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Abstract

Sources of long wavelength radiation are naturally described by an effective field theory (EFT)

which takes the form of a multipole expansion. Its action is given by a derivative expansion

where higher order terms are suppressed by powers of the ratio of the size of the source over the

wavelength. In order to determine the Wilson coefficients of the EFT, i.e. the multipole moments,

one needs the mapping between a linear source term action and the multipole expansion form of

the action of the EFT. In this paper we perform the multipole expansion to all orders by Taylor

expanding the field in the source term and then decomposing the action into symmetric trace free

tensors which form irreducible representations of the rotation group. We work at the level of the

action, and we obtain the action to all orders in the multipole expansion and the exact expressions

for the multipole moments for a scalar field, electromagnetism and linearized gravity. Our results

for the latter two cases are manifestly gauge invariant. We also give expressions for the energy flux

and the (gauge dependent) radiation field to all orders in the multipole expansion. The results for

linearized gravity are a component of the EFT framework NRGR and will greatly simplify future

calculations of gravitational wave observables in the radiation sector of NRGR.
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I. INTRODUCTION

The multipole expansion is a standard tool in physics which students usually encounter

first when studying electrostatics [1], where it is employed to derive approximate expressions

for the electric field at a distance R from a source of size a provided that a ≪ R . In this case

it is an expansion in a/R and is employed at the level of the solution of a static equation

of motion, where its form can be derived from Taylor expanding the Green’s function of

the Laplacian. In time dependent situations, the multipole expansion does not correspond

to an expansion in a/R any more. For the radiation field far away from the source in the

regime R ≫ a, λ, all multipoles yield a leading contribution to the far zone radiation field

falling off as 1/R. For the leading 1/R piece of the radiation field, the multipole expansion

is organized as an expansion in a/λ which may be truncated for long wavelengths λ ≫ a.

One important feature of the multipole expansion is that the multipole moments are

organized in irreducible representations of the rotation group SO(3). This has several im-

portant advantages. It makes calculations simpler and more transparent, and it ensures

the absence of mixing of multipole moments for example in the energy flux in a linear the-

ory (so that we can truly speak of dipole radiation to all orders, otherwise there would be

for example dipole–trace-of-octupole radiation at higher orders). Performing the multipole

expansion then includes a decomposition into multipole moments which are in irreducible

representations of SO(3), where we use symmetric trace free (STF) tensors.

While the traditional field of application of the multipole expansion has been electro-

magnetism, it is used in general relativity and in particular in gravitational wave physics

extensively [2–4]. In both cases however, it is commonly applied at the level of the solution

of the equations of motion when computing the fields. In this paper, we want to study the

multipole expansion from a different angle, where we consider the multipole expansion at the

level of the action. This is required in many nonrelativistic effective field theories (EFTs)

in order to obtain a uniform power counting [5, 6].

EFTs have become an indispensable tool of modern theoretical physics to systematically

study systems with multiple separate scales, see [7] for a review. Their construction is

based on the physical scales in the problem and the underlying symmetries, which together

provide the form of the action. It is important to have a uniform power counting for all of

the ingredients of the theory, i.e. at the level of the action, so that one can systematically
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calculate to a given order without having to guess which terms or Feynman diagrams need

to be included. The coefficients in front of the terms (or operators in quantum language)

in the action are called Wilson coefficients and need to be determined from matching. In

weakly coupled theories where the underlying “full theory” is known the matching can be

performed analytically. Examples for such EFTs include NRQED, NRQCD [8] and NRGR

[6] which were constructed to describe nonrelativistic bound states.

In these theories, the size of the bound state, i.e. the size of the radiation source, is

much smaller than the wavelength of emitted radiation. In order to disentangle the different

scales and to achieve a uniform power counting, it is necessary to introduce separate modes

of the fields which describe physical effects on different scales and which have different

kinematic properties. Potential modes for example yield the leading binding dynamics of

the source while radiation (or ultrasoft) modes describe physical on-shell radiation. In order

to have a uniform power counting of the action written in terms of the different modes,

it becomes necessary to Taylor expand the radiation modes describing the physics at the

longest distances in the action around a point, which lies within the source [5, 6]. This is

the origin of the multipole expansion in these nonrelativistic EFTs, where it is required at

the level of the action and plays an important role in the matching to an effective radiation

theory.

The EFT framework NRGR [6] (see [9] for a pedagogical review and [10] for a brief essay)

for nonrelativistic gravitational bound states such as compact binary systems has become an

important systematic tool to perform post-Newtonian (PN) computations for gravitational

wave templates which are crucial for direct detection experiments such as LIGO/VIRGO

[11, 12] or eLISA [13]. It is an alternative to the more traditional methods to perform PN

calculations, see [14] for a review.

The EFT construction of NRGR to describe compact binary systems is based on the

hierarchy of length scales during the inspiral phase, where the size of the compact objects is

much smaller than their orbital separation which in turn is much smaller than the wavelength

of the emitted gravitational waves. The first effective description used to describe the physics

at distances between the finite size scale and the orbital scale is constructed by replacing

the compact objects with point particle worldlines, where their finite size effects can be

included with higher order terms in the point particle action. The second stage of the EFT

is constructed for scales between the orbital and the wavelength scales, where the potential

3



modes which are responsible for physical effects at the orbital scale are removed from the

theory. The resulting theory has a conservative part and a radiation sector in terms of the

radiation modes describing gravitational waves.

The radiation sector of NRGR has been further developed and explored beyond the lead-

ing order in [15], where the general form of the action for the radiation sector was constructed.

Its form is determined by the underlying symmetries, reparameterization invariance and dif-

feomorphism invariance, and is applicable to arbitrary gravitational wave sources in the long

wavelength approximation. This action of the effective long wavelength radiation theory is

in the form of a multipole expansion and is a derivative expansion where higher order terms

are suppressed by powers of the ratio of the size of the source over the wavelength. The Wil-

son coefficients of the action, the multipole moments, are not determined by the symmetries

and need to be fixed through a matching calculation.

This matching onto the effective radiation theory is performed perturbatively using Feyn-

man diagrams. In particular, we calculate in the “full theory”, i.e. in the effective theory

which still has potential modes as degrees of freedom, Feynman diagrams with one external

radiation mode and arbitrarily many potential modes1 being exchanged between the two

point particles. The result of these Feynman diagrams can be written as an effective linear

source action S = −1/(2mP l)
∫

d4xT µν h̄µν . Here, T µν is the stress-energy pseudo-tensor

which includes for example the gravitational binding energy of the system, and we define it

in terms of the Feynman diagrams. This action is certainly not in multipole expansion form

with a derivative expansion. In fact, to obtain a uniform power counting, it is required that

the radiation field in this action is Taylor expanded. This Taylor expansion around a single

point forces the resulting radiation theory to be formulated in terms of just one worldline

coupled to gravity. So in order to match onto the effective radiation theory, we need to

first Taylor expand this action, write it in terms of manifestly gauge invariant operators and

finally express the coefficients in irreducible representations of SO(3). This then gives the

multipole moments in terms of moments of T µν , which in turn are computed using Feynman

diagrams.

In [15] this matching was first done to NLO (for the quadrupole) and resulted in repro-

ducing the energy flux to 1PN. In doing this, the decomposition of the coefficients of the

1 Which diagrams need to be included to a given order is fixed by the power counting of the EFT [6].
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Taylor expansion of the radiation fields into irreducible multipole moments needed to be

performed, which at that order was a straightforward exercise. At higher orders [16], this

decomposition becomes increasingly cumbersome, and the purpose of this paper is to solve

it to all orders. Our results will streamline the matching needed in higher order calculations

of gravitational wave observables2 in the effective field theory framework NRGR.

In this paper we perform the multipole expansion at the level of the action first for the

simple case of a scalar field, then we consider electromagnetism and finally we study general

relativity with a linearized source term. While our results for gravity are our main result,

we demonstrate our methods used in multipole expanding the action first in the simpler

cases. For all three theories studied, we multipole expand the action to all orders and give

the exact multipole moments. We also compute the energy flux or radiation power and the

radiation field far away from the source in terms of the multipole moments.

The multipole expansion at the level of the solution of the equations of motion has been

performed for the same three cases we consider here by Damour and Iyer in [2]. Their results

are given for general sources, but taking the long wavelength limit of their expressions, we

find complete agreement with our results for the multipole moments.

Notation: We work with a mostly negative metric signature (+,−,−,−). Greek let-

ters denote Lorentz indices ranging from 0 . . . 3 and lower-case latin indices denote spatial

indices from 1 . . . 3. Upper-case indices denote a set of spatial indices where we use the multi-

index notation introduced by Blanchet and Damour [18]. For example, xN = xk1 . . . xkn or

xijN−2 = xixjxk1 . . . xkn−2 . Parenthesis around indices denote symmetrization, for exam-

ple A(iBjCk) = 1
3!

(

AiBjCk + AiBkCj + AjBiCk + AjBkC i + AkBiCj + AkBjC i
)

. We use

natural units c = ~ = 1.

2 NRGR and NRGR-inspired worldline EFTs have produced many interesting results in gravitational wave

physics and beyond, see [17].
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II. SCALAR FIELD

A. Multipole expansion of the action

We first study a scalar field φ coupled linearly to a source J . Its action reads

S =

∫

d4x

(

1

2
∂µφ∂

µφ+ Jφ

)

(1)

and its equation of motion is

2φ = J . (2)

Now we consider the configuration where the spatial variation of the field outside the source

is much larger than the size of the source J , i.e. if spatial derivatives scale as ∂iφ ∼ 1
λ
φ

and if the size of the source is a, we are considering the situation a ≪ λ. For radiation

this means we are working in a long wavelength approximation. In this case we can Taylor

expand the field φ in the source term in the action Ssource around a point within the source,

and we choose our coordinates such that the point we expand around is the origin x = 0.

We plug the Taylor expansion

φ(t,x) =

∞
∑

n=0

1

n!
xk1 . . .xkn (∂k1 . . . ∂knφ) (t, 0) =

∞
∑

n=0

1

n!
xN (∂Nφ) (t, 0) (3)

into the source term in the action

Ssource =

∫

d4xJφ =

∫

dt

∫

d3xJ(t,x)
∞
∑

n=0

1

n!
xN (∂Nφ) (t, 0) =

∫

dt
∞
∑

n=0

1

n!
MN∂Nφ (4)

where we defined the moments MN (t) =
∫

d3xJ(t,x)xN . Note that all MN are already

symmetric in their indices k1 . . . kn. In order to bring the source action into the form of a

multipole expansion we need to decompose the moments MN in irreducible representations

of the rotation group SO(3) for which we use symmetric trace free (STF) tensors.

The tensors MN can be expressed in terms of STF tensors starting from the formula for

arbitrary symmetric tensors SN [4, 19]

SN = SN
STF +

[n2 ]
∑

p=1

(−1)p+1n!(2n− 2p− 1)!!

