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I. INTRODUCTION

When the equations of motion of a classical field theory are said to respect a duality invariance, they are invariant
under the rotation of an electric field into its magnetic field or of a field strength into its dual field strength. Among
the theories exhibiting such properties are Maxwell’s theory, whose duality group is U(1), and extended N ≥ 2
supergravity theories, whose duality properties were first discussed in [1]. Of recent interest is the maximally super-
symmetric supergravity theory [2], N = 8 supergravity, whose duality group is E7(7). Such dualities could have rather
nontrivial consequences. Indeed, it has been suggested that the UV-behavior of N = 8 supergravity, known through
four loops [3], could be explained by the absence of possible E7(7)-invariant counterterms, as demonstrated through
six-loops [4, 5].

The requirement that duality invariance be respected is very constraining, as it relates free and interaction terms.
Perturbatively, the duality symmetry is expected to be continuous; as such, it has an associated conserved current,
known as the Noether-Guillard-Zumino (NGZ) current [6]. The conservation of the NGZ current leads to non-trivial
constraints on the possible deformations of the theories, as the addition of duality-invariant terms does not generically
preserve the duality invariance of the equations of motion. An essential ingredient in these constraints is the fact that
the dual field strengths are determined by the equations of motion which receive contributions from the deformation
terms and thus modify the NGZ current. In N = 8 supergravity, the relation between E7(7) invariants and the
conservation of the duality current was raised in [7].

A very natural and interesting question is whether and in what sense classical duality symmetries are preserved at
the quantum level. A direct answer to this question is not straightforward; for example, it is not clear how duality
symmetries are generically visible in scattering amplitudes. While multi-soft scalar limits can probe [8] the coset
structure of supergravity theories, it is not immediately clear how to similarly probe the transformation properties
of vector fields. Several indirect approaches are possible. One could construct the (local part of the) effective action
and see if the equations of motion derived from it obey the same duality symmetry as at the classical level. Another
approach would be to construct rational functions of momenta obeying the properties of scattering amplitudes which
also obey the multi-soft scalar limit constraints. Both approaches have been explored in [7] and [4, 5], respectively,
for constraining and constructing possible counterterms of N = 8 supergravity.

There exist examples of duality transformations which receive modifications at the quantum level. For two-
dimensional sigma models, T-duality parallels electric/magnetic duality of four dimensional gauge gauge theories.
In addition to replacing a field by its dual, invariance under duality transformation also requires changes of the
parameters of the theory (i.e. of the target space supergravity fields). It was shown in [9] that the T-duality transfor-
mation rules [10] which guarantee the duality invariance of sigma models at one-loop level should be modified at higher
loops. These higher-loop corrections may also be reinterpreted as higher-loop corrections to the relation between the
sigma model fields and their duals. It is thus important to keep in mind the possibility of similar corrections in more
general duality-satisfying interacting quantum field theories.

In order for a theory to preserve, at the quantum level, the duality of its classical equations of motion, while
admitting a duality-invariant counterterm, it is necessary that it admits higher-order deformations that maintain the
action’s duality covariance. Recently, Bossard and Nicolai suggested [11] that there exist algorithms to perturbatively
deform all duality-satisfying theories in a manner consistent with the classical duality transformations. If true,
besides offering a possibility of constraining the finiteness of N = 8 supergravity [7, 11, 12], it suggests the possibility
of constructing non-trivial Born-Infeld-type supergravity theories the first of which would be N = 2 supergravity, as
proposed in [12].

The procedures outlined in [11] involved adding one nonlinear initial deformation source to the consistency rela-
tions imposed by the tree-level duality transformations and solving them – resulting in an infinite number of terms
contributing to the effective action. Such consequences are in line with expectations based on soft scalar limits [5]
in the case of N = 8 supergravity. The unmodified covariant procedure of [11], however, does not reproduce known
simpler duality-satisfying effective actions. In [12] three of the current authors explored the single-deformation-source
approach and found that, in general, an infinite series of deformations of the consistency relations are required to
reproduce known results. Indeed, obtaining even the venerable Born-Infeld (BI) model in the absence of supersym-
metry requires an infinite sequence of deformation sources to the consistency relations. A generalized procedure was
therefore proposed and analyzed for bosonic theories with no explicit derivatives. The algorithms developed in [12]
were used in [13] to construct a class of self-dual models which, in addition to standard BI terms Fn, include higher
derivatives terms ∂4nF 2n+2.

A necessary step for the extension of this procedure to supergravity theories (and for showing that it is indeed
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possible to preserve the classical duality symmetry in the presence of quantum corrections) is the construction of
supersymmetric theories of vector multiplets exhibiting duality symmetries. Such actions have been constructed
previously through different methods: a manifestly supersymmetric Born-Infeld model was constructed in [14], non-
linear superfield actions with spontaneously broken supersymmetry were studied in [15–17], and models with manifest
supersymmetry and non-linear electromagnetic duality were developed in [18–21].

In this paper we describe the application of the constructions of [11, 12] to theories with rigid N = 2 supersymmetry
when the duality is of U(1)-type. It is important to stress that this setup is different from the one of supergravity
theories exhibiting duality symmetries. Indeed, here the starting action is free and the deformation may be tuned as
desired; if the tree-level action is interacting, the deformation is generated by quantum corrections within this theory
and cannot be freely adjusted. While the former setup is far less constraining than the latter, the construction of
deformations of free actions has proved in the past not to be straightforward.

After setting up a convenient notation, in section II we briefly review the generalized procedure of [12], and the
known duality-consistent models in the context of N = 2 supersymmetry. In section III we describe a new form of the
action in terms of corrections generated by a deformation source. This allows us to write the action directly in terms
of a recursively solved non-linear constraint. We provide examples of specific sources in section IV and discuss how
they can be simply combined to generate a wide variety of actions, including the BI action found in the literature.
We conclude and comment on the next steps required towards approaching the construction of a Born-Infeld-type
N = 2 supergravity and potential ramifications for N = 8 supergravity in section V. In appendix A we provide,
for completeness, information on N = 0 and N = 1 duality invariant models. In appendix B we argue that under
N = 2 supersymmetry, in contrast with N = 1, the electromagnetic duality models require the presence of space-time
derivatives acting on superfields. In appendix C we provide a summary of our N = 2 superspace conventions.

II. REVIEW

Let us begin by recalling the covariant construction [12] of duality-satisfying actions in terms of deformation sources.
We will then proceed to summarize the known N = 2 supersymmetric theories whose equations of motion are duality-
invariant.

