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We examine generalized O’Raifeartaigh models that feature multiple tree-level flat directions and
only contain fields with R-charges 0 or 2. We show that spontaneous R-breaking at up to one-loop
order is impossible in such theories. Specifically, we prove that the R-symmetric origin of field space
is always a local minimum of the one-loop Coleman-Weinberg potential, generalizing an earlier result
for the case of a single flat direction. This result has consequences for phenomenology and helps
elucidate the behavior of various models of dynamical SUSY breaking.

The ORaifeartaigh (OR) model [1] and its gen-
eralizations constitute the simplest theories which
spontaneously break supersymmetry (SUSY). De-
spite their simplicity, they are interesting subjects
for study, because they often arise as low-energy ef-
fective theories of models which dynamically break
SUSY [2-4]. They are directly relevant both to
theoretical questions about dynamical SUSY break-
ing, and to questions concerning the phenomenol-
ogy of supersymmetric extensions of the Standard
Model. Furthermore, Wess-Zumino may appear in
various other branches of physics where supersym-
metry plays a role.

Spontaneous SUSY breaking generically requires
the existence of an R-symmetry [5]. An unbroken
R-symmetry forbids Majorana gaugino masses, so
if SUSY is relevant to nature at the TeV scale, R-
symmetry must be broken somehow.! In this let-
ter we will examine the possibility of spontaneous
R-symmetry breaking in generalized O’Raifeartaigh
models (renormalizable Wess-Zumino models with
F-term SUSY-breaking).

In general one can envision either tree-level spon-
taneous R-breaking or radiatively induced break-
ing [7]. Models that break the R-symmetry at tree-
level exist [8-10], but they are rather cumbersome
and have not yet been found naturally in dynamical
models of SUSY breaking. One is therefore led to
investigate the possibility of radiatively broken R-
symmetry. In fact, radiative effects in Wess-Zumino
models have always played a pivotal role because

1 One can also consider models with Dirac mass terms for
the gauginos, see for instance the general analysis of [6]
and references therein.

any SUSY-breaking vacuum is necessarily accompa-
nied by a flat direction [11]. (Such flat directions in
Wess-Zumino models are often called pseudomod-
uli.) Hence, to determine the correct vacuum of the
theory one is generally forced to consider radiative
effects.

A special class of generalized O’R models con-
sists of theories where all the R-charges are either
0 or 2. Several well-known dynamical models of cal-
culable SUSY breaking lead to such theories (e.g.
[2, 3]); hence our interest in this class. For such
theories one can prove the absence of tree-level R-
breaking [10]. In addition, it was shown in [12] that
in models with a single pseudomodulus, spontaneous
R-breaking through the one-loop Coleman-Weinberg
(CW) potential required the presence of fields with
R-charges other than 0 or 2. This theorem has often
been used to guide model building.

In this letter, we will generalize the result of [12]
to O’R models with arbitrarily many pseudomoduli
fields. We will show that even in this case, if all the
R-charges are 0 or 2, the one-loop effective potential
has a local minimum at the R-symmetric origin of
field space (which could be a manifold in general).
Additionally, we will also show that pseudomoduli
can remain massless after one-loop corrections are
taken into account only if they are in fact mani-
festly decoupled in the Lagrangian at the one-loop
level. Such pseudomoduli can receive important two-
loop corrections (see e.g. [13-15]), and it would be
interesting to investigate these two-loop corrections
in general.

We do not consider the general problem of Wess-
Zumino models with R-charges other than 0,2. That
is left as an interesting problem for the future.
For the case of a single pseudomodulus it was ar-



gued [12] that there is no obstruction to obtaining
R-symmetry breaking. It would be interesting to
see precisely how this works if more than one pseu-
domodulus is present. Another obvious generaliza-
tion of our study is to introduce gauge fields. In-
troducing gauge fields can lead to a variety of in-
teresting phenomena, such as spontaneous radiative
breaking, and even classical destabilization of all the
vacua [16].

This work was partly motivated by recent interest-
ing papers which considered the possibility of spon-
taneous R-symmetry breaking with additional pseu-
domoduli [17, 18]. In specific models, it was found
by explicit computations that loop corrections pre-
serve the R-symmetry. In [17], it was also shown
that having a single additional pseudomodulus did
not induce spontaneous R-breaking at one-loop and
at leading order in SUSY breaking. Here we provide
the general derivation for arbitrarily many pseudo-
moduli, and to all orders in SUSY breaking.

