pm 4.65 \times 10^{-5}$	4.97	$9.41 \times 10^{-6} \pm 2.33 \times 10^{-6}$
2.29	$2.54 \times 10^{-2} \pm 4.52 \times 10^{-3}$	3.86	$2.10 \times 10^{-4} \pm 3.34 \times 10^{-5}$	5.63	$1.87 \times 10^{-6} \pm 6.51 \times 10^{-7}$
2.49	$1.63 \times 10^{-2} \pm 2.73 \times 10^{-3}$	4.11	$1.30 \times 10^{-4} \pm 2.13 \times 10^{-5}$	6.84	$5.21 \times 10^{-7} \pm 2.14 \times 10^{-7}$
2.69	$1.06 \times 10^{-2} \pm 1.67 \times 10^{-3}$	4.36	$7.66 \times 10^{-5} \pm 1.28 \times 10^{-5}$	8.78	$1.32 \times 10^{-7} \pm 9.71 \times 10^{-8}$
2.89	$6.96 \times 10^{-3} \pm 1.04 \times 10^{-3}$	4.61	$6.55 \times 10^{-5} \pm 1.10 \times 10^{-5}$		
3.13	$4.26 \times 10^{-3} \pm 6.09 \times 10^{-4}$	4.97	$3.52 \times 10^{-5} \pm 5.78 \times 10^{-6}$		
3.43	$2.30 \times 10^{-3} \pm 3.16 \times 10^{-4}$	5.47	$1.81 \times 10^{-5} \pm 3.20 \times 10^{-6}$		
3.78	$1.20 \times 10^{-3} \pm 1.62 \times 10^{-4}$	5.98	$8.71 \times 10^{-6} \pm 1.94 \times 10^{-6}$		
4.22	$5.42 \times 10^{-4} \pm 7.44 \times 10^{-5}$	6.67	$3.53 \times 10^{-6} \pm 8.94 \times 10^{-7}$		
4.72	$2.42 \times 10^{-4} \pm 3.63 \times 10^{-5}$	7.68	$9.02 \times 10^{-7} \pm 2.77 \times 10^{-7}$		
5.22	$1.20 \times 10^{-4} \pm 1.37 \times 10^{-5}$	8.95	$5.09 \times 10^{-7} \pm 2.09 \times 10^{-7}$		
5.72	$6.21 \times 10^{-5} \pm 7.68 \times 10^{-6}$				
6.23	$3.38 \times 10^{-5} \pm 4.76 \times 10^{-6}$				
6.73	$1.76 \times 10^{-5} \pm 3.03 \times 10^{-6}$				
7.43	$8.87 \times 10^{-6} \pm 1.46 \times 10^{-6}$				
8.44	$4.10 \times 10^{-6} \pm 8.29 \times 10^{-7}$				
9.44	$1.42 \times 10^{-6} \pm 4.21 \times 10^{-7}$				

TABLE II: The results of power law function fits to the inclusive invariant p_{T} differential cross sections described in the text and shown in Figure 3 for $p_{T}>2 \mathrm{GeV} / c$. The parameter p_{0} is fixed to $1.3 \mathrm{GeV} / c$ in all fits. The values for all charge and K_{S}^{0} at $\sqrt{s}=1.8 \mathrm{TeV}$. The uncertainties shown do not include the MB cross section uncertainty [22]. The last line of the table gives the χ^{2} per degree-of-freedom of the fit to data.