A. Generalized duality covariant procedure

To efficiently formulate classical duality relations, and their corrections, it is useful to organize fields F and dual
fields G such that the classical duality transformations act as simply as possible. For Maxwell’s theory, as well as
supersymmetric versions, this duality transformation can be expressed as a simple multiplication by a phase B and
the relevant complex field basis is

T = F − iG , T = F + iG (2.1)

or rather their self-dual and anti-self-dual components T± = 1
2 (T ± iT̃ ) and T

±
= 1

2 (T ± iT̃ ) as follows

δT± = iB T± δT± = −iB T± . (2.2)

Throughout this paper we suppress space-time indices whenever possible. However, introducing the tilde operation,
as we do in defining T±, involves normalized contraction with the Levi-Civita symbol,

Ãµν ≡
1

2
ǫµνρσAρσ . (2.3)

A similar organization of fields holds for supergravity theories; the main difference is the appearance of scalar field-
dependent matrices in the analogs of the expressions above [6, 22]. In terms of these fields, the undeformed linear
duality constraint on the equations of motion of field strengths T can be given quite simply by a “twisted self-duality”
constraint:

T+ = T− = 0 . (2.4)
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In these variables, the constraint [6] that the action be self-dual is

T+T+ − T−T− = 0 . (2.5)

The twisted self-duality relation (2.4) may be interpreted as more fundamental than the action. Indeed, the action
can be determined by its relation to the dual field strength. In the case of gauge theories this relation is just

G = 2
δS

δF
(2.6)

For supergravity theories the fields F and G (and thereby T ) acquire further indices, specifying their transformation
under the duality group, e.g. T 7→ TAB, etc. In the following we will not write such indices.

A covariant procedure proposed in [12], generalizing that of [11], parametrizes the possible deformations of an

action in terms of a function I(T−, T
+
, λ) where λ is a dimensionful coupling constant. We start with a duality

conserving initial action Sinitial, and a duality-invariant counterterm (or deformation) ∆S, expressible as a function
of the conjugate self-dual field-strength T+. We wish to arrive at an action Sfinal that incorporates the counterterm
yet still conserves the duality current. We proceed as follows [12]:

1. Take the variation of the counterterm with respect to the field-strength, and express as a function of T−, and
T+,

δ∆S

δT+
→

δI(T−, T+, λ)

δT+
. (2.7)

2. Introduce an ansatz for the deformation source I(T−, T+, λ). In general, this may be taken to depend on all
possible duality invariants.

3. Constrain the self-dual field strength to this variation:

T+ =
δI(T−, T+, λ)

δT+
. (2.8)

4. Translate eq. (2.8) to a differential constraint on Sfinal.

5. Introduce an ansatz for Sfinal, which is analytic around the origin, in terms of Lorentz invariants constructed
from T− and T+. For the case of U(1), as we will see in section III, this will be straightforward for N = 2
abelian gauge theories. In general this is unknown and can depend on other fields (e.g. scalars) in non-trivial
ways.

6. Solve for both the I ansatz parameters, as well as the final action ansatz parameters, order by order in the
coupling constant, enforcing the consistency of the relevant NGZ consistency equation and any additional desired
symmetries of the target action, enlarging the ansatz if one runs into inconsistency.

The duality conservation relation (2.5) imposes constraints on the possible deformation sources. If the deformation
source I(T, T , λ) is hermitian this constraint is simply that I be invariant under the duality transformation, eq. (2.2),

(
T

+ δ

δT+
− T− δ

δT−

)
I(T−, T+, λ) = 0 . (2.9)

This differential operator “measures” the charge of I under the U(1) duality transformation (2.2) and thus requires
that I is invariant. As discussed in [12], an invariant deformation source does not imply that the deformation of the
action is also invariant; rather, as discussed in [6], the complete deformed action should transform nontrivially under
duality transformations.

In sections III and IV we will see that these steps have natural counterparts in models with N = 2 rigid super-
symmetry; they will allow us to easily superpose arbitrary U(1)-invariant deformation sources1 and will lead to a
straightforward generation of new classes of models – as well as a systematic reconstruction of known ones.

1 Here U(1) invariance refers to invariance under duality transformations which, in terms of the field variables T and T ∗, act as U(1)
transformations.
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B. N = 2 Supersymmetry and Duality

The interplay between supersymmetry and duality invariance has been studied at length in the literature. A
derivation and a review of the main results are given by Kuzenko and Theisen in [19]. While it is known how
to promote essentially every duality-satisfying bosonic model to an N = 1 supersymmetric one, adding further
supercharges proved to be relatively difficult. N = 2 supersymmetric extensions of the BI theory have been found
[16, 17, 19–21]; one of their essential features is the presence of explicit spacetime superfield derivatives in the action.
We will review here these actions; in appendix B we will argue that any such action necessarily contains spacetime
derivatives, in addition to spinorial derivatives of the superfields.

In the absence of hypermultiplets, the standard N = 2 superspace provides an effective framework for organizing
actions and their deformations. It is parametrized by four bosonic and eight fermionic coordinates ZA = (xa, θαi , θ̄

i
α̇),

with a and α being a vector and Weyl spinor Lorentz indices and i = 1, 2 being the SU(2) R-symmetry index. Actions
describing the dynamics of N = 2 vector multiplets are written in terms of the (anti) chiral superfield strengths W
and W which satisfy the Bianchi identities 2

Dij W = D ij W . (2.10)

For an abelian gauge symmetry they can be solved by expressing the superfield strength in terms of an unconstrained
prepotential Vij :

W = D
4
Dij Vij , W = D 4D

ij
Vij . (2.11)

The overall factors of D
4
and D 4 guarantee that W and W are chiral and anti-chiral, respectively, since D

i

αD
4
U = 0

for any superfield U .

Similarly to the N = 0 and N = 1 theories, duality transformations for N = 2 theories may be implemented [19]
in the path integral as a Legendre transform. One starts with the action

Sinv = S[W ,W ]−
i

8

∫
d8Z WM+

i

8

∫
d8 Z WM , (2.12)

treating W and W are unconstrained superfields (i.e. not obeying the Bianchi identity). M and its conjugate are
determined by varying S with respect to W and W

iM ≡ 4
δ

δW
S[W ,W ] , −iM ≡ 4

δ

δW
S[W ,W ] . (2.13)

Their equations of motion

Dij M = D
ij
M (2.14)

have the same functional form as the Bianchi identities (2.10).

The infinitesimal duality transformations are therefore very similar to the N = 0 and N = 1 ones:

δW = BM , δM = −BW . (2.15)

The requirement that Sinv in eq. (2.12) is invariant under this transformation leads to the N = 2 analog of the duality
conservation (NGZ) relation (2.5)

∫
d8Z

(
W2 +M2

)
=

∫
d8Z

(
W

2
+M

2
)
, (2.16)

originally proven in [18], where it was called the “N = 2 self-duality equation”. This is the direct analog of the N = 1
NGZ relation and reduces to it upon truncation of N = 1 chiral multiplet from the N = 2 vector multiplet and

2 The derivatives Dij and D
ij

are defined as Dij = DiαD
j
α and D ij = D i

α̇D
jα̇. See also appendix C.
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integration over two fermionic coordinates. One could in fact reconstruct the N = 2 constraint by starting from its
N = 1 limit and requiring that it is manifestly supersymmetric and that it remains bilinear in superfields [12].

Solutions of this equation have proven fairly elusive. The free N = 2 supersymmetric Maxwell action

Sfree =
1

8

∫
d8Z W2 +

1

8

∫
d8Z W

2
(2.17)

satisfies this constraint. An interacting action

S =
1

4

∫
d8Z X +

1

4

∫
d8Z X , (2.18)

where the chiral superfield X is a functional of W and W and is a solution of the constraint

X = X D
4
X +

1

2
W2 , (2.19)

was proposed in [16, 17]; this action was proven in [18] to obey the N = 2 self-duality constraint (2.16). This system
may be solved perturbatively in the number of fields [17, 19–21] and leads to an action of the form

SN=2 = Sfree +

∫
d12Z W2 W

2
Y (D4W2, D

4
W

2
) +O(∂µW) (2.20)

where Y is a Born-Infeld-type functional. The extra terms with space-time derivatives ∂µW are required for N > 1
actions, see Appendix B. The system (2.18), (2.19) was introduced in [16, 17] as the N = 2 generalization of the
Born-Infeld action.

