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We examine generalized O’Raifeartaigh models that feature multiple tree-level flat directions and
only contain fields with R-charges 0 or 2. We show that spontaneous R-breaking at up to one-loop
order is impossible in such theories. Specifically, we prove that the R-symmetric origin of field space
is always a local minimum of the one-loop Coleman-Weinberg potential, generalizing an earlier result
for the case of a single flat direction. This result has consequences for phenomenology and helps
elucidate the behavior of various models of dynamical SUSY breaking.

The ORaifeartaigh (OR) model [1] and its gen-
eralizations constitute the simplest theories which
spontaneously break supersymmetry (SUSY). De-
spite their simplicity, they are interesting subjects
for study, because they often arise as low-energy ef-
fective theories of models which dynamically break
SUSY [2–4]. They are directly relevant both to
theoretical questions about dynamical SUSY break-
ing, and to questions concerning the phenomenol-
ogy of supersymmetric extensions of the Standard
Model. Furthermore, Wess-Zumino may appear in
various other branches of physics where supersym-
metry plays a role.

Spontaneous SUSY breaking generically requires
the existence of an R-symmetry [5]. An unbroken
R-symmetry forbids Majorana gaugino masses, so
if SUSY is relevant to nature at the TeV scale, R-
symmetry must be broken somehow.1 In this let-
ter we will examine the possibility of spontaneous
R-symmetry breaking in generalized O’Raifeartaigh
models (renormalizable Wess-Zumino models with
F -term SUSY-breaking).

In general one can envision either tree-level spon-
taneous R-breaking or radiatively induced break-
ing [7]. Models that break the R-symmetry at tree-
level exist [8–10], but they are rather cumbersome
and have not yet been found naturally in dynamical
models of SUSY breaking. One is therefore led to
investigate the possibility of radiatively broken R-
symmetry. In fact, radiative effects in Wess-Zumino
models have always played a pivotal role because

1 One can also consider models with Dirac mass terms for
the gauginos, see for instance the general analysis of [6]
and references therein.

any SUSY-breaking vacuum is necessarily accompa-
nied by a flat direction [11]. (Such flat directions in
Wess-Zumino models are often called pseudomod-
uli.) Hence, to determine the correct vacuum of the
theory one is generally forced to consider radiative
effects.

A special class of generalized O’R models con-
sists of theories where all the R-charges are either
0 or 2. Several well-known dynamical models of cal-
culable SUSY breaking lead to such theories (e.g.
[2, 3]); hence our interest in this class. For such
theories one can prove the absence of tree-level R-
breaking [10]. In addition, it was shown in [12] that
in models with a single pseudomodulus, spontaneous
R-breaking through the one-loop Coleman-Weinberg
(CW) potential required the presence of fields with
R-charges other than 0 or 2. This theorem has often
been used to guide model building.

In this letter, we will generalize the result of [12]
to O’R models with arbitrarily many pseudomoduli
fields. We will show that even in this case, if all the
R-charges are 0 or 2, the one-loop effective potential
has a local minimum at the R-symmetric origin of
field space (which could be a manifold in general).
Additionally, we will also show that pseudomoduli
can remain massless after one-loop corrections are
taken into account only if they are in fact mani-
festly decoupled in the Lagrangian at the one-loop
level. Such pseudomoduli can receive important two-
loop corrections (see e.g. [13–15]), and it would be
interesting to investigate these two-loop corrections
in general.

We do not consider the general problem of Wess-
Zumino models with R-charges other than 0, 2. That
is left as an interesting problem for the future.
For the case of a single pseudomodulus it was ar-
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gued [12] that there is no obstruction to obtaining
R-symmetry breaking. It would be interesting to
see precisely how this works if more than one pseu-
domodulus is present. Another obvious generaliza-
tion of our study is to introduce gauge fields. In-
troducing gauge fields can lead to a variety of in-
teresting phenomena, such as spontaneous radiative
breaking, and even classical destabilization of all the
vacua [16].
This work was partly motivated by recent interest-

ing papers which considered the possibility of spon-
taneous R-symmetry breaking with additional pseu-
domoduli [17, 18]. In specific models, it was found
by explicit computations that loop corrections pre-
serve the R-symmetry. In [17], it was also shown
that having a single additional pseudomodulus did
not induce spontaneous R-breaking at one-loop and
at leading order in SUSY breaking. Here we provide
the general derivation for arbitrarily many pseudo-
moduli, and to all orders in SUSY breaking.
Our short note proceeds as follows. We first de-

fine the most general O’Raifeartaigh model contain-
ing only R-charges 0 and 2 and discuss the relevant
terms. We then explicitly calculate the effective po-
tential, and show that the generated mass matrix for
R = 2 fields at the origin is positive semi-definite.
For completeness, we analyze the zero modes of this
mass matrix and explicitly confirm that they can
only arise for fields that are completely decoupled
from SUSY breaking at one-loop order. For such
zero modes one would need to investigate higher-
order effects in order to determine the vacuum of
the theory (or its absence). An brief appendix sum-
marizes some technical details.