Parameter (units)	All charged $[25]$	$K_{S}^{0}[24]$	Λ^{0}	$\Xi^{ \pm}$	$\Omega^{ \pm}$
$A\left(\mathrm{mb} / \mathrm{GeV}^{2} c^{3}\right)$	450 ± 10	45 ± 9	210 ± 25	14.9 ± 2.5	1.50 ± 0.75
$p_{0}(\mathrm{GeV} / c)$	1.3	1.3	1.3	1.3	1.3
n	8.28 ± 0.02	7.7 ± 0.2	8.81 ± 0.08	8.26 ± 0.12	8.06 ± 0.34
$\chi^{2} /$ dof	$103 / 65$	$8.1 / 11$	$5.7 / 15$	$15.8 / 15$	$10.5 / 7$

includes Λ^{0} production from the decay of other hyperon ${ }_{18}$ states $\left(\Sigma^{0} \rightarrow \Lambda^{0} \gamma, \Xi^{ \pm}, \Xi^{0}\right.$ and $\left.\bar{\Xi}^{0}\right)$. Due to the short ${ }^{19}$ Σ^{0} lifetime, Λ^{0} from Σ^{0} decays cannot be separated from ${ }^{20}$ direct Λ^{0} production. Simulations of cascade decays in- ${ }^{21}$ dicate that $\sim 50 \%$ of Λ^{0} from Ξ decays will satisfy our ${ }^{22}$ Λ^{0} selection criteria, with the fraction of Λ^{0} fairly inde- ${ }^{23}$ pendent of Ξp_{T}. The ratio plots in Figure 3 are fitted ${ }^{24}$ to a constant, and the value 0.17 ± 0.01 is obtained for ${ }^{25}$ Ξ^{-} / Λ^{0} and 0.025 ± 0.002 for Ω^{-} / Λ^{0}.

The ratio and p_{T} plots in Figure 3 clearly show that the ${ }_{28}$ cross sections depend on the number of strange quarks. However, the plots in Figure 3, n values in Table II including K_{S}^{0} [24] and all charged particles [25] indicate ${ }^{29}$ that the p_{T} slopes are similar in the high p_{T} region. This could be an indication of a universality in particle pro- ${ }^{3}$ duction as p_{T} increases [26]. This is in contrast to the ${ }_{31}$ low p_{T} region where the slope exhibits a strong particle 32
type dependence [27].
Figure 4 shows the p_{T} differential cross sections for two charged-particle multiplicity regions, $N_{c h}<10$ and $N_{c h}>24 . N_{c h}=24(10)$ corresponds to $d N / d \eta \sim 16(7)$, corrected for the track reconstruction efficiency and unreconstructed tracks with $p_{T}<0.3 \mathrm{GeV} / c$ [25]. Due to the low Ω^{-}sample statistics, distributions are only shown for Λ^{0} and Ξ^{-}. We observe a correlation between high p_{T} particles and high multiplicity events. This is a general characteristic independent of the particle types. Table IV lists the cross section values in Figure 4.

VI. SUMMARY

The production properties of Λ^{0}, Ξ^{-}, and Ω^{-}hyperons reconstructed from minimum-bias events at $\sqrt{s}=1.96$ TeV are studied. The inclusive invariant p_{T} differential

TABLE III: The results of exponential function fits to the inclusive invariant p_{T} differential cross sections shown in Figure 3 for the p_{T} ranges given in the second row. The uncertainties shown do not include the MB cross section uncertainty [22]. The last line of the table gives the χ^{2} per degree-of-freedom of the fit to data.

Parameter (units)	Λ^{0}	Λ^{0}	$\Xi^{ \pm}$	$\Omega^{ \pm}$
p_{T} range (GeV / c)	$[1.2,2.5]$	$[1.2,4]$	$[1.5,4]$	$[2,4]$
$B\left(\mathrm{mb} / \mathrm{GeV}^{2} c^{3}\right)$	4.68 ± 1.04	3.16 ± 0.35	0.16 ± 0.04	0.024 ± 0.011
$b\left(\mathrm{GeV}^{-1} c\right)$	2.30 ± 0.12	2.10 ± 0.04	1.75 ± 0.08	1.80 ± 0.19
$\chi^{2} /$ dof	$1.0 / 7$	$7.2 / 12$	$4.0 / 8$	$6.3 / 3$

TABLE IV: The values of inclusive invariant p_{T} differential cross sections ($E d^{3} \sigma / d p^{3}$) in Figure 4 for two multiplicity ranges. The uncertainties include both statistical and systematic uncertainties.