An action exhibiting D3 brane type shift symmetry, exposing the spontaneous breaking of translational invariance
in the directions transverse to the brane, was proposed in [19]. It simultaneously solves the N = 2 NGZ constraint
(2.16).

SBI = Sfree + Sint (2.21)

Sint =
1

8

∫
d12Z

{
W2 W

2

[
λ+

λ2

2

(
D4W2 +D

4
W

2
)

+
λ3

4

(
(D4W2)2 + (D

4
W

2
)2 + 3 (D4W2)(D

4
W

2
)
)]

+
1

3

[
λ2

3
W3

�W
3
+

λ3

2

(
(W3

�W
3
)D

4
W

2
+ (W

3
�W3)D4W2 +

1

24
W4

�
2W

4
)]

+ O(W10)

}
, (2.22)

where we have introduced a dimensionful coupling λ, usually set to unity in the literature. The unique term with no

fermionic or space-time derivatives, W2 W
2
, yields the known F 4 term of the Born-Infeld action, c.f. appendix A. The

sixth-order terms, apart from the W3
�W

3
terms with space-time derivatives, also correspond to a straightforward

generalization of the bosonic BI model. This action was confirmed3 in [20, 21]; moreover, it belongs to the class of
actions constructed in [20] which also exhibit another nonlinearly realized N = 2 supersymmetry algebra.

The construction we will detail in later sections will allow us to recover the action (2.22) among infinitely many
other actions. While all of these actions are expressible in the form of eq. (2.18), i.e. given by the sum of a chiral and
anti-chiral actions, they will not generically satisfy eq. (2.19). Relaxing the requirement that the action has the form
(2.19) leads, as we will see, to a variety of actions with different properties.

3 Ref. [20] assigns � a factor of − 1
2
relative to the convention of [19].
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Combinations of superfields Chirality Charge

T
+ = W − iM + +

T
+ = W + iM + −

T
− = W − iM − +

T
− = W + iM − −

TABLE I: The four combinations of superfields have ± chirality and ± duality charge.

III. CONSTRUCTION OF DUALITY-SATISFYING ACTIONS

An important lesson from the construction of bosonic gauge theory duality-covariant actions was that the twisted
self-duality constraint can be seen as more fundamental than the action. Indeed, the twisted self-duality constraint
determines the action through the definition of the dual field G, see eq. (2.6). The supersymmetric generalization of
this feature is that an N = 2 twisted self-duality constraint should determine the action through the definition (2.13)
of the dual field M. We will discuss the N = 2 case in the same language as the generalized procedure [12] and so
begin by describing the suitable twisted self-duality constraint and its deformation sources. We will then proceed, for
a generic deformation source I, to construct an action with the desired properties.

A. Twisted self-duality.

As we saw in section II B, W and M are interchanged by infinitesimal duality transformations. Similarly to the
N = 0 case, they may be combined into T -variables which are simply rescaled by such transformations: there are two
chiral

T+ = W − i M , T + = W + i M (3.1)

and two anti-chiral fields

T− = W − i M , T − = W + i M , (3.2)

each pair having one positive and one negative charge under the U(1) duality transformation:

(
δT+

δT +

)
=

(
i B 0
0 −i B

)(
T+

T +

)
,

(
δT−

δT −

)
=

(
i B 0
0 −i B

)(
T−

T −

)
. (3.3)

The behavior of these fields are summarized in table I, which allows us to identify immediately the kind of superspace
integral that is needed to turn some product of superfields into a supersymmetric action as well as identify its properties
under duality transformations. The twisted self-duality constraint is the same as (2.4)

T+ = T− = 0 , (3.4)

while the supersymmetric NGZ constraint (2.16) becomes

∫
d8Z T + T+ −

∫
d8Z T − T− = 0 , (3.5)

whose solutions we would like to construct.

As in the bosonic case, we begin with an “initial source of deformation” I(T−, T +) which is a function of the
superfields not set to zero by (3.4). On dimensional grounds, any such I will depend on a dimensionful coupling
λ. Moreover, since both chiral and anti-chiral superfields can appear as arguments, I is naturally a full superspace
integral. We will further assume that I is hermitian, which will lead to a simple characterization of the solutions to
(3.5). The deformation of the linear twisted self-duality constraint (3.4) will be given by

T+ =
δI(T−, T +)

δT +
, (T+)∗ = T − =

δI(T−, T +)

δT−
, (3.6)
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where, in the second equality, we used the assumption that I(T−, T +) = I(T−, T +). Any deformation source yields
an action; the NGZ identity (3.5) identifies the deformation sources leading to actions with duality-invariant equations
of motion. Indeed, by replacing (3.6) into (3.5) we find a differential equation for I:

0 =

∫
d8Z T + δ

δT +
I(T−, T +)−

∫
d8Z T− δ

δT−
I(T−, T +) . (3.7)

It is worth noting that, since I is a full superspace integral, each of the two superficially chiral integrals above is, in
fact, also an integral over the full superspace. A notable difference from the N = 0 case is that the supersymmetric
NGZ constraint involves a space-time integral, which projects out possible total derivatives in its integrand. A solution
to the equation (3.7) is that I is invariant under the U(1) duality transformation (3.3). Indeed, as in the bosonic
case, the operator

(
T

+ δ

δT+
− T− δ

δT−

)
(3.8)

“measures” the charge under such transformations. A slightly more general solution to eq. (3.7) allows I to be
invariant up to total derivatives.

The twisted self-duality equations (3.6) can be solved recursively and yield M as a series in λ with coefficients
which are functions of W and W of appropriate degrees of homogeneity:

M = M(0) +
∑

n≥1

λnM(n)(W ,W) . (3.9)

Taking into account the fact that I is O(λ), the recursive solution for eqs. (3.6) is

M(n) ≡ λ−n


 δ

δT +
I
[
T−(W ,M(n−1)), T +(W ,M

(n−1)
)
]
−
n−1∑

j=1

λjM(j)


 with λm>n → 0 , (3.10)

with M(0) being the solution to the linear twisted self-duality constraint, M(0) = −iW .

With a solution in hand, the action may then be found by integrating the equations (2.13). This can be done
directly on a case by case basis. We will show that it is in fact straightforward to carry out this integration for a
general I. The resulting action has a simple form as demonstrated by the examples detailed in the next section.