MODEL DEFINITION

Consider any theory with R-charges 0, 2 only. La-
bel the R-charged fields X , σi, i = 1, . . . , N2 and
the R = 0 fields ρa, a = 1, . . . , N0. By a sim-
ple scaling argument of the R-charged fields, it is
clear that from any field configuration one can find
a path that terminates at σi = 0 and along which the
tree-level potential strictly decreases [10]. In other
words, from every point one can continuously lower
the classical energy until an R-symmetric point is
reached. (It can also be that the energy along this
path stays constant, but by simply rescaling the R-
charged fields it can never grow.) This makes tree-
level breaking of the R-symmetry in such models
impossible, and one has to rely on radiative correc-

tions.
Consider now the most general O’R model con-

taining only R-charges 0 and 2. Then the super-
potential can always be brought into the canonical
form [10, 11]

W = fX +maiρaσi + λabXρaρb + λ̃iabσiρaρb, (1)

where R(X) = 2 and ρ, σ are as above. X is the
canonical SUSY-breaking pseudomodulus. There
can also be other pseudomoduli not associated with
SUSY breaking. If these have R = 0, then we do not
care what happens to them radiatively, since they
will not break R-symmetry regardless. Therefore we
are free to expand those ρ fields which are pseudo-
moduli around their exact vevs.2 On the other hand,
any additional R = 2 pseudomoduli are potentially
important. If they get vevs radiatively then they
will break R-symmetry spontaneously. So our task
is to compute the Coleman-Weinberg potential in
this multi-dimensional space and show that the R-
symmetric origin is attractive.
There are additional R = 2 pseudomoduli if and

only if rank m < N2. Let us single out those
that do not have mass terms and call them Yn,
n = 1, . . . , N ′

2. We will continue to denote the mas-
sive R = 2 fields with σi, with an obvious reduction
in their number. Then we can rewrite (1) as

W = fX +maiρaσi + λabXρaρb

+λ̃nabYnρaρb + λ̃′
iabσiρaρb, (2)

where m†m is non-singular. Note that mm† could
have zero modes, but there are no tree-level tachyons
at the origin. For the purposes of computing the
one-loop effective potential for X and Y , the cubic
couplings λ̃′ never contribute, so we will ignore them
henceforth and focus on the simplified superpoten-
tial

W = fX +maiρaσi +λabXρaρb + λ̃nabYnρaρb, (3)

Finally, it is convenient to introduce a
pseudomoduli-dependent matrix Nab defined
by

Nab = λabX + λ̃nabYn. (4)

2 Radiatively-generated SUSY-breaking tadpoles in the
scalar potential will shift the classical vevs for all the R = 0
fields away from the origin if they are not protected by ad-
ditional symmetries, but as long as those corrections are
small we need not worry about them.
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Note that N can be taken to be symmetric (but
not necessarily real) without loss of generality. In
the next section, we will compute the Coleman-
Weinberg one-loop effective potential for X and Yn

that follows from this superpotential.

PSEUDOMODULI MASSES AT 1-LOOP

In terms of the tree-level boson and fermion mass
matrices, the 1-loop effective potential [7] is given
by

V
(1)
eff =

1

64π2

∑

i=F,B

Tr(−1)FM4
i log

M2
i

Λ2
. (5)

Following [12], we rewrite this as

V
(1)
eff = −

1

32π2

∫ Λ

0

dv v5 Tr

(

1

v2 +M2
B

−
1

v2 +M2
F

)

.