$p_{T}(\mathrm{GeV} / \mathrm{c})$	$\begin{gathered} \hline \hline \Lambda^{0}\left(\mathrm{mb} / \mathrm{GeV}^{2} \mathrm{c}^{3}\right) \\ N_{c h}<10 \end{gathered}$	$N_{c h}>24$	$p_{T}(\mathrm{GeV} / \mathrm{c})$	$\begin{gathered} \hline \hline \Xi^{ \pm}\left(\mathrm{mb} / \mathrm{GeV}^{2} c^{3}\right) \\ N_{c h}<10 \end{gathered}$	$N_{c h}>24$
1.24	$1.35 \times 10^{-1} \pm 3.30 \times 10^{-2}$	$2.79 \times 10^{-2} \pm 7.43 \times 10^{-3}$	2.11	$1.69 \times 10^{-3} \pm 3.29 \times 10^{-}$	$4.41 \times 10^{-4} \pm 8.65 \times 10^{-5}$
1.34	$8.93 \times 10^{-2} \pm 2.10 \times 10^{-2}$	$1.84 \times 10^{-2} \pm 4.51 \times 10^{-3}$	2.36	$1.07 \times 10^{-3} \pm 1.87 \times 10^{-4}$	$2.58 \times 10^{-4} \pm 4.60 \times 10^{-5}$
1.44	$6.93 \times 10^{-2} \pm 1.57 \times 10^{-2}$	$1.33 \times 10^{-2} \pm 3.14 \times 10^{-3}$	2.61	$5.61 \times 10^{-4} \pm 8.91 \times 10^{-5}$	$1.86 \times 10^{-4} \pm 2.90 \times 10^{-5}$
1.54	$5.88 \times 10^{-2} \pm 1.30 \times 10^{-2}$	$1.40 \times 10^{-2} \pm 3.17 \times 10^{-3}$	2.86	$3.62 \times 10^{-4} \pm 5.75 \times 10^{-5}$	$1.23 \times 10^{-4} \pm 1.96 \times 10^{-5}$
1.69	$3.91 \times 10^{-2} \pm 8.28 \times 10^{-3}$	$1.02 \times 10^{-2} \pm 2.18 \times 10^{-3}$	3.11	$2.68 \times 10^{-4} \pm 4.27 \times 10^{-5}$	$1.03 \times 10^{-4} \pm 1.61 \times 10^{-5}$
1.90	$2.34 \times 10^{-2} \pm 4.72 \times 10^{-3}$	$6.64 \times 10^{-3} \pm 1.35 \times 10^{-3}$	3.36	$1.56 \times 10^{-4} \pm 2.62 \times 10^{-5}$	$6.07 \times 10^{-5} \pm 9.90 \times 10^{-6}$
2.09	$1.44 \times 10^{-2} \pm 2.77 \times 10^{-3}$	$4.53 \times 10^{-3} \pm 8.82 \times 10^{-4}$	3.61	$1.03 \times 10^{-4} \pm 1.84 \times 10^{-5}$	$4.33 \times 10^{-5} \pm 7.23 \times 10^{-6}$
2.29	$8.95 \times 10^{-3} \pm 1.66 \times 10^{-3}$	$3.10 \times 10^{-3} \pm 5.83 \times 10^{-4}$	3.86	$7.52 \times 10^{-5} \pm 1.37 \times 10^{-5}$	$3.06 \times 10^{-5} \pm 5.42 \times 10^{-6}$
2.50	$5.59 \times 10^{-3} \pm 1.01 \times 10^{-3}$	$2.12 \times 10^{-3} \pm 3.87 \times 10^{-4}$	4.12	$5.07 \times 10^{-5} \pm 1.05 \times 10^{-5}$	$1.87 \times 10^{-5} \pm 3.61 \times 10^{-6}$
2.69	$3.64 \times 10^{-3} \pm 6.38 \times 10^{-4}$	$1.46 \times 10^{-3} \pm 2.60 \times 10^{-4}$	4.42	$1.90 \times 10^{-5} \pm 5.18 \times 10^{-6}$	$1.21 \times 10^{-5} \pm 2.53 \times 10^{-6}$
2.90	$2.39 \times 10^{-3} \pm 4.11 \times 10^{-4}$	$9.85 \times 10^{-4} \pm 1.73 \times 10^{-4}$	4.79	$1.72 \times 10^{-5} \pm 3.79 \times 10^{-6}$	$7.48 \times 10^{-6} \pm 1.68 \times 10^{-6}$
3.13	$1.43 \times 10^{-3} \pm 2.41 \times 10^{-4}$	$6.35 \times 10^{-4} \pm 1.09 \times 10^{-4}$	5.33	$8.59 \times 10^{-6} \pm 1.81 \times 10^{-6}$	$3.74 \times 10^{-6} \pm 7.71 \times 10^{-7}$
3.44	$8.06 \times 10^{-4} \pm 1.34 \times 10^{-4}$	$3.61 \times 10^{-4} \pm 6.19 \times 10^{-5}$	6.87	$8.22 \times 10^{-7} \pm 3.80 \times 10^{-7}$	$3.61 \times 10^{-7} \pm 9.16 \times 10^{-8}$
3.79	$4.09 \times 10^{-4} \pm 6.81 \times 10^{-5}$	$2.03 \times 10^{-4} \pm 3.48 \times 10^{-5}$			
4.22	$1.74 \times 10^{-4} \pm 2.96 \times 10^{-5}$	$1.02 \times 10^{-4} \pm 1.78 \times 10^{-5}$			
4.72	$7.44 \times 10^{-5} \pm 1.34 \times 10^{-5}$	$4.80 \times 10^{-5} \pm 9.02 \times 10^{-6}$			
5.22	$3.74 \times 10^{-5} \pm 6.88 \times 10^{-6}$	$2.47 \times 10^{-5} \pm 5.04 \times 10^{-6}$			
5.72	$1.93 \times 10^{-5} \pm 3.90 \times 10^{-6}$	$1.27 \times 10^{-5} \pm 2.90 \times 10^{-6}$			
6.42	$6.81 \times 10^{-6} \pm 1.52 \times 10^{-6}$	$5.36 \times 10^{-6} \pm 1.28 \times 10^{-6}$			
8.00	$1.44 \times 10^{-6} \pm 3.69 \times 10^{-7}$	$1.11 \times 10^{-6} \pm 3.37 \times 10^{-7}$			