Our short note proceeds as follows. We first de-
fine the most general O’Raifeartaigh model contain-
ing only R-charges 0 and 2 and discuss the relevant
terms. We then explicitly calculate the effective po-
tential, and show that the generated mass matrix for
R = 2 fields at the origin is positive semi-definite.
For completeness, we analyze the zero modes of this
mass matrix and explicitly confirm that they can
only arise for fields that are completely decoupled
from SUSY breaking at one-loop order. For such
zero modes one would need to investigate higher-
order effects in order to determine the vacuum of
the theory (or its absence). An brief appendix sum-
marizes some technical details.

MODEL DEFINITION

Consider any theory with R-charges 0, 2 only. La-
bel the R-charged fields X, o;, ¢ = 1,..., Ny and
the R = 0 fields p,, a = 1,...,Ny. By a sim-
ple scaling argument of the R-charged fields, it is
clear that from any field configuration one can find
a path that terminates at 0; = 0 and along which the
tree-level potential strictly decreases [10]. In other
words, from every point one can continuously lower
the classical energy until an R-symmetric point is
reached. (It can also be that the energy along this
path stays constant, but by simply rescaling the R-
charged fields it can never grow.) This makes tree-
level breaking of the R-symmetry in such models
impossible, and one has to rely on radiative correc-

tions.

Consider now the most general O’R model con-
taining only R-charges 0 and 2. Then the super-
potential can always be brought into the canonical
form [10, 11]

W = fX 4+ Maipadi + AabX papb + NiabTipapp, (1)

where R(X) = 2 and p, o are as above. X is the
canonical SUSY-breaking pseudomodulus. There
can also be other pseudomoduli not associated with
SUSY breaking. If these have R = 0, then we do not
care what happens to them radiatively, since they
will not break R-symmetry regardless. Therefore we
are free to expand those p fields which are pseudo-
moduli around their exact vevs.?2 On the other hand,
any additional R = 2 pseudomoduli are potentially
important. If they get vevs radiatively then they
will break R-symmetry spontaneously. So our task
is to compute the Coleman-Weinberg potential in
this multi-dimensional space and show that the R-
symmetric origin is attractive.

There are additional R = 2 pseudomoduli if and
only if rank m < Ni. Let us single out those
that do not have mass terms and call them Y,
n=1,...,Nj. We will continue to denote the mas-
sive R = 2 fields with o;, with an obvious reduction
in their number. Then we can rewrite (1) as

W = fX + Maipa0; + )\abXPan
+)\naanpapb + A;al)gz'f)tl/)l77 (2)

where m!m is non-singular. Note that mm' could
have zero modes, but there are no tree-level tachyons
at the origin. For the purposes of computing the
one-loop effective potential for X and Y, the cubic
couplings X never contribute, so we will ignore them
henceforth and focus on the simplified superpoten-
tial

W = fX + MaiPa0i + )\abXpapb + 5\nab}/npapba (3)

introduce a
defined

Finally, it is convenient to
pseudomoduli-dependent  matrix = Ny
by

Nab = /\abX + :\naan- (4)

2 Radiatively-generated SUSY-breaking tadpoles in the
scalar potential will shift the classical vevs for all the R = 0
fields away from the origin if they are not protected by ad-
ditional symmetries, but as long as those corrections are
small we need not worry about them.



Note that N can be taken to be symmetric (but
not necessarily real) without loss of generality. In
the next section, we will compute the Coleman-
Weinberg one-loop effective potential for X and Y,
that follows from this superpotential.

PSEUDOMODULI MASSES AT 1-LOOP

In terms of the tree-level boson and fermion mass
matrices, the 1-loop effective potential [7] is given
by

eff = 64_77'2 Z Tr(—l) Mi og F (5)

Following [12], we rewrite this as

V“)——L/Admﬁﬁ SR
eff 3272 ) v2+MZ w24+ ME)

(6)
The mass matrices that follow from (2) are (in the
basis (p, 0, p*, 0*))

T wki Tk
a2 = [ WaEWR Wl @
wikwl wkw/l

1
asy

effin2 — 3272

1

1672

where in the second line we have integrated by parts.
This is the generalization of Eqn. (2.12) in [12].