(6)
The mass matrices that follow from (2) are (in the
basis (ρ, σ, ρ∗, σ∗))

M2
B =

(

W
†
ikW

kj W
†
ijkW

k

W ijkW
†
k W ikW

†
kj

)

(7)

=M2
0 +M2

1 +M2
2 + F

M2
0 =









m∗mT 0 0 0
0 m†m 0 0
0 0 mm† 0
0 0 0 mTm∗









(8)

M2
1 =









0 N †m 0 0
m†N 0 0 0
0 0 0 NTm∗

0 0 mTN∗ 0









(9)

M2
2 =









N †N 0 0 0
0 0 0 0
0 0 NTN∗ 0
0 0 0 0









(10)

F =









0 0 λ†f 0
0 0 0 0

λf∗ 0 0 0
0 0 0 0









(11)

and M2
F is the same but with F → 0. We would

like to expand (6) out to second order in N . Using
(7)-(11), we obtain

V
(1)
eff

∣

∣

∣

N2

=
1

32π2

∫ Λ

0

dv v5 Tr

(

(v2 +M2
0 + F )−2(M2

2 −M2
1 (v

2 +M2
0 + F )−1M2

1 )− (f → 0)

)

=
1

16π2

∫ ∞

0

dv v3 Tr

(

(v2 +M2
0 + F )−1

(

M2
2 −

1

2
M2

1 (v
2 +M2

0 + F )−1M2
1

)

− (f → 0)

)

where in the second line we have integrated by parts.
This is the generalization of Eqn. (2.12) in [12].

Next we expand out (v2 +M2
0 + F )−1 in powers

of F , delete the terms that vanish under the trace,
and resum the series. This results in:

V
(1)
eff

∣

∣

∣

N2

=
1

16π2

∫ ∞

0

dv v3 Tr

(

F̂ 2

1− F̂ 2

(

M̂2
2 − M̂4

1

)

)

,

(12)
where the hatted quantities are defined by

F̂ = (v2 +M2
0 )

−1/2F (v2 +M2
0 )

−1/2, (13)

M̂2
1,2 = (v2 +M2

0 )
−1/2M2

1,2(v
2 +M2

0 )
−1/2.(14)

(Since M0 can be singular this may not be well-
defined at v = 0, but this does not matter for the
v-integral.) Evaluating the block-matrix multiplica-
tion and making use of the fact that λ, λ̃n are sym-
metric, this finally becomes

V
(1)
eff

∣

∣

∣

N2

=
1

8π2

∫ ∞

0

dv v5 Tr

(

λ̂†λ̂

1− λ̂†λ̂
N̂ †N̂

)

,

(15)
where

λ̂ ≡ (v2 +mm†)−1/2λf∗(v2 +m∗mT )−1/2,

N̂ ≡ (v2 +mm†)−1/2N(v2 +m∗mT )−1/2. (16)
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The absence of tree-level tachyons at the origin im-
plies that mm† is positive-semidefinite. Therefore
(1 − λ̂†λ̂)−1 is positive-semidefinite, which makes
the integrand a trace of a product of positive-
semidefinite Hermitian matrices. Hence it is man-
ifestly non-negative for all X and Yn, making all
pseudomoduli masses non-tachyonic at the origin.
Generally, they will have positive mass-squareds; we
will examine the case where their mass-squareds van-
ish in the next section.

VANISHING 1-LOOP MASSES

We have so far shown that the pseudomod-
uli mass-squareds around the origin are all non-
negative, and thus there is noR-breaking at one-loop
in the sense defined before. To complete the story we
need to discuss the pseudomoduli which are massless
at one-loop. We will show that this is only possi-
ble if these pseudomoduli are manifestly decoupled
from SUSY breaking at one-loop order. This shows
that there are no possible accidental cancellations,
and all the pseudomoduli that can become massive
indeed do so. Pseudomoduli which are manifestly
decoupled at one-loop can still communicate with
SUSY breaking at two and higher loops, and there
are known examples where two-loop effects trigger
spontaneous R-breaking [13–15]. It would be inter-
esting to say something general about the two-loop
effective potential, but this is beyond the scope of
this note.
In terms of the superpotential (2), what we would

like to show is that if some pseudomodulus direc-
tion3, labelled by Nab = λabX0(t) +

∑

n Yn0(t)λ̃nab

with t ∈ R, is massless at one-loop, then ρ and σ

can be split into two nearly-decoupled sets of fields
{ρ} → {ρ′, ρ′′}, {σ} → {σ′, σ′′}:

W =
(

fδX + ρ′Tm′σ′ + δXρ′Tλρ′
)

+
(

ρ′′Tm′′σ′′ + ρ′′TNρ′′
)

+ cubic (17)

These fields only talk to each other through the cu-
bic interactions (which include terms like σρρ and
δY ρρ), and so the pseudomoduli N acquire SUSY-
breaking masses only at two and higher loops.

3 Here we are being careful to distinguish between the pseu-
domodulus vevs X0, Yn0, and their fluctuations δX ≡

X −X0, δYn ≡ Y − Yn0.