As reviewed in section II B, the NGZ consistency condition (2.16), (3.5) is simply the requirement that the right-
hand side of eq. (2.12) – with W , M and their conjugates treated as independent fields – remains invariant under
duality transformations. While in general there exist many duality invariants, given an action S[W ,W, λ], it is possible
to construct a natural duality invariant expression4:

Sinv = −λ
d

dλ
S[W ,W , λ] . (3.11)

This construction is a particular example of the general fact (see e.g. [6, 19]) that the derivative of a duality-satisfying
action with respect to a duality invariant parameter is duality-invariant. To see that this is indeed the case let us
carry out an infinitesimal duality transformation of this relation:

δSinv = −λ
d

dλ

(∫
d8Z δW

δS

δW
+

∫
d8Z δW

δS

δW

)
(3.12)

with δW and δW given by (2.15). The variation of the action with respect to W and W can then be expressed, using
(2.13), in terms of M and its conjugate; thus, δSinv becomes

δSinv = −
i

4
B λ

d

dλ

(∫
d8Z M2 −

∫
d8Z M

2
)

. (3.13)

4 The overall sign is chosen for later convenience.
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Since W and W are independent of the coupling constant λ, we may freely add them to the parenthesis above:

δSinv = −
i

4
B λ

d

dλ

(∫
d8Z

(
W2 +M2

)
−

∫
d8Z

(
W

2
+M

2
))

. (3.14)

This expression vanishes identically for M and M satisfying the NGZ duality constraint (2.16), implying that (3.11)
indeed represents a valid choice of Sinv, though of course not the only possible one5.

Clearly this choice of Sinv allows us, through eq. (2.12), to reconstruct the action in terms of W , M and their
conjugates. It is indeed easy to see that, upon use of (3.11), eq. (2.12) becomes a first-order differential equation for
S[W ,W , λ]

−λ
d

dλ
S[W ,W , λ] = S[W ,W , λ]−

i

8

∫
d8Z WM[W ,W, λ] +

i

8

∫
d8Z WM[W ,W, λ] (3.15)

with the condition that at λ = 0 its solution should be the free action. Its solution provides a form of the reconstructive
identity for the action

S =
i

8λ

∫
dλ
[ ∫

d8Z WM[W ,W, λ]−

∫
d8Z W M[W ,W , λ]

]
, (3.16)

where M[W ,W, λ] and M[W ,W , λ] are simultaneous solutions of the NGZ duality constraint (2.16) and of the
deformed twisted self-duality equation. The latter introduces the dependence on the dimensionful coupling λ through
the initial deformation source. Given such a solution (3.9), (3.10), the action we are looking for is:

S = i

∫
d8Z W

∑

n=0

λn

8(n+ 1)
M(n)[W ,W ] + h.c. . (3.17)

One may then check, on a case by case basis, that both the dual field M and its conjugate (also constructed from
this action as in eq. (2.13)) reproduce the dual field that was used to construct the action through eq. (3.16).

This class of actions encompasses both the free action (obtained for I = 0) as well as the interacting actions
reviewed in the previous section. The relevant X function is just

X ≡
i

2λ

∫
dλW M . (3.18)

This requires a very specific IBI – one that involves a superposition of an infinite number of initial source terms, much
like the N = 0 Born-Infeld models discussed in [12, 13]. We will present this aggregate deformation source through
order λ3 in section IV. It is not difficult to construct higher-order terms which reproduce the action (2.18)-(2.19).

B. Covariant construction of N = 2-SUSY duality-satisfying actions

Let us summarize here theN = 2 generalization of the bosonic covariant construction [12, 13] reviewed in section IIA
beginning with some initial deformation or counterterm δS. While some of the steps are very similar, others depart
from the bosonic ones due mainly to the compact action introduced in eq. (3.16).

1. Take the variation of the counterterm with respect to the field-strength superfield, and express as a function of
T− and T+,

δ∆S

δT+
→

δI(T−, T+, λ)

δT+
. (3.19)

5 For example, any function of λ and dS/dλ will lead to a possible candidate for the action. It is possible that all such choices are in fact
equivalent through a change of initial deformation source, perhaps through a field redefinition.
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2. Introduce an ansatz for the deformation source I(T−, T+, λ). In general, this may be taken to depend on all
possible duality invariants.

3. Constrain the dual field strength to this variation:

T+ =
δI(T−, T+, λ)

δT+
(3.20)

4. Solve eq. (3.20) iteratively for the dual field M = M[W ,W, λ] and its conjugate while checking that the NGZ
duality constraint is satisfied. Any U(1)-invariant hermitian deformation source will automatically lead to
solutions which pass this test.

5. Use M and its conjugate found at step 4 to construct the action

S =
i

8λ

∫
dλ
[ ∫

d8ZW M[W ,W, λ]−

∫
d8Z WM[W ,W , λ]

]
(3.21)

while checking for additional desired properties and enlarging the ansatz for I if necessary.

6. Verify that M and its conjugate used at step 5 are reproduced as

iM[W ,W, λ] ≡ 4
δ

δW
S[W ,W ] , −iM[W ,W, λ] ≡ 4

δ

δW
S[W ,W ] (3.22)

It is important to point out that the last step above is not a substitute for any of the earlier steps. For example, it
is possible to construct deformation sources I which, while not solving the NGZ constraint lead nevertheless through
eq. (3.20) to dual fields M and an action which reproduces them.

We will proceed in the next section to apply this construction to recover the actions reviewed in section II B as well
as duality covariant actions with manifest N = 2 supersymmetry and quite novel structure.

IV. DUALITY EXAMPLES

In this section we will follow the steps outlined above and discuss four examples of deformation sources and their
corresponding duality-covariant actions. We present each source with an arbitrary scalar pre-factor (a, b, c, d) . In each
subsection we will mention the relevant value necessary to match terms present in the BI action given in eq. (2.22).
At higher orders in the number of fields, the nested super derivatives can become quite lengthy. To shorten the
expressions we introduce the notation

H(n) = D4(W2H(n−1)) (4.1)

H(n) = D
4
(W

2
H(n−1)) , (4.2)

with H(0) ≡ D4(W2) and H(0) ≡ D
4
(W

2
). This notation will also eliminate the explicit space-time derivatives, unless

they appear already in the deformation source.

A. (T−)2(T +)2

The lowest dimension “initial source of deformation” which is manifestly invariant under duality transformations is

I1 = a λ

∫
d12Z (T−)2(T +)2 ; (4.3)

it also has a direct counterpart in the bosonic theory. Upon use of the definition of T± and its conjugate in terms of
W and M, eq. (3.6) can be written as:

M = −iW + 2aλ i
(
D

4
(W − iM)2

)
(W + iM) . (4.4)
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This equation, and its conjugate involving M, can be solved recursively order by order in λ. The solution is relatively
compact6 with the coefficients of M =

∑
n λ

nM(n) being given by

M(0) = −i W , (4.5)

M(n)|n>0 = (−2)5−na
n−1∑

l=0

n−(1+l)∑

q=0

α(l, q;n)D
4
[M(n−(1+q+l))M(q)M(l) ] (4.6)

with

α(q, l;n) ≡ ξ2(q)ξ2(l)ξ2(n− l − q − 1) . (4.7)

ξ2(x)|x>0 ≡ (−2)x/2 , (4.8)

ξ2(x)|x=0 ≡ 1 . (4.9)

With the notation introduced in eq. (4.2), the first few terms in the expansion of M are

M = −iW + 16a iλWH(0) −
i

2
(16a)2λ2 W

(
(H(0))2 + 2H(1)

)
+ · · · . (4.10)

The action is then given directly by eq. (3.17); since it is linear in M, that a recursive solution for M automatically
translates into a recursive expression for the action. Here we choose to solve the recursion and express it through λ4

in the form of a Hermitian action:

S int
1 =

∫
d12ZW2W

2

{
− 2aλ+ 16a2λ2(H(0) +H(0))

− 128a3λ3
(
H(0)2 + 2H(1) +H(0)2 + 2H(1)

)

+ 1024a4λ4
(
6(H(0)H(1) +H(0)H(1)) + 4(H(2) +H(2)) +H(0)3 +H(0)3

)

− 8192a5λ5

(
6
(
H(0)2H(0)2 + 2(H(0)H(2) +H(0)H(2)) + 2H(1)2 + 2H(1)2

)

+ 8
(
H(1)H(0)2 +H(3) +H(0)2H(1) +H(3)

)
+H(0)4 +H(0)4

)
+O(λ6)

}
. (4.11)

Note that setting a = −2−4 recovers the terms in the BI action, eq. (2.22) through λ2 which do not contain the
space-time Laplacian, as well as relevant contributions at higher orders. While some sequences of terms – such as
those depending only on powers of H(0) – can be resummed, it does not appear that this action has a closed-form
expression.