Next we expand out (v? + Mg + F)~! in powers
of F, delete the terms that vanish under the trace,
and resum the series. This results in:

(1) 1

oS FQ . .
- 3 - Z‘[Q_Z‘[zl
Vers N2 167r2/0 dvv™Tr <1_F2( 2 1))’

(12)
where the hatted quantities are defined by

F o= 0+ M)TVEFP + M)V, (13)
My = (0% + M§)™V2ME L (0* + Mg) 2. (14)

=M§+ M+ M3+ F

m*mT 0 0 0
2 0 mim 0 0
My = 0 0 mmt 0 (8)
0 0 0 mTm*
0 Nm 0 0
IN 0 0 0
2 m
0 0 mTN* 0
NTN 0 0 0
2 0 0 0 0
0 0 0 0
0 O )\Tf 0
0O 0 0 O
F=1xrr0 0 o (11)
0O 0 0 O

and M2 is the same but with ' — 0. We would
like to expand (6) out to second order in N. Using
(7)-(11), we obtain

A
= / dv v® Tr <(v2 + MG+ F) (M3 — MF(v* + M3+ F)"*M3?) — (f — 0)>
0

o0 1
- /0 dvv® Tr ((v2 + M2+ F)! (M22 - gM{(v* + Mg + F)_1M12> —(f = 0))

(Since My can be singular this may not be well-
defined at v = 0, but this does not matter for the
v-integral.) Evaluating the block-matrix multiplica-
tion and making use of the fact that A, A, are sym-
metric, this finally becomes

1 [ AN
Ve(}} :_2/ dvv® Tr — NN |,
N2 81 Jo 1— M\

(15)

where

5\ = (v2+mmT)71/2)\f*(1)2—I—m*mT)fl/Q,
N = W +mmH)V2N@? + m*mT)~V2. (16)



The absence of tree-level tachyons at the origin im-
plies that mm! is positive-semidefinite. Therefore
(1 — ATA)~! is positive-semidefinite, which makes
the integrand a trace of a product of positive-
semidefinite Hermitian matrices. Hence it is man-
ifestly non-negative for all X and Y,, making all
pseudomoduli masses non-tachyonic at the origin.
Generally, they will have positive mass-squareds; we
will examine the case where their mass-squareds van-
ish in the next section.

VANISHING 1-LOOP MASSES

We have so far shown that the pseudomod-
uli mass-squareds around the origin are all non-
negative, and thus there is no R-breaking at one-loop
in the sense defined before. To complete the story we
need to discuss the pseudomoduli which are massless
at one-loop. We will show that this is only possi-
ble if these pseudomoduli are manifestly decoupled
from SUSY breaking at one-loop order. This shows
that there are no possible accidental cancellations,
and all the pseudomoduli that can become massive
indeed do so. Pseudomoduli which are manifestly
decoupled at one-loop can still communicate with
SUSY breaking at two and higher loops, and there
are known examples where two-loop effects trigger
spontaneous R-breaking [13-15]. It would be inter-
esting to say something general about the two-loop
effective potential, but this is beyond the scope of
this note.

In terms of the superpotential (2), what we would
like to show is that if some pseudomodulus direc-
tion®, labelled by Nap = AapXo(t) + >, Yo (t) Anas
with ¢ € R, is massless at one-loop, then p and o
can be split into two nearly-decoupled sets of fields

{p} = {p 0"} {o} = {0’ 0"}
W = (f&X + o Tm’o’ + 5Xp’T)\p’)
+ (pHTm/IUH + p//TNp//) -+ cubic (17)

These fields only talk to each other through the cu-
bic interactions (which include terms like opp and
dY pp), and so the pseudomoduli N acquire SUSY-
breaking masses only at two and higher loops.

3 Here we are being careful to distinguish between the pseu-
domodulus vevs Xg, Yo, and their fluctuations 6X =
X—Xo, 5Yn =Y — Yn0~

We will take a constructive approach to deriving
(17). That is, we will start from the formula for
the one-loop pseudomoduli mass-squareds (15), use
this to derive constraints on A\, NV, and m in the su-
perpotential (2) in the event that the mass-squareds
vanish, and show that these constraints necessarily
lead us to the nearly-decoupled form (17).