(n− 2p)!(2n− 1)!!(2p)!!
δ(k1k2 . . . δk2p−1k2pSk2p+1...kn)a1a1...apap (5)

where
[

n
2

]

denotes the largest integer ≤ n/2. On the RHS of Eq. (5) the tensors of lower

rank, Sk2p+1...kna1a1...apap, still are not trace free in their free indices k2p+1 . . . kn. Therefore,
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we will use Eq. (5) recursively to make all tensors trace free, where we mean that all free

indices in {k1, . . . , kn} which are not on a δkikj should become trace free. This results in

SN =

[n2 ]
∑

p=0

c(n)p δ(k1k2 . . . δk2p−1k2pS
k2p+1...kn)a1a1...apap
STF (6)

where the STF prescription only applies to the uncontracted indices k2p+1 . . . kn and where

the coefficients are

c(n)p =
n!(2n− 4p+ 1)!!

(2p)!!(n− 2p)!(2n− 2p+ 1)!!
. (7)

With this the source action becomes

Ssource =

∫

dt
∞
∑

n=0

[n2 ]
∑

p=0

c
(n)
p

n!

∫

d3x J r2pxN−2P
STF

(

∇2
)p

∂N−2Pφ

=

∫

dt
∞
∑

ℓ=0

1

ℓ!

∞
∑

j=0

(2ℓ+ 1)!!

(2j)!! (2ℓ+ 2j + 1)!!

∫

d3x J r2jxL
STF

(

∇2
)j
∂Lφ (8)

where we define r = |x|. Now we may use the equation of motion outside the source 2φ = 0

to convert the contracted spatial derivatives to time derivatives, and in turn integrate by

parts to let them act on the moments rather than on the field. This yields the source action

in multipole expanded form

Ssource =

∫

dt
∞
∑

ℓ=0

1

ℓ!
IL∂Lφ (9)

with the multipole moments given by

IL =

∞
∑

p=0

(2ℓ+ 1)!!

(2p)!! (2ℓ+ 2p+ 1)!!

∫

d3x ∂2p
t J r2pxL

STF . (10)

The normalization of the multipole moments IL is chosen such that for p = 0 their expression

reads

IL
0 =

∫

d3x J xL
STF , (11)

where we note that the static case of a time independent source is given by only the p = 0

components of the multipoles.

B. Energy flux for scalar radiation

We compute the power or energy flux emitted in scalar waves to all orders in the multipole

expansion from Eq. (9) using the method employed in [9, 15]. For the amputated amplitude

7



of φ emission from the ℓth multipole moment we have

iA(ℓ) = i
(−i)ℓ

ℓ!
ILkL (12)

where kµ = (|k|,k) is the outgoing momentum of the emitted on-shell scalar φ. We then

compute the energy flux as in [9, 15]

Ė =
1

2T

∫

d3k

(2π)3
|A|2 = 1

2T

∫

dΩkdk k2

(2π)3

∞
∑

ℓ=0

∞
∑

ℓ̃=0

1

ℓ! ℓ̃!
kℓ+ℓ̃ IL(k)IL̃

∗

(k)nL
kn

L̃
k (13)

where we defined nk = k/|k|. The angular integral is performed with

∫

dΩnP =











0 if p odd

4π
(p+1)

δ(k1k2 . . . δkp−1kp) if p even
(14)

which results in the condition ℓ̃ = ℓ since the multipole moments are trace free and for

ℓ̃ 6= ℓ some δ will contract two indices of the same multipole moment. Moreover, when using

Eq. (14), we need to omit the combinations of indices on the δ’s which vanish because the

multipole moments are trace free, or in other words, we only need to keep the products of

δ’s where each δ contracts one index on IL with one index on IL̃
∗

. That is accounted for by

a factor of (ℓ!)22ℓ/(2ℓ)! = ℓ!/(2ℓ− 1)!! inserted into Eq. (13) and contracting the multipole

moments with each other. We find

Ė =
1

4π2T

∫

∞

0

dk

∞
∑

ℓ=0

1

ℓ!(2ℓ+ 1)!!
k2(ℓ+1) ILIL∗

=

∞
∑

ℓ=0

1

4π ℓ!(2ℓ+ 1)!!

〈

(

dℓ+1

dtℓ+1
IL

)2
〉

(15)

where the first line is the expression for the energy flux in momentum space and the second

line is the energy flux in coordinate space. In the latter, <> denotes time averaging.

C. Radiation field far from the source

At a distance R ≫ λ ≫ a only the 1/R component of the field is relevant and we may

neglect the components which fall off faster than 1/R. The field φ(t,x) can be computed

from the one-point function, i.e. the φ-emission amplitude with a retarded propagator for

the φ leg. The use of the retarded propagator in diagrammatic field theory calculations
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can be derived in the in-in formalism [20]. Its usefulness in the context of NRGR was first

emphasized in [21]. For classical calculations of the field (i.e. the one-point function), one

can show that the use of retarded propagators is the only modification the in-in formalism

implies, even if nonlinearities and multiple couplings to a source are considered. Let us

show how to isolate the leading 1/R piece of the multipole expanded radiation field. For

that purpose it is convenient to write the multipole expanded action of Eq. (9) as

Ssource =

∫

d4y

∞
∑

ℓ=0

1

ℓ!
IL(y0)δ3(y)

∂

∂yk1
. . .

∂

∂ykℓ
φ(y0,y) , (16)

and we require the retarded propagator which in d=4 spacetime dimensions reads in coor-

dinate space
−iθ(tf − ti)

4π|xf − xi|
δ(tf − ti − |xf − xi|) . (17)

Then the field or the one-point function is given by

φ(t,x) = i

∫

d4y

∞
∑

ℓ=0

1

ℓ!
IL(y0)δ3(y)

∂

∂yk1
. . .

∂

∂ykℓ
−iθ(t− y0)

4π|x− y| δ(t− y0 − |x− y|) . (18)

Note that the spatial derivatives can either act on the delta function δ(t− y0 − |x− y|) or
on the factor 1/|x− y|. For one spatial derivative acting on these two possibilities we have

∂

∂yk
1

|x− y| =
(x− y)k

|x− y|3 (19)

∂

∂yk
δ(x0 − y0 − |x− y|) = ∂(x0 − |x− y|)

∂yk
∂

∂(x0 − |x− y|)δ(x
0 − y0 − |x− y|)

=
(x− y)k

|x− y|

(

− ∂

∂y0
δ(x0 − y0 − |x− y|)

)

. (20)

We see that if we integrated these expressions over y using the δ3(y) in the expression of the

field in Eq. (18), only the second one where the spatial derivative acts on the delta function

would give a term proportional to 1/|x|. When further derivatives act, they can also act on

the vectors (x− y)k in Eqs. (19, 20). These however will give traces which vanish since the

multipole moments are trace free. After integrating over y, all derivatives acting on powers

of |x − y| will yield terms which fall off faster than 1/|x|. Thus, all spatial derivatives ∇y

have to act on the delta function, where they are effectively converted3 to −n ∂
∂y0

where

3 This corresponds to computing the amputated one φ emission amplitude on-shell in momentum space,

since this corresponds to setting k = k0n.
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n = x/|x| . If we then employ this in the expression for the field we find for the radiation

field to all orders in the multipole expansion

φ(t,x) =
1

4π|x|

∞
∑

ℓ=0

1

ℓ!
nL (∂ℓ

tIL)(tret) (21)

where we integrated by parts to let all time derivatives act on the multipole moments and

where the moments and their time derivatives are evaluated at retarded time tret = t−|x|. We

can also use the radiation field of Eq. (21) to compute the energy flux using Ė =
∫

dΩ|x|2φ̇2

which confirms our result of Eq. (15).

III. ELECTROMAGNETISM

A. Multipole Expansion of the action

The action for the electromagnetic field Aµ coupled to a source Jµ reads

S =

∫

d4x

(

−1

4
F µνFµν − JµAµ

)

(22)

where Fµν = ∂µAν − ∂νAµ and where the current in the source term is conserved,

∂µJ
µ = 0 . (23)

The electric and magnetic fields in terms of the potentials are E = −∇A0−Ȧ andB = ∇×A

respectively and obey the usual Maxwell equations which are given outside the source by

∇ ·E = 0 , ∇ ·B = 0 , ∇×E = −Ḃ , ∇×B = Ė . (24)

Plugging the Taylor expansion of the field into the source term of the action Ssource, it reads

Ssource = −
∫

dt

∫

d3xJµ(t,x)
∞
∑

n=0

1

n!
xN∂NAµ . (25)

As the first step, we will express Ssource in terms of gauge invariant operators. This means

that, aside from the monopole term arising from the µ = 0 and n = 0 piece, all other

components of Eq. (25) will be given in terms of the electric and magnetic fields and their

spatial derivatives. For this purpose, we need to consider the A0 and the Ai components

separately. The former are simply written as

SA0

source = −
∫

dt

(
∫

d3xJ0

)

A0 +

∫

dt

∞
∑

n=1

1

n!

(
∫

d3xJ0 xN

)

∂N−1

(

−∇knA
0
)

. (26)
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and we see that, aside from the first term coupling the total charge of the source to the

electrostatic potential, the A0 source action includes couplings to the A0 piece of the electric

field E.

Now the Ai piece of the source action,

SAi

source =

∫

dt
∞
∑

n=0

1

n!

(
∫

d3xJ ixN

)

∂NA
i , (27)

needs to be rewritten such that it provides couplings to the magnetic field as well as the

Ai components of the electric field which were missing in the A0 part in Eq. (26). This is

achieved by decomposing the source action for Ai into two parts, each with definite symmetry

properties in the spatial indices {i, k1 . . . kn}. The first part is totally symmetric in all indices

and the second one is antisymmetrized in one pair of indices (i, k1) and then symmetrized

in {k1 . . . kn}. These symmetrizations are conveniently done using Young symmetrizers [22]

denoted as Young tableaux. In terms of these, the couplings in Eq. (27) are expressed as

∫

d3x J ixN =
1

(n+ 1)!
i k1 . . .kn +

n

(n+ 1)!

(

i k2 . . .kn
k1

+ k-perms

)

(28)

where

i k1 . . .kn = n!

∫

d3x
[

J ixN +
(

Jk1xik2...kn + k-perms
)]

, (29)
(

i k2 . . .kn
k1

+ k-perms

)

= n!

∫

d3x J ixN − (n− 1)!

∫

d3x
(

Jk1xik2...kn + k-perms
)

, (30)

and where “+ k-perms” means that all other combinations of the indices {k1 . . . kn} which

differ from the original are to be added. For example, it means that in Eq. (28) there are n

Young diagrams to be added, each with a different index kj in the box in the second row.

With this decomposition the action becomes

SAi

source =

∫

dt
∞
∑

n=0

1

n!

(

1

(n+ 1)!
i k1 . . .kn +

n

(n+ 1)!

(

i k2 . . .kn
k1

+ k-perms

))

∂NA
i.

(31)

For the totally symmetric piece we now use the conservation of Jµ from which follows that

∫

d3xJ̇0xiN = −
∫

d3x∂aJ
axiN =

∫

d3x
[

J ixN+
(

Jk1xik2...kn + k-perms
)]

=
1

n!
i k1 . . .kn

(32)
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and the part with the antisymmetrization can be written as

(

i k2 . . .kn
k1

+ k-perms

)

= (n− 1)!

