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This article studies a numerical relativity approach to the initial value problem in Anti-
de Sitter spacetime relevant for dual non-equilibrium evolution of strongly coupled non-
Abelian plasma undergoing Bjorken expansion. In order to use initial conditions for the
metric obtained in arXiv:0906.4423 we introduce new, ADM formalism-based scheme for

numerical integration of Einstein’s equations with negative cosmological constant.

The key novel element of this approach is the choice of lapse function vanishing

at fixed radial position, enabling, if needed, efficient horizon excision. Various

physical aspects of the gauge theory thermalization process in this setup have been

outlined in our companion article arXiv:1103.3452. In this work we focus on the

gravitational side of the problem and present full technical details of our setup.

We discuss in particular the ADM formalism, the explicit form of initial states, the

boundary conditions for the metric on the inner and outer edges of the simulation

domain, the relation between boundary and bulk notions of time, the procedure to

extract the gauge theory energy-momentum tensor and non-equilibrium apparent horizon

entropy, as well as the choice of point for freezing the lapse. Finally, we comment

on various features of the initial profiles we consider.

PACS numbers: 11.25.Tq, 25.75.-q, 04.25.D-

I. INTRODUCTION

The most fascinating theoretical challenge in the
physics of heavy ion collisions is the understanding of
the mechanisms behind the short – less than 1 fm/c [1]
time after which a hydrodynamic description is necces-
sary in order to describe experimental data. Due to the
fact that hydrodynamics typically assumes local thermal
equilibrium, this problem has been dubbed ‘the early
thermalization problem’. A possibility which has not
been fully appreciated, is that viscous hydrodynamic de-
scription may be applicable even with quite sizable pres-
sure anisotropy [2–4]. Thus the quark-gluon plasma may
still not be in a real thermalized state even though all
the experimentally observed consequences of a (viscous)
hydrodynamic description may still hold.

Because of this experimental motivation, and the
adopted usage in the heavy-ion community, we will con-
tinue to call the transition to viscous hydrodynamics as
‘thermalization’ even if the plasma is not really strictly
thermalized in the statistical mechanics sense. The ques-
tion, to what extent is the plasma isotropic at this ‘ther-
malization’ is at the forefront of the current investiga-
tions.
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The very low observed shear viscosity of the plasma
produced in relativistic heavy-ion collision strongly sug-
gests that the plasma system is strongly coupled, thus
making the theoretical analysis of the thermalization
problem very difficult if not impossible1.

On the other hand, this observation opens up the possi-
bility of using methods of the AdS/CFT correspondence
to study similar problems in gauge theories which possess
a gravity dual. The utility of the AdS/CFT correspon-
dence in the non-perturbative regime lies in the fact that
then the lightest dual degrees of freedom at strong cou-
pling are just the (super)gravity modes whose dynamics
is given by Einstein’s equations (possibly with specific
matter fields). Moreover, from the metric sector one can
extract the whole dynamics of the expectation values of
the gauge theory energy-momentum tensor which is the
key observable of interest in all hydrodynamic models.

Thus Einstein’s equations (more precisely supergravity
equations) are an ideal arena to study the physics of ther-
malization in a strongly coupled gauge theory. This setup
takes the simplest form in N = 4 super Yang-Mills the-
ory (SYM), when we do not excite any other expectation
values apart from the energy-momentum tensor. Then
the gravitational description reduces to 5-dimensional
Einstein’s equations with negative cosmological constant.
Even more interestingly, this description is universal in

1 In QCD we may even have a mixture of perturbative and non-
perturbative effects.



this sector for all holographic 1+3 dimensional conformal
field theories as argued in [5].

A static system in thermal equilibrium is decribed on
the dual side by a planar black hole. It is known since
[6] that thermalization of generic small disturbances of
the system is exponentially fast and is described, on the
gravitational side, by quasi-normal modes.

For an expanding plasma system (e.g. in the boost-
invariant case considered here), the asymptotic equi-
librium geometry is time dependent and looks like a
boosted black hole and the thermalization of small dis-
turbances is also very fast but now quasi-exponential (i.e.

∼ exp(−const τ 2
3 )) [7]. In that paper, thermalization

was suggested to occur as an approach to an attractor
geometry from generic initial conditions, but clearly a
linearized analysis is insufficient2 – a full nonlinear treat-
ment of Einstein’s equations is needed thus neccesitating
a numerical approach.

Intuitively, the most important feature of gravity back-
grounds dual to collective states of matter is the presence
of the (event) horizon, which acts as a membrane absorb-
ing gravitational radiation and matter outside until local
equilibrium (in the sense of perfect fluid hydrodynamic
description) is reached on the boundary. This mecha-
nism of equilibration turns out to be very effective. In-
deed numerical simulations of [2, 9, 10] give short ther-
malization times (which can be argued to correspond to
times shorter than 1 fm/c at RHIC energies). In addi-
tion, the result of our investigation [3] shows that viscous
hydrodynamics applies for Tτth ≥ 0.6− 0.7 which is con-
sistent with RHIC assumptions (e.g. T = 500MeV and
τth = 0.25fm gives Tτ = 0.63). These results provide
very strong motivation for further investigations of the
thermalization processes in the gauge-gravity duality3.

What makes the thermalization process difficult are
the many scales involved, so that the full microscopic
description is needed. This is in stark contrast with
the near-equilibrium dynamics, where the evolution of
the system is governed by the equations of hydrodynam-
ics and the only microscopic input needed are thermo-
dynamic relations and lowest transport coefficients (up
to first or second order in gradients). A beautiful holo-
graphic manifestation of this fact is the fluid-gravity du-
ality [14], where the velocity and temperature profiles on
the boundary specify completely the dual gravity back-
ground and Einstein’s equations can be recast in the form
of the equations of hydrodynamics. In other words, once
holography provides the thermodynamic and transport
properties of the dual field theory, in order to solve the
initial value problem in the near-equilibrium regime, one
does not need to solve the full Einstein’s equations. The

2 But c.f. the recent work [8] for an in-depth analysis showing the
effectiveness of using linearized methods in the case of isotropiza-
tion.

3 We do not discuss here the very interesting investigations of ther-
malization in N = 4 SYM on S3 ×R [11–13].

same information is contained in the much easier equa-
tions of hydrodynamics.

On the other hand, in the far-from-equilibrium regime
in a holographic field theory, one needs to specify not a
couple (as in hydrodynamics), but an infinite number of
boundary functions (a couple of numbers at each con-
stant radius slice of the initial time hypersurface in the
bulk). Gravity then is just a clever way of recasting com-
plicated interactions between these degrees of freedom in
the form of classical equations of motion for the five-
dimensional metric.

From that perspective, the study of far-from-
equilibrium physics leading to thermalization consists of
two natural steps. First, one needs to specify the initial
data for the evolution on some initial bulk time hyper-
surface and later use fully-fledged numerical relativity
to evolve it till the dual stress tensor can be described
by hydrodynamics. The thermalization time is then the
boundary time which elapsed between these two events.

Because the thermalization process is so complicated,
one of the most important questions is whether any reg-
ularities emerge from underlying microscopic (here grav-
itational) dynamics. Another way of looking at this is
to search for some characteristic features of holographic,
and so driven by strong coupling, thermalization, which
might provide clues for singling out mechanisms rele-
vant for a rapid approach to local equilibrium at RHIC.
Yet another perspective is to try to understand various
quantities describing thermalization at strong coupling in
terms of some primary and secondary features of initial
far-from-equilibrium state encoded geometrically.

Motivated by these questions we are considering a
boost-invariant [15] thermalization process in the holo-
graphic conformal setting. The reason for focusing on
the boost-invariant flow is that it is phenomenologically
relevant for the mid-rapidity region of heavy ion colli-
sions, but at the same time simple enough to allow for a
thorough understanding using the gauge-gravity duality.
In the boost-invariant case with no transverse dynam-
ics the evolution of finite energy density system depends
on a single coordinate – proper time τ – and necessary
starts with some far-from-equilibrium state at early time,
which thermalizes at some transient time leaving viscous
hydrodynamics at late time.

The holographic studies of the boost-invariant flow
have a long history and started with unravelling perfect
[16] and further first [17], second [18] and third order [19]
hydrodynamics in the late time expansion of dual space-
time, subsequently embedded within the framework of
the fluid-gravity duality [14] as its special case [20–22].

The key later development underlying the present ar-
ticle is [23], where a Taylor expansion in the Fefferman-
Graham (FG) coordinates was used to unravel the struc-
ture of the metric coefficients at early time and the nature
of dual far-from-equilibrium initial state. Complemen-
tary to the studies of boost-invariant holographic ther-
malization reported in [9] this does not require turning
on sources for any field theory operators and allows to ob-
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serve unforced relaxation towards local equilibrium start-
ing from a family of far-from-equilibrium initial states.
The crucial simplification occurring in the Fefferman-
Graham coordinates when the initial time hypersurface
in the bulk is chosen to be τFG = 0, is that the regularity
of bulk geometry forces time derivatives of all 3 nontrivial
metric coefficients (warp-factors) to vanish. This allows
to solve explicitly 2 constraint equations and parametrize
the most general initial data in terms of a single function
of radial direction subject to regularity constraint and
asymptotic AdS boundary condition.

The coefficients of near-boundary expansion of the
warp-factor specifying initial data turns out to be related
to the early time expansion of the stress tensor in a one-
to-one fashion, in accord with expectation that far-from-
equilibrium dynamics involves many independent scales.
By reconstructing early time power series from the near-
boundary behavior of initial data one could not however
see the transition to hydrodynamics, as the resulting ex-
pressions have too small radius of convergence in τ , which
directly motivates this work.

The task of this article is to provide a numerical frame-
work which allows to solve Einstein’s equations starting
from initial data found in [23] and evolve them till hy-
drodynamic regime on the boundary is reached. The
most important physical results about the thermaliza-
tion process in this setting were summarized in the letter
[3], whereas this companion article focuses on the gravity
side of our approach and its numerical formulation.

The principal complication in formulating a numerical
framework is the well known diffeomorphism-invariance
of General Relativity. The form of the equations depend
on the type of coordinate system that one uses, and in
addition, depend on the choice of dynamical variables. A
good choice should be well adapted to the physical prob-
lem under investigation and of course should be stable
numerically.

One edge of the computational domain can be natu-
rally taken as the boundary of asymptotically AdS space-
time with boundary conditions dictated by imposing the
flatness of the metric in which the dual field theory lives.
This condition is imposed because we do not want to
deform the gauge theory through giving a source to its
stress tensor or any other operator, but rather study un-
forced relaxation from a set of far-from-equilibrium initial
data.

Typically one has also to impose boundary conditions
at the other (outer) edge of the integration domain, where
generically the curvature may be quite high. In a stan-
dard formulation, causality of the bulk spacetime requires
putting this edge behind the event horizon, so that ini-
tial data specified on an initial time hypersurface encode
boundary dynamics up to an arbitrary late time. How-
ever, the event horizon is a global concept and cannot be
located on a given slice of constant time foliation until the
full spacetime is known. As a measure whether a given
point is outside or inside the event horizon one can use
the notion of an apparent horizon, which is intrinsic to

a given slice. On the other hand, the existence and the
location of an apparent horizon depends on a foliation
and a constant time foliation induced by a given choice
of coordinate frame might not see (at least initially) any
apparent horizon.

The most commonly used method of integrating Ein-
stein’s equations in asymptotically AdS spacetimes was
to use a characteristic formulation and use ingoing
Eddington-Finkelstein (EF) coordinates [2, 9, 10]. This
method has been very successful in numerical simulations
of black hole formation in AdS spacetimes. Here, the
outer boundary can be set to be at the location of the
apparent horizon on the null hypersurface. Due to the
null character no explicit boundary conditions need to be
set there.

For our purposes we did not adopt this formulation as
the ingoing null light rays, do not align along τFG = 0 hy-
persurface and so initial conditions derived in [23] and re-
viewed in section II cannot be used as a starting point for
the Eddington-Finkelstein approach. There seems to be
also an unresolved technical problem in writing numer-
ical codes in Eddington-Finkelstein coordinates starting
from τ = 0 at the boundary stemming from the fact that
in these coordinates the limits τEF → 0 and r →∞ (go-
ing to the boundary) do not commute (see section II for
more details).

