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Abstract

The most direct experimental signature of a compactified extra dimension is the
appearance of towers of Kaluza-Klein particles obeying specific mass and coupling
relations. However, such masses and couplings are subject to radiative corrections.
In this paper, using techniques developed in previous work, we investigate the extent
to which such radiative corrections deform the expected tree-level relations between
Kaluza-Klein masses and couplings. As toy models for our analysis, we investigate
a flat five-dimensional scalar λφ4 model and a flat five-dimensional Yukawa model
involving both scalars and fermions. In each case, we identify the conditions under
which the tree-level relations are stable to one-loop order, and the situations in which
radiative corrections modify the algebraic forms of these relations. Such corrections to
Kaluza-Klein spectra therefore have the potential to distort the apparent geometry of
a large extra dimension.

∗E-mail address: sbauman@physics.wisc.edu
†E-mail address: dienes@physics.arizona.edu



1 Introduction

The existence of Kaluza-Klein (KK) states is perhaps the most important phenomenolog-
ical prediction of extra dimensions, and any future search for physics beyond the Standard
Model will involve a hunt for signs of these particles. For this reason, it is vital to under-
stand the properties of these states and the effects that they induce on low-energy physics.
Of course, one important way in which excited KK states can affect low-energy physics is
through the radiative corrections that they induce for zero-mode masses and couplings. In-
deed, over the past decade, a significant body of literature has developed in which this topic
is studied in a variety of contexts and from a variety of perspectives.

However, with only a few exceptions, relatively little attention has been paid to the
radiative effects that the excited KK states may have on their own masses and couplings .
Since these excited KK states are likely to be our only direct experimental probes into the
apparent geometry of the compactification manifold, it is important to understand the extent
to which such radiative corrections can distort the expected tree-level relations that the KK
masses and couplings can be expected to satisfy, and which would ultimately be used as
evidence of a geometric underpinning for such states.

To help sharpen the discussion, let us consider the simplest possible case of a single extra
dimension compactified on a circle. At tree level, the masses of the corresponding KK states
can be expected to obey the well-known dispersion relation

m2
n = m2 +

n2

R2
(1.1)

where mn is the mass of the nth KK mode, where m is the “bare” mass associated with
our original five-dimensional field, and where R is the radius of the extra dimension. Note
that this result assumes only that the extra dimension is flat and that the original theory
obeys five-dimensional (5D) Lorentz symmetry. Likewise, at tree level, the couplings in a
Lorentz-invariant theory on an extra dimension are universal, independent of mode number.
Specifically, if λn,n′,... represents a tree-level coupling between KK modes (n, n′, ...), then

λn,n′,... = λ δn+n′+...,0 (1.2)

where λ is a constant related to the five-dimensional “bare” coupling and where the delta-
function enforces 5D momentum conservation at the associated vertex. The important
point is that λn,n′,... takes this highly restricted form, depending on the KK mode num-
bers (n, n′, n′′, ...) only insofar as they determine whether the coupling vanishes or takes a
fixed, mode-independent value.

Like the masses and couplings in any theory, however, the masses and couplings of KK
states can receive radiative corrections. Thus, it is possible that the tree-level relations
in Eqs. (1.1) and (1.2) will no longer hold once these masses and couplings are replaced
by their one-loop renormalized values. At first glance, it might seem that the forms of
Eqs. (1.1) and (1.2) are fixed by 5D Lorentz invariance. However, we must recall that 5D
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Lorentz invariance is actually broken by the compactification from five to four dimensions.
The effects of this compactification are what allow more complicated dispersion relations to
emerge in the fully quantum-mechanical theory.

Focusing specifically on the mass relation in Eq. (1.1), we can imagine a number of
potential outcomes depending on the specific theory in question. One possibility is that
the one-loop renormalized KK masses will continue to obey a relation that preserves the
form of Eq. (1.1) — i.e., that all radiative corrections can be bundled into a new effective
bare mass m or a new effective radius R. Despite the fact that m and R are merely fixed
parameters describing our ultraviolet theory, we shall refer to these outcomes as effective
“renormalizations” of these quantities. However, the breaking of 5D Lorentz invariance might
also allow the spectrum of renormalized KK masses to have an entirely new dependence on
mode number, implying that even the forms of the tree-level relations might be violated.

More precisely, we can classify the different types of quantum corrections that our squared
KK masses may experience:

• Case #1: The corrections to each m2
n are independent of mode number n. In this case,

the bare mass m is effectively renormalized, but the KK dispersion relation retains the
same mathematical form as it had at tree level. In this case, 5D Lorentz invariance
is preserved locally. However, since compactification breaks 5D Lorentz invariance
globally by singling out the compactified extra dimension, this occurrence would be
entirely unexpected. We shall nevertheless give an example where this phenomenon
arises to one-loop order in Sect. 3.

• Case #2: The corrections to m2
n are proportional to the square of the mode number

n. In this case, we can bundle the renormalizations into an effective rescaling or
renormalization of the radius R. To the extent that the radius is an arbitrary parameter
and the form of the general KK mass relation is preserved, this also would not indicate
a direct local breaking of 5D Lorentz invariance. As such, this case would also be
unexpected, just like Case #1 above. However, since such radiative corrections would
manifest themselves as effectively modifying the value of R, it would appear that our
underlying compactification geometry is distorted somewhat, with the radius of the
circle shifting slightly. We stress, however, that this is not an actual geometric effect
since the underlying compactification geometry is presumably unchanged (unless there
are also renormalizations of the higher-dimensional metric). This is therefore merely
a change in the apparent compactification geometry, as inferred through the masses of
KK states.

• Case #3: The corrections to m2
n depend on mode number n non-quadratically. In this

case, it turns out that there is a particularly relevant division into two sub-cases which
we shall consider:

– Case #3a: The masses of an infinite subset of states in the KK tower shift ac-
cording to Case #1 or Case #2 (corresponding to shifts in the values of m or R),
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but this is not true of the entire KK tower. Thus, the KK dispersion relation is
broken for the KK tower on a whole. We shall refer to this as an implicit violation
of the KK dispersion relation.

– Case #3b: The KK dispersion relation does not survive for any infinite subset of
states in the KK tower. We shall refer to this as an explicit violation of the KK
dispersion relation.

In this paper, we shall see explicit examples of both of these cases. Note that for
either of these two sub-cases, the KK masses as a whole no longer obey Eq. (1.1). It
would therefore seem that these KK states could no longer be identified as the Kaluza-
Klein excitations of a quantum field compactified on a circle — i.e., the apparent
compactification geometry of the extra dimension would appear distorted in such a
way in such cases that not even an underlying circle is recognizable.

In this paper, our goal is to begin to develop an understanding of the sorts of theories
which might lead to corrections in each class. Towards this end, we shall therefore study
two “toy” models: φ4 theory and Yukawa theory, each in five dimensions with a single extra
dimension compactified on a circle. For each of these two theories, we shall obtain results
for the radiative corrections to the masses and couplings of the KK modes, and examine the
properties of the physics which results.

Both of these toy models may ultimately be relevant to the Higgs sector of the 5D
Standard Model. Despite this fact, we emphasize that the primary purpose of this paper is
not phenomenological, and indeed many of these radiative corrections will turn out to be
numerically fairly small. Rather, our primary focus will be on the mathematical forms of the
radiative corrections that emerge in each case, and on the general mathematical patterns
that describe the deformations of KK masses and couplings which emerge as a result of
radiative corrections. For example, one unexpected result we shall find is that the masses of
the fermions in the Yukawa theory receive corrections that actually grow with mode number.
Another is that a γ5 interaction is radiatively induced in this theory. Even the φ4 theory
will hold some surprises. For example, as we shall demonstrate, radiative corrections tend
to enhance the couplings involving the production of excited KK modes.

This paper is organized as follows. First, in Sect. 2, we begin with some general comments
concerning renormalization and regulators in “mixed” spacetimes in which some dimensions
are compactified and others are not. We also describe the general setup we shall be em-
ploying. Then, in Sect. 3, we analyze the λφ4 theory, concentrating on corrections to the
masses and couplings of the KK states. In Sect. 4, we then proceed to consider the Yukawa
theory; as we shall see, the Yukawa theory is significantly more complex than the λφ4 theory
due to the involvement of fermions and issues of parity and chirality. Finally, in Sect. 5, we
present our conclusions and discuss how our results connect with other calculations which
have previously appeared in the literature.
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2 General setup

As stated in the Introduction, our goal is to determine how the tree-level masses and
couplings of KK modes behave under renormalization. Before proceeding to examine the
cases of specific toy models, however, there are some general remarks which are in order and
which will apply to all cases we shall consider.

In general, KK masses and couplings will accrue radiative corrections which are divergent.
However, although each of these corrections is individually divergent, the difference between
a correction corresponding to an excited KK mode and that corresponding to the zero mode
is observable and therefore finite [1, 2]. For example, although the mass of the zero mode and
mass of the first excited mode of a KK tower will each generally accrue radiative corrections
which are infinite, the difference between these masses (i.e., the mass splitting between
these KK modes) is expected to remain finite even after renormalization. The first step in
determining such radiative corrections is therefore to recast equations such as Eq. (1.1) into
forms whose corrections will be nothing other than these finite differences. In other words,
we wish to express these tree-level equations as relations directly between measurable, four-
dimensional quantities, eliminating the bare Lagrangian parameters m and λ in the process.