∫

d3x
(

ǫik1cǫabcJaxbk2...kn + k-perms
)

. (33)

Using these expressions in Eqs. (32) and (33), the Ai part of the source action gives

SAi

source =

∫

dt
∞
∑

n=1

1

n!

∫

d3xJ0xN∂N−1

(

−Ȧkn
)

−
∫

dt
∞
∑

n=1

n

(n+ 1)!

∫

d3x (J× x)kn xN−1∂N−1B
kn

(34)

where we integrated by parts to let the time derivative act on the field Ai. Now we can

combine this the source action for A0 adding Eqs. (26) and (34) and obtain

Ssource = −
∫

dt

(
∫

d3xJ0

)

A0 +

∫

dt

∞
∑

n=1

1

n!

∫

d3xJ0xN∂N−1E
kn

−
∫

dt
∞
∑

n=1

n

(n+ 1)!

∫

d3x (J× x)kn xN−1∂N−1B
kn , (35)

which is in the desired form. Clearly, the source action is now in a manifestly gauge invariant

form, however the coefficients of the operators are not yet in irreducible representations of

SO(3), i.e. they are not yet in STF form. Bringing the action in a form with coefficients

in STF for is performed by first writing all coefficients as symmetric tensors and secondly

taking out the traces using the formula of Eq. (6).

The first term in Eq. (35) is trivially in STF form, whereas the coefficients of the other

terms in the first line of Eq. (35) are already symmetric in all indices {k1 . . . kn}. Thus, we
only need to bring the terms in the second line of Eq. (35),

S(2)
source ≡ −

∫

dt
∞
∑

n=1

n

(n + 1)!

∫

d3x (J× x)kn xN−1∂N−1B
kn , (36)

in the form of symmetric tensors. For this purpose we rewrite the decomposition in terms

of Young tableaux of Eq. (28) in the convenient form

KixN−1 =
[

KixN−1
]S

+
1

n

(

ǫik1cǫabcKaxbk2...kn−1 + k-perms
)

(37)

where we made use of Eq. (33). Using this in the action gives

S(2)
source = −

∫

dt
∞
∑

n=1

n

(n+ 1)!

∫

d3x
[

(J× x)kn xN−1
]S

∂N−1B
kn

12



−
∫

dt
∞
∑

n=2

n

(n+ 1)!

n− 1

n

∫

d3x ((J× x)× x)kn−1 xN−2∂N−2 (−∇×B)kn−1

= −
∫

dt

∞
∑

n=1

n

(n+ 1)!

∫

d3x
[

(J× x)kn xN−1
]S

∂N−1B
kn

−
∫

dt
∞
∑

n=1

n

(n+ 2)!

[
∫

d3x ∂tJ · x xN

]S

∂N−1E
kn

+

∫

dt
∞
∑

n=1

n

(n+ 2)!

[
∫

d3x ∂tJ
knr2xN−1

]

∂N−1E
kn , (38)

where we have used the Maxwell equations outside the source to replace the curl of B, and

we integrated by parts to let the resulting time derivative act on the moments rather than

on the fields. The last term in Eq. (38) is still not symmetric, and in order to bring S
(2)
source

into a form expressed only in terms of symmetric tensors, the symmetrization procedure

of Eq. (37) has to be applied infinitely many times where we use the Maxwell equations

in vacuum to replace any curls of E or B and integrate all time derivatives by part to

act on the moments. This is straightforward since the resulting structures are reoccurring

cyclically, and can we derive the expression for S
(2)
source in terms of symmetric tensors. With

this decomposition, the total source action in terms of symmetric tensors is

Ssource = −
∫

dt

(
∫

d3xJ0

)

A0 +

∫

dt
∞
∑

n=1

1

n!

[
∫

d3xJ0xN

]S

∂N−1E
kn

−
∫

dt

∞
∑

n=1

∞
∑

q=0

n

(n+ 2q + 2)!

[
∫

d3x ∂2q+1
t J · xxNr2q

]S

∂N−1E
kn

+

∫

dt

∞
∑

n=1

∞
∑

q=0

n

(n+ 2q + 2)!

[
∫

d3x ∂2q+1
t JknxN−1r2q+2

]S

∂N−1E
kn

−
∫

dt
∞
∑

n=1

∞
∑

q=0

n

(n+ 2q + 1)!

[
∫

d3x ∂2q
t (J× x)kn xN−1r2q

]S

∂N−1B
kn . (39)

Now the final step is to use Eq. (6) to write the symmetric tensors in terms of STF

tensors. The first term in Eq. (39) coupling the static potential to the total charge,

SQ
source ≡ −

∫

dt

(
∫

d3xJ0

)

A0 , (40)

is trivially symmetric and trace free. For the other parts, we can essentially repeat the

procedure of the scalar case. However, we need to omit the traces which are zero on-shell,

i.e. which give terms in the action proportional to ∇ · E = 0 or ∇ · B = 0. Moreover, we

13



need to account for different structures of the moments which can arise from traces of the

moments. Let us start with the non-trivial part of line 1 of Eq. (39),

SE1

source ≡
∫

dt

∞
∑

n=1

1

n!

[
∫

d3xJ0xN

]S

∂N−1E
kn . (41)

When using Eq. (6) for the trace free decomposition of we need to count how many of

the symmetrizations of indices in Eq. (6) give terms with ∇ · E. For a tensor with n − 2p

free indices on SSTF and 2p indices on δ’s on the RHS of Eq. (6) there are
(

n

2p

)

possible

combinations of indices which are on the δ’s (not counting their possible orders). Out of

these possibilities, there are
(

n−1
p−1

)

possibilities of indices on the δ’s which include the index

kn and which is the index on Ekn in the action. Thus we need to subtract these possibilities

when we set ∇ · E = 0. This gives the piece of the action

SE1

source =

∫

dt

∞
∑

n=1

[n2 ]
∑

p=0

c
(n)
p

n!

(

n

2p

)

−
(

n−1
2p−1

)

(

n

2p

)

∫

d3xJ0r2pxN−2P
STF

(

∇2
)p

∂N−2P−1E
kn−2p

=

∫

dt
∞
∑

ℓ=1

1

ℓ!

∞
∑

p=0

ℓ

ℓ+ 2p

(2ℓ+ 1)!!

(2p)!! (2ℓ+ 2p+ 1)!!

∫

d3x ∂2p
t J0r2pxL

STF∂L−1E
kℓ , (42)

where we used the wave equation 2E = 0 to convert ∇2E to Ë and then integrated by parts

to let the time derivatives act on the moments rather than on the field.

The trace free decomposition and the counting for the piece of the source action in the

second line of Eq. (39) works exactly like the one for SE1

source because in both cases all free

indices of the moments are on xN . We obtain

SE2

source ≡ −
∫

dt

∞
∑

n=1

∞
∑

q=0

n

(n + 2q + 2)!

[
∫

d3x ∂2q+1
t J · xxNr2q

]S

∂N−1E
kn

= −
∫

dt

∞
∑

ℓ=1

∞
∑

p=0

(

p
∑

j=0

c
(ℓ+2j)
j

)

ℓ

(ℓ+ 2p+ 2)!

∫

d3x
(

∂2p+1
t J · x

)

xL
STFr

2p∂L−1E
kℓ .

(43)

However when we take traces in the STF decompositions of the remaining terms of Eq.

(39), we need to count how many times a factor of r2, J · x, or (J× x) · x = 0 occurs. The

components of the source action in the third line of Eq. (39) can be expressed as

SE3

source ≡
∫

dt

∞
∑

n=1

∞
∑

q=0

n

(n+ 2q + 2)!

[
∫

d3x ∂2q+1
t JknxN−1r2q+2

]S

∂N−1E
kn

14



=

∫

dt
∞
∑

n=1

∞
∑

q=0

[n2 ]
∑

p=0

n

(n+ 2q + 2)!
c(n)p

n− 2p

n

[
∫

d3x ∂
2(q+p)+1
t

(

n− 2p

n
Jkn−2pxN−2P−1r2(q+p)+2 +

2p

n
J · xxN−2P r2(q+p)

)]STF

∂N−2P−1E
kn−2p

=

∫

dt

∞
∑

ℓ=1

∞
∑

p=0

(

p
∑

j=0

c
(ℓ+2j)
j

ℓ+ 2j

)

ℓ2

(ℓ+ 2p+ 2)!

[
∫

d3x ∂2p+1
t JkℓxL−1r2p+2

]STF

∂L−1E
kℓ

+

∫

dt
∞
∑

ℓ=1

∞
∑

p=0

(

p
∑

j=0

2j c
(ℓ+2j)
j

ℓ+ 2j

)

ℓ

(ℓ+ 2p+ 2)!

∫

d3x
(

∂2p+1
t J · x

)

xL
STFr

2p∂L−1E
kℓ .

(44)

The counting of terms from the STF decomposition for the fourth line of Eq. (39) works

essentially the same way as for the third line, only that now (J× x) · x = 0 and the only

possible structure to arise from contracted indices is r2. We find

SB1

source ≡ −
∫

dt
∞
∑

n=1

∞
∑

q=0

n

(n+ 2q + 1)!

[
∫

d3x ∂2q
t (J× x)kn xN−1r2q

]S

∂N−1B
kn

= −
∫

dt

∞
∑

ℓ=1

∞
∑

p=0

(

p
∑

j=0

c
(ℓ+2j)
j

ℓ + 2j

)

ℓ2

(ℓ+2p+1)!

[
∫

d3x ∂2p
t (J× x)kℓ xL−1r2p

]STF

∂L−1B
kℓ .

(45)

Finally, we can add Eqs. (40), (42), (43), (44) and (45) to find our final result for the

multipole expanded electromagnetic source action

Ssource = −
∫

dt

(
∫

d3xJ0

)

A0 +

∫

dt

∞
∑

ℓ=1

1

ℓ!
IL∂L−1E

kℓ +

∫

dt

∞
∑

ℓ=1

ℓ

(ℓ+ 1)!
JL∂L−1B

kℓ

(46)

with the exact expressions for the electric and magnetic multipole moments

IL =

∞
∑

p=0

(2ℓ+ 1)!!

(2p)!!(2ℓ+ 2p+ 1)!!

ℓ

ℓ+ 2p

[
∫

d3x ∂2p
t J0r2pxL

]STF

+

∞
∑

p=0

(2ℓ+ 1)!!

(2p)!!(2ℓ+ 2p+ 1)!!

ℓ

(ℓ+ 1)(ℓ+ 2p+ 2)

[
∫

d3x r2p∂2p+1
t

(

JkℓxL−1r2 − J · xxL
)

]STF

(47)

JL =

∞
∑

p=0

(2ℓ+ 1)!!

(2p)!!(2ℓ+ 2p+ 1)!!