These difficulties forced us to search for a new coor-
dinates frame in which the hypersurface τnew = 0 coin-
cides with the hypersurface τFG = 0 and which provides
a sensible radial cutoff in the bulk enabling numerical
treatment. Fortunately, it turned out that successful
code can be achieved by adopting to AdS gravity the
ADM (Arnowitt-Deser-Misner) formalism of general rel-
ativity [24] with fixed time hypersurfaces being spacelike.
This scheme is also the most popular in numerical simula-
tions in asymptotically flat spacetimes, but so far, to our
knowledge, has not been used in the AdS/CFT context.
Its advantage is also that it is a very generic formula-
tion of an initial value problem, thus it should be easy to
generalize to other setups.

The ADM formulation for an asymptotically AdS
spacetime involved two difficulties which were not present
in conventional asymptotically flat formulations. Firstly,
the boundary conditions at the AdS boundary, dictated
e.g. by the choice that the gauge theory metric is
Minkowski, turned out to be surprisingly subtle and in-
volved a careful treatment of a possible boundary diffeo-
morphism. Secondly, and this is the chief novel feature
of our formulation, we adopted the outer boundary con-
ditions by freezing the evolution at the outer edge by
making the lapse vanish there. This construction has
several attractive features. It works perfectly well even
when the geometry is highly curved at the edge. The ex-
terior of the simulation domain is causally disconnected
from the interior and thus the obtained results are com-
pletely determined by the initial data. This last feature
is not dependent on the location of the edge w.r.t. the
event horizon. Thus we may perform numerically consis-
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tent simulations without any knowledge on the location
of the event horizon.

Let us finally note, that very recently a third type of
numerical relativity formulation was adapted to Asymp-
totically AdS spacetimes — the Generalized Harmonic
formulation [25]. It would be very interesting to inves-
tigate its relative merits with the ADM formulation (in
particular in its more refined versions like BSSN [26]) in
the present context.

The plan of the article is the following. Section II
introduces the boost-invariant flow in the context of the
gauge-gravity duality and reviews the results of [23]. Sec-
tion III explains how to bypass the Fefferman-Graham co-
ordinate frame singularity by a choice of chart inspired by
the Kruskal-Szekeres extension of Schwarzschild metric.
Section IV reviews ADM formalism of general relativity,
which in section V is tailored to describe the gravity dual
to boost-invariant flow. Section VI explains the subtleties
of imposing asymptotically AdS boundary conditions and
obtaining expectation value of dual stress tensor oper-
ator, as well as elaborates on non-equilibrium entropy
defined on the apparent horizon. Section VII describes
various aspects of numerical side of the project. Section
VIII elaborates on the analyzed initial conditions, com-
pares numerical predictions for the effective temperature
as a function of proper time with early time power series
for three representative initial profiles, as well as explains
subtlety in defining thermalization time for a class of ini-
tial conditions we considered. Finally, the last section
summarizes results and discusses open problems.

II. BOOST-INVARIANT FLOW AND
HOLOGRAPHY

A. Kinematics

Boost-invariant dynamics describes an expansion of
plasma with an additional assumption that physics re-
mains the same in all reference frames boosted along the
expansion axis (i.e. in the longitudinal plane). This sym-
metry can be made manifest by introducing proper time
τ and (spacetime-)rapidity y coordinates related to the
usual lab frame time x0 and position along the expansion
axis x1 by

x0 = τ cosh y and x1 = τ sinh y. (1)

In the following x2,3 are taken to be Cartesian coordi-
nates in the transverse plane and are denoted collectively
as x⊥. In the absence of transverse dynamics, which is
the simplifying assumption adopted here, the evolution of
the system in proper time – rapidity coordinates depends
only on proper time, since boosts along x1 direction shift
rapidity. The background Minkowski metric in these co-
ordinates becomes proper time-dependent

ds2boundary = ηµνdx
µdxν = −dτ2 + τ2dy2 + dx2⊥ (2)

so that, as anticipated in the introduction, the system,
by construction, is not translationally invariant in proper
time and its evolution naturally splits into the early, tran-
sient and late time dynamics even if no external work is
done on the system. It is also worth noting at this point
that proper time - rapidity coordinates are curvilinear
and despite the fact that the boost-invariant dynamics
depends only on a single timelike coordinate, there is a
hydrodynamic tail at late time in contrast to spatially
uniform isotropization [2, 8].

The field theory observable, which is of interest here,
is the expectation value of the energy-momentum tensor
operator. This object carries direct information whether
the system is in local equilibrium and, in holographic
conformal field theories, undergoes decoupled dynamics
specifying by itself dual gravity background [5]. The most
general traceless and conserved stress tensor obeying the
symmetries of the problem in the coordinates (1) takes
the form

Tµν = diag (−ε, pL, pT , pT ) , (3)

where pL and pT are longitudinal and transverse pres-
sures expressed in terms of energy density ε(τ) and read

pL = −ε− τ ε′ and pT = ε+
1

2
τ ε′. (4)

The precise form of the energy density as a function of
time ε(τ) depends on the initial state and is governed by
the complicated dynamics of a gauge theory or, here, by
the dual gravity picture. The principal aim of the present
investigation is to devise a method to obtain ε(τ) for any
given initial conditions.

B. Bjorken hydrodynamics and the criterium for
thermalization

At sufficiently late times boost-invariant plasma
evolves according to the equations of hydrodynamics [15].
These are conservation equations of the stress tensor (3)
under the assumption that it can be written in hydro-
dynamic form, i.e. expressed in terms of a local tem-
perature, velocity and gradients of velocity. Let us note
that this assumption is not true in general. Whether one
can write Tµν in such a form is a question of dynamics.
Below, following [3] we will adopt an unambiguous crite-
rion testing whether in the boost-invariant setup Tµν can
indeed be written in hydrodynamic form or not.

As symmetries – boost-invariance, invariance under re-
flections in rapidity, as well as rotational and transla-
tional symmetries in the transverse plane – fix the form
of the local velocity (its only non-zero component is
uτ = 1), the only non-trivial dynamical hydrodynamic
field in the setup of interest is the local (called here
effective for the reasons explained below) temperature
Teff (τ) defined by

ε(τ) =
3

8
N2
c π

2Teff (τ)4. (5)
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The scaling of the energy density (5) with local temper-
ature is fixed by the scale invariance of gauge theory of
interest, whereas the prefactor counting the number of
degrees of freedom in thermodynamic equilibrium is that
of N = 4 super Yang-Mills at large Nc and strong cou-
pling.

We will use the equation (5) also in the far-from-
equilibrium regime, but there we will treat it as a def-
inition of an effective temperature. Physically this is the
temperature of a thermal state of N = 4 SYM theory
with the same energy density as ε(τ). This gives us a
measure of the energy density which factors out the num-
ber of degrees of freedom relevant for the specific gauge
theory. In the rest of the text we will refer to Teff (τ) as
to an effective temperature.

It is easy to see, that the equations of hydrodynamics
in the boost-invariant setup reduce to a first order ordi-
nary differential equation for the effective temperature,
which can be solved perturbatively in the large proper
time expansion. The result is known explicitly up to the
third order in gradients for N = 4 super Yang-Mills and
other (3+1)-dimensional holographic conformal field the-
ories [17–19] reading

Teff (τ) =
Λ

(Λτ)
1/3

{
1− 1

6π (Λτ)
2/3

+
−1 + log 2

36π2 (Λτ)
4/3

+

+
−21 + 2π2 + 51 log 2− 24 log 22

1944π3 (Λτ)
2 + . . .

}
,(6)

where Λ is an integration constant with a dimension of
energy governing the asymptotic scaling of the effective
temperature with proper time [3, 9]. Given the effective
temperature as a function of time, Λ can obtained by
fitting the hydrodynamic expression for Teff (τ) to late
time data obtained from numerical simulation.

Introducing a dimensionless variable w being the prod-
uct of the effective temperature and proper time

w(τ) ≡ Teff (τ)τ (7)

allows to rewrite the equation of boost-invariant hydro-
dynamics in a particularly simple form reading

τ

w

d

dτ
w =

Fhydro(w)

w
, (8)

where Fhydro(w) is a universal function of w. Hydrody-
namic gradient expansion coincides with the large-w ex-
pansion of Fhydro(w). This approach to boost-invariant
hydrodynamics is similar in spirit to previous attempts
of Shuryak and Lublinsky of introducing all-order re-
summed hydrodynamics [27, 28]. The important differ-
ence is that Fhydro(w) contains all nonlinear hydrody-
namic effects. Using the results of [17–19] we calculated
in [3] Fhydro(w) up to third order in gradients obtaining

Fhydro(w)

w
=

2

3
+

1

9πw
+

1− log 2

27π2w2
+

+
15− 2π2 − 45 log 2 + 24 log2 2

972π3w3
+ . . . (9)

Let us note that even without knowing the precise form
of Fhydro, equation (8) can be used as a test whether
Tµν is in a hydrodynamic form (i.e. written purely in
terms of a local temperature and gradients of velocity).
Indeed, plotting the left hand side of (8) as a function of
w for various initial conditions would give a single curve if
the hydrodynamic description would be valid or multiple
curves in the opposite case. This analysis was performed
in the companion article [3].

The equations of hydrodynamics written in the form
(8) allow for a simple criterion for thermalization by mea-
suring dimensionless deviation of (7) from obeying (8).
In particular, in [3] we adopted the following criterium
for thermalization∥∥∥∥∥ τ d

dτw

F 3rd order
hydro (w)

− 1.

∥∥∥∥∥ < 0.005. (10)

Note that the condition (10) is based on demanding that
the effective temperature obeys equations of hydrody-
namics, rather than on isotropy of the pressures. Indeed,
as the results of [3] and earlier studies in [9] show, the
pressure anisotropy can be quite sizable, nevertheless the
evolution of the system being governed by hydrodynam-
ics. In section VIII we discuss the sensitivity of thermal-
ization times obtained from (10) to the number on the
right hand side of (10).

Once gradient terms become negligible, the entropy is
no longer changing in time. This can be seen by evalu-
ating the entropy per unit rapidity and transverse area,
being a product of the thermodynamic entropy

s(τ) =
1

2
N2
c π

2Teff (τ)3 (11)

and the volume element scaling linearly with proper time
(2). In the following, as in [3], in order to measure the
final entropy, we will get rid of N2

c factor as in (5) and will
be using instead dimensionless quantity, being entropy
per unit rapidity and transverse area measured in units

of the initial effective temperature T
(i)
eff

s =
dS/dydx2⊥

1
2N

2
c π

2
(
T

(i)
eff

)2 . (12)

Applying this definition in the τ → ∞ limit of the hy-
drodynamic regime gives us an expression for the final
(dimensionless) entropy expressed in terms of Λ

s(f) = Λ2 ·
(
T

(i)
eff

)−2
. (13)

In the latter part of the article we will be using a partic-
ular generalization of entropy to non-equilibrium regime
sn−eq, which however reduces to (13) in the regime of
applicability of perfect fluid hydrodynamics.

C. Early time dynamics from holography

In the gauge-gravity duality the symmetries of the
boundary dynamics are also the symmetries of the dual
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background, which here is a solution Einstein’s equations
with negative cosmological constant

Rab −
1

2
Rgab −

d(d− 1)

2L2
= 0 (14)

with d being the dimension of boundary spacetime taken
here to be 1+3. In the following we set L – the radius of
AdS vacuum solution – to 1. The most general (4 + 1)-
dimensional dual metric sharing the symmetries of the
boost-invariant flow takes the form

ds2bulk = gabdx
adxb =

1

u

{
−A2dt2 + t2B2dy2 +

C2dx2⊥ +
1

4u
D2du2 + 2Edtdu

}
, (15)

where the warp-factors are functions of bulk proper time
t and radial coordinate u with u = 0 denoting the bound-
ary [29]. Note that t does not need to coincide with τ even
at the boundary. The use of u instead of z =

√
u soft-

ens singularities of Einstein’s equations at z = 0, which
is convenient when solving them numerically. There is
a redundancy in the metric (15) coming from diffeomor-
phisms in t and u, which can be used to fix two out of
three warp-factors within A, D and E. Various choices
define various coordinate frames covering different parts
of the underlying manifold in various ways.

The choice D = 0 and E = − 1
2
√
u

leads to coordinates

of ingoing Eddington-Finkelstein type used in numeri-
cal simulations of [2, 9, 10] (typically the Eddington-
Finkelstein coordinates are written using r = 1/

√
u).