In the case of Eq. (1.1), this is not hard to do. Since it follows from Eq. (1.1) thatm0 = m
at tree level, we can rewrite Eq. (1.1) in the tree-level form

m2
n = m2

0 +
n2

R2
, (2.1)

whereupon it follows that any possible one-loop radiative correction to this result must be
finite and take the form

m2
n = m2

0 +
n2

R2
+
X(m2)
n

R2
(2.2)

whereX(m2)
n represents the finite mass correction term. Note that we have chosen to explicitly

scale out a factor of R2 in this correction term so that the quantity X(m2)
n is dimensionless.

Given this definition for X(m2)
n as a relative mass correction, we see that Case #1 from

the Introduction corresponds to X(m2)
n = 0, while Case #2 corresponds to X(m2)

n ∼ n2. By
contrast, Xn = constant 6= 0 is actually an example of Case #3a, since this corresponds to
a situation in which all of the excited states in our KK tower have a uniform shift relative
to the zero mode. Thus, although the infinite tower of excited states by themselves behave
according to Case #1, the entire KK tower (including the zero mode) does not.

In a similar way, we may also recast Eq. (1.2) in the form

λn,n′,... = λ0,0,... δn+n′+...,0 , (2.3)

whereupon a corresponding one-loop equation should take the form

λn,n′,... =
[

λ0,0,... +X
(λ)
n,n′,...

]

δn+n′+...,0 . (2.4)

where X
(λ)
n,n′,... is likewise a finite coupling correction.
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The goal of this paper is to calculate these finite corrections X(m2)
n and X

(λ)
n,n′,... to one-

loop order in two different theories, and to explore the properties of these corrections. Of
course, the emergence of such correction terms ultimately reflects the breaking of the higher-
dimensional Lorentz invariance that is induced by the compactification of the fifth dimension
on a circle. We remark, however, that although compactification of the fifth dimension
breaks 5D Lorentz invariance, translational invariance along the fifth dimension (and thus
conservation of the corresponding momenta) is still maintained. It is for this reason that
our radiatively corrected couplings λn,n′,... must still be proportional to an overall Kronecker
δ-factor, as indicated in Eq. (2.4).

At first glance, given a specific theory, it might seem to be a rather straightforward exer-
cise to evaluate the radiative corrections X in Eqs. (2.2) and (2.4). However, as discussed in
Refs. [1, 2], there are numerous subtleties which come into play. The chief complication is that
although we expect our calculations to result in finite relative corrections X , the correction
to each individual KK mass and coupling will itself be infinite, and we must therefore utilize
a particular regulator scheme in order to extract meaningful results. However, in so doing, it
is critical that we choose a regulator which preserves not only the four-dimensional Lorentz
invariance that remains after the compactification, but also the original higher-dimensional

Lorentz invariance which existed prior to compactification. This is because a regulator must,
by design, be capable of handling ultraviolet (i.e., local short-distance) divergences, and the
physics of the ultraviolet limit is governed by such five-dimensional symmetries in which the
global process of compactification plays no role. Moreover, in contexts in which our original
higher-dimensional Lagrangian contains a gauge symmetry, our regulator should respect this
higher-dimensional gauge invariance as well.

This is an important point. Indeed, use of any regulator which fails to respect the
approprite five-dimensional UV symmetries such as 5D Lorentz invariance would introduce
spurious, unphysical 5D Lorentz-violating contributions into the X corrections, and it would
be difficult to disentangle these spurious contributions from the bona-fide physical effects of
the 5D Lorentz violation induced by compactification. This would be completely analogous
to calculating a one-loop correction to the photon mass in QED with a regulator that breaks
gauge invariance: a non-zero result will generically arise, but this would merely be an artifact
of the calculational technique and would not reflect the true underlying physics. Our current
situation with 5D Lorentz invariance is similar, except that the compactification itself also
induces a breaking of 5D Lorentz symmetry. However, our goal is to study the effects of this
compactification (as manifested by the appearance of radiative corrections X that deform
the forms of the tree-level KK mass and coupling relations) without mixing such effects with
the unphysical effects of having chosen an unsuitable regulator.

In Refs. [1, 2], two regulators were developed that can handle precisely such calculations.
These are the so-called “extended hard cutoff” (EHC) regulator scheme and the so-called
“extended dimensional regularization” (EDR) scheme. Although based on traditional four-
dimensional regulators, the key new feature of these higher-dimensional regulators is that
they are specifically designed to handle mixed spacetimes in which some dimensions are
infinitely large and others are compactified. Moreover, unlike most other regulators which
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have been used in the extra-dimension literature, these regulators are designed to respect
the original higher-dimensional Lorentz symmetries that exist prior to compactification, and
not merely the four-dimensional symmetries which remain afterward. As we have discussed
above, this distinction is particularly relevant for calculations of the physics of the excited
Kaluza-Klein modes themselves, and not merely their radiative effects on zero modes. By
respecting the full higher-dimensional symmetries, our regulators avoid the introduction of
spurious terms which would not have been easy to disentangle from the physical effects of
compactification.

Using the regulators developed in Refs. [1, 2], we can evaluate the corrections X to one-
loop order in a variety of different theories. Regardless of the theory, however, it turns
out [1, 2] that one-loop radiative corrections Xn with a single KK index n can generally be
expressed in the form

Xn =
∞
∑

r=−∞

1

|n|
|n|−1
∑

j=0

∫ 1

0
dv [αn(r, v, j)− α0(r, v)] (2.5)

where α0 and αn are finite, regulator-independent functions and where the summations and
integration in Eq. (2.5) are all absolutely convergent . Here v is a Feynman parameter, and
it is assumed that all of the relevant diagrams involved in such radiative corrections can be
evaluated with the use of a single Feynman parameter. Indeed, an expression analogous to
Eq. (2.5) is available in certain cases requiring multiple Feynman parameters [1], and we
shall see an example of this in Sect. 4.

At first glance, the result in Eq. (2.5) might not seem particularly noteworthy. After all,
an expression of this general form arises immediately upon a straightforward application of
the Feynman rules, with appropriate one-loop integrals taking the place of the α-functions in
Eq. (2.5). However, such integrals are generally divergent. The important point in Eq. (2.5),
by contrast, is that the α-functions in Eq. (2.5) are both finite and regulator-independent ;
moreover, with the appropriate α-functions inserted into Eq. (2.5), it turns out that the
summations and integration in Eq. (2.5) are also convergent. That such α-functions exist is
the main substance of the results of Refs. [1, 2], and it is the use of the special regulators
in Refs. [1, 2] which allows these functions to be obtained. The explicit forms of these α-
functions therefore encapsulate the physical effects of the one-loop renormalizations without
including any of the spurious mathematical artifacts that might arise due to the use of
regulators which do not respect the full ultraviolet symmetries of the problem.

In this paper, therefore, we shall assume that the reader is familiar with the calculational
techniques leading to these α-functions, and we shall simply quote our final results for
the specific theories at hand. We also note that in this paper we will calculate radiative
corrections to KK couplings as functions of a canonical (non-Wilsonian) renormalization
scale µ. By contrast, we will calculate radiative corrections to KK masses on resonance
(i.e., with mass renormalization conditions imposed on shell).
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3 λφ4 theory

As our first simple toy model, in this section we will examine the case of a purely bosonic
λφ4 theory on a circular extra dimension of radius R.

We begin with a five-dimensional theory defined by the φ4 action

S =
∫

d4x
∫ 2πR

0
dy

[

1

2
∂Mφ∗∂Mφ− 1

2
m2φ∗φ− λ(5)

4!
φ4

]

, (3.1)

where y is the coordinate along the extra dimension, where xM ≡ (xµ, y), where λ(5) is a 5D
coupling, and φ is assumed to be a real scalar. Proceeding in the usual way, we decompose
the φ-field in terms of Kaluza-Klein modes

φ(xµ, y) =
1√
2πR

∑

n∈ZZ

φn(x
µ) einy/R , (3.2)

and substitute this back into the original action in Eq. (3.1). Since the 5D field φ is real, we
have φ∗

n = φ−n. Integrating over y, we thus obtain a purely four-dimensional action of the
form

S =
∫

d4x
(

1
2

∑

n

∂µφ∗
n∂µφn − 1

2

∑

n

m2
nφ

∗
nφn −

1

4!

∑

ni∈ZZ

λn1,n2,n3,n4 φn4φn3φn2φn1

)

(3.3)

where the 4D KK masses m2
n are given exactly as in Eq. (1.1) and where the 4D couplings

λn1,n2,n3,n4 are given by a special case of Eq. (1.2):

λn1,n2,n3,n4 =
λ(5)

2πR
δn1+n2+n3+n4,0 . (3.4)

As discussed above, the δ-function in Eq. (3.4) expresses the conservation of five-momentum
at a vertex, as appropriate for compactification on a circle in which translational invariance
in the extra dimension is preserved.