We will take a constructive approach to deriving
(17). That is, we will start from the formula for
the one-loop pseudomoduli mass-squareds (15), use
this to derive constraints on λ, N , and m in the su-
perpotential (2) in the event that the mass-squareds
vanish, and show that these constraints necessarily
lead us to the nearly-decoupled form (17).
To begin, suppose the mass of some pseudomod-

ulus vanishes at one-loop order. According to (15),
this means that

Tr(λ̂†λ̂N̂ †N̂) = 0 (18)

for N in the background field direction of this zero
mode. This in turn can only be satisfied if

λ̂N̂ † = 0 (19)

Note that λ̂ and N̂ † are functions of v via (16), and
(19) must be true for all v. Expanding in 1

v2 yields
the following conditions that must be satisfied by
the coupling matrices:

λ(m∗mT )kN † = 0 for all k = 0, 1, 2, . . . (20)

λ is a complex symmetric matrix, so by a unitary
rotation of the ρ fields λ → UλUT , we can always
diagonalize it:

λ =

(

λ′
n1×n1

0
0 0

)

(21)

where λ′ is non-singular. The k = 0 version of (20)
implies λN † = 0, so in the basis where λ takes the
form (21), we can do another unitary rotation on the
ρ fields not coupling to λ′ so that

N =





0n1×n1

0n2×n2

N ′
n3×n3



 , (22)

with N ′ non-singular. n2 could of course be zero.

Having used the k = 0 condition of (20) to fix the
block-form of λ and N , the k > 0 conditions will
restrict the form m. Writing the hermitian matrix
m∗mT in 3 × 3 block form as in (22), the k > 0
conditions of (20) imply

((m∗mT )k)13 = 0 for all k = 1, 2, . . . (23)

(The 13 subscript refers to the upper-right block of
(m∗mT )k.) In the appendix, we prove the following
lemma in linear algebra: when (23) is satisfied, one
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can always find a 3×3 block-unitary transformation
that puts m∗mT into the form

m∗mT =

(

[

m∗mT
]′

n4×n4

0

0
[

m∗mT
]′′

n5×n5

)

(24)

with n4 ≥ n1 and n5 ≥ n3. Combining this with
(21) and (22), we conclude that all the ρ fields can be
separated into two sectors in which λ, N , and m∗mT

are block-diagonal. By a unitary transformation on
the σ fields, the same can be done for m itself, and
we arrive at the desired result (17).
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Appendix: Useful Lemma

In this appendix, we will prove the following
lemma described above in section 4.

Lemma: Consider a square hermitian matrix M ,
divided into blocks

M =





M11 M12 M13

M
†
12 M22 M23

M
†
13 M

†
23 M33



 (25)

with Mij being mi ×mj . Suppose that M satisfies:

(Mk)13 = 0 for all k = 1, 2, . . . (26)

Then there exists a block unitary transformation
M → UMU † with

U =





U1

U2

U3



 (27)

such that M takes the block-diagonal form

M =

(

M̃11 0

0 M̃22

)

(28)

with the 12 block that is zero in Eq. (28) containing
the 13 block in the original basis.

Proof: We will prove this by induction, by starting
with general m1, m2, m3 and then reducing this to
the same claim but with smaller mi. The k = 1
version of Eq. (26) implies that M13 = 0. The k =
2 condition implies that M12M23 = 0. Combining
this with a choice of U1, U2 and U3, we can always
simultaneously block-diagonalize M12 and M23:

M12 =

(

(A)m′

1
×m′

1
0 0

0 0 0

)

(29)

M23 =





0 0
0 0
0 (B)m′

3
×m′

3



 (30)

with A and B nonsingular, and m′
1 ≤ m1,m2, m

′
3 ≤

m2,m3, and m′
1 + m′

3 ≤ m2. Dividing M22 into
3 × 3 blocks like Eq. (25) with mi → m′

i, the k ≥ 3
versions of Eq. (26) imply

((M22)
ℓ)1′3′ = 0 for all ℓ = 1, 2, . . . (31)

So we see that Eq. (26) maps on to an identical con-
dition for the smaller matrix M22. Moreover, ex-
amining the form of Eq. (25), after substituting Eq.
(29), we find:

M =





















M11

(

A 0 0
0 0 0

)

0




A† 0
0 0
0 0



 M22





0 0
0 0
0 B





0

(

0 0 0
0 0 B†

)

M33





















(32)
So we see that the desired 2× 2 block form Eq. (28)
can be achieved, provided M22 can be put into an
analogous 2×2 block form, also with a block-unitary
transformation. This completes the inductive recur-
sion. Proceeding in this way, we can reduce the
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lemma to a trivial statement about 3 × 3 matrices,
which completes the proof by induction.
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