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Abstract

We apply a U-duality based solution-generating technique to construct supergravity solutions

which describe nonextremal D5-branes and fluxbranes on various gravitational instantons.

This includes an F7-brane wrapped on a sphere, which remains weakly-coupled in the asymp-

totic region. We construct various superpositions of nonextremal D5-branes and fluxbranes

that have angular momentum fixed by the parameters associated with their mass and two

magnetic charges.
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1 Introduction and summary

Supergravity p-brane solutions have played a crucial role in string theory, and a great number

of them have provided examples of gauge-gravity duality [1]. However, if a solution contains

a singularity, then this imposes a severe restriction on its range of validity. Singularities may

be resolved by higher-order stringy effects or by geometrical deformations at the level of

supergravity. For example, the Klebanov-Tseytlin solution describing regular and fractional

3-branes at the apex of the conifold [2] can be rendered completely regular by deforming the

conifold [3], thereby providing a supergravity description of chiral symmetry breaking and

confinement. There is an abundance of work that has been done regarding the resolution of

various p-brane solutions; see, for instance, [4].

Another route for dealing with a singularity is to hide it behind an event horizon. It was

proposed that such a non-extremal generalization of the Klebanov-Tseytlin solution could

provide a supergravity description of the restoration of chiral symmetry above a critical

temperature [5]. Due to the complexity of the equations, perturbative as well as numerical

techniques have been applied for this purpose [6–9].

5-brane solutions tend to be simpler since the transverse space has only four dimensions.

Resolutions of heterotic 5-branes on Eguchi-Hanson and Taub-NUT instantons have been

constructed in [4]. This resolution incorporates multiple matter Yang-Mills fields, which

are only available for heterotic string theory. Nevertheless, resolutions of 5-branes in type II

theories are possible if the 5-brane is wrapped around an S2 [10] or S1 [11] and appropriately

twisted. The latter case ended up serving as a guide for the construction of an S1-wrapped

D3-brane on a resolved conifold [12]. This illustrates the usefulness of 5-brane solutions

as a toy model for more complicated p-brane solutions with transverse spaces of higher

dimensionality.

In this paper, we will consider nonextremal D5-branes on various gravitational instantons.

We will apply a solution-generating technique that involves using U-duality to obtain nonex-

tremal p-branes from neutral black holes [13]. Our “seed solutions” will be five-dimensional

black holes on various gravitational instantons [14–17]1. We embed these solutions in eleven

dimensions, perform a boost, dimensionally reduce to type IIA theory along the boosted di-

rection, and perform a series of five T-dualities in order to obtain new nonextremal D5-brane

solutions. The boost parameter in this prescription is associated with the magnetic charge

of the D5-brane. Over the years, this type of prescription for generating new solutions has

been used to obtain a multitude of supergravity solutions. A similar solution-generating

technique has been used to generate solutions which describe the baryonic branch of the

1We do not consider black holes whose horizons are distorted lens spaces L(n;m) = S3/Γ(n;m) [18],

since the resulting nonextremal 5-brane solutions would be similar to the charged generalizations already

constructed in [19].
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Klebanov-Strassler theory [20], as well as its generalization to finite temperature [21].

For seed solutions which have a finite and constant S1 in their asymptotic region, we

can incorporate a rotation, instead of a boost, in the above recipe. Reducing the eleven-

dimensional solution to type IIA theory along the rotated direction then results in an F7-

brane wrapped on a sphere, where the rotation parameter is associated with the magnetic

charge of the fluxbrane. A fluxbrane can be thought of as a higher-dimensional generalization

of the Melvin universe [22], which is a flux tube in four dimensions [23]. Fluxbranes were

introduced within the context of string theory in [24–28]. Unlike the F7-brane found in [27],

the one discussed here remains weakly coupled in the asymptotic region. Applying a rotation

and a boost together in the solution-generating prescription results in a superposition of a

D5-brane and a smeared F2-brane (or a smeared D0-brane and an F7-brane, if one does

not perform the five T-dualities), which have two independent magnetic charge parameters.