cross sections are well modeled by a power law function above $2 \mathrm{GeV} / c p_{T}$. With fixed p_{0}, the fit parameter n decreases from $8.81 \pm 0.08\left(\Lambda^{0}\right)$ to $8.06 \pm 0.34\left(\Omega^{-}\right)$. The low p_{T} regions are modeled by an exponential function. The exponential slope, b, decreases by $\sim 15 \%$ from Λ^{0} to Ω^{-}. The cross section ratios Ξ^{-} / Λ^{0} and Ω^{-} / Λ^{0} are presented as a function of p_{T}. Although the ratios exhibit a strong dependence on the number of strange quarks, the n values of the hyperons, K_{S}^{0} and all charged particles are within $\sim 10 \%$ of each other. This could be an evidence that these particles are produced similarly in p_{T} as p_{T} increases regardless of the number of quarks and quark flavors in particles. We also find the hyperon inclusive invariant p_{T} distributions fall off faster with p_{T} for low multiplicity events than for high multiplicity events.

FIG. 3: The inclusive invariant p_{T} differential cross section distributions for Λ^{0}, Ξ^{-}, and Ω^{-}within $|\eta|<1$ (top). The solid curves are from fits to a power law function, with the fitted parameters given in Table II. The ratios of Ξ^{-} / Λ^{0} and Ω^{-} / Λ^{0} as a function of p_{T} (bottom).