One reason why in this work we are not using the
Eddington-Finkelstein coordinates is that there seems to
be a subtlety there in starting at τ = 0 at the boundary
(being also t = 0 in the bulk). This can be seen by looking
at the vacuum AdS metric in the Eddington-Finkelstein
coordinates

ds2 = − 1

u
dt2 +

(
1 +

t√
u

)2

dy2 +
1

u
dx2⊥ −

1

u3/2
dtdu,

(16)
for which (dy2 term) near-boundary limit (u → 0) does
not commute with small time limit t→ 0. The authors of
[9] have not encountered this problem as their numerical
simulations were always starting at tini = τini > 0.

Setting D = 1 and E = 0 in the metric Ansatz (15)
leads to the Fefferman-Graham chart, which has been
used extensively to understand the asymptotic properties
of bulk spacetime relevant for obtaining the stress tensor
using the procedure of holographic renormalization [30].
In particular, the boundary condition setting the metric
in which dual field theory lives to be flat is just

AFG = 1, BFG = 1 and CFG = 1 (17)

and in that case one can also identify bulk t and bound-
ary (physical) proper time τ . In the Fefferman-Graham
coordinates the near-boundary expansion of warp-factors
turns out to occur in integer powers of u. The first sub-
leading term vanishes automatically and the first non-
trivial term in the expansion of AFG upon holographic

renormalization [30] comes out proportional to the energy
density of dual N = 4 super Yang-Mills plasma ε(τ)

AFG = 1− π2

N2
c

ε u2 − π2

4N2
c

(
1

τ
ε′ +

1

3
ε′′)u3 + . . .

BFG = 1− π2

N2
c

(ε+ τε′)u2 − π2

3N2
c

(ε′′ +
1

4
τε′′′)u3 + . . .

CFG = 1 +
π2

N2
c

(ε+
1

2
τε′)u2 +

+
π2

8N2
c

(
1

τ
ε′ +

5

3
ε′′ +

1

3
τε′′′)u3 + . . . (18)

Nc in the formulas above denotes the number of colors,
which although formally infinite, cancels out with N2

c

contribution in the energy density yielding in the end a fi-
nite result. All the remaining terms in the near-boundary
expansion of warp-factors turn out to be entirely speci-
fied in terms of the energy density and its derivatives.
It is worth noting that one way of making sure that
dual spacetime written in other coordinate frames has a
flat boundary (i.e. imposing such boundary condition),
as well as obtaining energy density of dual field theory
configuration, is to perform a near-boundary coordinate
change to the Fefferman-Graham chart and then directly
use (17) and (18) to identify the relevant terms. This will
become important later in the article.

The starting point of the analysis of the early time dy-
namics in [23] was the expansion (18). Because of the
appearance of inverse powers of proper time in terms
containing odd derivatives of energy density, demand-
ing finiteness of near-boundary warp-factors in the limit
τ → 0 gave a highly nontrivial constraint on the early
time Taylor series of energy density, so that only even
powers of proper time are allowed

ε(τ)
∣∣
τ≈0 =

3

8
N2
c π

2

(
T

(i)
eff +

1

2
T ′′eff (0)τ2 + . . .

)4

. (19)

One consequence of this is that first proper time deriva-
tives of warp-factors at τ = 0 vanish, so that the two
gravitational constraint equations (the uu and τu compo-
nents of Einstein’s equations) provide solvable relations
between AFG(τ = 0, u) = A0(u), BFG(τ = 0, u) = B0(u)
and CFG(τ = 0, u) = C0(u) and their radial derivatives
(since τ derivatives vanish at τ = 0). One of these rela-
tion can be explicitly solved giving

B0(u) = A0(u), (20)

whereas the other leads to a differential equations

A′′0(u)

A0(u)
+
C ′′0 (u)

C0(u)
= 0. (21)

This equation, via taking suitable combination of A0 i
C0 can be solved exactly (i.e. in terms of a single func-
tion specifying initial condition, but with no integration
involved), as shown in [23], but for the purposes of this
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article, it will be sufficient to solve (21) numerically for
A0 regarding C0 as an initial condition. This way of
viewing (21) has the advantage that by passing to an-
other coordinate frame in which initial time hypersur-
face coincides with Fefferman-Graham one, C0 will not
transform (up to redefinitions of what is meant by u).
An interesting feature of the equation (21) is that for all
allowed C0(u) there exists a point u0 such that A0(u)
has a single zero there [23]. This point signals the break-
down of the Fefferman-Graham chart and makes it hard,
if not impossible, to evolve Einstein’s equations in this
coordinate frame. A typical, analytic example of initial
conditions derived in [23] is

A0 = cos γ u and C0 = cosh γ u, (22)

where γ = 1
2

√
3π2
(
T

(i)
eff

)2
sets the initial energy density

and u runs from 0 to u
(FG)
0 = π/2γ with the Fefferman-

Graham coordinate frame breaking down at the latter
point. Table I in the appendix summarizes 29 different

C0(u) and corresponding values of u
(FG)
0 considered in

this article.

Although the near-boundary expansion of C0’s stays in
an one-to-one correspondence with the early time Taylor
series for the energy density (19)

C0(u) = 1 +
3

8
π4
(
T

(i)
eff

)4
u2 +

1

2
π4
(
T

(i)
eff

)3
T ′′eff (0)u3 + . . .

(23)
and given C0 in an analytic form (at least close to the
boundary) one can work out the first couple of dozen
terms in the expansion of ε(τ), the radius of convergence
of the resulting series is insufficient to observe the transi-
tion to hydrodynamics (see section VIII for an explicit
comparison of the effective temperature given by the
early time power series with the full numerical result).
Not surprisingly, in order to understand thermalization
in this model, a full numerical solution of the initial value
problem on the gravity side is needed.

A naive attempt at numerically solving Einstein’s
equations in the Fefferman-Graham frame is bound to fail
for two reasons. Firstly, the generic vanishing of A0(u)
leads to a coordinate singularity. Secondly, even if this
was overcome, some sensible initial conditions exhibit a
curvature singularity in the bulk4 (at u→∞).

The first step towards solving numerically Einstein’s
equations is thus to find a coordinate frame, which allows
to use initial data found in [23], bypasses the breakdown
of Fefferman-Graham coordinates and makes it possible
to introduce bulk cutoff for numerical simulation in order
to avoid (a possible) curvature singularity.

4 Such initial conditions may be physical if there is an event hori-
zon cloaking the curvature singularity. This will turn out to be
the case for the initial conditions considered in the present work.

III. NEW COORDINATES

The way we deal here with the singularity of Fefferman-
Graham frame at τ = 0 is analogous to what happens in
the case of Schwarzschild black hole

ds2 = −(1− 2M

r
)dt2 + (1− 2M

r
)−1dr2 + r2dΩ2

S2 (24)

when going from Schwarzschild to Kruskal-Szekeres co-
ordinates. The latter ones are defined by

V = (
r

2M
− 1)1/2er/4M sinh

t

4M
, (25)

U = (
r

2M
− 1)1/2er/4M cosh

t

4M
(26)

and lead to manifestly regular metric at r = 2M

ds2 =
32M3

r
e−r/2M (−dV 2 + dU2) + r2dΩ2

S2 (27)

with r defined implicitly by the relation V 2 −U2 = (1−
r

2M )er/2M . What is important for our purposes is that
the hypersurface t = 0 coincides with the one given by
V = 0, as follows from (25). In that way we can take t =
0 metric functions at dΩ2

S2 (analogues of dy2 and x2⊥ warp
factors) and use them directly as dΩ2

S2 (in our case dy2

and x2⊥) warp-factors setting initial data for the evolution
in a chart without spurious coordinate singularities (here
the analogue of Kruskal-Szekeres coordinates). To make
the analogy even sharper, on the V = 0 hypersurface
one can use r instead of U coordinate at the price that
Schwarzschild metric will become V -dependent.

Let’s try to apply the same logic to the boost-invariant
metric in the Fefferman-Graham coordinates

ds2 =− 1

u
AFG(t, u)dt2 +

t2

u
BFG(t, u)dy2

+
1

u
CFG(t, u)dx2⊥ +

1

4u2
du2 (28)

in the neighborhood of t = 0 hypersurface. The coordi-
nate singularity arises from AFG(t = 0, u) = BFG(t =
0, u) vanishing at some radial position, whose precise
value depends on the choice of initial condition. By doing
a local coordinate transformation in the neighborhood of
t = 0 (i.e. perturbatively in t) one can redefine t in a
fashion similar to (25) and give an arbitrary form to the
dt2 metric coefficient at this particular instance of time5.

This statement pesists to an arbitrary order in small t
expansion and can be understood as adopting a different
gauge within the choices allowed by the metric Ansatz

5 An explicit example of such a redefinition is

t =
f(u)√

AFG(0, u)
t̃ +O

(
t̃2
)

.
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(15) – one in which one fixes A and E at the cost of leav-
ing D dynamical. This is advantageous for us, as we can
use now ADM formalism-based scheme for numerically
integrating Einstein’s equations. Moreover, the freedom
of choice of A allows to introduce a very natural bulk
cutoff as anticipated in the introduction and elaborated
on in the next section. Last, but not least, t = 0 hyper-
surfaces in both coordinate frames are by definition the
same and one can use u as a radial coordinate on both
of them. This allows us to start with initial conditions
derived earlier in the Fefferman-Graham coordinates and
continue the early time power series solution of [23] be-
yond its radius of convergence in order to explore the
transition to hydrodynamics, which was one motivation
for the present work.

IV. REVIEW OF ADM FORMULATION OF
GENERAL RELATIVITY

A particular formulation of Einstein’s equations which
is very convenient for studying evolution from generic
initial data is the ADM formulation [24, 26]. In this
work we did not adopt any of its more refined versions
like BSNN [26], as in 1+1 (and even 2+1) ordinary ADM
should suffice.

The key idea behind the ADM formalism, making it at
the same time a natural point of departure in implement-
ing Einstein’s equations numerically, is to assume that
there exists a global foliation of spacetime into spacelike
hypersurfaces of constant time and recasting Einstein’s
equations in terms of equations intrinsic to a constant
time slice (constraint equations) and extrinsic ones (en-
coding the time-evolution) [31]. As it will turn out, due
to the choice of coordinates we will be using foliations of
patches of the bulk spacetime, rather than global folia-
tions.

Denoting by λ a scalar function slicing the bulk onto
constant time hypersurfaces, the induced metric describ-
ing the intrinsic geometry of a leaf takes the form

γab = gab + nanb, (29)

where na is a future directed unit normal vector obtained
from the gradient of λ. The induced metric (29) acts
also as the projector operator onto foliation leaves. The
spacetime embedding of the constant time hypersurface
is described by the extrinsic curvature

Kab = −1

2
Lnγab, (30)

where Ln denotes the Lie derivative along the normal
direction na. A coordinate basis temporal vector, can be
constructed from the unit normal na as

∂xa

∂λ
= ta = α̃na + βa (31)

with α̃ and βa being respectively the lapse and the shift
vector (naβa = 0). The role of the lapse is to measure

the rate of time flow between subsequent slices of the
foliation, whereas the shift vector describes how the hy-
persurfaces slide onto each other in transverse directions.
With the use of the projector (29), Einstein’s equations

Rab −
1

2
Rgab = 8πGN Tab (32)

can be decomposed into constraints and evolution equa-
tions. The bulk energy-momentum tensor (not to be con-
fused with the expectation value of the boundary stress
tensor operator!) is decomposed into density, current and
a transverse tensor taking respectively the form

ρ = Tabn
anb, jc = −Tabnaγbc , Scd = Tabγ

a
cγ
b
d. (33)

In the ADM formulation, equations governing internal
spacelike geometry of the hypersurface are recast in
the form of constraint equations reflecting the time and
space decomposition of spacetime. The Hamiltonian con-
straint, following from Gauss equation, reads

R+K2 −KabK
ab = 16πGNρ, (34)

whereas the momentum constraint derived from Codazzi
equation is

DbK
b
a −DaK = 8πGN ja. (35)

Da here is the covariant derivative compatible with the
spatial metric γab and R is the Ricci scalar associated
with it. Evolution equations for the induced metric come
from projecting its Lie derivative onto constant time slice

Ltγab = −2α̃Kab +Daβb +Dbβa. (36)

The evolution equations for the external curvature can
be obtained in a similar fashion from the Ricci equation

LtKab = −DaDbα̃+ α̃(Rab − 2KacK
c
b +KabK)

+ βcDcKab +KcbDaβ
c +KcaDbβ

c

− 8πGN α̃[Sab +
ρ− S
d− 1

γab]. (37)

HereRab is the Ricci tensor of γab, S = Saa and d denotes
dimensionality of boundary (taken everywhere in the pa-
per, apart from this section where it is kept general, to
be 1 + 3). One can notice that the only place where the
bulk stress tensor contributes is the last term and this is
where vacuum AdS cosmological constant will manifest
itself. Comparing (14) with (32) one can see that in the
absence of matter fields the bulk energy-momentum ten-
sor Tab is related to the radius of vacuum AdS solution
L, (d + 1)-dimensional Newton’s constant GN and bulk
metric gab through

Tab =
d(d− 1)

16πGNL2
gab. (38)

By introducing transverse coordinates of the foliation leaf
yi one can recast the metric into the standard ADM form

ds2 = −α̃2dλ2 + γij(dy
i + βidλ)(dyj + βjdλ). (39)
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By doing so one can confine (d+1)-dimensional indices to
d spatial slices as in the projected quantities normal com-
ponents are zero (we shall denote those by i and j Latin
letters, as opposed to a, b and c symbols running through
d + 1 indices). Moreover, now Lie derivative along na is
simply a time derivative ∂λ (since λ parametrizes curves
normal to slices).