These solutions have the additional feature of having angular momentum, which might seem

odd given that the seed solutions do not have angular momentum. However, this angular

momentum is not an independent quantity and is fixed in terms of the parameters associated

with the mass and two magnetic charges.

It would be quite interesting to find an interpolation between these nonextremal 5-brane

solutions and the aforementioned resolutions which either involve a heterotic 5-brane with

Yang-Mills fields [4] or a 5-brane wrapped on an S2 [10] or S1 [11]. An interpolating solution

could provide an explicit example of the transition from a completely regular solution to one

in which there is a singularity hidden behind a horizon. This could offer insight into the

nature of the transition point at which a horizon develops for the more complicated case of

the nonextremal generalization of the Klebanov-Strassler solution, which may not be readily

apparent from perturbative or numerical techniques.

This paper is organized as follows. In section 2, we provide a couple of examples that

illustrate the solution-generating technique for cases in which either a boost or a rotation

is applied. The resulting solutions are a nonextremal D5-brane and an F7-brane wrapped

on a sphere. In section 3, we simultaneously apply a boost and a rotation as part of the

solution-generating procedure and obtain a superposition of a nonextremal D5-brane and a

smeared F2-brane on a Kaluza-Klein (KK) bubble. In section 4, we present various other

examples of superpositions of D5-branes and smeared F2-branes.
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2 Basic examples of the solution-generating technique

2.1 Nonextremal D5-brane

The five-dimensional Schwarzschild-Tangherlini metric [29] is given by

ds25 = −fdt2 + f−1dr2 + r2dΩ2
3, (2.1)

where

f = 1− r20
r2
. (2.2)

The event horizon is located at r = r0 and the singularity is at r = 0. The direct product

of the five-dimensional Schwarzschild-Tangherlini solution with R
6 is a vacuum solution in

eleven dimensions:

ds211 = ds25 + dz2 + dx21 + · · ·dx25, (2.3)

Taking this as the seed solution, one can perform a boost in the z direction,

t→ t cosh β − z sinh β, z → z cosh β − t sinh β, (2.4)

so that the metric (2.3) can be written as

ds211 = H
[

dz + (H−1 − 1) cothβdt
]2 −H−1fdt2 + dx21 + · · ·+ dx25 + f−1dr2 + r2dΩ2

3, (2.5)

where

H = 1 +
r20 sinh

2 β

r2
. (2.6)

Then performing dimensional reduction along the z direction yields a type IIA nonextremal

D0-brane smeared along the x1, . . . , x5 directions:

ds210 = −H−7/8fdt2 +H1/8
(

dx21 + · · ·+ dx25 + f−1dr2 + r2dΩ2
3

)

,

F(2) = coth β dH−1 ∧ dt,

φ = −3

4
logH. (2.7)

If we then T-dualize along the x1, . . . , x5 directions, we obtain the nonextremal D5-brane in

type IIB theory [30]:

ds210 = H−1/4
(

−fdt2 + dx21 + · · ·+ dx25
)

+H3/4
(

f−1dr2 + r2dΩ2
3

)

,

∗F(3) = cothβ dH−1 ∧ dt ∧ d5x,

φ = −1

2
logH. (2.8)

The mass per unit 5-volume is

m =
(

2 sinh2 β + 3
)

r20, (2.9)
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and it has a magnetic charge

Q = r20 sinh 2β. (2.10)

Note that the event horizon of the black hole at r = r0 maps into the event horizon of the

D5-brane. Since the harmonic function (2.6) stays finite and nonzero for r ≥ r0, the source

for the magnetic field strength F(3) in (2.8) lies within the event horizon at r = 0. The

extremal limit of this solution can be obtained by taking r0 → 0 and β → ∞ while keeping

r0 sinh β constant.