B. (T−)3�(T +)3

As reviewed in section II B, the term (W3
�W

3
) in the BI action (2.22) is required if that action is to be interpreted

as the supersymmetric D3-brane action. Such a term will not appear in an action of the type (3.17) unless we add a
term like (T−)3�(T +)3 to the initial deformation source. Such terms may be obtained from those discussed in [12]
by dressing them with space-time derivatives. Let us therefore consider the duality-invariant

I2 = bλ2

∫
d12z (T−)3�(T +)3 . (4.12)

6 It reflects the fact that when the source of deformation is a single quartic term, we have a cubic deformation of the linear constraint, as
was also noticed in the “Model A” explored in [13].
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The twisted self-duality equation eq. (3.6) can be written as

M = −iW + 3 i b λ2 (W + iM)2
(
D

4
�(W − iM)3

)
(4.13)

and, together with its conjugate, can be solved for M and M. The first few terms in their solution are

M = −iW + 25 × 3 i b λ2 W2 (D
4
�W

3
)

− 29 × 32 i b2 λ4 W2
[
2W

(
D

4
�W

3
)2

+ 3 D
4
(� (W

4
D4W̄3)

]

+ 213 × 33 i b3 λ6W2
[
12WD

4
(
�

(
W

4
D4
(
�
(
W3
))))

D
4
(
�

(
W

3
))

+ 9
(
D

4
(
�

(
W

5
D4
(
�
(
W3
))2))

+D
4
(
�

(
W

4
D4
(
�

(
W4D

4
(
�

(
W

3
)))))))

+ 5W2D
4
(
�

(
W

3
))3 ]

+ · · · . (4.14)

Due to the presence of the Laplacian, it is inconvenient to use the notation (4.2) for this deformation; we will instead
express the action in terms of W and its conjugate. Through order λ4 it is

S int
2 =

∫
d12Z

{
− 4bλ2

(
W3

�

(
W

3
)
+W

3
�
(
W3
))

+ 26
9

5
b2λ4

(
3W3

�

(
W

4
D4
(
�
(
W3
)))

+ 2W
4
�
(
W3
)
D4
(
�
(
W3
))

+ 2W4
�

(
W

3
)
D

4
(
�

(
W

3
))

+ 3W
3
�

(
W4D

4
(
�

(
W

3
))))

+ · · ·

}
. (4.15)

Here we chose the interaction terms in the action as a full superspace integral, making use of the fact that the nonlinear
terms in M contain the appropriate chiral projector. It is not difficult to see that, by choosing b = − 1

576 = −2−6 3−2

we recover the �-dependent term in the λ2 contribution to the BI action eq. (2.22) as well as relevant contributions
at higher orders.

C. (T−)4�2(T +)4

Invariants of type eq. (4.3) naturally generalize to higher orders – for example

I3 = cλ3

∫
d12z (T−)4�2(T +)4 . (4.16)

With this deformation source, the twisted self-duality equation eq. (3.6) is

M = −iW + 4 i c λ3 (W + iM)3
(
D

4
�

2(W − iM)4
)
. (4.17)

As in the previous two cases, this equation and its conjugate can be solved recursively for M and M, leading to

M = −iW + 29 i cλ3W3D
4
(�2(W

4
))

− 217 i c2λ6W3(4D
4
(�2(W

6
D4(�2(W4)))) + 3W2D

4
(�2(W

4
))2)

+ 226 i c3λ9W3
(
12W2D

4
(�2(W

4
)))D

4
(�2(W

6
D4(�2(W4))))

+ 9D
4
(�2(W

8
D4(�2(W4))2))

+ 8D
4
(�2(W

6
D4(�2(W6D

4
(�2(W

4
))) + 6W4D

4
(�2(W

4
))3
)
· · · . (4.18)
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Absorbing the overall chiral projector in the nonlinear terms into the integration measure and thus expressing the
action as a hermitian full superspace integral we find, through O(λ6) that

S int
3 =

∫
d12Z

{
− 16cλ3

(
W4

�

(
�

(
W

4
))

+W
4
�
(
�
(
W4
)))

+ 214 1
7c

2λ6
(
4W4

�

(
�

(
W

6
D4
(
�
(
�
(
W4
)))))

+ 3W
6
�
(
�
(
W4
))

D4
(
�
(
�
(
W4
)))

+ 3W6
�

(
�

(
W

4
))

D
4
(
�

(
�

(
W

4
)))

+ 4W
4
�

(
�

(
W6D

4
(
�

(
�

(
W

4
))))))

+ · · ·

}
. (4.19)

To recover the �
2 term in the λ3 contribution to the BI action eq. (2.22), as well as relevant terms at higher orders,

we can set c = − 2−12 3−2.

D. (T−)2(T +)2D
4
((T−)2)D4((T +)2)

Another interesting invariant constructed out of four T− and four T + factors and a number of super-derivatives is:

I4 = λ3d

∫
d12Z(T−)2(T +)2D

4
((T−)2)D4((T +)2) . (4.20)

The resulting constraint equation is:

M = −iW + 2 i d λ3(W + iM)
{
D

4
((

W − iM
)2)

D
4
((

W − iM
)2

D4
(
(W + iM)2

))

+D
4
((

W − iM
)2

D4
(
(W + iM)2D

4
((

W − iM
)2)))}

. (4.21)

Solving it recursively leads, order by order in λ, to the following interaction terms in the action:

S int
4 =

∫
d12Z W2W

2

{
− 16dλ3(H(1) +H(1)) + 4096 d2 λ6

(
2(H(1)H(2) +H(1)H(2))+

H(0)H(1)2 +H(4) +H(0)H(1)2 +H(4)

)
+O(λ9)

}
. (4.22)

The leading λ3 term recovers the final λ3 terms in the BI action (2.22) with d chosen to be d = 2−10.