Following the steps outlined in Sect. 2, we can now convert these mass and coupling
relations to the forms given in Eqs. (2.1) and (2.3), recasting them as direct tree-level relations
between observable, four-dimensional quantities. We therefore expect that these equations
will accrue finite one-loop corrections of the forms given in Eqs. (2.2) and (2.4). In order
to explicitly calculate these radiative corrections X(m2)

n and X(λ)
n1,n2,n3,n4

in the current λφ4

theory, we must evaluate the one-loop diagrams those shown in Fig. 1. Using the regulators
developed in Refs. [1, 2], we then find the following results.

3.1 Mass corrections

We first examine the mass corrections X(m2)
n in this theory. Recall from Eq. (2.5) that

each correctionXn can be expressed in terms of corresponding functions αn and α0. However,
to one-loop order, it turns out that

X(m2) : αn = α0 = 0 for all n . (3.5)
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(c)

(f)

(b)

(e)

(a)

(d)

Figure 1: Relevant diagrams for renormalization in the λφ4 theory: (a) one-loop mass renormal-
ization; (b,c,d) one-loop coupling renormalizations; (e,f) two-loop mass renormalizations. Of the
diagrams contributing to mass renormalization, only diagram (f) yields a contribution which de-
pends on the Kaluza-Klein mode number of the external particle. Thus, only diagram (f) produces
Lorentz-violating deformations away from the form of the tree-level Kaluza-Klein mass relation.

In other words, the corresponding mass corrections X(m2)
n all vanish, and the tree-level mass

relation in Eq. (2.1) remains intact to one-loop order.
This is clearly an example of Case #1 from the Introduction. We emphasize that this does

not mean that there are no radiative corrections to the individual KK masses — indeed, each
individual KK mass receives a correction which is infinite. However, these mass corrections
are all equal to each other. This implies that the corrections to each KKmass are independent
of the mode number n, and consequently can be bundled within m0. Equivalently, these
radiative corrections can be absorbed within a single shift in the bare parameter m in our
original higher-dimensional Lagrangian. Thus the relation between zero-mode masses and
excited KK masses remains unchanged.

It is easy to see why this situation arises for the λφ4 theory. The relevant diagram for
one-loop mass renormalization is shown in Fig. 1(a). Because of the topology of this diagram,
the momentum that flows through the loop is wholly independent of the Kaluza-Klein index
on the external line. Thus, each external Kaluza-Klein state accrues exactly the same mass
correction, and it is possible to bundle this into an effective “renormalization” of the constant
term m2

0. In other words, only one mass counterterm is needed, and the KK mass relations
predicted by 5D Lorentz invariance are preserved.

We stress, however, that this is merely a one-loop phenomenon. For example, two-loop
diagrams contributing to mass renormalization are shown in Figs. 1(e) and 1(f). While
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1 1

2 2

3 3

4 4

Figure 2: Momentum labeling for 5D Mandelstam variables in Eq. (3.6).

Fig. 1(e) also leads to a mass renormalization which is independent of the Kaluza-Klein
number of the external line, the contribution from Fig. 1(f) clearly depends non-trivially
on this index. Thus, to two-loop order, Fig. 1(f) represents the only diagram leading to
radiative effects which break the tree-level mass relations.

3.2 Coupling corrections

We now turn to the coupling corrections X(λ)
n1,n2,...

in λφ4 theory. It is here that violations
of 5D Lorentz invariance will appear at one-loop order.

The one-loop diagrams which contribute to the radiative corrections to the four-scalar
couplings are shown in Figs. 1(b), 1(c), and 1(d). These are respectively s-, t-, and u-channel
diagrams, and as such they can be treated similarly. If we establish our momentum-labeling
conventions for incoming and outgoing states as indicated in Fig. 2, then the corresponding
Mandelstam variables for our five-momenta take the forms

s = (p1 + p2)
2 − (n1 + n2)

2/R2 ,

t = (p1 − p3)
2 − (n1 − n3)

2/R2 ,

u = (p1 − p4)
2 − (n1 − n4)

2/R2 . (3.6)

As customary in four-dimensional theories, these variables continue to satisfy the on-shell
relation s+ t+ u = 4m2, where m is now the five-dimensional mass given in Eq. (3.1).

We then find that at one-loop order, the couplings λn1,n2,n3,n4 are no longer universal;
new corrections X(λ)

n1,n2,n3,n4
are introduced. Defining these corrections through the relation

λn1,n2,n3,n4 =

[

λ0000 +
λ2

4π
X(λ)
n1,n2,n3,n4

]

δn1+n2−n3−n4,0 , (3.7)

we find that they each receive three contributions:

X(λ)
n1,n2,n3,n4

= ξn1+n2(s) + ξn1−n3(t) + ξn1−n4(u) . (3.8)
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These three contributions correspond to the diagrams in Figs. 1(b), 1(c), and 1(d) respec-
tively. Unlike X(λ) itself, the ξ-functions depend on only a single KK index and a single
Mandelstam variable; they can thus be expressed in the form in Eq. (2.5). Using the tech-
niques discussed in Refs. [1, 2], we then find that the corresponding α-functions are given
by

ξn(s) :



















αn(r, v, j; s) =
1

4π
log[(r − v)2 +M2((v + j)/|n|; s)R2]

α0(r, v; s) =
1

4π
log[r2 +M2(v; s)R2]

(3.9)

where
M2(x; s) ≡ x(x− 1)s+m2 . (3.10)

For notational simplicity throughout the rest of this paper, we shall henceforth define

yn ≡
{

v for n = 0
(v + j)/|n| for n 6= 0

(3.11)

and

ρn ≡
{

r for n = 0
r − v for n 6= 0 .

(3.12)

We can then simply write our result in the compact form

αn =
1

4π
log[ρ2n +M2(yn; s)R

2] . (3.13)

These results are completely general. However, in order to evaluate these results numeri-
cally, it is necessary to choose specific values for the kinematic Mandelstam variables (s, t, u).
At first glance, one might be tempted to impose the sorts of renormalization conditions that
would apply to processes involving only zero-mode fields, such as s = 4m2 and t = u = 0.
However, such conditions correspond to situations in which all of the modes have vanishing
spatial momenta, and thus cannot accommodate the sorts of processes which are of interest
to us, such as those involving the production of excited KK modes. Similarly, one might
consider a renormalization condition such as s = t = u = −µ2, where µ is the floating energy
scale associated with an experiment. However, these conditions cannot be satisfied when any
of the incoming or outgoing particles are on shell.

We shall therefore adopt renormalization conditions of the form

s = µ2 + 4m2 , t = u = − µ2/2 . (3.14)

Note that in the center-of-mass frame (defined as that frame in which all spatial components
of the total five-momentum of the system vanish), we may identify the energy scale µ as

µ2 = 4(~p 2 + p25) (3.15)
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where ~p and p5 are the spatial momentum components of any single particle alone. (Of course,
in this center-of-mass frame, the assigned KK mode-numbers n ∼ Rp5 of these states might
differ from those we have been assigning in our four-dimensional “lab” frame.) However,
despite the somewhat intuitive form of the renormalization conditions in Eq. (3.14), it is
important to realize that these conditions place special restrictions on the scattering angle.
Such restrictions are unfortunately unavoidable, and will arise for any such constraint on
the three Mandelstam variables.

In Fig. 3, we plot the difference between the one-loop λ0,0,1,−1 coupling and the one-loop
λ0000 coupling as a function of µ. This difference, of course, would have been zero at tree
level, and reflects the breaking of 5D Lorentz invariance that appears at one-loop order in this
theory. Note that λ0,0,1,−1 is the coupling which governs the process by which two zero-mode
states scatter/annihilate to produce two lowest-lying excited KK states. As we see from
Fig. 3, one-loop effects cause λ0,0,1,−1 to become larger than λ0000. This implies that there is
a small enhancement of the coupling between the zero mode and the first-excited KK mode
relative to the couplings amongst the zero modes themselves. Although this enhancement
is extremely small, we see from Fig. 3 that it is largest precisely at the threshold for the
production of the first-excited mode, falling significantly as µ increases. We also observe that
this enhancement decreases as the five-dimensional scalar mass m increases, and ultimately
vanishes as m→ ∞.

It is clear from this plot that the one-loop coupling corrections in the λφ4 theory are
exceedingly small. However, we shall see that the analogous corrections in Yukawa theory
will be significantly larger.

Finally, we observe that for certain values of s, the function α(ξ)
n (s) in Eq. (3.9) can be

complex. Although the imaginary part of an amplitude can be important, only the real
part of an amplitude plays a role in the renormalization of Lagrangian parameters such as
masses and couplings. Therefore, unless explicitly stated otherwise, it is to be understood
throughout the remainder of this paper that we are implicitly taking the real part of any
expression which describes the magnitude of a radiative correction for any KK parameter.

4 Yukawa theory

We now turn to the case of 5D Yukawa theory in which a scalar particle interacts with
a Dirac fermion. In some sense, this is the next-simplest theory to consider. Moreover, as
we shall see, the structure of the radiative corrections is far more intricate, both for the KK
masses and for the couplings.