V. ADM FORMULATION FOR
BOOST-INVARIANT PLASMA

Before we apply the ADM equations in the context of
the time evolution of the boost-invariant geometry in an
asymptotically AdS geometry, we have to specify certain
additional ingredients.

Firstly, due to the fact that the metric blows up at the
AdS boundary, one has to redefine the ADM variables i.e.
the spatial metric coefficients and the extrinsic curvature
by taking out predefined factors which will ensure that
the asymptotic behaviour is fulfilled while keeping all the
new redefined variables finite throughout the integration
domain.

Secondly, we have to specify the initial conditions
which satisfy constraint equations. In the special case of
a boost-invariant geometry with initial conditions set at
t = 0, this requires some care as the initial hypersurface is
not strictly spacelike but has signature (0,+,+,+). This
feature simplifies the determination of possible consistent
initial conditions, but also requires special treatment of
the first step of the temporal evolution. Of course, for
all t > 0, the constant t hypersurfaces are spacelike and
conventional ADM formulation applies.

Thirdly, we have to impose boundary conditions for all
dynamical variables at the AdS boundary. These bound-
ary conditions are conceptually clear, as they correspond
to enforcing a Minkowski metric on the boundary (in or-
der to ensure that dual N = 4 SYM theory is defined
on an ordinary Minkowski space). However, it turns out
that for a generic choice of lapse functions, the boundary
metric may be related to Minkowski by a boundary diffeo-
morphism. Taking this into account leads to more com-
plicated boundary conditions than conventional Dirichlet
boundary conditions.

Fourthly, we have to impose boundary conditions at
the outer edge of the integration domain in the bulk.
These boundary conditions are much more subtle and are
not fixed by the very principles of AdS/CFT (as are the
previous boundary conditions) but rather depend on the
specific features of the dynamical problem at hand. The
main requirements are that these boundary conditions
should not interfere with the physics of interest and also
should lead to stable numerical evolution.

Finally, we have to specify the final ingredients of the
ADM formalism – the lapse and shift functions which
encode how the hypersurfaces of fixed (simulation-)time
fit together to form the 5D geometry. For our purposes
we set the shift vector to zero, however the lapse will

remain nontrivial. A part of the lapse function will be
used in defining the outer edge boundary conditions but
the remaining part will have to be specified.

In the following we will discuss in turn all the above
mentioned points.

A. Rescaled ADM variables and equations of
motion

In order to ensure that the functions entering the ADM
equations are finite everywhere, even at the AdS bound-
ary, we have factored out appropriate factors of u (the
AdS bulk coordinate). Our (4 + 1)-dimensional metric
takes the form

ds2 =
−a2(u)α2(t, u)dt2

u
+
t2a2(u)b2(t, u)dy2

u

+
c2(t, u)dx2⊥

u
+
d2(t, u)du2

4u2
(40)

with empty AdS being represented by all the coefficient
functions equal to unity. Note that in general the time
coordinate t will not be equal to the gauge theory proper
time τ at the boundary. We will derive an explicit re-
lation between the two coordinates in subsection V C.
With the above definition, the ADM spatial metric γij is
given by

γij = diag

[
t2a2(u)b2(t, u)

u
,
c2(t, u)

u
,
c2(t, u)

u
,
d2(t, u)

4u2

]
.

(41)
The nontrivial components of the extrinsic curvature are
also rescaled

Kij = diag

[
ta(u)L(t, u)√

u
,
M(t, u)√

u
,
M(t, u)√

u
,
P (t, u)

4u
√
u

]
.

(42)
Finally, the lapse function is parametrized by

α̃(t, u) =
a(u)α(t, u)√

u
. (43)

The reason of factoring out the time independent func-
tion a(u) will be clear when we discuss the outer bound-
ary conditions below. For simplicity we will always set
a(0) = 1.

In the presence of a cosmological constant Λ = −6 and
vanishing shift the vacuum ADM equations become

∂t γij(t, u) =
−2a(u)α(t, u)√

u
Kij(t, u), (44)

∂tKij = −∇i∇j
a(u)α(t, u)√

u
+ 4

a(u)α(t, u)√
u

γij(t, u),

+
−2a(u)α(t, u)√

u
(Rij − 2KijKij +KKij).
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For the metric coefficients we obtain:

∂b(t, u)

∂t
=
−b(t, u)2 + α(t, u)L(t, u)

tb(t, u)
, (45)

∂c(t, u)

∂t
=
a(u)α(t, u)M(t, u)

c(t, u)
,

∂d(t, u)

∂t
=
a(u)α(t, u)P (t, u)

d(t, u)
.

The evolution equations for the extrinsic curvature func-
tions ∂tL, ∂tM, ∂tP are quite lengthy and can be found
in Appendix B. They were generated by Mathematica
and directly transfered to the computer code.

The hamiltonian and momentum constraints take the
form

C0= R−KijK
ij +K2 + 12,

Ci= ∇i(Kij −Kγij), (46)

with only the u component of the momentum constraint
C4 being a-priori nontrivial.

B. Initial conditions at t = 0 and the first step of
the numerical evolution

Typically in the ADM formalism, the initial conditions
are obtained by solving the constraint equations (46). In
the case of the boost-invariant geometry, however, the
initial hypersurface t = 0 is not spacelike as it contains
the light cone in the longitudinal plane. Its signature is
(0,+,+,+). This requires an ab-initio analysis of ini-
tial conditions, which become in fact unconstrained, and
a special treatment of the evolution equations (i.e. the
right hand side of ∂tb, ∂tc etc.) at t = 0.

To this end we will expand the lapse and all coefficient
functions up to linear order in t:

b = b0(u) + b1(u)t+ . . . c = c0(u) + c1(u)t+ . . .

d = d0(u) + d1(u)t+ . . . L = L0(u) + L1(u)t+ . . .

M = M0(u) +M1(u)t+ . . . P = P0(u) + P1(u)t+ . . .

α = α0(u) + α1(u)t+ . . . (47)

After inserting these expansions into both the ADM dy-
namical equations (44) and the constraints (46), we ob-
tain the initial conditions (b0, c0 etc.) as well as evolu-
tion equations at t = 0. We found by an explicit calcu-
lation that both c0(u) and d0(u) are unconstrained and
free, whereas b0(u) turns out to be proportional to α0(u).
Without loss of generality we will set the constant of pro-
portionality to unity. All this taken into account gives

b0(u) = α0(u) L0(u) = α0(u) M0(u) = P0(u) = 0.
(48)

Note that we are free to perform a spatial diffeomorphism
(redefine u). In this way we may freely set d0(u) = 1,
leaving the initial condition to be completely specified by
a single function c0(u). In the following we will restrict
our lapse functions to satisfy α0(u) = 1. With these

choices made, the final initial conditions for the ADM
evolution are

b0(u) = d0(u)= L0(u) = 1 M0(u) = P0(u) = 0

c0(u) ≡ cprofile0 (u) (49)

parametrized by the single function cprofile0 (u). Com-
paring the resulting initial geometry with the Fefferman-
Graham initial condition we see that we can identify

cprofile0 (u) with the Fefferman-Graham initial condition
CFG(τ = 0, u) discussed in subsection II C. Conse-
quently, we have at our disposal a power series solution
for ε(τ), which may be used to check the results of the
numerical evolution for some initial range of τ .

In some cases, when running the simulations, we no-
ticed that quite narrow structures emerge at late times
close to the outer edge of the simulation domain in the
bulk. This causes the numerical evolution to eventually
break down for a given size of the spatial grid. In these
cases we found it useful to redefine the initial coordinates
by

u→ u

1− Cu
(50)

with appropriately choosen constant C. This redefinition
stretches the grid at the outer edge allowing in some cases
for longer evolution. The initial conditions now take the
form

d0(u)=
1

1 + Cu
c0(u) =

√
1 + Cu · cprofile0

(
u

1 + Cu

)
,

b0(u) = L0(u) = 1 M0(u) = P0(u) = 0. (51)

Of course all the physics extracted from running the sim-
ulation from the initial conditions (49) and (51) with the

same function cprofile0 (u) is completely equivalent.
The terms linear in t in (47) give the right hand sides

of the evolution equations at t = 0, which we use for the
first time-step of the numerical integration. We obtain
in this way

∂tb(0, u) = 0, ∂tc(0, u) = 0, (52)

∂td(0, u) = 0, ∂tL(0, 0) = 0,

∂tM(0, u) =
−2α(2u(c∂uc(aα) + ∂u(aαc∂uc))

d2

+
aα∂ud(c2 + ∂uc

2)

d3
− 2aαc2

u
+

2aαc2

ud2
,

∂tP (0, u) = 4u∂2u(aα) +
4∂ud(aα+ ∂u(aα))

d

−2aα(1− d2)

u
+

4uaα∂2uc

c
− 4uaα∂uc∂ud

cd
.

As a final note let us clarify why in the present ADM
formalism we have completely unconstrained initial data,
while in the Fefferman-Graham case we had the differen-
tial constraint (21). The Fefferman-Graham coordinates
are a special case of the general metric ansatz (40) al-
beit with the constraint that d(t, u) ≡ 1 (imposing this
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condition, however, transforms the lapse into a dynami-
cal variable). Requiring that the condition d(t, u) = 1 is
preserved under evolution requires that P (t, u) ≡ 0 and
in particular ∂tP (0, u) = 0. It is this last equation which
reduces exactly to the the Fefferman-Graham initial data
constraint (21).

C. Boundary conditions at the AdS boundary
at u = 0

The boundary conditions at u = 0 are choosen as to
ensure that the gauge theory metric is just the (3 + 1)-
dimensional flat Minkowski metric. The easiest way to
derive these conditions is to start from the leading asymp-
totics in Fefferman-Graham coordinates (i.e. basically
the empty AdS5 geometry)

ds2 =
−dτ2FG + τ2FGdy

2 + dx2⊥ + dz2

z2
(53)

and consider the most general change of coordinates (in
an expansion around u = 0) to our ADM metric ansatz
(40). Hence we write

τFG = f0(t) + f1(t)u+ f2(t)u2 + . . .

z = g0(t)u
1
2 + g1(t)u

3
2 + g2(t)u

5
2 + . . . (54)

The physical gauge theory proper time is just τ = f0(t).
Inserting this into (53) we see at once from the du2 com-
ponent that the boundary condition for d is just

d(t, 0) = 1. (55)

Consequently P (t, 0) = 0. However the boundary values
of b and c can be t-dependent. We get that g0(t) =
1/c(t, 0) (from dx2⊥) and combining this with

f0
g0

= a(0)b(t, 0)t (56)

(from dy2) we obtain a very important relation between
the coordinate time t in our ADM simulation and the
physical proper time (recall that we have a(0) = 1)

τ ≡ f0(t) =
b(t, 0)t

c(t, 0)
. (57)

The condition that ensures having the Minkowski met-
ric will be the compatibility of the above equation for
f0(t) with last remaining condition coming from the dt2

component of the metric

ḟ0 =
α(t, 0)

c(t, 0)
. (58)

This condition leads to an expression for the boundary
value of L

L(t, 0) = b(t, 0) + t
b2(t, 0)

c2(t, 0)
M(t, 0). (59)

For actual numerical implementation it is convenient to
impose the above boundary condition in a differential
form

∂tL = ∂t

(
b+ t

b2

c2
M

)
. (60)

At this stage we are missing only the evolution equation
for M(t, 0). There are various ways of implementing this
equation. Perhaps the simplest way is to expand the
evolution equation for ∂tM around u = 0 and take into
account the conditions derived above i.e. d(t, 0) = 1,
P (t, 0) = 0 and the expression for L(t, 0).