2.2 F7-brane on an n-sphere

The n + 2-dimensional Euclidean Schwarzschild-Tangherlini instanton can be embedded in

eleven dimensions as

ds211 = −dt2 + dx21 + · · · dx27−n + dz2 + fdψ2 + f−1dr2 + r2dΩ2
n, (2.11)

where

f = 1−
(r0
r

)n−1

. (2.12)

The radial coordinate r ≥ r0 and regularity at r = r0 requires that ψ has the period

4πr0/(n− 1). This is a static Sn Kaluza-Klein (KK) “bubble of nothing” [31]. It is a direct

product of Minkowski8−n and the Euclidean Schwarzschild instanton and is asymptotically

Minkowski10 × S1 with a finite and constant radius for S1.

Upon performing a rotation in the z − ψ plane,

ψ → ψ cosα− z sinα, z → z cosα+ ψ sinα, (2.13)

the metric (2.11) can be written as

ds211 = H
[

dz + (H−1 − 1) cotαdψ
]2 − dt2 + dx21 + · · ·+ dx27−n+H−1fdψ2+ f−1dr2+ r2dΩ2

n,

(2.14)

where

H = 1−
(r0
r

)n−1

sin2 α > 0. (2.15)

Performing dimensional reduction along the z direction yields an F7-brane wrapped on a

n-sphere:

ds210 = H−7/8fdψ2 +H1/8
(

−dt2 + dx21 + · · ·+ dx27−n + f−1dr2 + r2dΩ2
n

)

,

F(2) = cotα dH−1 ∧ dψ,

φ = −3

4
logH, (2.16)
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The total magnetic flux is
1

4π

∫

F(2) =
r0 tanα

n− 1
. (2.17)

Unlike the F7-brane found in [27], here the IIA theory remains weakly coupled for large r.

Note that the solution (2.16) can also be obtained by a double Wick rotation of a D0-brane

smeared along 8−n directions. Also, as opposed to the nonextremal D5-brane, this F7-brane

solution does not have a nontrivial extremal limit.

3 Superposition of D5-brane and smeared F2-brane on

KK bubble

We will now consider a seed solution for which we can simultaneously apply a boost and

a rotation as part of the solution-generating scheme. The resulting solution involves two

magnetic charges parameterized by α and β.

The seed solution describes a black hole on the Euclidean Schwarzschild instanton, or

equivalently a black hole sitting in the throat of a KK bubble, is given by the metric [14]

ds25 = −fdt2 + gdψ2 + A

(

dx2

G(x)
− dy2

G(y)
+Bdφ2

)

(3.1)

where

G(x) = (1 + cx)(1− x2), A =
2χ4(1 + cx)2(1− c)(1− y)2

(x− y)3
, B = −2(1 + x)(1 + y)

(1− c)(x− y)
,

f =
1 + cy

1 + cx
, g =

1− x

1− y
. (3.2)

The parameters χ and c take the ranges χ > 0 and 0 ≤ c < 1, and the x and y coordinates

take the ranges −1 ≤ x ≤ 1 and −1
c
≤ y ≤ −1. The horizon is located at y = −1

c
and the

asymptotic region is at x = y = −1. For vanishing c, the black hole goes away and we are

left with the background geometry, which is the direct product of time and the Euclidean

Schwarzschild instanton and is asymptotically Minkowski4 × S1 with a finite and constant

S1.

We can embed this as a vacuum solution in eleven dimensions with the metric

ds211 = ds25 + dz2 + dx21 + · · ·+ dx25, (3.3)

and perform the boost (2.4) and rotation (2.13). This yields the metric

ds211 = H
[

dz +H−1(f − 1)cβsβcαdt+H−1(c2β − g − fs2β)cαsαdψ
]2

− H−1K
[

dt+K−1(1− f)cβsβsαc
2
αdψ

]2
+ dx21 + · · ·+ dx25

+ Jdψ2 + A

(

dx2

G(x)
− dy2

G(y)
+Bdφ2

)