For Yukawa theory, we will consider two cases: one in which the scalar is real, and the
other in which it is complex. In the case of a real scalar, we shall take the 5D action to be

S =
∫

d4x
∫ 2πR

0
dy
[

1
2
∂Mφ∂

Mφ− 1
2
m2
φφ

2 + ψ̄(iγM∂M −mψ)ψ −Gφψ̄ψ
]

(4.1)

where φ and ψ respectively denote the scalar and Dirac fermion (with five-dimensional masses
mφ and mψ respectively) and where G is the Yukawa coupling between the two. In the case

11



Figure 3: One-loop enhancement of the coupling λ0,0,1,−1 for the production of the lowest-lying
excited KK states. We plot ∆λ ≡ X0,0,1,−1 = (λ0,0,1,−1 − λ0000)/χ as a function of the energy
scale µR, where χ ≡ λ20000/4π. Curves A, B, and C respectively represent the cases with m2R2 =
{0, 0.25, 0.5}. As always, the four incoming and outgoing KK modes are taken to be on shell, and
the scale µ is defined according to the conditions in Eq. (3.14). Note that in this plot, the scale µ
runs from the (n3, n4) = (1,−1) threshold energy at which the lowest-lying excited KK states can
be produced to the (n3, n4) = (2,−2) threshold energy at which the second-lowest excited states
can be produced. We observe that in general, these radiative corrections are greater for smaller
five-dimensional masses m and decrease as functions of µ.

of a complex scalar, by contrast, our action is slightly modified:

S =
∫

d4x
∫ 2πR

0
dy
[

1
2
∂Mφ

∗∂Mφ− 1
2
m2
φφ

∗φ+ ψ̄(iγM∂M −mψ)ψ −G(φψ̄ψ + h.c.)
]

. (4.2)

As we shall see, these two cases lead to somewhat different results. Note that in both cases,
our gamma-matrices take the form γM ≡ (γµ, γ̃5) where γ̃5 ≡ iγ5 = −γ0γ1γ2γ3.

Performing the KK reduction of this theory is relatively straightforward. We first consider
the case in which φ is real. The KK decomposition of the scalar is again given by Eq. (3.2),
while the KK decomposition of the fermion takes the analogous form:

ψ(xµ, y) =
1√
2πR

∑

n∈ZZ

ψn(x
µ) einy/R . (4.3)

We then obtain the effective four-dimensional action

S =
∫

d4x
[

1
2

∑

n

∂µφ
∗
n∂

µφn +
∑

n

ψniγ
µ∂µψn − 1

2

∑

n

m2
φnφ

∗
nφn

12



−
∑

n

ψnmψnψn −
∑

n

∑

n′

φn′−n ψn′ ĝn,n′ ψn + ...
]

(4.4)

where the tree-level boson masses are given by

m2
φn = m2

φ +
n2

R2
(4.5)

and where the fermion masses mψn and couplings ĝn,n′ are matrices in spinor space, each
with a “vector” or “Dirac” part (proportional to the identity in spinor space) and an “axial”
part (proportional to γ5):

mψn = m
(D)
ψn − im

(A)
ψn γ

5

ĝn,n′ = g
(D)
n,n′ + ig

(A)
n,n′ γ5 (4.6)

with tree-level values given by






m
(D)
ψn = mψ , m

(A)
ψn = n/R

g
(D)
n,n′ = G/

√
2πR ≡ g , g

(A)
n,n′ = 0 .

(4.7)

Note that the axial part of the boson/fermion coupling vanishes at tree level.
The situation is nearly identical for a complex scalar field. Following the same Kaluza-

Klein reduction results in a four-dimensional action of the form in Eq. (4.4) except that we
no longer identify φ∗

n with φ−n, and we replace φr′−r → φr′−r + φ∗
r−r′ in the final coupling

term.
It may seem, at first glance, that the appearance of the “axial” γ5-terms in the four-

dimensional action violates four-dimensional parity symmetry. However, it turns out that
all terms which are proportional to γ5 will also be odd with respect to n → −n. As a
result, parity will actually be conserved at all energy scales. This, of course, is ultimately a
reflection of underyling five-dimensional symmetries. Indeed, while γ5 is odd under the four-
dimensional P and CP symmetries, the quantity n is actually proportional to the momentum
component along the fifth dimension. Thus the quantity n is “odd” under P, thereby making
the product γ5n even, as required.

We see, then, that there are five quantities in KK-reduced 5D Yukawa theory which are
capable of receiving radiative corrections: mφn, m

(D)
ψn , m

(A)
ψn , g

(D)
n,n′, and g

(A)
n,n′. We shall now

explore the one-loop corrections to each of these in turn.

4.1 Boson KK mass corrections

Regardless of whether the 5D scalar is real or complex, we shall parametrize the one-loop
corrections to the KK boson masses mφn in the form

m2
φn = m2

φ0 +
n2

R2
+

g2

4πR2
X

(m2
φ
)

n (4.8)
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where g is the universal tree-level coupling in Eq. (4.7), as appropriate for a calculation of
this order. Using the techniques developed in Refs. [1, 2], we then find that the corresponding
functions αn are given by

αn(r, v, j) =
1

π

{

[

ρ2n + (1− 2yn)|n|ρn
]

log(ρ2n)

−
[

ρ2n + (1− 2yn)|n|ρn + 3M2
φ(yn;m

2
φ)R

2
]

log(ρ2n +M2
φ(yn;m

2
φ)R

2)
}

(4.9)

where yn and ρn are respectively defined in Eqs. (3.11) and (3.12) and where

M2
φ(y;m

2
φ) = m2

ψ + y(y − 1)m2
φ . (4.10)

This compact result contains a wealth of information. One important feature is the

behavior of X
(m2

φ
)

1 — i.e., the radiative correction to the mass of the first-excited KK boson
relative to the mass of the KK zero mode — as a function of the two five-dimensional masses

in our problem, mφ and mψ. This behavior is shown in Fig. 4, where X
(m2

φ
)

1 is plotted
as a function of mψ for three different “benchmark” values of mφ. Several features are
immediately apparent:

• X
(m2

φ
)

1 = 0 for mφ = mψ = 0. We shall see, in fact, that this is a general phenomenon

for all X
(m2

φ
)

n .

• X
(m2

φ
)

1 is negative when mψ = 0 and mφ 6= 0. This means that the mass splitting
between the first-excited KK boson mode and the KK zero mode is reduced by one-loop
radiative corrections — i.e., these two states begin to approach each other. Moreover,
the magnitude of this effect increases with increasing mφ.

• X
(m2

φ
)

1 → 0 as mψ → ∞ for all mφ. This occurs because the functions αn and α0 in
Eq. (4.9) approach each other in this limit. There is therefore no difference in this limit
between the corrections to the masses of the KK zero mode and first-excited mode —
i.e., in this limit the tree-level mass spacing between the zero mode and first excited
mode is preserved to one-loop order.

• X
(m2

φ
)

1 is generally non-monotonic as a function of mψ. For mφ above a critical value,

X
(m2

φ
)

1 actually reaches a positive maximum for a value of mψ which increases with
mφ. This non-monotonic behavior emerges as the result of a competition between the
corrections to the mass of the first-excited KK mode and the corrections to the mass
of the KK zero mode. Indeed, each of these corrections is individually monotonic.

• Finally, although it may be somewhat difficult to observe in Fig. 4, it turns out that

X
(m2

φ
)

1 actually experiences a kink (i.e., a slight discontinuous change in slope) as

14



Figure 4: The relative one-loop boson mass corrections X
(m2

φ
)

1 between the first-excited KK boson
mode and the KK zero mode, plotted as functions of mψ for different values of mφ.

a function of mψ prior to reaching its maximum value. Indeed, this occurs for all
mφ > 0. These kinks mark the thresholds for the decays of either the KK boson zero
mode or the KK first-excited mode. Indeed, these thresholds correspond to values of
mψ at which the imaginary parts of the diagrams which renormalize the scalar masses
become zero.

We can also examine X
(m2

φ
)

n as functions of n. This behavior is shown in Fig. 5 for
different values of mφ and mψ. Once again, certain features are readily apparent:

• For mφ = mψ = 0, we find that X
(m2

φ
)

n = 0 for all n ≥ 0. This is therefore an example
of Case #1 from the Introduction: the tree-level form of the KK mass relation for
the bosonic fields is preserved at one loop. We thus see that it is only the presence
of a non-zero five-dimensional mass, either mφ or mψ, which breaks the apparent 5D
Lorentz invariance as far as the tree-level bosonic spectrum is concerned.
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Figure 5: The relative one-loop corrections X
(m2

φ
)

n for the KK boson squared masses, plotted as
functions of n for different values of mφ. In each plot, Curves A, B, and C represent the cases with
m2
ψR

2 = {0, 0.25, 0.5} respectively — a naming scheme that will continue to hold for all remaining
figures in this paper.

• For mφ = 0 and mψ 6= 0, we find that X
(m2

φ
)

n = constant as a function of n. In fact,
this constant depends on mψ in a non-monotonic way, hitting zero only for mψ = 0
(as discussed in the previous case). This is therefore an example of Case #3a from
the Introduction: all excited KK modes have masses which shift uniformly relative to
that of the KK zero mode. Thus, all KK modes continue to obey the tree-level mass
relation except for the zero mode.