An alternative way is to compute the first subleading
terms in the coordinate transformation (54). In any case
this computation has to be done in order to derive the
formula for the energy density ε(τ). Requiring that there
is no dudt term, one can show that

f1(t) =
g0(t)ġ0(t)

2ḟ0(t)
. (61)

g1(t) can be computed by looking at the first subleading
term in the dt2 component of the metric and can be ex-
pressed in terms of α, ∂uα, ∂ua, as well as f0(t), g0(t) and
their derivatives. Finally, we may use these expressions
to compute ∂ud (at u = 0) from the first subleading term
in the du2 component. After taking into account all the
above definitions and relations, the result may be brought
to the form (all expressions are evaluated at u = 0)

∂ud = −2∂ua−
2∂uα

α
+

3M2

2c4
− ∂tM

αc2
. (62)

This equation allows us to solve for ∂tM which is the last
remaining equation at the AdS boundary.

To summarize, the boundary conditions at u = 0 are
formulated as the following evolution equations for the
boundary values of the ADM variables

∂tb(t, 0) =
−b2 + αL

tb
,

∂tc(t, 0) =
αM

c
,

∂td(t, 0) = 0,

∂tL(t, 0) = ∂t(b+ t
b2

c2
M),

∂tM(t, 0) = −2c2(∂u(aα) + α∂ud) +
3

2

αM2

2c2
,

∂tP (t, 0) = 0. (63)

As a final point let us comment on the regularity of the
ADM evolution equations in the bulk as we approach
u → 0. The evolution equations for the metric coef-
ficients are explicitly regular. The right hand side of
the evolution equations for the extrinsic curvature coef-
ficients have, however, the following structure

∂t{L,M,P} =
1

u

(
d2 − 1

)
· finite+ regular. (64)

11



Since our boundary condition for d is d(t, 0) = 1, the
above term does not lead to any numerical problems.
This is partly because we use spectral methods which
preserve very well the smoothness of functions close to
the boundary.

D. Boundary conditions at the outer edge of the
simulation domain

As explained in section II, there is a subset of ini-
tial conditions for which the curvature goes to infinity in
the center of AdS. These initial conditions still may be
perfectly physical if the singularity would be surrounded
by an event horizon. However a-priori we do not know
where the event horizon is located. We can locate it only
after running a simulation. Moreover due to the null
character of the initial hypersurface at τ = 0, the condi-
tions for an apparent (dynamical) horizon cannot be met
there.

In order to perform the simulation we have to cut off
our numerical grid at some finite value of u = u0 and im-
pose boundary conditions which would not contaminate
the true physical evolution. The more or less standard
choices in numerical relativity cannot be applied here.
Putting any boundary conditions inside the event hori-
zon cannot be used in our case as the location of the
event horizon is unknown when we start the simulation.
Moreover, the spectral discretization that we use makes
the setup very sensitive to the boundary conditions since
Chebyshev differentiation is very much nonlocal in con-
trast to finite difference discretization. The second stan-
dard choice, namely imposing outgoing radiative condi-
tions at the outer edge of the simulation domain is also
not an option, as the geometry at the outer edge may be
highly curved.

In order to bypass the above difficulties, we have de-
cided to use the freedom of the choice of spatial foliations
in the ADM formalism by requiring that all hypersur-
faces (i.e. for any fixed t) pass through the same single
spacetime point u = u0 on the initial hypersurface t = 0.
This can be done technically by freezing the evolution
at u = u0 which amounts to forcing the lapse to vanish
there. We achieve this by setting the t-independent part
of the lapse in (40) to be

a(u) = cos

(
π

2

u

u0

)
. (65)

All ADM evolution equations are regular at u = u0 and
indeed do not lead to any instabilities. Moreover, the
region of spacetime outside our numerical grid is causally
disconnected from the simulation domain. Namely, the
asymptotic boundary of our simulation domain will be a
null geodesic running from the spacetime point u = u0
and t = 0 in the direction of the boundary.

However we must note that the optimal choice of u0 is
crucial c.f. Fig. 1. If u0 lies between the event horizon
and the boundary, the null geodesic from u0 will reach

FIG. 1. Schematic view of constant time foliations depending
on the locus at which the lapse vanishes (u0). Situation A)
shows a simulation filling in a triangle covering only a finite
interval of boundary time. By pushing the position of bulk
cutoff inwards (until one passes the event horizon), one can
recover the dynamics on larger and larger regions of bound-
ary. In the situation B) the lapse vanishes at the position of
the event horizon on the initial time hypersurface, which en-
sures maximally long simulation time (theoretically infinite)
and is optimal for studying the transition to hydrodynamics
in dual gauge theory. In the case C) the simulation pene-
trates into the black brane/black hole interior revealing the
apparent horizon at the cost of breaking down when constant
time slices start approaching the curvature singularity. This
type of behavior can be seen explicitly in Fig. 2 showing the
results of a sample simulation.

the boundary at some time t = t∗. Then clearly the
ADM simulation will never be able to go past t = t∗ and
the simulation will break down there. The optimal choice
would be to set u0 to be exactly at the position of the
event horizon. Then, the simulation could in principle be
run indefinitely and the simulation domain would fill the
whole exterior of the event horizon. This choice is the
one we are aiming at in order to extend the simulation
to late times and to observe the transition to hydrody-
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namics. Also in this case, the event horizon ensures that
the simulation would never encounter the curvature sin-
gularity. If, on the other hand, u = u0 would lie beyond
the event horizon, the simulation would break down at
some finite time due to the curvature singularity. This
choice of u0 is in fact also useful, as it allows us to locate
the apparent (dynamical) horizon and e.g. measure the
entropy of the plasma system. This choice is also crucial
in determining the optimal value of u0 as explained in
subsection VI B below.

As far as we know, the outer boundary condition ob-
tained by freezing the lapse has not been used in the
literature so far.

E. The choice of lapse functions

Even after fixing a(u) we still have to determine the
final ingredient in the ADM formulation – the remaining
part of the lapse function α(t, u). If we were to adopt
the simplest choice α(t, u) = 1, then we would encounter
coordinate singularities (e.g. for the profile c0 = cosh γu,
the d(t, u) warp-factor develops a zero). This is in fact
a very well known behaviour of the ADM formalism in
asymptotically flat spacetime [32–34], which can be reme-
died by standard choices of dynamical lapse functions,
like

√
det γij or 1 + log det γij . However these choices

do not seem to work well in the case at hand. We have
chosen a couple of lapse functions by trial and error. The
rationale was e.g. to make α proportional to d to avoid
the vanishing of d and make it inversely proportional to
b in order to avoid a too quick rise of b.

We always normalized our lapse functions to be equal
to 1 at t = 0. Therefore we set

α(t, u) =
lapse(t, u)

lapse(0, u)
. (66)

The choices which seem to work best, i.e. gave long
enough bulk evolution to see thermalization in the
boundary theory, depending on the initial profile were

lapse1 =
dc2

b
, lapse2 =

bd

1 + u
u0
b2
, lapse3 =

d

b

and lapse4 = d. (67)

Another issue which influenced the choice of lapse func-
tions is that for some of them one could ensure that the
simulation time t coincided with the proper time on the
boundary. This happens when b = c at u = 0. In order
to preserve this equality under evolution, it is enough to
require that6 α(t, 0) = c(t, 0) (or b(t, 0)). So from the
above lapses, lapse1 and lapse2 ensure the equality t = τ
at the boundary.

6 This follows directly from equation (58).

VI. OBSERVABLES

With all the above ingredients in place one can run
the numerical evolution, which is described in more de-
tail in section VII. Once the geometry is known, we will
be interested in extracting the energy-momentum tensor
from the near-boundary behaviour of the metric. An-
other quantity of interest will be the determination of
the appearance and the precise location of an apparent
horizon and the extraction of a nonequlibrium entropy of
the plasma system.

A. Energy density and transverse and longitudinal
pressure

Obtaining the components of the energy-momentum
tensor from the results of the numerical simulation in the
ADM variables turns out to be surprisingly subtle. The
main complication comes from the fact that the radial
du2 component of the metric is a nontrivial dynamical
time-dependent field and in addition our ADM time co-
ordinate may differ from the physical Minkowski proper
time.

The way to perform the computation is to perform
the change of variables (54) from the Fefferman-Graham
form

ds2 =
−(1− 2π2

N2
c
ε(τ)u2)dτ2FG + τ2FG(1 + 2π2

N2
c
pL(τ)u2)dy2

u
+

+
(1 + 2π2

N2
c
pT (τ)u2)dx2⊥ + 1

4udu
2

u
(68)

and compare the result with the near boundary expan-
sion of the ADM metric (40). This requires the com-
putation of the terms f2(t) and g2(t) in (54) which is
straightforward but requires the use of Mathematica. We
also repeatedly use the boundary equations of motion
(63). Then we may extract ε(τ), pL(τ) and pT (τ) from
expressions for ∂2ud(t, 0), ∂2ub(t, 0) and ∂2uc(t, 0) respec-
tively. Note that we extract directly pL and pT , even
though they could be obtained from ε(τ) using (4), for
two reasons – we avoid taking a temporal derivative of
the numerical data for ε(τ) and as a byproduct can check
whether the numerical evolution preserves the conserva-
tion of the energy-momentum tensor.

After carrying out the calculations mentioned above
we arrive at the following formula for ε(τ)

ε(τ) =
N2
c

2π2
c4

(
− ∂2ua−

2∂ua∂uα

α
− ∂2uα

α
+ ∂ua∂ud+

+
∂uα∂ud

α
+

3

4
∂ud

2 − 1

4
∂2ud+

∂u∂tP

4α

)
(69)

and similar formulas for pL(τ) and pT (τ). This for-
mula still has a drawback, as it includes dependence on
∂u∂tP (t, 0). However we can evaluate this expression by
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taking the u derivative of the equation for ∂tP (t, u) and
expanding this near the boundary. In this way we eli-
mated all time derivatives from the right hand side of
ε(τ). The final expression for ε(τ) is

ε(τ) =
N2
c

2π2
c4

(
∂2ua+

2∂ua∂ub

b
− ∂ua∂ud−

∂ub∂ud

b
−

−2∂uc∂ud

c
− 9

4
∂ud

2 − ∂uP

4tb
− 3M∂uP

4c2
+

+
∂2ub

b
+ 2

∂2uc

c
+

3

4
∂2ud

)
. (70)

The expression for pT is given by

pT (τ) =
N2
c

2π2

(
c3∂2uc−

1

4
c4∂ud

2 +
1

4
c4∂2ud+

1

4
∂udM

2 −

−1

4
c2M∂uP

)
. (71)

The longitudinal pressure pL(τ) can be found from trace-
lessness ε(τ) = pL(τ) + 2pT (τ).

The above expressions are quite complex and in order
to test them for possible errors we have compared ε(τ)
extracted using the above expressions from the numerical
simulation with the power series solution for ε(τ) and
found complete agreement (see Fig. 7 later in the text).
A further test was to extract ε(τ) from two simulations
which used different lapse functions. Again we found
agreement.

B. Apparent horizon entropy density

Apart from the energy density and longitudinal and
transverse pressures, a very important physical property
of the evolving plasma system is its entropy density per
transverse area and unit (spacetime) rapidity. Accord-
ing to the AdS/CFT correspondence, gauge theory en-
tropy can be reconstructed from the Bekenstein-Hawking
entropy of a horizon. This is well established and un-
ambiguous in the static case, however in the far-from-
equilibrium time-dependent setup the situation is much
more subtle. In fact, it is not even clear whether an exact
local notion of entropy density makes sense on the QFT
side. However, phenomenological notions of local entropy
density are widely used in dissipative hydrodynamics.

In the present work, we adopt a natural geometrical
prescription for local entropy density which reduces to
the one used in dissipative hydrodynamics in its regime
of validity.

On the AdS side, the definition of entropy density in-
volves two distinct steps. In the first step, one calculates
the area element of a (certain kind of a) horizon. The
0th order requirement that one has to impose is that the
horizon area only increases i.e. the horizon satisfies an
area theorem. Moreover, causality has to be preserved

i.e. the horizon area cannot increase in anticipation of
some event. This condition rules out the use of event
horizons [2, 35]. Currently, the most natural choice is
the use of apparent horizons described in detail below.