FIG. 4: Inclusive p_{T} distributions for two charged-particle multiplicity regions, $N_{c h}<10$ and $N_{c h}>24$. Distributions for Λ^{0} are shown on the top while distributions for Ξ^{-}are shown on the bottom.

We thank the Fermilab staff and the technical staffs ${ }_{11}$ of the participating institutions for their vital contribu- ${ }^{12}$ tions. This work was supported by the U.S. Department ${ }^{13}$ of Energy and National Science Foundation; the Italian ${ }_{14}$ Istituto Nazionale di Fisica Nucleare; the Ministry of ${ }_{15}$ Education, Culture, Sports, Science and Technology of ${ }_{16}$ Japan; the Natural Sciences and Engineering Research ${ }_{17}$ Council of Canada; the National Science Council of the ${ }_{18}$ Republic of China; the Swiss National Science Founda- 19 tion; the A.P. Sloan Foundation; the Bundesministerium
für Bildung und Forschung, Germany; the World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovación, and Programa ConsoliderIngenio 2010, Spain; the Slovak R\&D Agency; and the Academy of Finland.
[1] G. D. Rochester and C. C. Butler, Nature 160, 85569 (1947).
[2] M. Athoff et al. (TASSO Collaboration), Z. Phys. C 27, 7_{1} 27 (1985); W. Braunschweig et al. (TASSO Collabora- 72 tion), Z. Phys. C 47, 167 (1990); H. Aihara et al. (TPC ${ }_{73}$ Collaboration), Phys. Rev. Lett. 54, 274 (1985); D. De 74 La Vaissiere et al. (MARK-II Collaboration), Phys. Rev. 75 Lett. 54, 2071 (1985); H. Schellman et al. (MARK-II 76 Collaboration), Phys. Rev. D 31, 3013 (1985); M. Der- 77 rick et al. (HRS Collaboration), Phys. Rev. D 35, 263978 (1987); W. Braunschweig et al. (TASSO Collaboration), 79 Z. Phys. C 45, 209 (1989); H. Behrend et al. (CELLO 80 Collaboration), Z. Phys. C 46, 397 (1990); D. Buskulic et 81 al. (ALEPH Collaboration), Z. Phys. C 64, 361 (1994); 82 P. Abreu et al. (DELPHI Collaboration), Z. Phys. C 65, 83 587 (1995); M. Acciarri et al. (L3 Collaboration), Phys. 84 Lett. B 328, 223 (1994); P. Acton et al. (OPAL Collab- 85 oration), Phys. Lett. B 291, 503 (1992).
[3] M. Derrick et al. (ZEUS Collaboration), Z. Phys. C 68, 87 29 (1995); J. Breitweg et al., Eur. Phys. J. C 2, 77, 88 (1998); S. Akid et al. (H1 Collaboration), Nucl. Phys. 89 B 480, 3 (1996); C. Adloff et al. (H1 Collaboration), Z. 90 Phys. C 76, 213 (1997).
[4] R. Ansoge et al. (UA5 Collaboration), Z. Phys. C 41, 92 179 (1988); R. Ansoge et al. (UA5 Collaboration), Nucl. 93 Phys. B 328, 36 (1989); G. Bocquet et al. (UA1 Collab- 94 oration), Phys. Lett. B 366, 441 (1996).
[5] D. Acosta et al. (CDF Collaboration), Phys. Rev. D 72, 96 052001 (2005).

97
[6] B. I. Abelev et al. (STAR Collaboration), Phys. Rev. C 98 75, 064901, (2007).

99
[7] P. Koch, B. Mueller and J. Rafelski, Phys. Rep. 142, 321_{100} (1986).

101
[8] M. Bourquin et al. (Bristol-Geneva-Heidelberg-Orsay-102 Rutherford-Strasbourg Collaboration), Z. Phys. C 5, $275{ }_{103}$ (1980).
[9] T. Akesson et al. (Axial Field Spectrometer Collabora-105 tion), Nucl. Phys. B 246, 1 (1984).