• For mφ 6= 0, we find that X
(m2

φ
)

n increases with n but quicky reaches a non-zero asymp-
tote as n → ∞. This is therefore an example of Case #3b, but with a behavior
resembling that of Case #3a for the uppermost portions of the KK tower.

It should come as no surprise that the radiative corrections to KK masses are generically
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of the form given in Case #3a when n→ ∞— i.e., that they become independent of n as n→
∞. The limit of large KK mode numbers corresponds to high momentum components along
the extra dimension, and the discretization of momentum that arises due to compactification
becomes negligible in this limit. We therefore expect that the limit of high KK mode numbers
should correspond to an uncompactified theory in which the tree-level KK dispersion relation
holds (signifying the restoration of a full 5D Lorentz invariance). By contrast, the lower
portions of the KK tower are more sensitive to the discretization of the momentum in the
compactified dimension. Thus the upper portions of the KK tower have approximately equal
mass-squared spacings relative to each other, but this pattern does not hold all the way down
to the zero mode.

It is also instructive to see how this asymptotic behavior of equal spacings emerges
analytically. Towards this end, we can use the αn-functions in Eq. (4.9) in order to calculate

the contribution to X
(m2

φ
)

n from states with a fixed mode number n′. For simplicitly, we shall
assume that n′ ≫ n, and likewise we shall assume that n′ is chosen sufficiently large that
Λ ≫ mφ, mψ where Λ ≡ n′/R. We can then expand this contribution in powers of m/Λ
where m denotes either mφ or mψ, and we find that this expansion takes the form

g2

4π2

{(

7m2
ψ −m2

φ

3

)

1

Λ2

+

[

9m2
ψ −m2

φ

10R2
− 11m4

ψ

2
+

1

6

(

−1 +
1

10n2

)

m4
φ +

1

3

(

5− 1

5n2

)

m2
ψm

2
φ

]

1

Λ4

+O(m6/Λ6)

}

. (4.11)

Although we have made no assumptions about the size of n itself, we see that each coefficient
in our expansion depends on n only through negative powers. This is ultimately the source
of the fact that our total mass corrections exhibit a finite, asymptotic limit as n → ∞.
Indeed, although the results in Eq. (4.11) hold only for very large n′, it turns out that the
behavior illustrated in these results is in fact completely general, and holds even for smaller
values of n′ as well.

4.2 Fermion KK mass corrections

We now turn to the renormalized masses of the KK fermion modes. Recall from Eq. (4.7)

that these masses contain both a vector (or “Dirac”) componentm
(D)
ψ and an axial component

m
(A)
ψ . Parametrizing the one-loop corrections to these masses in the form

m
(D)
ψn = m

(D)
ψ0 +

g2

4πR
X

(m
(D)
ψ

)
n

m
(A)
ψn =

n

R
+

g2

4πR
X

(m
(A)
ψ

)
n , (4.12)
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we find that the corresponding αn-functions take the forms

X
(m

(D)
ψ

)
n : α(ψD)

n =
mψR

4π
(1 + yn) log(ρ

2
n +M2

ψ(yn)R
2)

X
(m

(A)
ψ

)
n : α(ψA)

n =
sign(n)

4π
ρn
[

log(ρ2n +M2
ψ(yn)R

2)− log(ρ2n)
]

(4.13)

where
M2

ψ(y) ≡ (y − 1)2m2
ψ + ym2

φ . (4.14)

The variables yn and ρn were defined in Eqs. (3.11) and (3.12) respectively. While these
results apply if the five-dimensional scalar φ is real, promoting the 5D scalar to a complex
field merely doubles the values of both of the αn-functions. Note that the quantity sign(n)

in Eq. (4.13) is taken to be zero when n = 0, as a consequence of which the function α
(ψA)
0

vanishes.
The results in Eq. (4.13) describe the corrections to the masses of the fermion KK modes.

However, for the sake of comparison with our results for the boson KK modes, it will actually
be more appropriate to consider the corresponding corrections to the squared masses of the
fermion KK modes. However, given the parametrizations in Eq. (4.12), we immediately see
that

m
(D)2
ψn = m

(D)2
ψ0 +

g2

4πR2
Y

(m
(D)
ψ

)
n +

1

R2
O(g4)

m
(A)2
ψn =

n2

R2
+

g2

4πR2
Y

(m
(A)
ψ

)
n +

1

R2
O(g4) , (4.15)

where the corrections to the squared masses are given to lowest order in g by

Y
(m

(D)
ψ

)
n = 2m

(D)
ψ0 RX

(m
(D)
ψ

)
n , Y

(m
(A)
ψ

)
n = 2nX

(m
(A)
ψ

)
n . (4.16)

Indeed, retaining higher orders in g would be incorrect since additional contributions at such
orders would also come from two-loop diagrams, which we have been neglecting.

The corrections to the squared Dirac masses are shown in Fig. 6. Likewise, corrections
to the squared axial masses are shown in Fig. 7. As we observe from these figures, the Dirac
and axial mass corrections do exhibit certain common behaviors. For example, in both cases
these corrections are monotonic with mode number n, and they each approach constant
values as n→ ∞.

However, there are also certain crucial differences between the behaviors of the Dirac and
axial mass corrections. The Dirac corrections, for example, vanish if mψ = 0 (regardless of
the value of mφ); thus it is the fermion bare mass mψ which is responsible for triggering a
non-zero one-loop mass correction. Likewise, the Dirac corrections are positive and increase
as functions of mψ, while they generally decrease as functions of mφ (with mψ held fixed).

By contrast, the axial mass corrections are positive if mφ > mψ, negative if mψ < mφ,

and zero if mψ = mφ. Indeed, the behavior of the correction X
(m

(A)
ψ

)

1 to the linear axial
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Figure 6: The relative one-loop corrections Y
(m

(D)
ψ

)
n for the KK fermion squared Dirac masses,

plotted as functions of n for different values of mφ and mψ.

mass of the first-excited KK fermionic state is shown in Fig. 8 as a function of the difference
m2
φ −m2

ψ, and we see that this function is positive when this difference is positive, negative
when this difference is negative, and zero precisely when this difference is zero.

It is an interesting phenomenon that the axial mass corrections vanish for mψ = mφ. It
is straightforward to demonstrate this explicitly at one-loop order using the expressions for
the mass corrections given above, and one finds that this results from a cancellation between
the effects of the different KK boson and fermion propagators in the loop. This suggests a
possible supersymmetric origin for this cancellation, and indeed we observe that although
the Yukawa theory under study here is not supersymmetric, the one-loop corrections to
the fermion masses in this Yukawa theory are equivalent (up to an overall multiplicative
constant) to the corresponding corrections in a supersymmetric Yukawa theory, provided
mψ = mφ. This is significant because supersymmetry forbids KK fermions from accruing
axial mass corrections.
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Figure 7: The relative one-loop corrections Y
(m

(A)
ψ

)
n for the KK fermion squared axial masses, plotted

as functions of n for different values of mφ and mψ.

Finally, we observe that the corrections to the axial fermion masses m
(A)
ψn are also odd

functions of the mode number n. Although this is not evident from the plots in Fig. 7,
this result follows directly as the consequence of the analytic expression for the axial mass
correction given in Eq. (4.13): the prefactor sign(n) is odd under n→ −n, while the rest of
the expression is manifestly even under n → −n. This property is a direct consequence of
the overall P and CP symmetries of our original five-dimensional theory. As a corollary, this
symmetry protects the fermion zero mode from gaining an axial mass.

Thus far, we have discussed the corrections to the individual Dirac and axial components
of the KK fermion masses. However, for many purposes the important quantities are actually
the total physical fermionic masses themselves — i.e., the masses corresponding to the poles
in the KK fermion propagators. In general, the squares of these masses are the sums of the

20



Figure 8: The relative one-loop correction X
(m

(A)
ψ

)

1 to the linear axial mass of the first excited KK
fermion, plotted versus ∆m2 for fixed values of m2. The quantities m2 and ∆m2 are defined such
that m2

ψ = m2−∆m2, and m2
φ = m2+∆m2. As in Fig. 7, we see that these corrections are positive

if mφ > mψ, negative if mφ < mψ, and zero if mφ = mψ.

squares of the two individual mass components:

m2
ψn ≡ m†

nψmnψ = m
(D)2
ψn +m

(A)2
ψn , (4.17)

where mψn is the fermion mass given in Eq. (4.6). It then follows from Eq. (4.15) that the
corrections to this mass take the form

m2
ψn = m2

ψ0 +
n2

R2
+

g2

4πR2
Y (mψ)
n +

1

R2
O(g4) (4.18)

where we have recognized m2
ψ0 = m

(D)2
ψ0 +O(g4)/R2 and where

Y (mψ)
n ≡ Y

(m
(D)
ψ

)
n + Y

(m
(A)
ψ

)
n . (4.19)

These corrections are shown in Fig. 9.
Unlike the individual corrections to the Dirac and axial mass components, these overall

corrections do not behave as simple monotonic functions of the bare massesmφ andmψ. This
non-trivial behavior ultimately arises as the result of a competition between the contributions
from the Dirac and axial corrections in Eq. (4.17). Indeed, as evident in Figs. 6 and 7, these
corrections to the squared Dirac and axial masses vary in opposite directions with respect
to the fermion bare mass. We also observe that these corrections are also generally largest
when mφ = 0. This enhancement arises due to the fact that the logarithms in the Dirac and
axial corrections become large when their arguments tend to zero. We nevertheless see that
these corrections all approach constant values as n→ ∞, indicating that the the uppermost
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Figure 9: The relative one-loop corrections Y
(mψ)
n for the physical KK fermion masses, plotted as

functions of n for different values of mφ and mψ.

portions of the KK tower effectively behave according to Case #3a from the Introduction.
We also observe that these corrections vanish only when mφ = mψ = 0. This is then an
example of Case #1.