(3.4)
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where

H = c2βc
2
α + gs2α − fs2βc

2
α > 0,

K = fc2α + gs2α(fc
2
β − s2β),

J = H−1
[

g(c2β − fs2β) +K−1(1− f)2c2βs
2
βs

2
αc

4
α

]

. (3.5)

and we have used the shorthand notation

cα = cosα, sα = sinα, cβ = cosh β, sβ = sinh β. (3.6)

Performing dimensional reduction along the z direction to type IIA theory yields

ds210 = −H−7/8K
[

dt+K−1(1− f)cβsβsαc
2
αdψ

]2

+ H1/8

[

dx21 + · · ·+ dx25 + Jdψ2 + A

(

dx2

G(x)
− dy2

G(y)
+Bdφ2

)]

,

F(2) = cβsβcα d[H
−1(f − 1)] ∧ dt+ cαsα d[H

−1(c2β − g − fs2β)] ∧ dψ,

φ = −3

4
logH. (3.7)

This describes the superposition of a nonextremal D0-brane smeared along five directions,

an F7-brane wrapped on a 3-sphere, and a KK bubble. This solution has angular momentum

associated with the gravitational field that goes as c cβsβsαc
2
α. The surface at y = −1

c
is

the event horizon, just as it was in the seed solution. However, this solution contains an

outer horizon as well, which is located at K = 0. In analogy with the Kerr metric, the space

between these two horizons is the ergoregion.

It is rather surprising that this solution has angular momentum, given the fact that

the seed solution has none. However, being the outcome of the solution generation, the

angular momentum is not an independent quantity, since it can be expressed in terms of the

parameters c, α and β which are related to the mass and charges. The angular momentum

associated with the gravitational field, along with that associated with the electromagnetic

field, keep the system in a stable configuration without the need of an applied external field.

There may exist more general solutions for which the angular momentum is an independent

quantity. However, such solutions are likely to be unstable, and would either slow down to

the above configuration or else not have enough rotation to prevent their collapse.

Note that the angular momentum cannot be related to a brane charge via T-duality,

since dualizing along the ψ direction would lead to an ill-behaved solution with a singularity

along x = 1. However, we can T-dualize along the x1, . . . , x5 directions to get the type IIB
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solution

ds210 = H−1/4
[

−K
[

dt+K−1(1− f)cβsβsαc
2
αdψ

]2
+ dx21 + · · ·+ dx25

]

+ H3/4

[

Jdψ2 + A

(

dx2

G(x)
− dy2

G(y)
+Bdφ2

)]

,

∗F(3) =
(

cβsβcα d[H
−1(f − 1)] ∧ dt+ cαsα d[H

−1(c2β − g − fs2β)] ∧ dψ
)

∧ d5x,

φ = −1

2
logH. (3.8)

This describes a nonextremal D5-brane superimposed with a smeared F2-brane and a KK

bubble, which has the same angular momentum as we had prior to performing the chain of

T-dualities.

In the limit α = 0, the F2-brane is removed and we are left with a nonextremal D5-brane

and a KK bubble:

ds210 = H−1/4
(

−fdt2 + dx21 + · · ·+ dx25
)

+H3/4

[

gdψ2 + A

(

dx2

G(x)
− dy2

G(y)
+Bdφ2

)]

,

(3.9)

for which F(3) and φ are the same as in (2.8) and

H = c2β − fs2β. (3.10)

On the other hand, taking the limit β = 0 and T-dualizing back along the x1, . . . , x5 direc-

tions yields

ds210 = H−7/8gdψ2 +H1/8

[

−fdt2 + dx21 + · · ·+ dx25 + A

(

dx2

G(x)
− dy2

G(y)
+Bdφ2

)]

,

(3.11)

for which F(3) and φ are the same as in (2.16) and

H = c2α + gs2α. (3.12)

This describes a neutral 5-brane superimposed with an F7-brane wrapped on a 2-sphere.