To begin, suppose the mass of some pseudomod-
ulus vanishes at one-loop order. According to (15),
this means that

Tr((AANTN) =0 (18)

for N in the background field direction of this zero
mode. This in turn can only be satisfied if

ANT =0 (19)

Note that A and NT are functions of v via (16), and
(19) must be true for all v. Expanding in % yields
the following conditions that must be satisfied by
the coupling matrices:

AXm*mT)ENT =0 forall k=0,1,2,... (20)
A is a complex symmetric matrix, so by a unitary

rotation of the p fields A — UAUT, we can always

diagonalize it:
— A’/n. Xn 0
A= < 10 ! 0 > (21)

where X' is non-singular. The k = 0 version of (20)
implies ANT = 0, so in the basis where \ takes the
form (21), we can do another unitary rotation on the
p fields not coupling to A\’ so that

O’ﬂl Xni1

O’ﬂg Xno I (22)
N/

n3xXns

N =

with N’ non-singular. ng could of course be zero.
Having used the k = 0 condition of (20) to fix the
block-form of A and N, the k& > 0 conditions will
restrict the form m. Writing the hermitian matrix
m*m? in 3 x 3 block form as in (22), the k > 0
conditions of (20) imply
(m*mT)*) 13 =0 forall k=1,2,... (23)
(The 13 subscript refers to the upper-right block of
(m*mT)*.) In the appendix, we prove the following
lemma in linear algebra: when (23) is satisfied, one



can always find a 3 x 3 block-unitary transformation
that puts m*m7 into the form

x, T
m*mT _ < [m m }n4><77/4 » 79} " ) (24)
m ns Xns

with ng > n1 and ns; > nz. Combining this with
(21) and (22), we conclude that all the p fields can be
separated into two sectors in which A, N, and m*m”
are block-diagonal. By a unitary transformation on
the o fields, the same can be done for m itself, and
we arrive at the desired result (17).

Acknowledgements

We are grateful to Y. Shadmi for helpful discus-
sions. The work of D.C. was supported in part by
the National Science Foundation under Grant PHY-
0969739. Z.K. is supported by NSF PHY-0969448,
by a research grant from Peter and Patricia Gru-
ber Awards, and by the Israel Science Foundation
(grant #884/11). The work of D.S. was supported
in part by a DOE Early Career Award. In addition,
the research of Z.K. and D.S. was supported in part
by Grant No 2010/629 from the United States-Israel
Binational Science Foundation (BSF). The work of
Y.T. was supported in part by the National Science
Foundation under Grant No. PHY-0757868. Opin-
ions, conclusions or recommendations arising out of
supported research activities are those of the author
or the grantee and should not be presented as imply-
ing that they are the views of the funding agencies.

Appendix: Useful Lemma

In this appendix, we will prove the following
lemma described above in section 4.

Lemma: Consider a square hermitian matrix M,
divided into blocks

My Mo Mis
M{, My Moys (25)
My Mj; May

M:

with M;; being m; X m;. Suppose that M satisfies:

(M*)13=0 forall k=1,2...  (26)

Then there exists a block unitary transformation
M — UMU?' with

U,
U= U, (27)
Us

such that M takes the block-diagonal form

M = <]%” ]\;22 ) (28)

with the 12 block that is zero in Eq. (28) containing
the 13 block in the original basis.

Proof: We will prove this by induction, by starting
with general mq, ms, ms and then reducing this to
the same claim but with smaller m;. The k = 1
version of Eq. (26) implies that M;3 = 0. The k =
2 condition implies that Mi3,Ms3 = 0. Combining
this with a choice of Uy, Uy and Us, we can always
simultaneously block-diagonalize M7 and Mas:

My = ((A)m;xwl 0 0) (29)

0 00
0 0
Myy = [0 0 (30)

with A and B nonsingular, and mj < my,ma, mj <
mo, ms, and mj + mfs < mo. Dividing My into
3 x 3 blocks like Eq. (25) with m; — m), the k > 3
versions of Eq. (26) imply

(M))1y =0 forall £=1,2,...  (31)

So we see that Eq. (26) maps on to an identical con-
dition for the smaller matrix Mss. Moreover, ex-
amining the form of Eq. (25), after substituting Eq.
(29), we find:

A00O
Mu (000) 0
AT 0 00
M= 00 Mo, 00
00 0 B
00 0
0 <OOBT> Mas

(32)
So we see that the desired 2 x 2 block form Eq. (28)
can be achieved, provided M5 can be put into an
analogous 2 x 2 block form, also with a block-unitary
transformation. This completes the inductive recur-
sion. Proceeding in this way, we can reduce the



lemma to a trivial statement about 3 x 3 matrices,
which completes the proof by induction.
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