106
[10] G. J. Alner et al. (UA5 Collaboration), Phys. Lett. B 107 151, 309 (1985).

108
[11] S. Banerjee et al. (E735 Collaboration), Phys. Rev. Lett. 109 62, 12 (1989).
[12] T. Alexopoulos et al. (E735 Collaboration), Phys. Rev.111 D 46, 2773 (1992).

112
[13] A. Abulencia et al. (CDF Collaboration), J. Phys. G 34,113 2457 (2007).
[14] A. Sill et al., Nucl. Instrum. Methods A 447, 1 (2000). ${ }^{115}$
[15] In the CDF coordinate system, θ and ϕ are the polar and ${ }_{116}$ azimuthal angles of a track, respectively, defined with ${ }_{117}$
respect to the proton beam direction, z. The pseudorapidity η is defined as $-\ln [\tan (\theta / 2)]$. The transversemomentum of a particle is $p_{T}=p \sin \theta$. The rapidity is defined as $y=0.5 \ln \left[\left(E+p_{z}\right) /\left(E-p_{z}\right)\right]$, where E and p_{z} are the energy and longitudinal momentum of the particles associated with the track.
[16] A. Affolder et al. (CDF Collaboration), Nucl. Instrum. Methods A 526, 249 (2004).
[17] D. Acosta et al., Nucl. Instrum. Methods A 494, 57 (2002).
[18] The number of p_{T} intervals for data is dictated by statistics such that the fits to the invariant mass distributions are stable. In the acceptance calculation, the number of p_{T} points is chosen such that a smooth acceptance curve as a function of p_{T} can be obtained. The statistical uncertainties of acceptance values are less than a few percent.
[19] C. Amsler et al. (Particle Data Group), Phys. Lett. B 667, 1 (2008).
[20] T. Sjöstrand, P. Eden, C. Friberg, L. Lonnblad, G. Miu, S. Mrenna, and E. Norrbin, Comput. Phys. Commun. 135, 238 (2001). The version used in this paper is 6.327.
[21] R. Brun, R. Hagelberg, M. Hansroul, and J. C. Lassalle, version 3.15, CERN-DD-78-2-REV.
[22] The total cross section corresponding to the minimumbias trigger is estimated to be $45 \pm 8 \mathrm{mb}$. The elastic ($17 \pm 4 \mathrm{mb}[19]$), single diffractive SD (12 mb), and half of the double diffractive $\mathrm{DD}(4 \mathrm{mb})$ cross sections are subtracted from the total $p \bar{p}$ cross section ($78 \pm 6 \mathrm{mb}$ [19] [23]) to give this estimate. The SD and DD cross sections are estimated using pYTHIA [20], and no uncertainties are assigned to SD and DD cross section. A simulation study shows that the minimum-bias trigger is sensitive to $\sim 100 \%$ of inelastic events which are not SD or DD and $\sim 50 \%$ of DD events. A 100% uncertainty is assigned to the DD contribution attributing to the uncertainty in the event characteristics and detector simulation.
[23] J.R. Cudell et al. (COMPETE Collaboration), arXiv:hep-ph/0206172V1.
[24] F. Abe et al. (CDF Collaboration), Phys. Rev. D 40, 3791 (1989).
[25] F. Abe et al. (CDF Collaboration), Phys. Rev. Lett. 16, 1819 (1988). This is at $\sqrt{s}=1800 \mathrm{GeV}$
[26] A manuscript on a high statistics measurement of $K_{S}^{0}, K^{* \pm}(892)$ and $\phi^{0}(1020)$ production properties is in preparation.
[27] A.M. Rossi et al., Nucl. Phys. B 84, 269 (1975); R.E. Ansorge et al. (UA5 Collaboration), Phys. Lett. B 199, 311 (1987); G.J. Alner et al. (UA5 Collaboration), Nucl. Phys. B 258, 505 (1985); S. Banerjee et al. (E735 Col-

[^0]laboration), Phys. Rev. Lett. 64, 991 (1990).

[^0]: 1