In the second step, one has to link the area element of
the horizon to a specific point on the boundary in order
to associate the local entropy density (area) to a definite
spacetime point in gauge theory. We follow the proposal
of [36] of shooting a null geodesic from the point at the
boundary and taking the area element from the point of
intersection of the null geodesic with the apparent hori-
zon.

Below we discuss these two steps in more detail.
Apparent horizons are quasilocal7 notions of black hole

boundaries, always confined to the causal interior of a
black hole [37, 38]. From the point of view of this paper,
they are of interest for two reasons. In the first place,
their existence is useful, because an intrinsic (“local”)
notion of crossing the boundary of black hole can be uti-
lized to adjust the radial cutoff for integrating Einstein’s
equations in numerical simulations. Secondly, similarly
as for event horizons, their area only increases thus sat-
isfying an area theorem. These properties make them a
good ingredient for a causal generalization of entropy to
non-equilibrium situations in holographic systems. All
this is in stark contrast with the event horizon with its
teleological nature and acausal evolution [38].

The notion of an apparent horizon, and so entropy de-
fined on it, is tied to a particular foliation of spacetime,
which leads to ambiguities. Indeed, in order to find an
apparent horizon, one first defines the foliation of space-
time into constant time slices. Then on each slice one
locates, if it exists, such a codimension-2 hypersurface
that wavefronts of light rays emitted (into the future)
in an outward direction (i.e. here towards the bound-
ary) stay constant in area, whereas wavefronts emitted
in the inward direction shrink. The union of all these
codimension-2 hypersurfaces, being itself a codimention-
1 hypersurface, is what we call here, with a slight abuse
of terminology, an apparent horizon (in fact this is the
definition of a future outer trapping horizon). Closer
considerations reveal that the area of constitutive slices
of apparent horizon is never decreasing, leading to area
theorem [38].

In highly symmetric spacetimes, such as gravity duals
of boost-invariant flows, one typically searches for appar-
ent horizons respecting the physical symmetries. Other-
wise, field theory entropy extracted from the apparent
horizon would not obey the symmetries of the state un-
der consideration [39]. This assumption vastly simplifies
searches of an apparent horizon in the gravity dual to
the boost-invariant flow, as null directions of ingoing and
outgoing wavefronts, denoted in the literature by null

7 Their definition requires the existence of fully trapped surfaces in
the neighborhood of an apparent horizon, hence the term quasilo-
cal.
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vectors la and na, are fixed by symmetry, up to normal-
ization factor, after imposing

lal
a = 0, nan

a = 0 and lan
a = −1. (72)

The latter condition specifies cross-normalization of the
vectors with the minus sign on the right hand side en-
suring that la is future pointing if na is and vice versa.
In particular, for the metric Ansatz (40) vectors solving
(72) read

la = h(t, u)

{
−a(u)α(t, u)√

2
√
u

, 0, 0, 0,−d(t, u)

2
√

2u

}
, (73)

na =
1

h(t, u)

{
−a(u)α(t, u)√

2
√
u

, 0, 0, 0,

√
2d(t, u)

2
√

2u

}
,(74)

where h(t, u) is a positive scalar function playing no role
in the discussion here.

The condition for an apparent horizon on a given time
slice, which is taken here to be t = const, is that the rate
of change of the area of a lightfront (transverse area of
congruence of null geodesics) in la direction is 0. This
quantity is measured by the expansion θl given by

θl = (gab + lanb + lbna)∇alb (75)

with θn defined in a completely analogueous way.
In practice, for a given constant time hypersurface in

coordinates fixed by the metric Ansatz (40) with some
definite choice of lapse, one searches for u’s such that θl
vanishes and θn is negative. Fig. 2 shows the apparent
horizon for a particular choice of lapse and sufficiently
large radial cutoff. In all the simulations we did there
was no apparent horizon on the initial time slice. How-
ever, it was always possible to choose large enough radial
cutoff to see it develop later during the simulation. Our
coordinate frame makes it appear, starting from some
time, at two radial positions on each constant time slice,
forming a U-shaped structure surrounding the curvature
singularity, as shown on Fig. 2.

The apparent horizon’s entropy density is defined here
as Bekenstein-Hawking entropy (density)

sAH =
1

4GN

t

u
a(u)b(t, u)c(t, u)2

∣∣∣
u=uAH

. (76)

Left as it is, it is still not a local entropy from the dual
field theory point of view. We still need to associate
points on the horizon with points at the boundary by
providing a so-called bulk-boundary map. Such an asso-
ciation is not free of ambiguities, however here it seems
that the only sensible way to do so is to associate horizon
points with points on the boundary lying on the same in-
going radial null geodesic [19, 35], much in the spirit of
Vaidya spacetime and its generalizations [40]. Moreover,
due to the large number of symmetries, the direction of
the null geodesic is essentially fixed and unambiguous.
Note that such mapping is consistent with the one intro-
duced in the context of fluid-gravity duality [36].

FIG. 2. The apparent horizon (black curve) and a radial null
geodesic (red curve) sent from the boundary (left edge of the
plot) at τ = 0 into the bulk for a sample profile (no. 23
from table I). This curve coincides with a curve of fixed
Eddington-Finkelstein proper time τEF = 0. Background
colors correspond to curvature with blue denoting small cur-
vature and red large curvature. The red region inside the
apparent horizon denote the neighborhood of the curvature
singularity. One can see (and check the numerical factor ex-
plicitly) that curvature at the right edge of the plot remains
the same during the evolution, in agreement with expectation
that vanishing lapse freezes the time flow there. The curva-
ture at the left edge of the plot also remains constant due to
imposed AdS asymptotics.

For all the considered initial states, we found a non-
zero apparent horizon entropy at the boundary time
τ = 0, in the sense explained above. Although in the
non-equilibrium regime there is no clear microscopic pic-
ture of apparent horizon entropy, its initial value com-
pared to the final one is a useful measure of how far from
equilibrium a given initial state was. In particular, using
that GN = π

2N2
c

[41] one can reexpress (76) in terms of

dimensionless entropy density sn−eq measured in units of

the initial effective temperature T
(i)
eff

sAH ·
(
T

(i)
eff

)−2
= N2

c ·
1

2
π2 · sn−eq, (77)

as introduced in section II B.

VII. THE NUMERICAL SIMULATION

A. Determination of u0

As explained in section V D, in order to be able to ex-
tend the simulation to sufficiently large values of proper
time and to observe a clean and unambigous transition
to hydrodynamics, it is crucial to optimally tune the
position of the cutoff in the bulk which we denote by
u0. The optimal value of u0 would be the position of
the event horizon on the initial hypersurface. Then,
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FIG. 3. Determination of the cutoff point u
(EH)
0 ensuring

long evolution time necessary to see thermalization in the
boundary theory for a sample profile (no. 23 from table I).

In order to obtain u
(EH)
0 , which is expected to approximate

well the position of the event horizon at initial time hypersur-
face, we anticipate that for large enough time the position of
the event horizon coincides with the position of the apparent
horizon we consider and shoot backwards in time an outgoing
null geodesic (almost) tangent to late time apparent horizon
(plotted as thick red curve). Other outgoing null geodesics
are plotted as arrowed curves. The apparent horizon is plot-
ted as thick black curve. Background colors, as in Fig. 2
correspond to curvature, from blue (small curvature) to red
(large curvature).

apart from purely numerical complications, simulations
could be extended indefinitely and the simulation domain
would completely cover the whole exterior of the event
horizon, safely separating the evolution from the curva-
ture singularity.

The principal stumbling block is the lack of knowledge
of the position of the event horizon at t = 0. Moreover,
due to the lightlike nature of a part of the initial hyper-
surface, we cannot locate an apparent horizon there using
the vanishing of expansion scalars.

However, the practical determination of the optimal u0
is in fact quite simple. First we run our simulation with
a relatively large value of u0 for which the simulation
would break down due to the appearance of a curvature
singularity (as shown in Fig. 1C). An initial guess for
this first exploratory value of u0 is typically provided by
taking u0 to be 10− 20% larger than the position of the
FG coordinate singularity listed in table I.

The representative outcome for this exploratory sim-
ulation is shown in Fig. 3. We identify the apparent
horizon using the vanishing of the expansion scalar θl.
To get a first estimate of the position of the event hori-
zon at t = 0, we take the outgoing radial null geodesic
from the neighborhood of the late time outer edge of the
apparent horizon and evolve it backwards in time until it
reaches the initial time hypersurface. The resulting posi-
tion u0 will be a very good estimate of the initial position

of the event horizon and will allow for a long period of
evolution.

The initial exploratory simulation was also important
for us as we used it to extract the initial entropy cor-
responding to the given initial conditions as outlined in
section (VI B).

B. The numerical implementation and tests

In the present work we adopted a Chebyshev dis-
cretization of the spatial grid. This allows us to use
quite modest grid sizes (N = 201, 257, 513, 1025 depend-
ing on the initial profile) and also allows for very accu-
rate evaluation of spatial derivatives at the AdS bound-
ary which are necessary for extracting the gauge theory
energy-momentum tensor. The downside is that Cheby-
shev differentiation is very much nonlocal so any prob-
lems at the edges will affect quicky the whole integra-
tion domain. We implemented the Chebyshev differenti-
ation using Discrete Cosine (Fourier) transforms and the
fftw3 library. Time stepping was done using an adap-
tive 8th/9th order Runge-Kutta method from the GNU
scientific library8.

In order to test the numerical simulations in all cases
we monitored the preservation of the ADM constraints
in the form

testC0 ≡
R−KijK

ij +K2 + 12

|R|+ |KijKij |+K2 + 12
(78)

and similarly for the momentum constraints. As an addi-
tional check, for some profiles we compared the energies
ε(τ) extracted from simulations done with two different
choices of ADM lapse for the same initial conditions. We
found a very good agreement. Another completely inde-
pendent cross-check was to compare the ε(τ) extracted
from the numerical simulation with ε(τ) computed ana-
lytically as a power series in τ . Within the radius of con-
vergence of the power series, we found excellent agree-
ment (some example comparisons will be presented in
the following section). Finally, for a fixed profile (no. 23
in Appendix A), we also checked whether the dynami-
cal horizon identified for simulations with two different
choices of lapse functions really coincide. This was done
by i) comparing the areas extracted from the intersection
of the dynamical horizon with null geodesics propagat-
ing from the boundary for a range of τ , ii) comparing
the curvature invariants RabcdR

abcd at these intersection
points. Again we found perfect agreement.

VIII. THE PROFILES

In the companion article [3], we have presented a thor-
ough analysis of the physical characteristics of thermal-

8 Recompiled to use long double numbers.
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FIG. 4. Plots of initial warp-factors as functions of square root of radial position. Thicker curves denote parts of initial data
outside event horizon on initial time slices. Numbers in the legend match profile numbers collected in table I (color online).

ization of a boost-invariant plasma system obtained using
the numerical setup described in the present paper.

In this section, we would like to discuss in more detail
certain aspects which are interesting in view of the results
obtained in [3]. Firstly, we discuss various geometrical
characteristics of the initial conditions (of which we give
a complete list in Appendix A) in relation to the event
and apparent horizons, then we describe the qualitative
behaviour of the proper time evolution of the effective
temperature giving evidence that a transient rise of the
tempearture in the non-equilibrium regime observed for
initial conditions with high entropy is a real effect and
not a numerical artefact. Finally, we discuss stability
issues of our criterion for thermalization (10).

A. Geometric characteristics of the initial states

We considered 29 different initial conditions specified
by C0(u), as shown in table I in Appendix A. We focused
on profiles, which had no singularity for finite values9

of u, but we allowed for a possible blow up as u → ∞.
Within the considered class, the numerical evolution from
initial profiles gave rise to quite rich dynamics, exhibit-
ing a wide variety of behaviors. Nevertheless, in [3] we
observed surprising regularities - entropy extracted from
the apparent horizon at τ = 0 turns out to characterize

the key features of the transition to hydrodynamics. It
is therefore interesting to understand this in more detail.

As the initial time hypersurface coincides with the
one in the Fefferman-Graham coordinates, we can use
Fefferman-Graham constraint equation (21) and locate

radial position u
(FG)
0 for which A0(u) vanishes (the co-

ordinate singularity of Fefferman-Graham chart, as orig-
inally pointed out in [23] and outlined in section II).