E. BI action through λ
3

By suitably combining the deformation sources discussed above with the mentioned relative coefficients

IBI = −

∫
d12Z

(
λ 2−4 (T−)2(T +)2 + λ2 2−6 3−2 (T−)3�(T +)3

+ λ3 2−123−2(T−)4�2(T +)4 − λ3 2−10 (T−)2(T +)2D
4
((T−)2)D4((T +)2)

+O(λ4)

)
(4.23)

and carrying out the procedure of section III B we recover the Born-Infeld action from the literature given above in
eq. (2.22). While the solution to the twisted self-duality constraint is inherently nonlinear in the initial deformation
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source, to this order only a small number of cross terms are actually relevant. At higher orders in λ more such terms
will become important together with the appearance of new invariants that may be added to the initial deformation
source. However, not all cross terms can be modified by adding higher order invariants. For example, at λ4 the only
new source should likely be (T−)5�3(T +)5 which clearly cannot modify the majority of O(λ4) terms in the action.

F. More general models

Any U(1) duality invariant source can be used in this procedure, and the new form of the action makes it rather
trivial to combine various sources to tailor craft duality-consistent N = 2 actions incorporating such sources – such
as recovering eq. (2.22). Consider for example:

I
(n,m)
gen A = λ(n,m)(�

nT (+)2)�m(�nT (−)2) , (4.24)

I
(n,m)
gen A′ = λ(n,m)(�

nD4T (+)2)�m(�nD
4
T (−)2) , (4.25)

I
(n,m)
gen A′′ = λ(n,m)(�

n∂µT (+)∂νT (+))�m(�n∂µT
(−)∂νT

(−)) , (4.26)

I
(n,m)
gen B = λ2

(n,m)(�
nT (+)3)�m(�nT (−)3) , (4.27)

I
(n,m)
gen B′ = λ2

(n,m)(�
nD4T (+)3)�m(�nD

4
T (−)3) , (4.28)

I
(n1,n2,m)
gen C = λ3

(n1,n2,m)(�
n1T (+)2)(�n2T (+)2)�m(�n1T (−)2)(�n2T (−)2) , (4.29)

for ni,m ≥ 0. It is important to note that the λni,m above will have different dimensions based upon the value of
ni,m. Each of these is a duality invariant initial source, and generates novel duality-covariant actions through the
procedure specified above. It is not difficult to see how these patterns generalize to an infinite set of other initial
sources.

The BI action is non-renormalizable by power counting. As a test of the preservation of duality symmetries at the
quantum level one may construct counterterms in the BI model and check whether they preserve the classical U(1)
duality symmetry as well as whether the higher-order terms generated by our procedure reproduce those obtained by
direct calculation. Compared to supergravity theories, the simplicity of the BI model provides a clear advantage as
a testing ground for such questions. One-loop calculations in the N = 2 BI theory have been already carried out in
[23, 24] where it was found that the relevant momentum space on-shell counterterm is

Γdiv
1 = c(ǫ)

∫
dp1dp2dp3dp4δ

4
(∑

pi

) ∫
d8θ

(
s2 +

4

3
t2
)
W(p1)W(p2)W(p3)W(p4) . (4.30)

Here c(ǫ) is a divergent coefficient. This counterterm may be written in position space in several ways, related by use
of on-shell conditions p2i = 0. One way, chosen in [24] places one derivative on each superfield factor:

Γdiv
1 = c(ǫ)

∫
d4xd8θ

(
∂µW∂µW∂νW∂νW +

4

3
∂µW∂νW∂µW∂νW

)
. (4.31)

Using the on shell conditions, p2i = 0, the first term may also be written as

∫
d4xd8θ �(W2)�(W

2
) , (4.32)

which identifies it as as arising from I
(1,0)
gen A. The second term, which is similar to bosonic terms considered in [13], arises

from I
(0,0)
gen A′′ . Through our procedure, these deformation sources make definite predictions about some of the higher

order terms that should appear in perturbative higher loop calculations. In particular, these terms will necessarily be
accompanied by higher powers of the coefficient c(ǫ) in eq. (4.30) thus implying, apart from the field dependence, also
a definite strength of the corresponding divergence. It should be interesting to check explicitly whether these predicted
higher order terms correspond to the results of multi-loop and multi-leg perturbative calculations and, if they do not,
whether the deformation source may be suitably modified to accommodate the difference. New deformation sources
will, however, always be necessary at each loop order. Indeed, the nonlinearity of eq. (3.20) implies that all higher-
order terms which are generated will contain more fields than the deformation source. Consequently, new deformation
sources will be required to all orders in perturbation theory at least for the four-superfield counterterm.
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As we explained above, as long as the action depends only on a chiral and anti-chiral superfields W , W and their
spinorial and space-time derivatives, one is free to make any choice of I. When one such choice is made eq. (3.6)
supplies a recursive procedure for obtaining M. While it may not always be as simple as the quartic deformation
given in eq. (4.3) the method described above, generalized from [12], and as demonstrated also in [13], allows one
to recursively produce the action to any desired level. At each order the number of invariants that can be used is
limited, given a fixed engineering dimension of the coupling constant. We see, therefore, choices made at lower orders
typically have definite consequences at higher orders in the dimensional coupling.

It is in principle possible to impose additional requirements of our construction, in particular the existence of
additional symmetries beyond duality. In general however, it is not immediately clear how to encode such requirements
in the choice of initial deformation source. It may be possible to first identify the properties of M[W ,W , λ] from the
action (3.16) and then require that the twisted self-duality equation is also invariant under the same transformations.
This could prove too strong a requirement, as many algebraic equations can have the same solution. Alternatively,
one may start with the most general deformation source with arbitrary coefficients and determine them by requiring
that the resulting action is invariant under the desired symmetries. An important example in this direction is the
construction of the action in [19] – which we have reproduced with our method – where in addition to duality symmetry
the action has to satisfy a certain constant shift symmetry7, associated with the D3 brane action:

δW = σ +O(W ,W) . (4.33)

Similarly, in [20] the N = 2 supersymmetric Born-Infeld action was required, apart from duality invariance, to also
have a partially broken N = 4 supersymmetry. It is, however, not obvious that the construction of the action is
algorithmic and whether actions of a different structure may be obtained by relaxing any one of these properties.
Given any self-dual hermitian function I of W , W and their derivatives, our construction directly constructs, order
by order, an action which is self-dual and covariant, thus showing that there exist infinitely many solutions to the
self-duality constraints. Further symmetry requirements may also be imposed by a suitable choice of deformation
source I.

V. DISCUSSION

In this article we explore the space of U(1)-duality invariant actions with rigid N = 2 supersymmetry employing
and extending the methods developed and explored by three of the current authors in the previous publication [12].
For these models we identify a useful presentation of the action and the U(1) duality constraint such that—when the
latter is solved perturbatively—the construction of the former follows immediately. Namely, when a certain choice
of the manifestly duality invariant source of the deformation of the linear twisted self-duality constraint is made,
I(T, T , λ), its derivative provides a dual superfield M = M(W ,W, λ) as the function of the original superfields W ,W
and as a power series in the coupling λ, as one can see from eqs. (3.6) and (3.9). The chiral part of the action is
reconstructed by the integration over λ of the product WM(W ,W , λ), and the conjugate to it provides the anti-chiral
part of the action, as shown in eq. (3.16).