4.3 Yukawa coupling corrections

Finally, we consider the one-loop corrections to the Yukawa coupling. Like the coupling
in the λφ4 theory discussed in Sect. 3, we shall express the Yukawa coupling and its one-
loop corrections as functions of a canonical (non-Wilsonian) renormalization scale µ, which
we shall here take to be the squared five-momentum of the scalar mode (i.e., µ2 = −Q2

where QM is the scalar five-momentum). This in some sense defines the energy of the
experiment through which this coupling is measured. However, unlike the case of λφ4 theory,
the results for the one-loop coupling corrections here are more complicated due to several
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factors, including the presence of non-zero field-strength renormalizations and the existence
of relevant Feynman diagrams involving more than a single Feynman parameter. Neither
of these features appeared in the λφ4 theory at one-loop order. Moreover, as indicated in
Eq. (4.6), the Yukawa coupling actually has two independent components, one “vector” (or
Dirac) and the other axial.

Despite these complications, we can parametrize the one-loop corrections to these Yukawa
coupling components in the form

g(D)
n1,n2

= g
(D)
00 +

g3

8π3/2

[

L(D)
n1,n2

+ Z
(φ)
n2−n1

+ Z(ψ)
n1

+ Z(ψ)
n2

]

g(A)n1,n2
=

g3

8π3/2
L(A)
n1,n2

, (4.20)

where g is defined in Eq. (4.7). In Eq. (4.20), the quantities Z(φ,ψ) represent the contributions
from bosonic and fermionic field-strength renormalizations, while L(D,A) represent those parts
of the appropriate one-loop vertex renormalization diagram which are proportional to 1 and
γ5 respectively in spinor space. Note, in particular, that what we are denoting Z(φ,ψ) are
merely contributions from the field-strength renormalizations; they are not the complete
renormalizations themselves. As might be expected, field-strength renormalizations yield
corrections to Dirac (vector) couplings but not the axial couplings. In this connection,
we observe that there were no one-loop field-strength renormalization contributions to the
analogous coupling corrections in the λφ4 case because the appropriate loop integral in
the λφ4 case was completely independent of the momentum on the external leg. This is
ultimately the same reason that the KK mass relation for the φ fields in the λφ4 theory was
invariant to this order.

Given the parametrization in Eq. (4.20), our results are as follows. The field-strength
renormalization contributions Z(φ,ψ) take the standard form in Eq. (2.5), where the corre-
sponding αn-functions are given by

Z(φ)
n : αn =

1√
π
yn(1− yn)

[

3 log
(

ρ2n +M2
φ(yn;µ

2)R2
)

+
(1− 2yn)|n|ρn + 2M2

φ(yn;µ
2)R2

ρ2n +M2
φ(yn;µ

2)R2

]

Z(ψ)
n : αn =

1

4
√
π
yn

[

log
(

ρ2n +M2
ψ(yn)R

2
)

+
2(y2n − 1)m2

ψR
2

ρ2n +M2
ψ(yn)R

2

]

. (4.21)

Note that the quantities yn, ρn, M2
φ, and M2

ψ are defined in Eqs. (3.11), (3.12), (4.10), and

(4.14) respectively. Also note that on-shell renormalization conditions for Z(ψ) have been
applied in obtaining Eq. (4.21).

The situation is significantly more complex for the contributions L(D,A) coming from the
vertex renormalizations because the relevant diagrams in this case involve two Feynman
parameters rather than just one. However, it turns out that there does exist a simple closed
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form for these corrections which is analogous to that in Eq. (2.5) when either n1 or n2 is
zero. For concreteness, let us assume that n2 is zero. In such cases, Eq. (2.5) is replaced by

Ln1,0 =
∞
∑

r=−∞

1

|n1|
|n1|−1
∑

j=0

∫ 1

0
dv1

∫ 1

0
dv2

[

αn1,0(r, v1, v2, j)− α0,0(r, v1, v2)
]

. (4.22)

We then find that the corresponding αn1,0-functions are given by

L
(D)
n1,0 : αn1,0 =

1√
π
(1− yn1)

[

log(ρ2n1
+M2

g(yn1, y
′
0;µ

2)R2)

+
1

2

M2
g(yn1, y

′
0;µ

2)R2 + (2− v1 − v2)
2m2

ψR
2

ρ2n1
+M2

g(yn1 , y
′
0;µ

2)R2

]

L
(A)
n1,0 : αn1,0 = − 1√

π
(1− yn1)(2− yn1 − y′0)

ρn1 mψR

ρ2n1
+M2

g(yn1, y
′
0;µ

2)R2
,

(4.23)

where yn and ρn are defined as in Eqs. (3.11) and (3.12) except with v replaced by v1, where
y′0 ≡ v2(1− yn1), and where

M2
g(y, y

′;µ2) ≡ (y + y′)2m2
ψ + (1− y − y′)m2

φ − yy′µ2 . (4.24)

The above expressions for the α-functions assume that n1 6= 0 and n2 = 0. However,
analogous results exist when n1 = 0 and n2 6= 0. Likewise, the results listed above apply
when the 5D scalar in our theory is real. When this field is complex, by contrast, the
α-functions corresponding to the Z(ψ) and L(D,A) corrections double, while the α-function
corresponding to the Z(φ) correction remains invariant.

In Fig. 10 we plot the energy dependence of the total one-loop correction to the coupling
component g

(D)
1,0 which governs the production of a pair of first-excited KK fermion modes

via the t-channel interaction shown in Fig. 11 between two incoming zero-mode fermions.
Note, in this connection, that g

(D)
0,1 = g

(D)
0,−1 = g

(D)
1,0 = g

(D)
−1,0. Relative to the corrections to

the zero-mode couplings, these KK-production couplings can be either positive or negative,
depending on the energy scale and the values of the bare masses. As a result, we see that
these one-loop corrections can either enhance or suppress the amplitude for the creation of the
first excited KK mode. However, unlike the analogous case shown in Fig. 3 for the coupling
in the λφ4 theory, the coupling that governs the production of excited KK fermion modes
in the Yukawa theory actually increases relative to the zero-mode coupling as a function of
the energy scale.

Results in Fig. 10 are plotted for (mφR)
2 = 0.25 and (mφR)

2 = 0.5. However, when
mφ = 0, there are infrared divergences in the one-loop diagrams responsible for corrections
to the zero-mode coupling. For this reason no results are plotted in this case. Needless
to say, this is not an inconsistency: infrared divergences always cancel in calculations of
observables, and will do so in this higher-dimensional Yukawa theory as well. Indeed, such
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Figure 10: The total relative one-loop correction L
(D)
1,0 +Z

(φ)
−1 +Z

(ψ)
1 +Z

(ψ)
0 to the coupling component

g
(D)
n1,0

that governs the production of the first-excited KK fermion modes, plotted as functions of
µR for different values of mφ and mψ. The plotted range in µR extends approximately from the
threshold for producing a particle/antiparticle pair of the first-excited KK fermion mode to the
threshold for producing the second, assuming the t-channel interaction shown in Fig. 11 between
two incoming zero-mode fermions. Unlike the analogous case shown in Fig. 3 for the coupling in
the λφ4 theory, we see that the coupling that governs the production of excited KK fermion modes
in the Yukawa theory actually increases relative to the zero-mode coupling as a function of the
energy scale. Thus, the production of excited KK fermions is actually slightly enhanced to one-loop
order in this theory.

ψ
1

ψ
−1

ψ

ψ

φ

0

0

1

Figure 11: Feynman diagram showing the tree-level production of two first-excited KK fermions
ψ±1 via t-channel scattering of two zero-mode fermions ψ0 in the Yukawa theory. Arrows indicate
the routings of five-momentum according to which the KK indices indicated in this figure are
assigned. The amplitude of this process is proportional to g0,1g0,−1 = g21,0.
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infrared divergences also appear in the one-loop diagrams in the 4D Yukawa theory, and even
in the case of full four-dimensional QED which this Yukawa theory is meant to resemble.