A0(u
(FG)
0 ) = 0. (79)

Although we have no clear geometric interpretation of
this particular point, it turns out that there is a surpris-
ing correlation between the initial non-equilibrium en-
tropy, as obtained from an apparent horizon using the
prescription elucidated in section VI B, and the radial
position of Fefferman-Graham singularity at t = 0 (see
Fig. 5).

The position of the event horizon on the initial time
slice t = 0, is to a very good degree approximated by
the value of u0 determined as in figure 3. We found that
it is also correlated with the position of the Fefferman-
Graham singularity (see figure 6), and hence with the
initial apparent horizon entropy. This result was very
helpful in running the actual simulations, as it provided
a good first guess for the optimal position of the radial
cutoff.

9 It would be interesting to relax this assumption.
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FIG. 5. Dimensionless initial non-equilibrium entropy given
by (77) as a function of the position of Fefferman-Graham sin-
gularity showing clear correlation. Both quantities are plotted
in the units of the effective temperature at τ = 0. Color code
matches figures 4 and 6 (color online).

As outlined in [3], it seems that, at least for the class
of profiles considered here, the apparent horizon entropy
at τ = 0 provides a key infrared characteristic of the
initial conditions. One possible explanation, supported
by figure 4, is that the event horizon on the initial time
slice effectively removes from the dynamics the part of
spacetime for which there is a significant difference be-
tween various initial data. As a result, the space of ini-
tial data on the initial time slice truncated at the event
horizon might be actually quite simple and crudely char-
acterized by a couple of parameters of which the initial
non-equilibrium entropy together with the initial effec-
tive temperature may be the most important ones. Note
also that the initial non-equilibrium entropy is measured
on τEF = 0 Eddington-Finkelstein hypersurface differing
from t = 0 hypersurfaces where our initial conditions are

imposed. The close correlation between u
(FG)
0 (on t = 0)

and the initial entropy (defined on τEF = 0) is, there-
fore, quite surprising. It would be interesting to under-
stand the initial value problem in the ingoing Eddington-
Finkelstein coordinates and check whether the mecha-
nism behind the simplicity of initial states conjectured
here is indeed correct.

B. Qualitative features of plasma expansion
– cooling and reheating

The investigations of the transition to hydrodynamics
in the companion paper [3] revealed that for some initial
conditions, the plasma does not cool but initially under-
goes a period of ‘reheating’. Fig. 7 shows the time evo-
lution of the effective temperature for three sample pro-
files. Depending on the value of initial non-equilibrium
entropy, we found three types of behavior. Profiles with
small initial entropy, as compared to the initial effective
temperature, led to the effective temperature (and so the
energy density) decaying quite rapidly with time. Initial

FIG. 6. Approximate position of the event horizon on the
initial time slice as a function of the position of Fefferman-
Graham singularity showing clear correlation. Both quanti-
ties are plotted in the units of the effective temperature at
τ = 0. Color code matches figures 4 and 5 (color online).

conditions characterized by largest initial entropy among
the states we considered, led to a growth of the effective
temperature in the initial stage of evolution followed only
later by a cooling phase, as required by Bjorken hydro-
dynamics. The peculiar feature of the latter states was
that the effective temperature at thermalization was for
them sometimes higher than the initial one. This does
not mean that thermalization (understood here always as
a transition to hydrodynamics) occurred instantaneously
but rather that it occurred after a sizable non-equilibrium
evolution including a reheating phase. Finally, we also
encountered a profile, with an intermediate value of ini-
tial non-equilibrium entropy compared to others we con-
sidered, exhibiting initially a plateau in the effective tem-
perature as a function of time, which only later decayed.

For the three types of the initial states discussed above
we compared the energy density obtained from numeri-
cal simulation with truncated early time power series ob-
tained directly from the initial profile, as introduced in
[23] and reviewed in section II C. We observed perfect
agreement within the convergence radia of the power se-
ries solutions. The agreement constitutes another non-
trivial test of our numerics. This also shows that the
reheating behavior is a real effect and is not due to some
pathologies in the numerics.

In all these cases we also see that the radius of conver-
gence of the power series is smaller than the time of the
transition to hydrodynamics.

C. Stability of the criterion of thermalization
– subtleties for small entropy initial data

Finally, we would like to point out a subtlety in deter-
mining the thermalization time, especially relevant for
profiles with low initial non-equilibrium entropy. In [3]
we defined thermalization time as the time after which
τ
w

d
dτw (with w defined as in (7)) obtained numerically

from gravity deviates from third order hydrodynamics re-
sult (9) by less than 0.5% (see the criterion (10)). As the
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FIG. 7. Comparison of effective temperatures as functions
of time obtained from numerics (solid gray and dashed blue
curves) and given by early time power series expression (dot-
ted red curves) for three sample profiles. Situations A), B)
and C) correspond respectively to initial profiles 7, 23 and
29 from table I, representing initial states with small, inter-
mediate and large initial entropies. Solid gray curves denote
far-from-equilibrium part from the evolution, whereas dashed
blue curves correspond to hydrodynamic regime with ther-
malization time set by the criterium (10). Each plot shows
perfect agreement between numerical results and early time
power series solutions within the radia of convergence of the
latter. Note also that the radius of convergence of early time
power series is much too small to observe the transition to
hydrodynamics.

magnitude of acceptable deviation from hydrodynamics
is a free parameter (at least within a reasonable range),
thermalization is never a clear cut event. Moreover, the
form of Fhydro is known only up to the third order in
gradients and so it might happen that the thermaliza-
tion criterium (10) is actually sensitive to the inclusion
of terms higher order in gradients (fourth order hydro-
dynamics and higher), whose precise form has not been

FIG. 8. Thermalization level (red line) and criterion expres-
sion (blue line) plotted as a function of time for the profile

no. 29 in table I, with s
(i)
n−eq = 0.4761.

FIG. 9. Thermalization level (red line) and criterion expres-
sion (blue line) plotted as a function of time for the profile

no. 3 in table I, with s
(i)
n−eq = 0.0200.

determined so far.

As an example of this subtlety, let us present two fig-
ures with the time dependence of the left hand side of
our thermalization criterium. Figures 8 and 9 contain
plots of the expression (10), which compares the val-
ues of (numerical) exact function F (w) ≡ τ d

dτw and
the one obtained from third order viscous hydrodynamics

F 3rdorder
hydro (w). Thermalization time is determined numer-

ically from the last intersection point between the plot of
of (10) and the threshold line at 0.005.

In Fig. 8 the thermalization time is determined in a
very robust way as within a reasonable range of variation
of the threshold, there is just a single point of intersection
with the threshold line. Moreover, the curve (10) is very
steep so modifying the threshold value by a factor of 2
or 4 (0.01, 0.02) would lead to only a small change in the
determined thermalization time.

Fig. 9 shows an analogous plot for an initial condition
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with one of the smallest initial non-equilibrium entropy.
In contrast to Fig. 8, we have three intersection points
which are quite unstable w.r.t. changing the threshold
(0.01, 0.02). Indeed, for these higher threshold values
there would be just a single intersection point located
closer to the previous example. The slowly decaying tail
of (10) suggests that it may be of a hydrodynamic nature
albeit of a higher order type (4th order and higher). We
expect that including the currently unknown higher order
hydrodynamic terms into Fhydro(w) would bring Fig. 9
to look more like Fig. 8. Indeed, knowing in principle
the all-order Fhydro(w), the function

τ d
dτw

Fhydro(w)
− 1 (80)

should be exponentially small on the right hand side of
the above plots.

We adopted the criterion with a fixed threshold in or-
der to avoid ambiguities related to subjective judgement
which point of intersection to choose. However, we have
to take into account that the small initial entropy data
are much more subtle in this respect.

IX. SUMMARY AND OPEN DIRECTIONS

This paper introduces an ADM formalism-based
scheme for numerical integration of Einstein’s equations
with negative cosmological constant in the setup describ-
ing gravity dual to a boost-invariant strongly coupled
plasma system. The main motivation for this came from
the earlier work by some of us [23], which used the
Fefferman-Graham coordinates to constrain the form of
initial time (τ = 0) metric components specifying in this
way gravity representation of dual far-from-equilibrium
initial states (see section II). In [23] we also studied time
evolution in a power series form, albeit with a too small
radius of convergence to observe directly a transition to
hydrodynamics. Our present numerical approach over-
comes this shortcoming. We are interested, as in [23], in
unforced (i.e. with all sources in the gauge theory turned
off) relaxation of these states in order to clearly separate
the thermalization process from the creation of the ini-
tial non-equilibrium states (as opposed to earlier works
[2, 9]).

Numerical treatment of the initial value problem re-
quires specifying it on a compact domain with boundary
conditions not altering the evolution, at least outside of
the event horizon. Unfortunately, the Fefferman-Graham
coordinates used in [23] do not provide a sensible no-
tion of bulk cutoff, in particular, based on the example
of AdS-Schwarzschild black brane they are not expected
to cover interiors of dynamical black branes of interest.
Because of this, we introduced a new coordinate frame,
which, much in the spirit of the relation between Kruskal-
Szekeres and Schwarzschild coordinates in the case of
Schwarzschild black hole, coincides with the Fefferman-
Graham chart only at the initial time hypersurface, but

extends beyond the Fefferman-Graham coordinate singu-
larity. Moreover, this new coordinate system allows for
a convenient bulk cutoff and, if needed, for recovering
black brane interior or horizon excision (see section III
and VD).

The new coordinate frame we introduced allows to
adopt ADM formalism-based scheme for numerical evo-
lution (see sections IV and V). The key technical element
of the present work, which to our knowledge has not been
explored in the literature before, is a new treatment of the
outer boundary condition in a potentially highly curved
spacetime through forcing the lapse to vanish at a fixed
radial position. This stops the flow of time at a given
point (actually on a codimension-2 hypersurface) leading
to a very convenient bulk cutoff for numerical integration,
as we are free to specify its position.

In order to ensure a long enough simulation time to
see the transition to a hydrodynamic regime in the dual
gauge theory, such a cutoff should be very close to the
position of the event horizon on the initial time slice.
Although the latter information is not available from the
start due to the teleological nature of the event horizon,
we nevertheless managed to find a simple way of deter-
mining it. To do so, we ran a trial simulation with large
enough bulk cutoff to eventually see an apparent hori-
zon forming and then traced back outgoing radial null
geodesic tangent to the late time apparent horizon. As
in the late time regime we expect our apparent horizon to
coincide with the event horizon, the trajectory of outgo-
ing null geodesic of interest should, to a very good degree,
coincide with the location of the event horizon. The in-
tersection point of this trajectory with the initial time
hypersurface provides the locus where the lapse needs to
vanish in order to ensure a long simulation time.

Another nontrivial issue which we encountered, is con-
nected with imposing asymptotically AdS boundary con-
ditions10, as well as obtaining the expectation value of the
gauge theory energy-momentum tensor carrying crucial
information about the thermalization process (see sub-
sections V C and VI A). The chief difficulty came from
the fact that due to the dynamical time-dependent radial
metric coefficient, the points on constant radius hyper-
surfaces approach the asymptotic boundary at various
rates. This complicates both obtaining the form of the
boundary metric, as well as invalidates the “standard”
formula for dual stress tensor expressed in terms of ex-
trinsic curvature of constant radius hypersurface. To cir-
cumnavigate this issue we performed near-boundary co-
ordinate transformation to the Fefferman-Graham coor-
dinates, in which it is particularly simple to obtain ex-
pressions for the boundary metric and expectation value
of the gauge theory energy-momentum tensor.

10 This was an important point, as we wanted to ensure that the
plasma system we are studying evolves in ordinary Minkowski
spacetime and not in some time-dependent background geome-
try.
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One interesting finding of our studies is that, because
of fixing bulk gauge freedom by specifying the form of a
time-like warp-factor, the boundary and bulk notions of
time differed by a boundary diffeomorphism. This also al-
tered the form of the Minkowski metric on the boundary.
We expect that similar issues might arise when trying to
impose normalizable boundary conditions when study-
ing e.g. spectrum of quasinormal modes in spacetimes
expressed in coordinate frames with the gauge fixed by
specifying the form of warp-factors associated with the
field theory directions.