Employing this approach, we have identified several initial deformations, which, after applying the recursive method,
collectively reproduce the actions found in [16–19]. Beyond those, there are further classes of deformations, which
lead to a rich variety of duality-invariant models with N = 2 supersymmetry. One important observation has
been described in [12] for the non-supersymmetric and N = 1 supersymmetric theories: when the initial source of
deformation is quartic in F , the deformation of the linear twisted self-duality condition leads to a Born-Infeld type

action, that is an action containing all powers of F up to infinity. The higher order terms are necessary to maintain
the duality invariance of the equations of motion order by order. Using the corresponding construction for N = 2
supersymmetric models detailed in this paper leads to the same conclusion.

The next natural step towards understanding the implications of E7(7) duality for the UV behavior of N = 8
supergravity is the construction of simpler examples, such as U(1) duality-consistent deformed N = 2 supergravity
theories. While the jump from rigid-supersymmetry to supergravity is non-trivial, we expect N = 2 supergravity to
be an excellent proving ground. It is possible that a suitable covariantization of the twisted self-duality constraint

7 The shift symmetry of this type is reminiscent of the shift symmetry part of the E7(7) in N = 8 supergravity, acting on scalar fields.
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(3.20) coupled with an appropriate choice of deformation source will allow us to construct the analog of the actions
discussed in this paper in the presence of local N = 2 supersymmetry.

We expect [25] that a suitable covariantization of the twisted self-duality constraint (3.20) coupled with an appro-
priate choice of deformation source will allow us to construct the analog of the actions discussed in this paper in the
presence of local N = 2 supersymmetry.

Let us briefly comment on the possible consequences of such covariant constructions for UV divergences in N = 8
supergravity. If existent, the first UV divergence for a four-point amplitude (which is sufficient to consider) will be
the N = 8 supersymmetric completion of a term of the form f(s, t, u)R4, which necessarily contains a local quartic
term of the form f(s, t, u)(dF )4 in momentum space. Here f is a polynomial of the usual Mandelstam variables whose
degree depends on the loop order at which the divergence arises.

Assuming E7(7)-symmetry to persist unmodified at the quantum level, there exist E7(7)-invariant counterterms
at sufficiently high loop order, as originally shown in [26] and more recently reinforced in [5]. The sufficiency of
this reasoning was questioned in [7]: as E7(7) is a continuous global symmetry, it requires the conservation of the
corresponding NGZ current[6] in addition to the E7(7)-invariance of the counterterm candidates. It was, however,
subsequently suggested in [11] that there exists a procedure of perturbative deformation of the linear self-duality
constraint which always allows the addition to the action of the candidate counterterm along with all other higher
terms required for the conservation of the NGZ current.

The covariant procedure introduced in [11] required generalization to recover the venerable bosonic Born-Infeld
action [12]. This class of generalizations has been applied to consider higher derivative terms [13] and in this paper
we have presented an application to N = 2 global supersymmetry. Discovering the way to meaningfully apply such
generalizations to N = 8 supergravity could shed light on the UV-finiteness question. In principle, one would start
from the classical N = 8 theory, in which the supersymmetrization of the Ricci scalar contains terms quadratic in
vector fields:

SN=8(gµν , Fµν , ...;κ
2) =

∫
1

2κ2
(R − FN (φ)F + ...) . (5.1)

One could imagine that attempting to construct a Born-Infeld typeN = 8 supergravity, by adding suitable deformation
sources and applying the covariant duality construction, results in two possible scenarios:

• construction of an N = 8 Born-Infeld type supergravity is possible, either for a general value g of the four-vector
terms

SBIN=8(gµν , Fµν , ...;κ
2, g2) =

∫
1

2κ2
(R−FN (φ)F + · · · )+ g2F 4f4(s, t, u)+ · · ·+ g2mFnfn(s, t, u, ...)+ · · · (5.2)

or only for specific coefficients gn(κ) of the n–vector terms

SBI
′

N=8(gµν , Fµν , ...;κ
2, g2) =

∫
1

2κ2
(R− FN (φ)F + · · · ) + g4(κ

2)F 4f4(s, t, u) + · · ·

+ gm(κ2)Fnfn(s, t, u, ...) + · · · (5.3)

It is however only this second option which has the possibility of being consistent with perturbation theory of
the undeformed N = 8 supergravity8. Superficially, the existence of such an action may suggest that the E7(7)

duality symmetry is consistent with the existence of UV divergences in this theory (5.1). One must however make
sure that the higher-order terms predicted by the covariant duality construction are the same as those obtained
from direct calculations. Not being able to render them consistent (e.g. by adjusting the deformation source)
would imply that some of the assumptions of the construction (e.g. that the tree-level duality transformations
are unmodified) may need to be relaxed.

• construction of a Born-Infeld type N = 8 supergravity is not possible. If it is possible to simultaneously prove
that the classical E7(7) transformations do not receive modifications at the quantum level, then E7(7) would
predict UV finiteness of N = 8 supergravity in four dimensions.

8 While the κ dependence of n-vector couplings is fixed by dimensional analysis, their precise numerical coefficients may only be fixed by
direct calculations.
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Either outcome would expose more of the quantum properties of N = 8 supergravity and the consequence classical
duality symmetries have on them. Similar scenarios exist in all theories exhibiting duality-invariant equations of
motion. Along the way to N = 8 supergravity, consideration of such symmetries may lead to the identification of
other supergravity theories with unexpectedly good ultraviolet properties or may point to a mechanism that makes
duality symmetries consistent with the existence of counterterms/UV divergences.
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Appendix A: Review of N = 0 and N = 1 duality

A manifestly N = 1 supersymmetric NGZ-type identity derived by Kuzenko and Theisen in [18], where it was
called “N = 1 self-duality equation,” is

∫
d6z

(
WαWα +MαMα

)
=

∫
d6z̄

(
W α̇W

α̇
+M α̇M

α̇
)
. (A1)

where the chiral and antichiral N = 1 superfield strengths are defined as

Wα = −
1

4
D

2
DαV and W α̇ =

1

4
D2Dα̇V (A2)

in terms of a real unconstrained prepotential V . In analogy to eq. (2.13) one defines

iMα ≡ 2
δ

δWα
S[W,W ] , −iM

α̇
≡ 2

δ

δW α̇

S[W,W ] . (A3)

N = 1 duality invariant models can be obtained by considering a general action of the form

S =
1

4

∫
d6zW 2 +

1

4

∫
d6z̄ W

2
+

1

4

∫
d8zW 2 W

2
L

(1
8
D2 W 2,

1

8
D

2
W

2
)
, (A4)

where L (u, ū) is a real analytic function of the complex variable u ≡ 1
8D

2 W 2 and its conjugate. With 9

δS

δWα
=

1

2
Wα

(
1−

1

4
D

2
[
W

2
Γ
])

where Γ = L +
1

8
D2
[
W 2 δL

δu

]
(A5)

one finds with eq. (A3)

iMα = Wα

(
1−

1

4
D

2
[
W

2
Γ
])

(A6)

9 Here, as well as in [19], the N = 1 functional superderivative is defined as δWβ(z′)
δWα(z)

= − 1
4
δ β
α D

2
δ8(z − z′).
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or, equivalently,

iMα = Wα

{
1−

1

4
D

2
[
W

2
(
L +

1

8
D2
(
W 2 ∂L (u, ū)

∂u

))] }
. (A7)

Plugging eq. (A7) into the NGZ constraint eq. (A1) leads to a functional equation for Γ

∫
d8zW 2W

2
Im[Γ− uΓ2] = 0 , (A8)

where we have used that for any N = 1 superfield Y

W 2W
2
D

2
[W

2
Y ] = W 2W

2
D

2
[W

2
]Y (A9)

because W 3 = WαWβWγ = 0 for the two-component spinor Wα. One can rewrite the above constraint in terms of
L as

∫
d8zW 2W

2
Im
[
∂u(uL )− u(∂u(uL ))2

]
= 0 . (A10)

This partial differential equation has infinitely many solutions, parametrized e.g. by the coefficients of the terms
(uu)n with n > 2 in the expansion around u = 0 (as well as the coefficient of uu2), as was shown in [27] in the
non-supersymmetric case.