[
∫

d3x ∂2p
t (x× J)kℓ xL−1r2p

]STF

. (48)
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We note that we used Eq. (A2) to eliminate the sums over j present in Eqs. (43 - 45),

and we chose a normalization4 such that the electric moments in the static limit where

p = 0 are IL0 =
∫

d3xJ0xL
STF and the magnetic moments for p = 0 are given by JL

0 =
[

∫

d3x (x× J)kℓ xL−1
]STF

. Due to the conservation of the electromagnetic current ∂µJ
µ = 0,

our expression for the electric multipole moments in Eq. (47) is not unique, since we can

add or subtract terms which vanish due to current conservation. In particular, current

conservation implies

∫

d3x ∂tJ
0r2pxL =

[
∫

d3x r2p−2
(

ℓJkℓxL−1r2 + 2pJ · xxL
)

]S

, (49)

which can be used to write p > 0 pieces of IL in the first line of Eq. (47) in terms of the

form of the components seen in the second line and vice versa.

B. Radiated power

We calculate the energy flux or radiated power in the same way as above for the scalar

field in Sec. II B. In order to compute the total energy flux however, we need to sum the

amputated photon emission amplitude squared over all polarizations h, and one needs to

choose a gauge to have an explicit expression for the polarization sum. Since it is slightly

simpler we will employ transverse gauge or Coulomb gauge, where the polarization vectors

satisfy ǫ0(k, h) = 0 and k · ǫ(k, h) = 0 and where the polarization sum is

∑

h

ǫi(k, h)ǫj∗(k, h) = δij − kikj/k2 . (50)

In this gauge there is no A0 emission, and the amputated emission amplitude is

iAh = i
∞
∑

ℓ=1

(−i)ℓ

ℓ!
IL(|k|) kL−1|k|ǫkℓ∗(k, h) + i

∞
∑

ℓ=1

(−i)ℓℓ

(ℓ+ 1)!
JL(|k|) kL−1kiǫijkℓǫj∗(k, h) . (51)

Squaring the amplitude, summing over helicities with Eq. (50) and performing the angular

integration with the help of Eq. (14) yields the energy flux

Ė =
1

4π2T

∫

∞

0

dk

[

∞
∑

ℓ=1

ℓ+ 1

ℓ ℓ!(2ℓ+ 1)!!
k2(ℓ+1)

∣

∣IL(k)
∣

∣

2
+

∞
∑

ℓ=1

ℓ

(ℓ+ 1)!(2ℓ+ 1)!!
k2(ℓ+1)

∣

∣JL(k)
∣

∣

2

]

4 Note that our normalization differs from some of the usual conventions used in electrodynamics (see e.g.

[1]) because we adapt the conventional normalization for multipole moments in gravitational wave physics.
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=
∞
∑

ℓ=1

ℓ+ 1

4πℓ ℓ!(2ℓ+ 1)!!

〈

(

dℓ+1

dtℓ+1
IL
)2
〉

+
∞
∑

ℓ=1

ℓ

4π(ℓ+ 1)!(2ℓ+ 1)!!

〈

(

dℓ+1

dtℓ+1
JL

)2
〉

. (52)

It is straightforward to check that if we use the covariant Feynman gauge instead where we

need to keep A0, we obtain the same result for the energy flux. This is of course expected

because our multipole moments are gauge independent and the energy flux is an observable

and cannot depend on the gauge.

C. Electromagnetic radiation field

In calculating the radiation field we will work in Feynman gauge where the retarded

photon propagator is given by

iηµν θ(tf − ti)

4π|xf − xi|
δ(tf − ti − |xf − xi|) . (53)

Using the one-point function we can then calculate the radiation fields A0(t,x) and Ai(t,x)

as discussed in more detail for the scalar field in Sec. IIC. We obtain for the multipole

expanded radiation field in Feynman gauge

A0(t,x) =
1

4π|x|

∞
∑

ℓ=1

1

ℓ!
nL (∂ℓ

t I
L)(tret) (54)

Ai(t,x) =
1

4π|x|

[

∞
∑

ℓ=1

1

ℓ!
nL−1 (∂ℓ

t I
iL−1)(tret)−

∞
∑

ℓ=1

ℓ

(ℓ+ 1)!
ǫijkℓnjL−1 (∂ℓ

tJ
L)(tret)

]

. (55)

IV. LINEARIZED GRAVITY AND NRGR

For gravity our conventions are m2
P l = 1/(32πG) for the normalization of the Planck mass

relative to Newton’s constant, the Riemann tensor is Rµ
ναβ = ∂αΓ

µ
νβ − ∂βΓ

µ
να + Γµ

λαΓ
λ
νβ −

Γµ
λβΓ

λ
να, the Ricci tensor is Rµν = Rα

µαν , and we remind the reader that we work with

a mostly negative metric signature. When we expand the metric around flat Minkowski

spacetime, we normalize the gravitational field as gµν = ηµν + hµν/mP l.

The action we want to study is given by the standard Einstein-Hilbert term plus a linear

source term. It reads

S = −2m2
P l

∫

d4x
√−gR− 1

2mP l

∫

d4xT µνhµν , (56)
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where ∂µT
µν = 0, and the vacuum equations of motion are

Rµν = 0 . (57)

The linear gravitational source T µν may be either the standard stress-energy tensor of

matter or it may be the stress-energy pseudo-tensor which includes some gravitational ef-

fects such as the gravitational binding energy of a bound state. The latter is the case in

the effective field theory framework NRGR [6], where different kinematic regions or modes

of the gravitational field hµν are treated separately by writing hµν = h̄µν +Hµν . The radi-

ation modes h̄µν describe on-shell gravitational waves whereas the potential modes Hµν are

responsible for the conservative binding dynamics of a bound state such as a binary system.

The characteristic length scale for the potential modes is the size of the source a, whereas

for the radiation modes it is the wavelength λ ≫ a. Therefore if we consider physical effects

at distances much larger than the size of the source a, the potential modes are not needed as

explicit degrees of freedom in the theory. Integrating out the potential modes, i.e. solving

for them and replacing them by their solutions in the action, we obtain an effective radiation

theory only in terms of the radiation modes. The effective action of this effective radiation

theory is expanded in powers of the radiation field h̄µν ,

Seff = S0 + S1 +O(h̄2) (58)

and is obtained perturbatively using Feynman diagrams. The action S0 of zeroth order in

h̄µν , obtained from Feynman diagrams with no radiation modes and with any number of

potential modes exchanged between the two wordlines describing the two binary constitu-

tents, gives the action describing the conservative dynamics of the system. The first order

couplings in S1 are obtained from Feynman diagrams with any number of potential modes

being exchanged and one external radiation mode and can be written as a linear source

action5. Thus when we use the term linearized gravity in this paper, what we mean is that

the source term in the action is only coupling linearly to the radiation field. In other words,

we treat the coupling of the effective source T µν to the long wavelength modes linearly,

while the interactions of short-distance modes (which are implicit in T µν) can be included

to arbitrary order.

5 Terms in the effective action with coupling of quadratic and higher order in the radiation field become

relevant for higher order calculations, in post-Newtonian applications they start at order v5 or 2.5PN.
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A. Multipole expansion of the action

As in the previous sections, we Taylor expand the gravitational field hµν in the source

action Ssource around a point within the source choosing our coordinates such that the point

we expand around is the origin x = 0. The source term in the action then is

Ssource = − 1

2mP l

∫

d4xT µνhµν = − 1

2mP l

∫

dt

∞
∑

n=0

1

n!

∫

d3xT µν(t,x)xN (∂Nhµν) (t, 0) .

(59)

As in the electromagnetic case, our first step will be to express this Taylor expanded source

action in terms of manifestly gauge invariant operators. In general relativity, the gauge

invariant quantities are the Riemann tensor, the Ricci tensor and the Ricci scalar and their

covariant derivatives. Due the vacuum equations of motion Rµν = R = 0 however, only

structures involving the Riemann tensor Rµνρσ yield physical terms which can contribute to

observable. Terms with Ricci tensor or scalar can be removed via field redefinitions [6, 23];

in EFT jargon such terms are called redundant operators. Now when writing the Riemann

tensor in terms of temporal and spatial indices, there are only three distinct combinations

of indices: R0i0j , R0ijk and Rijkl. In linearized gravity however, the purely spatial Riemann

tensor is on-shell (i.e. upon use of the vacuum equations of motion)

Rijkl = −ǫijmǫklpR0m0p , (60)

so that we may replace it by R0i0j . The couplings to the two remaining components of the

Riemann tensor, R0i0j and R0ijk, are conveniently organized in terms of the electric and

magnetic components of the Riemann tensor6. They are given by

Eij = R0i0j =
1

2mP l

(

∂0∂jh0i + ∂0∂ih0j − ∂i∂jh00 − ∂2
0hij

)

(61)

Bij =
1

2
ǫimnR0jmn =

1

2mP l

ǫimn (∂0∂nhjm + ∂j∂mh0n) , (62)

where the last expressions are expanded to linear order in hµν . Note that we gave the

expressions for Eij and Bij in a system with four-velocity vµ = (1, 0, 0, 0), which makes

sense for our application to the multipole expansion where we Taylor expand around the

6 On-shell, where Rµν , the Riemann tensor Rµνρσ and the Weyl tensor Cµνρσ used in previous work [15]

coincide.
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point x = 0 which implies the source is described by a worldline xµ = (t, 0) whose four-

velocity is vµ = (1, 0, 0, 0).

The electric and magnetic components of the Riemann tensor in vacuum have the prop-

erties Eij = Eji, Eii = 0, Bij = Bji and Bii = 0, i.e. they are symmetric and trace free.

Furthermore, derivatives acting on the electric and magnetic components of the Riemann

tensor in vacuum give the equations of motion which are in complete correspondence to

Maxwell’s equations,

∂iEij = 0, ∂iBij = 0, ǫimn∂mEjn = Ḃij , ǫimn∂mBjn = −Ėij , (63)

which imply the wave equations

2Eij = 0 2Bij = 0 . (64)

Having reviewed these properties of the electric and magnetic components of the Riemann

tensor, we set out to write the Taylor expanded action in terms of Eij and Bij . Similar to

the electromagnetic case where the coupling to the total (conserved) charge could not be

expressed as a coupling to E orB, we also expect that the couplings to the leading multipoles

in gravity cannot to be expressed in terms of Eij and Bij .

In order to express the Taylor expanded action mostly in terms of Eij and Bij , we have

to consider the couplings to h00, h0i and hij separately. First we write the h00 part of the

source action as

Sh00

source = − 1

2mP l

∫

dt

[(
∫

d3xT 00

)

h00 +

(
∫

d3xT 00xk

)

∂kh00

]

+

∫

dt

∞
∑

n=2

1

n!

(
∫

d3xT 00(t,x)xN

)

∂N−2

(

1

2mP l

(

−∂kn−1
∂knh00

)

)

. (65)

where the first two terms are the couplings to the total energy and to the center of mass

coordinate (times the total energy) respectively. The h0i part reads

Sh0i
source = − 1

mP l

∫

dt

[(
∫

d3xT 0i

)

h0i +

(
∫

d3xT 0ixk

)

∂kh0i

]

+

∫

dt
∞
∑

n=2

1

n!