4 Other examples

4.1 Superposition of two D5-branes and smeared F2-brane on KK

bubble

Two black holes on a KK bubble is described by the metric [15]

ds25 = −fdt2 + gdψ2+ (R1 − ζ1)(R4 + ζ4)dφ
2+

Y14Y23
4R1R2R3R4

√

Y12Y34
Y13Y24

(

R1 − ζ1
R4 − ζ4

)

(dr2+ dy2),

(4.1)
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where

ζi = y − ci, Ri =
√

r2 + ζ2i , Yij = RiRj + ζiζj + r2, (4.2)

and

f =
(R2 − ζ2)(R4 − ζ4)

(R1 − ζ1)(R3 − ζ3)
, g =

R3 − ζ3
R2 − ζ2

. (4.3)

As opposed to a four-dimensional static solution describing two black holes held apart by a

strut (conical singularity) [32, 33], in this solution it is the KK bubble that serves to hold

the black holes apart in static equilibrium. In fact, for c2 < c1, c3, a periodicity in φ of 2π

and a periodicity in ψ of

∆ψ =
8πc2(c1 + c3)

√

(c1 + c2)(c2 + c3)
, (4.4)

the solution is regular and free of conical deficits. The two black hole horizons are located

at r = 0, c2 < y < c1 and r = 0, −c3 < y < −c2. The geometry is asymptotically

Minkowski4 × S1.

Embedding (4.1) in eleven dimensions with (3.3), performing the boost (2.4) and the

rotation (2.13), dimensionally reducing along the boosted and rotated z direction and then

T-dualizing along the x1, . . . , x5 directions yields the superposition of two nonextremal D5-

branes and a smeared F2-brane on a KK bubble:

ds210 = H−1/4
[

−K
[

dt+K−1(1− f)cβsβsαc
2
αdψ

]2
+ dx21 + · · ·+ dx25

]

(4.5)

+ H3/4

[

Jdψ2 + (R1 − ζ1)(R4 + ζ4)dφ
2 +

Y14Y23
4R1R2R3R4

√

Y12Y34
Y13Y24

(

R1 − ζ1
R4 − ζ4

)

(dr2 + dy2)

]

,

where F(3) and φ are given by (3.8) and H , K and J are given by (3.5). This solution has

angular momentum that is fixed in terms of the mass and magnetic charges.

4.2 Superposition of D5-brane and smeared F2-brane on Euclidean

Kerr instanton

A static black hole on the Euclidean Kerr instanton was constructed in [16], and can be

expressed in C-metric-like coordinates [17] as

ds25 = −fdt2 + g(dψ + Ω)2 + A

(

dx2

G(x)
− dy2

G(y)
+Bdφ2

)

, (4.6)
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where G(x) and f are given by (3.2), g = C/D and

Ω =
2αc2χ2[1 + c− (1− c)α2][1− c− (1 + c)α2]

(1 + α2)

× (1 + y)[(1− y)(2− c + cx) + (1− x)(2− c + cy)α2]G(x)

(1− x)(x− y)F (x, y)
dφ,

A =
2χ4(1 + cx)K(x, y)

c2(1− c)(1− α2)(1 + α2)2(x− y)3
,

B = −2c2(1− c)(1− α2)(1 + α2)2G(x)G(y)

(x− y)(1 + cy)F (x, y)
,

C =
c2(1− α2)(1 + cx)

1 + c

[

(1− c)(1− x)(1− y)
(

1− c− (1 + c)α2
)(

1 + c− (1− c)α2
)

− 8α2(c+ x+ y + cxy)
]

,

D = (1 + cx)
[

(1− c)
(

1 + c− (1− c)α2
)

− (1 + cy)
(

1− c− (1 + c)α2
)]2

− α2(1 + cy)
[

(1− c)
(

1− c− (1 + c)α2
)

− (1 + cx)
(

1 + c− (1− c)α2
)]2

. (4.7)

The parameters χ, c and α take the ranges χ > 0, 0 ≤ c < 1 and α2 < 1−c
1+c

, and the x and

y coordinates take the ranges −1 ≤ x ≤ 1 and −1
c
≤ y ≤ −1. The horizon is at y = −1

c

and the asymptotic region is at x = y = −1. There are no singularities or closed timelike

curves outside of the horizon. The horizon topology is S3 and the asymptotic geometry is

Minkowski4×S1. While the S1 generally blows up at infinity, it remains finite if the following

combination of parameters √
1− c2(1 + α2)

α
, (4.8)

is rational [34]. The black hole on the Euclidean Schwarzschild instanton [14] is recovered

for vanishing α.