The accuracy of our numerical simulation, based on
spectral discretization in radial direction and finite dif-
ference time stepping using high order Runge-Kutta
method, has been monitored in a couple of ways (see
section VII). In the first place, we used two appropri-
ately normalized constraint equations, which, if small at
all points of the grid, provide a nontrivial check of the
numerics, as we used an unconstrained evolution scheme.
The other way of making sure that our results are cor-
rect, was to run the numerics for a given initial profile
with different choices of lapse (both the position at which
the lapse vanishes and its functional dependence on the
dynamical metric components). As various choices of
lapse cover various parts of underlying manifold foliating
it in various ways by constant time hypersurfaces, ob-
taining for each choice the same (up to numerical error)
effective temperature as well as apparent horizon entropy
as functions of boundary time gave highly nontrivial in-
dications of the accuracy of numerical simulation. The
third way of making sure the numerics worked fine was to
compare the effective temperature as a function of time
obtained numerically with its analytic form in the early
time power series (see section VIIIB). Again, within the
radius of convergence of the early time power series we
observed perfect agreement.

A very surprising finding of this work, reported first in
the companion article [3], is that characteristics of ther-
malization for all the profiles we considered are correlated
with the initial value of non-equilibrium entropy defined
on the apparent horizon (see subsection VI B for details
on what we mean here by local non-equilibrium entropy).
A possible explanation of this might be that the event
horizon appears on the initial time hypersurface as soon
as the initial time warp-factors start to differ significantly
from their vacuum value. It would be very interesting
to verify this finding by considering initial conditions in
the Eddington-Finkelstein frame, as in this case, due to
constant time foliation being aligned along radial ingo-
ing null geodesics, the apparent horizon would possibly
appear from the start (see however [8]). It would be
thus interesting to understand the correlation between
the position of the apparent horizon (if it exists) on the
initial time hypersurface with the level of complication
of a warp-factor setting initial conditions. It would also
be interesting to perform explicit numerical simulations
and check how the position of the event horizon is cor-
related with the position of the apparent horizon on the

initial time hypersurfaces in the Eddington-Finkelstein
coordinates.

Another interesting point is related to the choice of
initial profiles we considered here. We focus only on the
profiles which are either regular for all radii or blow up as
the radial coordinate is taken to infinity. In principle, it is
possible that there are initial profiles diverging for a finite
radial position, but having the event horizon shielding
the singularity. It would be interesting to investigate
this issue in more detail, as such studies might uncover
a new class of initial states.

The profiles we considered exhibit a wide variety of
behaviors in the bulk. Although, as expected on general
grounds, the evolution of the one-point function of the
stress tensor do not depend on the details of a given pro-
file hidden behind the event horizon, nonlocal observables
such as entanglement entropy, Wilson loops or higher
point correlation functions generally do [42]. It would
be thus interesting to investigate this issue in our setup,
as has been done for the Vaidya spacetime in [43, 44].
Our setup might be advantageous compared to setting
initial conditions in Eddington-Finkelstein type of coor-
dinates when it comes to obtaining equal time two-point
functions of heavy scalar operators, as these are approx-
imated by spacelike geodesics, which might closely align
along our initial constant time slices.

Yet another interesting direction to follow would be to
perform linear stability analysis of the early time boost-
invariant plasma with respect to perturbations breaking
boost-invariance (i.e. depending on rapidity), as such
instabilities have been found in the weak coupling regime
within the colour glass condensate approach [45].

One direction, which has not been explored at all so far,
is to understand holographic thermalization in the grav-
ity backgrounds dual to non-conformal strongly coupled
gauge theories. It would be of obvious interest to study in
such gauge theories boost-invariant flow, as the simplest
phenomenologically interesting model of plasma dynam-
ics with the use of holographic methods introduced here
or in [9].

Finally, it would be fascinating to introduce transverse
dynamics in the holographic model of Bjorken flow to get
a handle on thermalization phase of the elliptic flow [46],
as well as understand how nontrivial structures in the
transverse plane at the initial time affect the initial con-
ditions for hydrodynamic evolution [47]. One motivation
for doing this, stemming from the results of this work
reported in [3] (and also earlier in [9]), is that in the one-
dimensional boost-invariant flow non-Abelian plasma can
be very anisotropic, yet well-described by hydrodynam-
ics. Allowing the plasma system to expand in traverse
directions should lower, at least intuitively, the degree
of anisotropy at thermalization. Investigating this issue
in more detail is important, as this touches upon the
question whether the QCD quark-gluon-plasma produced
in heavy-ion collisions indeed needs to be approximately
isotropic before the transition to hydrodynamics.
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Appendix A: A summary of the initial conditions and simulation results

TABLE I: Below we collect information about the initial profiles we considered: C0(u) is the initial condition as

discussed in section II with γ = 1
2

√
3π2
(
T

(i)
eff

)2
; u

(FG)
0 is a position of corresponding coordinate singularity in the

Fefferman-Graham chart; u
(EH)
0 is the approximate position of the event horizon on the initial time slice; w(th) is

thermalization time measured in terms of an effective temperature at thermalization as defined by equation (7);

τ (th)T
(i)
eff is the thermalization time in units of the initial effective temperature; T

(th)
eff /T

(i)
eff is the ratio of the effective

temperature at thermalization to the initial effective temperature; s
(i)
n−eq is dimensionless initial entropy density (77)

defined by apparent horizon, as described in section VI B; s
(f)
n−eq is the final entropy density obtained from perfect

fluid hydrodynamics.

No. C0(u) u
(FG)
0

(
T

(i)
eff

)2
u
(EH)
0

(
T

(i)
eff

)2
w(th) τ (th)T

(i)
eff T

(th)
eff /T

(i)
eff s

(i)
n−eq s

(f)
n−eq

1

(
1− 1

γu+1

)
tanh( γu2 )

4γu+1
+ 1 23.9980 12.5030 0.4853 3.2287 0.1503 0.0086 0.0120

2
1− 1

γ2u2+1

2(3γu+1)
+ 1 12.8410 8.2419 0.4868 2.6686 0.1824 0.0127 0.0178

3
γu

(
1− 1

γu+1

)
2(2γ2u2+1)

+ 1 7.0707 5.3189 0.4722 2.0759 0.2275 0.0200 0.0270

4 γ2u2

2(γ2u2+1)2
+ 1 3.0462 3.2053 0.5209 1.8717 0.2783 0.0322 0.0435

5
γu

(
1− 1

γu+1

)
2(γ2u2+1)

+ 1 3.6404 3.2898 0.4153 2.0940 0.2963 0.0333 0.0420

6
γ2u2e

γu
6

(
1−γ4u4e−6γ2u2

)
2(γ2u2+1)2

+ 1 2.4453 2.6413 0.3713 1.4999 0.3433 0.0402 0.0522

7
γ2u2e

γu
6

(
γ6u6

8
+ γ4u4

4
+ 1

2

)
(γ4u4+γ2u2+1)2

+ 1 1.4390 1.4639 0.5507 1.5759 0.3494 0.0592 0.0713

8 γ2u2

2(2γ2u2+1)
+ 1 1.6148 1.5908 0.5200 1.4265 0.3646 0.0641 0.0923

9 γ2u2

2

(
3γ2u2

2
+1

) + 1 1.0747 1.1372 0.5625 1.3841 0.4064 0.0847 0.1217

10 γ2u2e
γu
6

2

(
γ2u2

2
+1

)2 + 1 0.8425 1.0125 0.5634 1.2806 0.4400 0.0968 0.1152

11 γ2u2

2

(
5γ2u2

4
+1

) + 1 0.8437 0.9252 0.5809 1.3300 0.4368 0.0998 0.1438

12 γ2u2e
γu
5

2

(
γ2u2

2
+1

)2 + 1 0.7676 0.9264 0.5768 1.2787 0.4511 0.1039 0.1231

13 1
2
γ2u2e−

3γu
4 + 1 0.6609 0.7884 0.6691 1.5080 0.4437 0.1139 0.1658

14 γ2u2

2(γ2u2+1)
+ 1 0.6430 0.7269 0.5978 1.2556 0.4761 0.1199 0.1748

15 1
2

tanh2
(
γ2u2

25
+ γu

)
+ 1 0.4884 0.5788 0.6154 1.1825 0.5204 0.1441 0.2131

16 γ2u2

2

(
γ2u2

2
+1

) + 1 0.3475 0.4006 0.5098 0.7948 0.6414 0.1826 0.2825

17 1
2
γ2u2e−

γu
2 + 1 0.3336 0.3764 0.5396 0.8448 0.6388 0.1841 0.2919

18 1
2

tanh2
(
γ2u2 + γu

)
+ 1 0.2807 0.3652 0.6139 0.9465 0.6486 0.2168 0.3307

19
exp

(
1
2

∫ γu
0

{√
2v′+(x) − v+(x)2 − v+(x)

}
dx
)

with v+(x) = tanx− tanh (x+ x4)
0.1838 0.1996 0.6150 0.7719 0.7968 0.2642 0.5009

20 γ2u2

2
+ 1 0.1971 0.2147 0.6111 0.7817 0.7817 0.2711 0.4797
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21
exp

(
1
2

∫ γu
0

{√
2v′+(x) − v+(x)2 − v+(x)

}
dx
)

with v+(x) = tanx− tanh (x− 1
4
x4)

0.1838 0.2097 0.6548 0.8525 0.7681 0.2803 0.4891

22
exp

(
1
2

∫ γu
0

{√
2v′+(x) − v+(x)2 − v+(x)

}
dx
)

with v+(x) = tanx− tanh (x+ 1
6
x4)

0.1838 0.1979 0.6346 0.7952 0.7980 0.2810 0.5146

23 cosh(γu) 0.1838 0.1987 0.6306 0.7886 0.7997 0.2839 0.5142

24 e
γ2u2

2 0.1634 0.1762 0.6453 0.7682 0.8401 0.3062 0.5778

25 cosh
(

3γ2u2

10
+ γu

)
0.1398 0.1503 0.6380 0.7029 0.9077 0.3501 0.6687

26 γ4u4 + γ2u2

2
+ 1 0.1210 0.1303 0.6293 0.6460 0.9742 0.3838 0.7624

27 1
2
γ2u2eγu + 1 0.1243 0.1338 0.6324 0.6571 0.9624 0.3859 0.7465

28 cosh
(

4γ2u2

5
+ γu

)
0.1099 0.1187 0.6356 0.6227 1.0207 0.4259 0.8433

29 1
2
γ2u2e2γu + 1 0.0955 0.1026 0.6298 0.5754 1.0947 0.4761 0.9634

Appendix B: Full Einstein equations

The following are Einstein equations for all ADM functions. Due to the size of expressions for L,M,P , they were
exported from a notebook and follow standard Mathematica notation for partial derivatives.

∂b

∂t
=
−b2 + αL

tb
(B1)

∂c

∂t
=
aαM

c
∂d

∂t
=
aαP

d

∂L

∂t
= −4tuaa′′αb2

d2
− 4tuaa′αub

2

d2
− 12tuaa′αbbu

d2
− 8tuaa′αb2cu

cd2
+

4tuaa′αb2du
d3

+
8taa′αb2

d2
− 4tua′2αb2

d2
−

4tua2αubbu
d2

+
2ta2αub

2

d2
− 8tua2αbbucu

cd2
+

4tua2αbbudu
d3

+
6ta2αbbu

d2
− 4tua2αbbuu

d2
+

4ta2αb2cu
cd2

−

2ta2αb2du
d3

− 4ta2αb2

ud2
+

4ta2αb2

u
− 2aαLM

c2
− aαLP

d2
− αL2

tb2
− L

t
(B2)

∂M

∂t
=

8ua′αcuc

d2
− 4a′αc2

d2
+

4uaαucuc

d2
− 2aαuc

2

d2
+

4uaαbucuc

bd2
− 2aαbuc

2

bd2
− 4uaαcucdu

d3
− 8aαcuc

d2
+

4uaαcuuc

d2
+

4uaαc2u
d2

+
2aαc2du

d3
+

4aαc2

ud2
− 4aαc2

u
− aαMP

d2
+
αLM

tb2
(B3)

∂P

∂t
= 8ua′αu + α

(
8ua′bu
b
− 8ua′du

d
+
LP

tb2
+ 8ua′′

)
+ 4ua

(
αuu −

αudu
d

)
+ aα

(
4du

(
−ubub −

2ucu
c + 2

)
d

+

4ubuu
b

+
8ucuu
c
− 2MP

c2
+
P 2

d2
− 4d2

u
+

4

u

)
(B4)

Equation for the evolution of lapse function α(t, u) was obtained from the algebraic expression specifying it by
differentiation with respect to time.
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