The relation to the non-supersymmetric case discussed in [12] is straightforward: taking the integral over the
fermionic superspace coordinates and setting the gauginos and auxiliary fields to zero, one finds

L = −
1

2
(u+ u) + uuL (uu), u ≡

1

8
D2W 2

∣∣
θ=0,D=0,ψ=0

⇒
1

4
F 2 +

i

4
FF̃ ≡ ω . (A11)

In the non-supersymmetric cases the Born-Infeld (BI) and Bossard-Nicolai (BN) examples are reproduced by functions
[12]:

LBI =
g2

1 + 1
2g

2(ω + ω̄) +
√
1 + g2(ω + ω̄) + 1

4g
4(ω − ω̄)2

(A12)

=
g2

2
−

g4

4
(ω + ω̄) +

g6

8
((ω + ω̄)2 + ωω̄)−

g8

16
((ω + ω̄)3 + 3(ω2ω̄ + ωω̄2)) + . . . (A13)

and

LBN =
g2

2
−

g4

4
(ω + ω̄) +

g6

8
((ω + ω̄)2 + 2ωω̄)−

g8

16

(
(ω + ω̄)3 + 7(ω2ω̄ + ωω̄2)

)
+ . . .

where the first deviation occurs at O(g6).

With the above identifications, the same is true for the model with N = 1 supersymmetry. At O(g6) a deviation
between the Born-Infeld-type N = 1 model and the N = 1 supersymmetrization of the Bossard-Nicolai model will
occur:

LBN|O(g6) − LBI|O(g6) =
g6

8
ωω̄ ≡

g6

8
D2W 2D

2
W

2
. (A14)

Comparing now the O(λ3) terms in eq. (4.11), which corresponds to the N = 2 supersymmetrization of the BN-initial
deformation, with the corresponding terms in the Born-Infeld action eq. (2.22), one finds again the difference

λ3

32
H(0)H

(0)
=

λ3

32
D4W2D

4
W

2
, (A15)

where we have set a = − 1
16 in eq. (4.11) in order to connect to the BI result as discussed in subsection IVA.
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Appendix B: N = 2 SUSY, U(1) duality, and derivative requirements

Here we consider a generalization of the N = 0 and N = 1 actions assuming—as in [18]—dependence on the N = 2

superfields W2 and W
2
. While the free action reads

Sfree =
1

8

∫
d8ZW2 +

1

8

∫
d8Z W

2
, (B1)

it is obvious to try, whether an ansatz similar10 to the interaction part of eq. (A4),

Sint = −
1

4

∫
d12Z W2 W

2
L (D4W2,D

4
W

2
) (B2)

suffices to produce a duality-invariant action. We will show in the following, that this is not the case: one has to
include new terms depending on spacetime derivatives in order to satisfy conservation of the NGZ current eq. (2.16).

Using eq. (2.13) in the above equation yields

δSint

δW
= −

1

2
WD

4
(W

2
Γ) where Γ = L +D4

[
W2 δL

δu

]
. (B3)

where here u = D4W2. In terms of Γ one finds

iM = W
(
1− 2WD

4
[W

2
Γ]
)
. (B4)

Plugging eq. (B4) M into the self-duality equation (2.16) yields

∫
d12ZW2 W

2
Im[Γ− ΓD

4
(W

2
Γ)] = 0 . (B5)

Rewriting the above equation in terms of L does not give the same beautiful result as in the N = 1 situation: there
is no N = 2-analogue to eq. (A9). As the N = 2 superfield W is a scalar, terms containing W3 will not vanish. Thus
the constraint analogue to eq. (A10) reads

∫
d12ZW2 W

2
Im
[
∂u(uL )− u(∂u(uL ))2 +∆L

]
= 0 . (B6)

The correctional term ∆L contains terms like D4[D
4
W ] which, after carrying out the derivatives, yields terms

proportional to ∂µW which do not cancel. Thus, the ansatz eq. (B2) is not sufficient, instead one needs

Sint =
1

2

∫
d12Z W2 W

2
L (D4W2,D

4
W

2
) +O(∂W , ∂W) . (B7)

Comparing with eq. (2.20), one finds that those terms do indeed appear. Already at O(λ2) there is a term λ2

9 W3
�W

3
,

which would have vanished in a N = 1 supersymmetric theory. At the next order, O(λ3), one finds terms of the form

W2W
2
D4[W2D

4
[W

2
]], which are not covered by an ansatz of the form W2W

2
L (D4W2,D

4
W

2
).

Appendix C: Conventions of N = 2 superspace

Superderivatives are defined as

Di
α = ∂iα + iθ̄α̇i∂αα̇ and Dα̇i = −∂α̇i − iθαi ∂αα̇ (C1)

10 The prefactor is chosen to allow for straightforward comparison of the resulting differential equation with the N = 1 model in the last
section. Of course, any prefactor can be absorbed in the definition of L .
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where α, α̇ are usual SU(2) spinor indices and latin indices are super-indices in the range from {1, . . . 4}. Anticom-
mutation relations read

{Di
α,Dα̇i} = −2 i δij ∂αα̇ . (C2)

Derivatives can be combined into

Dij = DαiDj
α and D

ij
= D

i

α̇D
α̇j

(C3)

and finally

D4 =
1

48
DijDij and D

4
=

1

48
D
ij
Dij . (C4)

Chiral and antichiral superfields W(x, θ) and W(x, θ̄) are defined as

Dα̇iW = 0 and Di
αW = 0 . (C5)

For a full superfield V(x, θ, θ̄),
∫

d8Z D
4
V =

∫
d8ZW =

∫
d12Z V (C6)

Correspondingly, the functional derivative for chiral and antichiral superfields are defined via

δW(Z)

δW(Z ′)
= D

4
δ12(Z − Z ′) and

δW(Z)

δW(Z ′)
= D4δ12(Z − Z ′). (C7)

Because of anticommutativity, powers higher than four in the superderivatives vanish (here we write the chiral part
only, the antichiral is completely equivalent),

Dn = 0 ∀n > 4 , (C8)

which leads to

D4(D4(x)) = 0 and thus D4(XD4(Y )) = D4(X)D4(Y ) (C9)

for arbitrary X and Y . Besides linearity and scaling

D4(X + Y ) = D4(X) +D4(Y ) and D4(cX) = cD4(X) ∀ scalar c (C10)

the chain rule does not apply trivially due to the product structure of D4.

For the space-time d’Alambert operator appearing in the examples in subsections 4.3 and 4.16, the following
commutation relation holds:

�D4(X) = D4
�(X) . (C11)
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