Embedding (4.6) in eleven dimensions with (3.3), performing the boost (2.4) and the

rotation (2.13), dimensionally reducing along the boosted and rotated z direction and then

T-dualizing along the x1, . . . , x5 directions yields a nonextremal D5-brane on a Euclidean

Kerr instanton superimposed with a smeared F2-brane:

ds210 = H−1/4
[

−K
[

dt+K−1(1− f)cβsβsαcα (cαdψ + gΩ)
]2

+ dx21 + · · ·+ dx25

]

+ H3/4

[

J(dψ + LΩ)2 +MΩ2 + A

(

dx2

G(x)
− dy2

G(y)
+Bdφ2

)]

,

∗F(3) =
(

cβsβcα d[H
−1(f − 1)] ∧ dt+ cαsα d[H

−1(c2β − g − fs2β)] ∧ dψ ∧ −sαd[H−1gΩ]
)

∧ d5x,

φ = −1

2
logH. (4.9)

where H , K and J are given by (3.5) and

L =
[

g − (c2β − g − fs2β)sα +H−1K−1(1− f)2gc2βs
2
βc

2
αs

2
α

]

J−1cα,

M = K−1fgc2α − JL2. (4.10)
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This solution has angular momentum that is fixed in terms of the mass and magnetic charges.

4.3 Superposition of D5-brane and smeared F2-brane on Taub-

bolt instanton

A static black hole on the non-self-dual Taub-NUT instanton was obtained in [16] and can

be expressed in C-metric-like coordinates [17] by the metric (4.6) where G(x) and f are given

by (3.2), g = C/D and

Ω =
2αχ2[2 + x+ y + c(1 + x)(1 + y)]

(1− α2)(x− y)
dφ,

A =
2χ4(1− c)(1 + cx)K(x, y)

(1− α2)(x− y)3
,

B = −2(1 + x)(1 + y)

(1− c)(x− y)
,

C = (1− α2)(1− x)(1− y)(1 + cx),

D = (1 + cx)(1− y)2 − α2(1 + cy)(1− x)2. (4.11)

The parameters χ, c and α take the ranges χ > 0, 0 ≤ c < 1 and α2 ≥ 1, and the x and

y coordinates take the ranges −1 ≤ x ≤ 1 and −1
c
≤ y ≤ −1. The horizon is located at

y = −1
c
with a topology of S3. The asymptotic region is at x = y = −1 and is a nontrivial

finite S1 fiber bundle over Minkowski4. The solution has no singularities or closed timelike

curves outside of the horizon for either α2 = (1 − c2)/4 or α = 1, the latter being the case

of a black hole on the self-dual Taub-NUT instanton [35]. On the other hand, for vanishing

α the black hole on the Euclidean Schwarzschild instanton [14] is recovered.

Embedding (4.6) in eleven dimensions with (3.3), performing the boost (2.4) and the

rotation (2.13), dimensionally reducing along the boosted and rotated z direction and then

T-dualizing along the x1, . . . , x5 directions yields a nonextremal D5-brane on a Taub-bolt

instanton superimposed with a smeared F2-brane. The solution has the form (4.9) where

H , K and J are given by (3.5) and L and M are given by (4.10). This solution has angular

momentum that is fixed in terms of the mass and magnetic charges.