(
∫

d3xT 0i(t,x)xN

)

∂N−2

(

− 1

mP l

∂kn−1
∂knh0i

)

. (66)

where the first term is the coupling to the total linear momentum and the second term

contains the total angular momentum. All terms besides the first one need to be decomposed
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to forms of definite symmetry using Young tableaux, where we may use our results from the

E&M calculation for the vector potential in Eqs. (28 - 30) with J i replaced by T 0i. For the

totally symmetric piece we then use the conservation of T µν from which follows that

∫

d3xṪ 00xiN = −
∫

d3x∂aT
0axiN =

∫

d3x
[

T 0ixN+
(

T 0k1xik2...kn + k-perms
)]

=
1

n!
i k1 . . .kn

(67)

and for the part with the antisymmetrization we use

(

i k2 . . .kn
k1

+ k-perms

)

= (n− 1)!

∫

d3x
(

ǫik1cǫabcT 0axbk2...kn + k-perms
)

. (68)

Note that Eqs. (67) and (68) and also are identical to Eqs. (32) and (33) in the decompo-

sition for the electromagnetic case, with (J0, Ja) replaced by (T 00, T 0a).

With these the h0i part of the action becomes

Sh0i
source = − 1

mP l

∫

dt

[(
∫

d3xT 0i

)

h0i +

{

1

2

∫

d3x
(

T 0ixk − T 0kxi
)

}

1

2
(∂kh0i − ∂ih0k)

]

+

∫

dt

∞
∑

n=2

1

n!

(
∫

d3xT 00xN

)

∂N−2

(

1

2mP l

(

∂0∂kn−1
h0kn + ∂0∂knh0kn−1

)

)

−
∫

dt

∞
∑

n=2

2n

(n + 1)!

(
∫

d3xǫknbaT 0axbk1...kn−1

)

∂N−2

(

1

2mP l

(

ǫkncd∂kn−1
∂ch0d

)

)

.

(69)

For the hij part of the source action,

Shij
source = − 1

2mP l

∫

dt

∞
∑

n=0

1

n!

∫

d3xT ijxN∂Nhij , (70)

the decomposition in Young tableaux reads

∫

d3xT ijxN =
1

(n+ 2)!
i j k1 . . .kn +

n + 1

(n+ 2)!

(

i j k2 . . .kn
k1

+ k-perms

)

+
n− 1

2(n+ 1)!

(

i j k3 . . .kn
k1 k2

+ k-perms

)

. (71)

The first Young tableau is given by

i j k1 . . .kn

= 2n!

∫

d3x
[

T ijxN +
((

T iknxjN−1 + T jknxN−1
)

+ k-perms
)

+
(

T knkn−1xijN−2 + k-perms
)]
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= n!

∫

d3x T̈ 00xijN , (72)

where we used the conservation of T µν to derive the last equality, and the second one is

i j k2 . . .kn
k1

+ k-perms

= (n− 1)!

∫

d3x
[

2nT ijxN + (n− 2)
((

T iknxjN−1 + T jknxiN−1
)

+ k-perms
)

− 4
(

T knkn−1xijN−2 + k-perms
)

]

= (n− 1)!

∫

d3x
[

ǫikncǫabc
{

T ajxbN−1 +
(

T akn−1xbjN−2 + k-perms
)}

+ (i ↔ j)
]

+ k-perms .

(73)

In the last line of Eq. (73), the first +k-perms inside the parenthesis means that each of the

indices ki which are not on the epsilon tensor, i.e. which are inside the round parenthesis,

is to be used once as an index on T aki inside the round parenthesis. The second +k-perms

in Eq. (73) means that each ki is to be used once as an index on the epsilon tensor. The

third Young tableau is

i j k3 . . .kn
k1 k2

+ k-perms

= 2 (n− 2)!

∫

d3x
[

n(n− 1)T ijxN − (n− 1)
((

T iknxjN−1 + T jknxN−1
)

+ k-perms
)

+ 2
(

T knkn−1xijN−2 + k-perms
)

]

= 2 (n− 2)!

[{

ǫciknǫdjkn−1ǫcabǫdef
∫

d3xT aexbfN−2 + (i ↔ j)

}

+ k-perms

]

. (74)

When we plug these into the hij part of the source action we obtain

Shij
source =

∫

dt
∞
∑

n=2

1

n!

∫

d3xT 00xN∂N−2

(

1

2mP l

(

−∂2
0hkn−1kn

)

)

−
∫

dt
∞
∑

n=2

2n

(n+ 1)!

∫

d3xǫknbaT 0axbN−1∂N−2

(

1

2mP l

(

ǫkncd∂0∂dhckn−1

)

)

+

∫

dt

∞
∑

n=2

n− 1

(n + 1)!

∫

d3x
[

T aaxN + T kn−1knx2xN−2 − 2T knaxN−1a
]

∂N−2Ekn−1kn

(75)

where we have used

∫

d3xṪ 0axbN =

∫

d3x
[

T abxN +
(

T aknxbN−1 + k-perms
)]

(76)
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to arrive at the expression in the second line of Eq. (75), and we used the epsilon tensors

from Eq. (74) to write ∂kn−1
∂knhij as the purely spatial Riemann tensor, which in turn is

written as the electric components of the Riemann tensor via Eq. (60).

Adding all components of the source action, the total becomes

Ssource = Scons
source + Srad

source (77)

with

Scons
source = − 1

2mP l

∫

dt

[(
∫

d3xT 00

)

h00 + 2

(
∫

d3xT 0i

)

h0i

]

− 1

2mP l

∫

dt

[(
∫

d3xT 00xk

)

∂kh00 +

(

−
∫

d3x
(

T 0ixk − T 0kxi
)

)

1

2
(∂ih0k − ∂kh0i)

]

= − 1

2mP l

∫

dt
[

Mh00 + 2Pih0i +MXi∂ih00 + Liǫijk∂jh0k

]

(78)

Srad
source =

∫

dt

∞
∑

n=2

1

n!

∫

d3xT 00xN ∂N−2Ekn−1kn

+

∫

dt

∞
∑

n=2

n− 1

(n+ 1)!

∫

d3x
[

T aaxN + T kn−1knr2xN−2 − 2T knaxN−1a
]

∂N−2Ekn−1kn

−
∫

dt
∞
∑

n=2

2n

(n+ 1)!

∫

d3xǫknbaT 0axbN−1 ∂N−2Bkn−1kn . (79)

We note that Scons
source, which is not written in terms of Eij andBij , couples to several quantities

which are conserved due to the conservation of T µν : The electric parity mass monopole

M ≡
∫

d3xT 00 is the total energy (ADM mass) of the source7, Pi ≡
∫

d3xT 0i is the total

linear momentum (which interestingly does not have a consistent classification as a multipole

moment since some of its aspects are characteristic of a monopole such as its coupling

without derivative, but it is a vector like a dipole), and the magnetic parity current dipole

Lij ≡ −
∫

d3x (T 0ixj − T 0jxi) is the total angular momentum (which is related to the usual

angular momentum 3-vector via Lij = ǫijkLk). The only coupling in Scons
source which is not

conserved is the mass dipole, related to the center of mass position Xi ≡ 1/M
∫

d3xT 00xi.

However, ∂µT
µν = 0 implies MẊi = Pi and Ẍi = 0. Thus, none of these quantities can

radiate since the energy flux would be proportional to the square of the first time derivatives

of M and Pi or the second time derivatives of the dipoles. Moreover, it is straightforward

to show that under coordinate transformations Scons
source only changes by total time derivatives

7 Note the change in notation from [15] where the mass monopole was denoted m.
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which leave the dynamics unchanged. It usually is convenient to work in the center of mass

frame where Xi = Pi = 0.

The couplings in the second part of the source action Srad
source are all able to emit radiation,

and we now set out to decompose Srad
source in terms of STF tensors. As done in the previous

two sections, we first write all structures as symmetric tensors. For this purpose we write

Srad
source = S0 + SE, 0

1 + SB, 0
1 + S2 (80)

with

S0 =

∫

dt
∞
∑

n=2

1

n!

∫

d3x

{

T 00 +
n− 1

n+ 1
T aa

}

xN∂N−2Ekn−1kn (81)

SE,0
1 = −

∫

dt

∞
∑

n=2

2(n− 1)

(n+ 1)!

∫

d3xT knaxaN−1 ∂N−2Ekn−1kn (82)

SB, 0
1 = −

∫

dt

∞
∑

n=2

2n

(n+ 1)!

∫

d3xǫknbaT 0axbN−1 ∂N−2Bkn−1kn (83)

S2 =

∫

dt

∞
∑

n=2

n− 1

(n+ 1)!

∫

d3xT kn−1knr2xN−2 ∂N−2Ekn−1kn . (84)

The subscripts on the terms of the action denote the number of pairs of indices which can

be antisymmetrized without necessarily vanishing in the action. We see that S0 is already

symmetrized.

The strategy to write the action in terms of symmetric tensors is the following: First,

we perform the (partial) symmetrization of S2 reducing it to terms which have at most 1

pair of indices which may give a non-vanishing contribution to the action when antisym-

metrized. Then we perform the symmetrization of all terms where one pair of indices can

be antisymmetrized similarly to what we did for the electromagnetic case.

For the reduction of of S2 we use the decomposition via Young tableaux from Eqs. (71) -

(74) which, aside from the last line in Eq. (72) where we used the moment relations following

from ∂µT
µν = 0, hold in the same form when additional factors of r2 are inserted in the

integrals. Otherwise, the procedure works analogous to the electromagnetic case where we

decomposed Eq. (36) by using the decomposition with Young tableaux infinitely many

times. In doing so, we also use the moment relation
∫

d3x
[

T abr2pxN +
(

T aknr2pxbN−1 + k-perms
)]

=

∫

d3xṪ 0ar2pxbN − 2p

∫

d3xT acr2(p−1)xbcN

(85)
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to rewrite the second Young tableau’s expression in a more convenient form. After some

quite lengthy manipulations, we obtain

S2 =

∫

dt
∞
∑

n=2

∞
∑

q=0

n− 1

(n+ 2q + 1)!

[

∂2q
t

∫

d3xT kn−1knr2q+2xN−2

]S

∂N−2Ekn−1kn

+

∫

dt

∞
∑

n=2

∞
∑

q=1

n− 1

(n+ 2q + 1)!

[

∂2q
t

∫

d3xT aar2qxN

]S

∂N−2Ekn−1kn

−
∫

dt
∞
∑

n=2

∞
∑

q=1

2(n− 1)

(n + 2q + 1)!

{

∂2q
t

∫

d3xT aknr2qxaN−1

}

∂N−2Ekn−1kn

−
∫

dt
∞
∑

n=2

∞
∑

q=1

2n

(n + 2q)!(n+ 1)
∫

d3xǫknba
{

∂2q
t T 0ar2qxbN−1 − 2q∂2q−1

t T acr2q−2xbcN−1
}

∂N−2Bkn−1kn .

(86)

Plugging this into Srad
source we have

Srad
source =

∫

dt

∞
∑

n=2

1

n!