The results shown in Fig. 10 illustrate the Dirac-component coupling g
(D)
1,0 . By contrast,

the corrections to the corresponding axial coupling g
(A)
1,0 are shown in Fig. 12. Unlike the Dirac

coupling, we observe that the axial coupling vanishes when mψ = 0; thus, as expected, it is
the presence of non-zero mψ which triggers a non-zero axial coupling at one-loop order. We
also observe that this axial coupling increases monotonically as a function of mψ, although it
decreases monotonically as a function of mφ. Furthermore, this coupling is a monotonically
decreasing function of the energy scale µ; thus, just as in the case of the λφ4 theory, the
maximum coupling correction actually occurs at the threshold for the production of the

Figure 12: The total relative one-loop contribution L
(A)
1,0 to the axial coupling component g

(A)
n1,0

,
plotted as a function of µR for different values of mφ and mψ. As in Fig. 10, the plotted range
in µR extends approximately from the threshold for producing a particle/antiparticle pair of the
first-excited KK fermion mode to the threshold for producing the second, assuming a t-channel
interaction between two incoming zero-mode fermions.
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first-excited KK fermion mode.
It is important to recognize that to one-loop order, the “corrections” shown in Fig. 12 are

nothing but the axial couplings themselves, since all of these axial couplings vanish at tree
level. This is therefore an instance in which a one-loop correction, though small, is actually
dominant . As a consequence, any process which proceeds through such an axial coupling
is a direct probe of the one-loop radiative corrections we have calculated. Such a process,
though suppressed, would be uniquely characterized through an axial correlation between
the spin and the corresponding angular scattering amplitude.

5 Conclusions and relation to prior work

In this paper, we investigated the extent to which radiative corrections deform the ex-
pected tree-level relations between Kaluza-Klein masses and couplings in higher-dimensional
interacting theories. Such calculations are surprisingly subtle because they rely intrinsically
on having quantum field-theoretic regulators which preserve higher-dimensional Lorentz in-
variance (and higher-dimensional gauge invariance, when appropriate); otherwise the stan-
dard renormalization calculations would produce spurious, unphysical effects which would
be difficult to disentangle from the bona-fide physical effects resulting spacetime compact-
ification. Using techniques developed in Refs. [1, 2], we concentrated on two toy theories:
five-dimensional λφ4 theory and five-dimensional Yukawa theory, each with a single dimen-
sion compactified on a circle. We then studied the resulting one-loop corrections to the
tree-level mass and coupling relations, and determined those situations in which these cor-
rections exhibited a variety of special algebraic forms and behaviors as functions of the bare
five-dimensional masses in these theories and the overall renormalization energy scale.

For both λφ4 theory and Yukawa theory on a circle, we found that our KK masses can
deform in a variety of different ways. In some cases, these deformations do not disturb
the underlying KK mass relations between different KK modes. In such cases, therefore,
the underlying five-dimensional Lorentz invariance of the KK mass spectrum appears to
be preserved. In other cases, these deformations induce changes in these relations which
can be interpreted as mere shifts or “renormalizations” of the underlying five-dimensional
masses or the radius of the compactification circle. However, in the most general cases, these
deformations result in new KK mass relations which do not exhibit the signatures normally
associated with compactification on a circle.

Similar results were also found for the KK couplings: renormalization effects can induce
non-trivial splittings between KK couplings which are otherwise equal at tree level. For
λφ4 theory, we found that these splittings lead to enhanced production of the first-excited
KK mode. In Yukawa theory, by contrast, we found that renormalization effects can lead
to either enhanced or suppressed production of the first-excited KK mode. Whether this
production is ultimately enhanced or suppressed depends on the values of the underlying
five-dimensional masses and the energy scale of the experiment through which it is measured.

While many of our results were expected, others were more surprising. One interesting
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result, for example, is the radiative generation of a γ5-interaction amongst zero modes in
the Yukawa theory. Indeed, such an interaction is completely absent at tree level. As
we discussed in Sect. 4, this interaction does not lead to parity or CP violation, and is
analogous to the axial fermion mass terms which appear in the KK Lagrangian at tree
level. Another somewhat surprising result is that the corrections to the axial masses of the
fermions in Yukawa theory vanish when the zero-mode masses of the boson and fermion
are equal. As we briefly discussed in Sect. 4, this cancellation ultimately occurs because
the one-loop corrections to fermion propagators in Yukawa theory are equivalent to those in
a supersymmetric model, up to an overall multiplicative constant. Supersymmetry should
forbid axial mass corrections.

Needless to say, many previous studies have focused on loop corrections in KK theories.
However, most of this prior work focused on the effects induced by the excited KK states on
the properties of the zero modes. For example, a relatively early calculation of the runnings of
zero-mode gauge couplings appears in Ref. [3], where it was found that the higher-dimensional
radiative corrections to such runnings have the potential to lead to gauge coupling unification
well below the usual GUT scale. Such running can also generate fermion mass hierarchies [3].
However, the analysis of Ref. [3] focused purely on the radiative corrections to the couplings
of the zero modes, and thus did not require use of regulators designed to respect higher-
dimensional Lorentz or gauge symmetries. Likewise, the authors of Ref. [4] calculated gauge-
coupling corrections in warped AdS5 space. A recent study of loop effects in this geometry
appears in Ref. [5].

Another type of zero-mode calculation involves the special case in which loop corrections
are finite to a certain order in perturbation theory. This variety of calculation appears in
Ref. [6], for example, where the authors calculated the correction to the muon magnetic
moment in higher dimensions. At one-loop order, the correction was found to be finite in
5D.

There do, however, exist several studies which have examined loop effects on excited
modes. For example, the authors of Ref. [7] showed that when an extra dimension is com-
pactified to an orbifold, loop corrections lead to logarithmically divergent terms localized at
the orbifold fixed points. These can take the form of new kinetic terms or coupling terms at
the fixed points.

The authors of Ref. [8] calculated corrections to KK masses in five-dimensional QED
and in a five-dimensional Standard Model, considering the cases in which these theories are
compactified on a flat, circular universal extra dimension and on a flat S1/ZZ2 orbifold. For
the case of compactification on a circle, they found that if zero-mode fermion masses are
neglected, the photon zero mode remains massless while the excited KK photons receive
mass corrections of the form

∆m2
n = − e2ζ(3)

4π4R2
, n ≥ 1 , (5.1)

independent of the mode number n. Other gauge theories lead to similar results. This sort of
behavior is clearly an example of Case #3a from the Introduction: the entire excited tower
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experiences a uniform mass shift, while gauge invariance protects the (vanishing) mass of
the gauge-boson zero mode.

The authors of Ref. [8] correctly obtained this result by performing a Poisson resum-
mation, casting KK sums into sums over winding numbers. Indeed, the use of Poisson
resummations in calculations of loop corrections first appeared in Ref. [9], and it has been
verified [1] that use of our regulators also reproduces the result in Eq. (5.1). At first glance,
it might seem that such a Poisson-resummation technique might also apply to the calcula-
tions in this paper. Unfortunately, this is not the case because this method does not yield
closed-form expressions when the zero-mode masses are non-vanishing. Indeed, as we have
seen, many of our results arise precisely because of the non-vanishing nature of these masses.
As a result, regulators of the type we introduced in Refs. [1] and [2] are needed for the
calculations in this paper.

As an aside, we remark that there also remains the technical issue that a Poisson re-
summation by itself does not regularize a divergence, but merely expresses it in a different
language. In Ref. [1], for example, we noted that Poisson resummation worked in Ref. [8]
because the mass corrections in those calculations were finite. For the divergent case, how-
ever, we noted that one would have to calculate differences between corrections for excited
modes and zero modes, analogous to the differences introduced in Refs. [1] and [2]. Of course,
one might be tempted to simply subtract the contribution arising from vanishing winding
number. However, this merely corresponds to the correction in a non-compactified theory,
and does not relate directly to observables in the compactified theory.

The authors of Ref. [10] calculated loop corrections to KK gauge-boson masses using a
mixed propagator. In this approach, the four large dimensions are treated in momentum
space, as usual, while the compactified extra dimension is treated in position space. This
avoids the introduction of a KK sum altogether. However, in such situations the higher-
dimensional divergences are not eliminated — they are the same as would appear in the cor-
responding higher-dimensional uncompactified theory, as this formalism makes abundantly
clear. Of course, it is possible that the true UV limit of a given higher-dimensional theory is
not higher-dimensional at all [11]. Such “deconstructed” extra dimensions would change the
UV divergence structure of the theory in a profound way that would eliminate the need for
many of these different regularization techniques, and indeed it has been demonstrated [12]
that such deconstruction techniques lead to results which are consistent with those in Ref. [8]
and in other papers.

In a similar vein, radiative corrections may be finite in cases in which there exist additional
symmetries (either unbroken or softly broken) to protect against divergences. Well-known
examples of this phenomenon include radiative corrections in theories with supersymmetry
broken through the Scherk-Schwarz mechanism [13], or in theories in which the Higgs is
identified as a component of a higher-dimensional gauge field and consequently has a mass
for which radiative corrections are protected by gauge symmetries [14].