4.4 D5-brane on Eguchi-Hanson instanton

The metric for a rotating black hole on the Eguchi-Hanson instanton is contained in the

rotating black lens solution found it [36]. In C-metric-like coordinates, the metric for the
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case in which the black hole has a single angular momentum can be written as

ds25 = −H(y, x)

H(x, y)
(dt− ωψdψ − ωφdφ)

2 − F (x, y)

H(y, x)
dψ2 +

2J(x, y)

H(y, x)
dψdφ

+
F (y, x)

H(y, x)
dφ2 +

χ2H(x, y)

2(1− a2)(1− b)3(x− y)2

(

dx2

G(x)
− dy2

G(y)

)

, (4.12)

where

ωψ =
2χ

H(y, x)

√

2b(1 + b)(b− c)

(1− a2)(1− b)
(1− c)(1 + y){2[1− b− a2(1 + bx)]2(1− c)

− a2(1− a2)b(1− b)(1− x)(1 + cx)(1 + y)},

ωφ =
2χ

H(y, x)

√

2b(1 + b)(b− c)

(1− a2)(1− b)
a(1− c)(1 + x)2(1 + y)[a4(1 + b)(b− c)

+ a2(1− b)(b(c− 1) + 2c)− (1− b)2c],

G(x) = (1 + cx)(1− x2),

H(x, y) = 4(1− b)(1 − c)(1 + bx){(1− b)(1− c)− a2[(1 + bx)(1 + cy) + (b− c)(1 + y)]}
+ a2(b− c)(1 + x)(1 + y){(1 + b)(1 + y)[(1− a2)(1− b)c(1 + x) + 2a2b(1− c)]

− 2b(1− b)(1− c)(1− x)},

F (x, y) =
2χ2

(1− a2)(x− y)2

[

4(1− c)2(1 + bx)[1 − b− a2(1 + bx)]2G(y)

− a2G(x)(1 + y)2
(

[1− b− a2(1 + b)]2(1− c)2(1 + by)− (1− a2)(1− b2)

× (1 + cy){(1− a2)(b− c)(1 + y) + [1− 3b− a2(1 + b)](1 − c)}
)]

, (4.13)

J(x, y) =
4χ2a(1− c)(1 + x)(1 + y)

(1− a2)(x− y)
[1 − b− a2(1 + b)][(1− b)c+ a2(b− c)]

× [(1 + bx)(1 + cy) + (1 + cx)(1 + by) + (b− c)(1− xy)].

The parameters χ and c take the ranges χ > 0 and 0 ≤ c < 1 and the parameters a and b

are fixed as

a =
3(1− c)

3 + 5c
, b =

4c(3− c)

5c2 − 6c+ 9
. (4.14)

The x and y coordinates take the ranges −1 ≤ x ≤ 1 and −1
c
≤ y ≤ −1. The horizon

is at y = −1
c
and has topology S3. The region outside the horizon does not contain any

singularities and no closed timelike curves have been found [17]. The asymptotic region at

x = y = −1 is Minkowski5/Z2. For vanishing c, the direct product of the Eguchi-Hanson

instanton with time is recovered.

Since there is no S1 that remains finite in the asymptotic region, we cannot construct a

well-behaved solution involving the α parameter associated with the rotation (2.13), though

12



we can still consider one with the β parameter associated with the boost (2.4). Embedding

(4.12) in eleven dimensions with (2.3), performing the boost (2.4), dimensionally reduc-

ing along the boosted z direction and T-dualizing along the x1, . . . , x5 directions yields a

nonextremal D5-brane on the Eguchi-Hanson instanton:

ds210 = H−1/4

(

−K(y, x)

K(x, y)
(dt− ωψdψ − ωφdφ)

2 + dx21 + · · ·+ dx25

)

+H3/4ds24,

∗F(3) = coth β dH−1 ∧ dt ∧ d5x+ sinh β

[

d

(

K(y, x)ωφ
HK(x, y)

)

∧ dφ+ d

(

K(y, x)ωψ
HK(x, y)

)

∧ dψ
]

∧ d5x,

φ = −1

2
logH, (4.15)

where

H = 1 +

(

1− K(y, x)

K(x, y)

)

sinh2 β. (4.16)
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