[
∫

d3xT 00xN

]S

∂N−2Ekn−1kn

+

∫

dt

∞
∑

n=2

∞
∑

q=0

n− 1

(n+ 2q + 1)!

[

∂2q
t

∫

d3xT kn−1knr2q+2xN−2

]S

∂N−2Ekn−1kn

+

∫

dt
∞
∑

n=2

∞
∑

q=0

n− 1

(n+ 2q + 1)!

[

∂2q
t

∫

d3xT aar2qxN

]S

∂N−2Ekn−1kn

−
∫

dt

∞
∑

n=2

∞
∑

q=0

2(n− 1)

(n + 2q + 1)!

{

∂2q
t

∫

d3xT aknr2qxaN−1

}

∂N−2Ekn−1kn

−
∫

dt

∞
∑

n=2

∞
∑

q=0

2n

(n + 2q)!(n+ 1)
∫

d3xǫknba
{

∂2q
t T 0ar2qxbN−1 − 2q∂2q−1

t T acr2q−2xbcN−1
}

∂N−2Bkn−1kn

(87)

where in the sums over q in the last three terms the q = 0 components were provided

from S0, S
E, 0
1 and SB, 0

1 respectively. Only the last two expressions in Eq. (87) need to be

further symmetrized, where the procedure works analogously to the E&M calculation. For

the fourth line of Eq. (87) the symmetrization procedure yields

SE
1 = −

∫

dt

∞
∑

n=2

∞
∑

q=0

2(n− 1)

(n + 2q + 1)!

{
∫

d3x ∂2q
t T aknr2qxaN−1

}

∂N−2Ekn−1kn
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=

∫

dt
∞
∑

n=2

∞
∑

q=0

∞
∑

s=0

2n(n− 1)

(n+ 2q + 2s+ 3)!(n+ 2s+ 2)

[
∫

d3x ∂2q+2s+2
t T abr2q+2sxabN

]S

∂N−2Ekn−1kn

−
∫

dt
∞
∑

n=2

∞
∑

q=0

∞
∑

s=0

2n(n− 1)

(n + 2q + 2s+ 1)!(n+ 2s)

[
∫

d3x ∂2q+2s
t T aknr2q+2sxaN−1

]S

∂N−2Ekn−1kn

+

∫

dt
∞
∑

n=2

∞
∑

q=0

∞
∑

s=0

2n(n− 1)

(n+ 2q + 2s+ 2)!(n+ 2s+ 1)

[
∫

d3x ∂2q+2s+1
t ǫknbaT acr2q+2sxbcN−1

]S

∂N−2Bkn−1kn (88)

and for the last two lines of Eq. (87) it gives

SB
1 = −

∫

dt

∞
∑

n=2

∞
∑

q=0

2n

(n+ 2q)!(n+ 1)
∫

d3xǫknba
{

∂2q
t T 0ar2qxbN−1 − 2q∂2q−1

t T acr2q−2xbcN−1
}

∂N−2Bkn−1kn

= −
∫

dt

∞
∑

n=2

∞
∑

q=0

∞
∑

s=0

2n(n− 1)

(n + 2q + 2s+ 1)!(n+ 2s+ 2)(n+ 2s)

[
∫

d3x
(

∂2q+2s+1
t T 0ar2q+2sxaN − 2q∂2q+2s

t T abr2q+2s−2xabN
)

]S

∂N−2Ekn−1kn

+

∫

dt
∞
∑

n=2

∞
∑

q=0

∞
∑

s=0

2n(n− 1)

(n+ 2q + 2s+ 1)!(n+ 2s+ 2)(n+ 2s)

[
∫

d3x
(

∂2q+2s+1
t T 0knr2q+2s+2xN−1 − 2q∂2q+2s

t T aknr2q+2sxaN−1
)

]S

∂N−2Ekn−1kn

−
∫

dt
∞
∑

n=2

∞
∑

q=0

∞
∑

s=0

2n(n− 1)

(n+ 2q + 2s)!(n+ 2s+ 1)(n+ 2s− 1)

[
∫

d3xǫknba
(

∂2q+2s
t T 0ar2q+2sxbN−1 − 2q∂2q+2s−1

t T acr2q+2s−2xbcN−1
)

]S

∂N−2Bkn−1kn

(89)

so that we obtain an expression for Srad
source entirely in terms of symmetric tensors. Its form

can be simplified by removing the two infinite sums over q and s in SE
1 and SB

1 using variable

redefinitions q → q + s which yield one infinite sum over q and a finite sum over s. The

latter can all be performed using Eqs. (A5) and (A6) and we find the final result for Srad
source
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in terms of symmetric tensors,

Srad
source =

∫

dt

∞
∑

n=2

1

n!

[
∫

d3xT 00xN

]S

∂N−2Ekn−1kn

+

∫

dt
∞
∑

n=2

∞
∑

q=0

n− 1

(n+ 2q + 1)!

[
∫

d3x ∂2q
t T aar2qxN

]S

∂N−2Ekn−1kn

+

∫

dt

∞
∑

n=2

∞
∑

q=0

2(n− 1)(q + 1)

(n + 2q + 3)!

[
∫

d3x ∂2q+2
t T abr2qxabN

]S

∂N−2Ekn−1kn

−
∫

dt

∞
∑

n=2

∞
∑

q=0

2(n− 1)(q + 1)

(n+ 2q + 2)!

[
∫

d3x ∂2q+1
t T 0ar2qxaN

]S

∂N−2Ekn−1kn

−
∫

dt

∞
∑

n=2

∞
∑

q=0

2(n− 1)(q + 1)

(n+ 2q + 1)!

[
∫

d3x ∂2q
t T aknr2qxaN−1

]S

∂N−2Ekn−1kn

+

∫

dt
∞
∑

n=2

∞
∑

q=0

2(n− 1)(q + 1)

(n + 2q + 2)!

[
∫

d3x ∂2q+1
t T 0knr2q+2xN−1

]S

∂N−2Ekn−1kn

+

∫

dt
∞
∑

n=2

∞
∑

q=0

n− 1

(n+ 2q + 1)!

[
∫

d3x ∂2q
t T kn−1knr2q+2xN−2

]S

∂N−2Ekn−1kn

−
∫

dt

∞
∑

n=2

∞
∑

q=0

2n(q + 1)

(n + 2q + 1)!

[
∫

d3x ǫknba∂2q
t T 0ar2qxbN−1

]S

∂N−2Bkn−1kn

+

∫

dt

∞
∑

n=2

∞
∑

q=0

2n(q + 1)

(n+ 2q + 2)!

[
∫

d3x ǫknba∂2q+1
t T acr2qxbcN−1

]S

∂N−2Bkn−1kn (90)

The final step in the multipole expansion of the action is to take out the traces so that all

coefficients are in terms of STF tensors. For this purpose, let us define 4 separate components

of Eq. (90). The first piece S1 comprises the first four lines in Eq. (90), the second piece

S2 are lines five and six, the third piece S3 is line seven and the fourth piece S4 is given by

lines eight and nine. Each of these four pieces is written in terms of STF tensors using Eq.

(6), but the counting of resulting trace structures differs.

For the first piece S1 all contracted indices in the STF prescription will give powers of

r2, so that the only counting left to do is to omit terms which vanish by Eii = ∂iEij = 0.

This is similar to what we did for the electromagnetic case (where the ∇·E = 0 components

had to be omitted, see Eq. (42) and the discussion above). Here this is accounted for by

inserting a factor of
(

n

2p

)

−
(

n−1
2p−1

)

−
(

n−2
2p−1

)

(

n

2p

) (91)

into the STF decomposition of Eq. (6) and only keeping the traces which don’t yield Eii or
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∂iEij. We obtain

S1 =

∫

dt

∞
∑

ℓ=2

∞
∑

p=0

c
(ℓ+2p)
p

(ℓ+ 2p)!

ℓ(ℓ− 1)

(ℓ+ 2p)(ℓ+ 2p− 1)

[
∫

d3x ∂2p
t T 00r2pxL

]STF

∂L−2Ekℓ−1kℓ

+

∫

dt

∞
∑

ℓ=2

∞
∑

p=0

ℓ(ℓ− 1)

(ℓ+ 2p+ 1)!

(

p
∑

j=0

c
(ℓ+2j)
j

ℓ+ 2j

)

[
∫

d3x ∂2p
t T aar2pxL

]STF

∂L−2Ekℓ−1kℓ

+

∫

dt
∞
∑

ℓ=2

∞
∑

p=0

2ℓ(ℓ− 1)

(ℓ+2p+3)!

(

p
∑

j=0

(p− j+1)c
(ℓ+2j)
j

ℓ+ 2j

)

[
∫

d3x ∂2p+2
t T abr2pxabL

]STF

∂L−2Ekℓ−1kℓ

−
∫

dt

∞
∑

ℓ=2

∞
∑

p=0

2ℓ(ℓ− 1)

(ℓ+2p+2)!

(

p
∑

j=0

(p− j+1)c
(ℓ+2j)
j

ℓ+ 2j

)

[
∫

d3x ∂2p+1
t T 0ar2pxaL

]STF

∂L−2Ekℓ−1kℓ

(92)

For the remaining pieces S2, S3 and S4, we also need to count which of the different possible

structures of traces in the moments occur how many times. For example, in the T 0kn part of

S2, the traces when applying the STF decomposition of Eq. (6) can yield either r2 or T 0axa,

and we need to know how many times each of them occurs. It is a straightforward counting

exercise, and for the parts of the action S2 and S4 which have only one of the free indices

k1 . . . kn not on a vector x, the counting is the same as in Eq. (44). Moreover, we note that

the factor in Eq. (91) is universal for all terms and is to be used multiplicatively with the

factors which account for the different traced structures in the moments. We obtain for the

second part of the action

S2 = −
∫

dt

∞
∑

ℓ=2

∞
∑

p=0

4ℓ(ℓ− 1)

(ℓ+ 2p+ 1)!

(

p
∑

j=0

j(p− j + 1)c
(ℓ+2j)
j

(ℓ+ 2j)2

)

[
∫

d3x ∂2p
t T abr2p−2xabL

]STF

∂L−2Ekℓ−1kℓ

−
∫

dt
∞
∑

ℓ=2

∞
∑

p=0

2ℓ2(ℓ− 1)

(ℓ+ 2p+ 1)!

(

p
∑

j=0

(p− j + 1)c
(ℓ+2j)
j

(ℓ+ 2j)2

)

[
∫

d3x ∂2p
t T akℓr2pxaL−1

]STF

∂L−2Ekℓ−1kℓ

+

∫

dt
∞
∑

ℓ=2

∞
∑

p=0

4ℓ(ℓ− 1)

(ℓ+ 2p+ 2)!

(

p
∑

j=0

j(p− j + 1)c
(ℓ+2j)
j

(ℓ+ 2j)2

)

[
∫

d3x ∂2p+1
t T 0ar2pxaL

]STF

∂L−2Ekℓ−1kℓ

+

∫

dt
∞
∑

ℓ=2

∞
∑

p=0

2ℓ2(ℓ− 1)

(ℓ+ 2p+ 2)!