The authors of Ref. [15] calculated loop corrections to the KK masses of gauge bosons
in a theory with an extra dimension compactified on an S1/ZZ2 orbifold. Like the authors of
Ref. [8], they used Poisson resummation techniques to calculate bulk effects and the methods
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of Ref. [7] to calculate brane terms. By explicitly calculating loop diagrams, they showed
that quadratic divergences to the Higgs mass are avoided. This is in agreement with a
previous study [16], which showed that quadratic divergences are avoided in a particular
model involving gauge-Higgs unification. However, these analyses take place within the
contexts of theories in which a higher-dimensional gauge theory is broken to a gauge subgroup
at orbifold fixed points via the Hosotani mechanism [14].

Another approach to loop corrections in higher dimensions is to embed Kaluza-Klein
theory into string theory, and to perform string-theory calculations. Indeed, the authors of
Ref. [17] analyzed higher-dimensional vacuum polarization diagrams in this context, and re-
produced the gauge-boson KK mass corrections discussed above. This correspondence holds
when the string scale is much greater than the inverse radius of the extra dimension. Other
string-motivated methods of dealing with the divergences in higher-dimensional theories are
discussed in Refs. [18, 19]. In a similar vein, the authors of Ref. [17] demonstrated that
similar results can be obtained using techniques from lattice field theory. Of course, this
assumes that the lattice spacing is much smaller than the compactification radius. Other
regularization techniques for KK theories are discussed in Refs. [20, 21, 22].

Quantum corrections involving KK states are also relevant to the calculations of Casimir
energies, and more generally to the evaluation of the stability of an extra dimension. As a
result, there have been a number of papers examining topics along these lines. For example,
the authors of Ref. [23] examined a gravitational analogue of the Casimir effect along an
extra dimension compactified on a circle using a hard cutoff to regularize momenta of KK
states. Other techniques have also been used [24, 25, 26, 27, 28].

Finally, we remark that in addition to quantum corrections in higher-dimensional theories,
there are also non-trivial classical effects which can also distort the “apparent” geometry of
an extra dimension as measured through analyses of KK spectroscopy. Indeed, the authors
of Ref. [29] showed that the geometry of an extra dimension can even experience a type of
classical renormalization.

Needless to say, there are a number of extensions of this work that may be pursued in the
future. For example, one avenue is to calculate radiative corrections in higher-dimensional
theories with supersymmetry. Such an analysis may permit a determination of what radiative
effects are allowed in supersymmetric models, and how the radiative effects on KK bosons
and fermions come into alignment. This question is particularly relevant in our case, since we
have already seen that the axial mass corrections in the non-supersymmetric Yukawa theory
analyzed here actually vanish in a limit corresponding to supersymmetry. Another avenue for
future research is to employ the regulators developed in Refs. [1] and [2] in order to analyze
decays of KK modes in higher-dimensional theories; indeed, preliminary results along these
lines [30] suggest a number of striking properties which may have deep significance for the
phenomenological properties and ultimately the stability properties of these modes. This
may be particularly relevant for recent discussions of dynamical dark matter [31]. Finally, a
third avenue for further research involves an examination of more realistic compactification
scenarios, especially those involving orbifolds (rather than manifolds), as needed in order to
produce chiral four-dimensional theories. Work along all of these lines is in progress.

30



Acknowledgments

We are happy to thank Z. Chacko, S. Su, D. Toussaint, and U. van Kolck for discussions.
This work is supported in part by the Department of Energy under Grants DE-FG02-04ER-
41298 and DE-FG02-08ER-41531, and by the Wisconsin Research Alumni Foundation. The
opinions and conclusions expressed here are those of the authors, and do not represent either
the Department of Energy or the National Science Foundation.

References

[1] S. Bauman and K. R. Dienes, Phys. Rev. D 77, 125005 (2008) [arXiv:0712.3532 [hep-
th]].

[2] S. Bauman and K. R. Dienes, Phys. Rev. D 77, 125006 (2008) [arXiv:0801.4110 [hep-
th]].

[3] K. R. Dienes, E. Dudas and T. Gherghetta, Phys. Lett. B 436, 55 (1998) [arXiv:hep-
ph/9803466]; Nucl. Phys. B 537, 47 (1999) [arXiv:hep-ph/9806292]; arXiv:hep-
ph/9807522.

[4] A. Pomarol, Phys. Rev. Lett. 85, 4004 (2000) [arXiv:hep-ph/0005293].

[5] See, e.g., K. Choi, I. W. Kim and C. S. Shin, arXiv:1001.1473 [hep-th].

[6] T. Appelquist and B. A. Dobrescu, Phys. Lett. B 516, 85 (2001) [arXiv:hep-
ph/0106140].

[7] H. Georgi, A. K. Grant and G. Hailu, Phys. Lett. B 506, 207 (2001) [arXiv:hep-
ph/0012379].

[8] H. C. Cheng, K. T. Matchev and M. Schmaltz, Phys. Rev. D 66, 036005 (2002)
[arXiv:hep-ph/0204342].

[9] I. Antoniadis, Phys. Lett. B 246, 377 (1990).

[10] M. Puchwein and Z. Kunszt, Annals Phys. 311, 288 (2004) [arXiv:hep-th/0309069].

[11] N. Arkani-Hamed, A. G. Cohen and H. Georgi, Phys. Rev. Lett. 86, 4757 (2001)
[arXiv:hep-th/0104005].

[12] A. Falkowski, C. Grojean and S. Pokorski, Phys. Lett. B 581, 236 (2004) [arXiv:hep-
ph/0310201].

[13] J. Scherk and J. H. Schwarz, Phys. Lett. B 82, 60 (1979); Nucl. Phys. B 153, 61 (1979).

31



[14] Y. Hosotani, Phys. Lett. B 126, 309 (1983).

[15] G. von Gersdorff, N. Irges and M. Quiros, Nucl. Phys. B 635, 127 (2002) [arXiv:hep-
th/0204223].

[16] H. Hatanaka, T. Inami and C. S. Lim, Mod. Phys. Lett. A 13, 2601 (1998) [arXiv:hep-
th/9805067].

[17] L. Del Debbio, E. Kerrane and R. Russo, Phys. Rev. D 80, 025003 (2009)
[arXiv:0812.3129 [hep-th]].

[18] K. R. Dienes, Nucl. Phys. B 429, 533 (1994) [arXiv:hep-th/9402006]; Nucl. Phys. B
611, 146 (2001) [arXiv:hep-ph/0104274];
K. R. Dienes, M. Moshe and R. C. Myers, Phys. Rev. Lett. 74, 4767 (1995) [arXiv:hep-
th/9503055].

[19] D. M. Ghilencea, H. P. Nilles and S. Stieberger, New J. Phys. 4, 15 (2002) [arXiv:hep-
th/0108183];
D. M. Ghilencea and S. Groot Nibbelink, Nucl. Phys. B 641, 35 (2002) [arXiv:hep-
th/0204094].

[20] R. Contino and L. Pilo, Phys. Lett. B 523, 347 (2001) [arXiv:hep-ph/0104130].

[21] R. Contino and A. Gambassi, J. Math. Phys. 44, 570 (2003) [arXiv:hep-th/0112161].

[22] E. Alvarez and A. F. Faedo, JHEP 0605, 046 (2006) [arXiv:hep-th/0602150].

[23] T. Appelquist and A. Chodos, Phys. Rev. Lett. 50, 141 (1983); Phys. Rev. D 28, 772
(1983).

[24] T. Appelquist, A. Chodos and E. Myers, Phys. Lett. B 127, 51 (1983);
T. Inami and O. Yasuda, Phys. Lett. B 133, 180 (1983).

[25] K. Tsokos, Phys. Lett. B 126, 451 (1983);
M. A. Rubin and B. D. Roth, Phys. Lett. B 127, 55 (1983);
S. K. Blau, E. I. Guendelman, A. Taormina and L. C. R. Wijewardhana, Phys. Lett. B
144, 30 (1984).

[26] E. Witten, Nucl. Phys. B 195, 481 (1982).

[27] W. D. Goldberger and M. B. Wise, Phys. Rev. Lett. 83, 4922 (1999) [arXiv:hep-
ph/9907447];
W. D. Goldberger and I. Z. Rothstein, Phys. Lett. B 491, 339 (2000) [arXiv:hep-
th/0007065].

32



[28] S. Ichinose, arXiv:0712.4043 [hep-th]; Prog. Theor. Phys. 121, 727 (2009)
[arXiv:0801.3064 [hep-th]]; Int. J. Mod. Phys. A 23, 2245 (2008) [arXiv:0804.0945 [hep-
th]]; arXiv:0812.1263 [hep-th]; Int. J. Mod. Phys. A 24, 3620 (2009) [arXiv:0903.4971
[hep-th]]; arXiv:1003.5041 [hep-th].

[29] K. R. Dienes, Phys. Rev. Lett. 88, 011601 (2002) [arXiv:hep-ph/0108115];
K. R. Dienes and A. Mafi, Phys. Rev. Lett. 88, 111602 (2002) [arXiv:hep-th/0111264];
Phys. Rev. Lett. 89, 171602 (2002) [arXiv:hep-ph/0207009].

[30] S. Bauman and K. R. Dienes, “Lifetimes of Kaluza-Klein Modes,” to appear.

[31] K. R. Dienes and B. Thomas, [arXiv:1106.4546 [hep-ph]]; [arXiv:1107.0721 [hep-ph]].

33