(

p
∑

j=0

(p− j + 1)c
(ℓ+2j)
j

(ℓ+ 2j)2

)
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[
∫

d3x ∂2p+1
t T 0kℓr2p+2xL−1

]STF

∂L−2Ekℓ−1kℓ , (93)

the third one becomes

S3 =

∫

dt

∞
∑

ℓ=2

∞
∑

p=0

2ℓ(ℓ− 1)

(ℓ+ 2p+ 1)!

(

p
∑

j=0

jc
(ℓ+2j)
j

(ℓ+ 2j)2(ℓ+ 2j − 1)

)

[
∫

d3x ∂2p
t T aar2pxL

]STF

∂L−2Ekℓ−1kℓ

+

∫

dt

∞
∑

ℓ=2

∞
∑

p=0

4ℓ(ℓ− 1)

(ℓ+ 2p+ 1)!

(

p
∑

j=0

j(j − 1)c
(ℓ+2j)
j

(ℓ+ 2j)2(ℓ + 2j − 1)

)

[
∫

d3x ∂2p
t T abr2p−2xabL

]STF

∂L−2Ekℓ−1kℓ

+

∫

dt
∞
∑

ℓ=2

∞
∑

p=0

ℓ2(ℓ− 1)2

(ℓ+ 2p+ 1)!

(

p
∑

j=0

c
(ℓ+2j)
j

(ℓ+ 2j)2(ℓ + 2j − 1)

)

[
∫

d3x ∂2p
t T kℓ−1kℓr2p+2xL−2

]STF

∂L−2Ekℓ−1kℓ

+

∫

dt
∞
∑

ℓ=2

∞
∑

p=0

4ℓ2(ℓ− 1)

(ℓ+ 2p+ 1)!

(

p
∑

j=0

jc
(ℓ+2j)
j

(ℓ+ 2j)2(ℓ + 2j − 1)

)

[
∫

d3x ∂2p
t T akℓr2pxaL−1

]STF

∂L−2Ekℓ−1kℓ , (94)

and the fourth part reads

S4 = −
∫

dt

∞
∑

ℓ=2

∞
∑

p=0

2ℓ2(ℓ− 1)

(ℓ+ 2p+ 1)!

(

p
∑

j=0

(p− j + 1)c
(ℓ+2j)
j

(ℓ+ 2j)(ℓ+ 2j − 1)

)

[
∫

d3x ǫkℓba∂2p
t T 0ar2pxbL−1

]STF

∂L−2Bkℓ−1kℓ

+

∫

dt

∞
∑

ℓ=2

∞
∑

p=0

2ℓ2(ℓ− 1)

(ℓ+ 2p+ 2)!

(

p
∑

j=0

(p− j + 1)c
(ℓ+2j)
j

(ℓ+ 2j)(ℓ+ 2j − 1)

)

[
∫

d3x ǫkℓba∂2p+1
t T acr2pxbcL−1

]STF

∂L−2Bkℓ−1kℓ . (95)

Adding these and simplifying we find for Srad
source in terms of STF tensors

Srad
source =

∫

dt
∞
∑

ℓ=2

∞
∑

p=0

c
(ℓ+2p)
p

(ℓ+ 2p)!

ℓ(ℓ− 1)

(ℓ+ 2p)(ℓ+ 2p− 1)

[
∫

d3x ∂2p
t T 00r2pxL

]STF

∂L−2Ekℓ−1kℓ

+

∫

dt
∞
∑

ℓ=2

∞
∑

p=0

ℓ(ℓ− 1)

(ℓ+ 2p+ 1)!

(

p
∑

j=0

c
(ℓ+2j)
j ((ℓ+ 2j)2 − ℓ)

(ℓ+ 2j)2(ℓ+ 2j − 1)

)
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[
∫

d3x ∂2p
t T aar2pxL

]STF

∂L−2Ekℓ−1kℓ

+

∫

dt

∞
∑

ℓ=2

∞
∑

p=0

2ℓ(ℓ− 1)

(ℓ+ 2p+ 3)!

(

p+1
∑

j=0

c
(ℓ+2j)
j [ℓ(ℓ+ 2j − 1)(p− j + 1)− 2j(ℓ+ j)]

(ℓ+ 2j)2(ℓ+ 2j − 1)

)

[
∫

d3x ∂2p+2
t T abr2pxabL

]STF

∂L−2Ekℓ−1kℓ

−
∫

dt

∞
∑

ℓ=2

∞
∑

p=0

2ℓ2(ℓ− 1)

(ℓ+ 2p+ 2)!

(

p
∑

j=0

c
(ℓ+2j)
j (p− j + 1)

(ℓ+ 2j)2

)

[
∫

d3x ∂2p+1
t T 0ar2pxaL

]STF

∂L−2Ekℓ−1kℓ

−
∫

dt
∞
∑

ℓ=2

∞
∑

p=0

2ℓ2(ℓ− 1)

(ℓ+ 2p+ 1)!

(

p
∑

j=0

c
(ℓ+2j)
j [(ℓ+ 2j − 1)(p− j) + ℓ− 1]

(ℓ+ 2j)2(ℓ+ 2j − 1)

)

[
∫

d3x ∂2p
t T akℓr2pxaL−1

]STF

∂L−2Ekℓ−1kℓ

+

∫

dt
∞
∑

ℓ=2

∞
∑

p=0

2ℓ2(ℓ− 1)

(ℓ+ 2p+ 2)!

(

p
∑

j=0

c
(ℓ+2j)
j (p− j + 1)

(ℓ+ 2j)2

)

[
∫

d3x ∂2p+1
t T 0kℓr2p+2xL−1

]STF

∂L−2Ekℓ−1kℓ

+

∫

dt
∞
∑

ℓ=2

∞
∑

p=0

ℓ2(ℓ− 1)2

(ℓ+ 2p+ 1)!

(

p
∑

j=0

c
(ℓ+2j)
j

(ℓ+ 2j)2(ℓ+ 2j − 1)

)

[
∫

d3x ∂2p
t T kℓ−1kℓr2p+2xL−2

]STF

∂L−2Ekℓ−1kℓ

−
∫

dt

∞
∑

ℓ=2

∞
∑

p=0

2ℓ2(ℓ− 1)

(ℓ+ 2p+ 1)!

(

p
∑

j=0

(p− j + 1)c
(ℓ+2j)
j

(ℓ+ 2j)(ℓ+ 2j − 1)

)

[
∫

d3x ǫkℓba∂2p
t T 0ar2pxbL−1

]STF

∂L−2Bkℓ−1kℓ

+

∫

dt

∞
∑

ℓ=2

∞
∑

p=0

2ℓ2(ℓ− 1)

(ℓ+ 2p+ 2)!

(

p
∑

j=0

(p− j + 1)c
(ℓ+2j)
j

(ℓ+ 2j)(ℓ+ 2j − 1)

)

[
∫

d3x ǫkℓba∂2p+1
t T acr2pxbcL−1

]STF

∂L−2Bkℓ−1kℓ . (96)

While the above Eq. (96) is in the desired form in terms of STF moments, it is still much too

complicated. In order to simplify and to get rid of the sums over j, we first use the moment

relations resulting from ∂µT
µν = 0 to simplify the expressions for the electric moments. In
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particular, we first use

[
∫

d3xT kℓ−1kℓr2p+2xL−2

]S

=
1

ℓ− 1

[
∫

d3xṪ 0kℓr2p+2xL−1

]S

− 2p+ 2

ℓ− 1

[
∫

d3xT akℓr2pxaL−1

]S

(97)

in order to replace the components with T kℓ−1kℓ , and subsequently we apply

[
∫

d3xT akℓr2pxaL−1

]S

=
1

ℓ

[
∫

d3xṪ 0ar2pxaL

]S

− 2p

ℓ

[
∫

d3xT abr2p−2xabL

]S

− 1

ℓ

[
∫

d3xT aar2pxL

]S

(98)

and

[
∫

d3xT 0kℓr2p+2xL−1

]S

=
1

ℓ

[
∫

d3xṪ 00r2p+2xL

]S

− 2p+ 2

ℓ

[
∫

d3xT 0ar2pxaL

]S

(99)

to replace all structures with T akℓ and T 0kℓ .

After these replacements, we can perform all remaining sums over j using Eqs. (A2) -

(A4), and arrive at our final result for the multipole expanded source action

Ssource = − 1

2mP l

∫

dt
[

Mh00 + 2Pih0i +MXi∂ih00 + Liǫijk∂jh0k

]

+

∫

dt

∞
∑

ℓ=2

1

ℓ!
IL ∂L−2Ekℓ−1kℓ −

∫

dt

∞
∑

ℓ=2

2ℓ

(ℓ+ 1)!
JL ∂L−2Bkℓ−1kℓ (100)

with the exact expressions for the multipole moments

M =

∫

d3xT 00 (101)

Pi =

∫

d3xT 0i (102)

MXi =

∫

d3xT 00xi (103)

Li = −
∫

d3x ǫijkT 0jxk (104)

IL =
∞
∑

p=0

(2ℓ+ 1)!!

(2p)!!(2ℓ+ 2p+ 1)!!

(

1 +
8p(ℓ+ p+ 1)

(ℓ+ 1)(ℓ+ 2)

)[
∫

d3x ∂2p
t T 00r2pxL

]STF

+

∞
∑

p=0

(2ℓ+ 1)!!

(2p)!!(2ℓ+ 2p+ 1)!!

(

1 +
4p

(ℓ+ 1)(ℓ+ 2)

)[
∫

d3x ∂2p
t T aar2pxL

]STF

−
∞
∑

p=0

(2ℓ+ 1)!!

(2p)!!(2ℓ+ 2p+ 1)!!

4

ℓ+ 1

(

1 +
2p

ℓ + 2

)[
∫

d3x ∂2p+1
t T 0ar2p+2xaL

]STF
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+

∞
∑

p=0

(2ℓ+ 1)!!

(2p)!!(2ℓ+ 2p+ 1)!!

2

(ℓ+ 1)(ℓ+ 2)

[
∫

d3x ∂2p+2
t T abr2pxabL

]STF

(105)

JL =

∞
∑

p=0

(2ℓ+ 1)!!

(2p)!!(2ℓ+ 2p+ 1)!!

(

1 +
2p

ℓ+ 2

)[
∫

d3x ǫkℓba∂2p
t T 0ar2pxbL−1

]STF

−
∞
∑

p=0

(2ℓ+ 1)!!

(2p)!!(2ℓ+ 2p+ 1)!!

1

ℓ+ 2

[
∫

d3x ǫkℓba∂2p+1
t T acr2pxbcL−1

]STF

. (106)

The above form of the multipole moments IL and JL is not unique and can be modified

using moment relations derived from ∂µT
µν = 0. See the appendix B for the power counting

rules which tell us which terms are required at a given order in PN calculations using NRGR.

B. Energy flux in gravitational waves

In order to calculate the energy flux or radiated power, we follow the same procedure ex-

plained above in the scalar and E&M sections. We here work in linearized gravity neglecting

nonlinearities, see [15] for calculations in the EFT framework of the leading effect of non-

linearities in the gravitational wave energy flux. We use a physical gauge with polarization

tensors satisfying ǫ0µ(k, h) = ǫii(k, h) = kiǫij(k, h) = 0 and where the helicity sum is [15]

∑

h

ǫij(k, h)ǫkl∗(k, h) =
1

2

[

δikδjl + δilδjk − δijδkl +
1

k2

(

δijkkkl + δklkikj
)

− 1

k2

(

δikkjkl + δilkjkk + δjkkikl + δjlkikk
)

+
1

k4
kikjkkkl

]

.

(107)

In this gauge there is only hij emission, and the amputated on-shell graviton emission

amplitude is

iAh =
i

2mP l

∞
∑

ℓ=2

(−i)ℓ−2

ℓ!
IL(|k|) kL−2|k|2ǫkℓ−1kℓ∗(k, h)

− i

2mP l

∞
∑

ℓ=2

(−i)ℓ−2 2ℓ

(ℓ+ 1)!
JL(|k|) kjL−2|k|ǫijkℓ−1ǫkℓi∗(k, h) . (108)

Upon squaring of the amplitude, summing over helicities using Eq. (107) and evaluating

the angular integrals with Eq. (14), we find the energy flux

Ė =
G

πT

∫

∞

0

dk

[

∞
∑

ℓ=2

(ℓ+ 1)(ℓ+ 2)

ℓ(ℓ− 1)ℓ!(2ℓ+ 1)!!
k2(ℓ+1)

∣

∣IL(k)
∣

∣

2
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+
∞
∑

ℓ=2

4ℓ(ℓ+ 2)

(ℓ− 1)(ℓ+ 1)!(2ℓ+ 1)!!
k2(ℓ+1)

∣

∣JL(k)
∣

∣

2

]

=
∞
∑

ℓ=2

G(ℓ+ 1)(ℓ+ 2)

ℓ(ℓ− 1)ℓ!(2ℓ+ 1)!!

〈

(

dℓ+1

dtℓ+1
IL
)2
〉

+
∞
∑

ℓ=0

4Gℓ(ℓ+ 2)

(ℓ− 1)(ℓ+ 1)!(2ℓ+ 1)!!

〈

(

dℓ+1

dtℓ+1
IL
)2
〉

(109)

which is of course gauge invariant and reproduces the well-known result of [4].

C. Gravitational waveform

The gravitational radiation field far away from the source is computed in harmonic gauge

where the retarded propagator in d = 4 spacetime dimensions is

−iPµναβ θ(tf − ti)

4π|xf − xi|
δ(tf − ti − |xf − xi|) (110)

with Pµναβ = 1
2
(ηµαηνβ + ηµβηνα − ηµνηαβ). The physical waveform is transverse traceless

and is obtained from the harmonic gauge radiation field via contraction with the transverse-

traceless projection operator. Conforming to the usual dimensionless normalization, we

define the transverse traceless waveform to be

hTT
ij (x) ≡ 1

mP l

Λij,kl hkl(x) (111)

with the transverse traceless projection operator given by

Λij,kl(x) = (δik − nink) (δjl − njnl)−
1

2
(δij − ninj) (δkl − nknl) . (112)

We find the waveform to all orders in the multipole expansion in linearized gravity to be

hTT
ij (x) = −4G

|x|Λij,kℓ−1kℓ

[

∞
∑

ℓ=2

1

ℓ!
∂ℓ
t I

L(tret)n
L−2 −

∞
∑

ℓ=2

2ℓ

(ℓ+ 1)!
ǫab(kℓ∂ℓ

tJ
kℓ−1)bL−2(tret)n

aL−2

]

,

(113)

where we point out that our overall sign differs from the (otherwise equivalent) expressions

for hTT
ij in [14] because we use a different metric signature. Moreover, we can also derive the

energy flux of Eq. (109) from the waveform in Eq. (113) using

Ė =
1

32πG

∫

dΩ |x|2
〈

ḣTT
ij ḣTT

ij

〉

. (114)
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D. Going beyond a linearized source term

Our result for the multipole expanded action for linearized gravity in Eq. (100) with the

moments in Eqs. (101 - 106) can simply be extended beyond the linear regime using the

diffeomorphism invariance of the action. In NRGR this is guaranteed to hold in the action

of the effective radiation theory by the use of the background field method when integrating

out the potential modes [6].

Operationally, covariantizing the action corresponds to replacing all Riemann tensors

with their expressions to all orders in the gravitational field hµν and replacing all partial

derivatives by covariant derivatives in Eq. (100), as well as extending the couplings in

Scons
source beyond the linear regime. We then have the form of the action written down based

on symmetry arguments in [15], which in the center of mass frame is

Ssource = −M

∫

dτ − 1

2

∫

dxµLi ǫijkω
jk
µ

+

∫

dτ
∞
∑

ℓ=2

1

ℓ!
IL∇L−2Ekℓ−1kℓ −

∫

dτ
∞
∑

ℓ=2

2ℓ

(ℓ+ 1)!
JL ∇L−2Bkℓ−1kℓ (115)

where we can also replace dτ = dt
√
g00 and dxµ = dtδµ0 when we parameterize the worldline

in terms of coordinate time t. The Wilson coefficients of this action with couplings beyond

the linear regime in Eq. (115) are still given by Eqs. (101 - 106), the same multipole

moments as the ones in the linear multipole expanded action in Eq. (100).

However, we note that new couplings quadratic in hµν can be written down which are

not included in Eq. (115), for examples terms proportional to EijEkl. Their coefficients are

not fixed by our work. Moreover, we expect that there exist some relationships between

the one-graviton-emission amplitudes used to match at the linear level and multi-graviton-

emission amplitudes, since they must conspire to combine in such a way that they provide

the non-linear pieces in Eq. (115).

V. CONCLUSIONS

We have performed the multipole expansion of a linear source term action in the long

wavelength approximation for three theories of increasing complexity, namely a scalar field,

electromagnetism and general relativity. Throughout, we worked at the level of the action

which we expressed in terms of manifestly gauge invariant operators in electromagnetism

34



and general relativity. We provided the exact results for the multipole moments, and we gave

the emitted radiation power and the radiation field far away from the source to all orders

in the multipole expansion. Our results for the multipole moments agree in the appropriate

long wavelength limit with the results in [2].

Our results for linearized8 gravity are an important component of the effective field theory

framework NRGR. Our exact expressions for the multipole moments in Eqs. (101 - 106)

together with the expressions for the power emitted in gravitational waves in Eq. (109) and

the waveform in Eq. (113) will greatly simplify future calculation of precision gravitational

wave observables in the effective field theory framework. From now on, all that is left to do

in the matching to the effective radiation theory is to compute the Feynman diagrams which

provide the moments of T µν in the expressions for the multipole moments to a desired order.

See the appendix B for the power counting rules which tell us which terms are required at

a given order.

While we have worked with a linear source action in gravity, our results hold more gen-

erally for the covariantized form of our multipole expanded action in Eq. (115) by diffeo-

morphism invariance. However, at quadratic order in the gravitational field, new invariant

operators can be written down, and this work does not fix their coefficeints. The multipole

expansion to all orders in the nonlinearities has been solved at the level of the solution to

the equations of motion in the more traditional approach to compute gravitational wave

signatures by Blanchet in [3], where the introduction of four additional sets of multipole

moments was required. It would be an interesting future direction to further investigate the

structure of the source action and the multipole expansion beyond the linear regime and its

relation to the results of [3].
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Appendix A: Useful formulas for sums

Recalling that

c
(ℓ+2j)
j =

(ℓ+ 2j)!

ℓ!

(2ℓ+ 1)!!

(2j)!!(2ℓ+ 2j + 1)!!
(A1)

as defined above in of Eq. (7), we have the sums

p
∑

j=0

c
(ℓ+2j)
j

ℓ+ 2j
=

1

ℓ

(ℓ+ 2p+ 1)!

(ℓ+ 1)!

(2ℓ+ 1)!!

(2p)!!(2ℓ+ 2p+ 1)!!
(A2)

p
∑

j=0

(p− j + 1)c
(ℓ+2j)
j

(ℓ+ 2j)(ℓ+ 2j − 1)
=

1

ℓ(ℓ− 1)

(ℓ+ 2p+ 2)!

(ℓ+ 2)!

(2ℓ+ 1)!!

(2p)!!(2ℓ+ 2p+ 1)!!
(A3)

p
∑

j=0

c
(ℓ+2j)
j

(ℓ+ 2j)(ℓ+ 2j − 1)
=

1

ℓ(ℓ− 1)

[

(ℓ+ 2p)!

ℓ!
+ 4p

(ℓ+ 2p)!

(ℓ+ 2)!

]

(2ℓ+ 1)!!

(2p)!!(2ℓ+ 2p+ 1)!!

(A4)
q
∑

s=0

1

(n+ 2s+ 2)(n+ 2s)
=

q + 1

n(n + 2q + 2)
(A5)

q
∑

s=0

1

(n+ 2s+ 1)(n+ 2s− 1)
=

q + 1

(n− 1)(n+ 2q + 1)
. (A6)

Appendix B: Power counting for radiation observables in NRGR

The multipole moments in Eqs. (101 - 106) together with the energy flux in Eq. (109)

and the waveform in Eq. (113) greatly simplify future higher order calculation in the EFT

framework NRGR. Here we briefly outline which multipole moments and need to be included

for a calculation at a given order, and which of the terms in the infinite expressions for the

multipole moments are required.

Generally, all time derivatives in the multipole moments or in the expressions for the

power and the waveform scale as v/a where v is the typical three-velocity within the source.

All factors of x in the moments scale as the size of the source a (which is the orbital separation

for binaries). Therefore, the next order in p in the sums in the multipole moments in Eqs.

(105) and (106), which always is accompanied by an extra factor of ∂2
t r

2, is suppressed by a

factor v2. The only ingredient we are missing in order to be able to power count everything

are the moments. Their scaling is not universal and changes for example if we consider

systems with spin. See Table I [16] for their scalings where we defined Kµν
ℓ ≡

∫

d3xT µνxL.
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O(6S) O(SA) O(S2
A)

K00
ℓ maℓ maℓv3 maℓv4

K0i
ℓ maℓv maℓv2 maℓv5

K
ij
ℓ maℓv2 maℓv3 maℓv6

TABLE I: Scalings for leading terms in moments of T µν for various orders in spin [16]. These

scalings are valid for all moments ℓ ≥ 2 and persist if some indices are contracted.

For practical purposes it is convenient to simply power count factors of v with respect

to the leading expression for a multipole moment or an observable. Let us discuss a quick

example for a system where we can neglect spin: If we want for example the quadrupole

moment to 2PN, i.e. at order v4 beyond its leading expression, we need the T 00 component

in Eq. (105) to second order in p, the T aa and T 0a components in Eq. (105) to first order

in p and the T ab component in Eq. (105) to zeroth order in p. Recall that each order

in p contributes to all orders in v2 beyond its leading expression due to corrections from

matching, see [15, 16] for examples and more details on matching.
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