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In this paper we consider the relation between the super-renormalizable theories of quantum gravity
(SRQG) studied in [1, 2] and an underlying non-commutativity of spacetime. For one particular
super-renormalizable theory we show that at linear level (quadratic in the Lagrangian) the propa-
gator of the theory is the same we obtain starting from a theory of gravity endowed with θ-Poincaré
quantum groups of symmetry. Such a theory is over the so called θ-Minkowski non-commuative
spacetime. We shed new light on this link and show that among the theories considered in [1, 2],
there exist only one non-local and Lorentz invariant super-renormalizable theory of quantum gravity
that can be described in terms of a quantum group symmetry structure. We also emphasize contact
with pre-existent works in the literature and discuss preservation of the equivalence principle in our
framework.
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I. INTRODUCTION

In the recent papers [1, 2] it has been introduced a modi-
fied theory of gravity assuming a synthesis of minimal
requirements: (i) regularity of classical solutions; (ii)
Einstein-Hilbert action should be the correct low energy
limit; (iii) the spacetime dimension has to decrease with
the energy; (iv) the theory has to be perturbatively renor-
malizable at quantum level; (v) the theory has to be uni-
tary, with no other pole beyond the graviton in the prop-
agator.
The theory we are going to summarize in the next

section is power counting super-renormalizable at the
quantum level at least perturbativelly and at classical
level the gravitational potential [1], black hole solutions
[2, 3, 6–28] and the cosmological solutions are singular-
ity free [1, 4, 5]. The Lagrangian is a “nonlocal” ex-
tension of the renormalizable quadratic Stelle theory [29]
but the non locality only involve positive powers of the
D’Alembertian covariant operator. In other words there
are not operators like 1/�p (p > 0). The theory is
not unique (we thus refer to super-renormalizable “the-
ories”), but all the freedom present in the action can be
read in an “entire function” of the D’ Alembertian opera-
tor, H(−�/Λ2) [30] (Λ is a physical mass-invariant scale
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introduced in the classical action).

The reason of this paper is not only to find an elegant
reason for the nonlocal nature of the action, but it is to
find a way to fix uniquely the entire function which is
mentioned above. In this paper we show that the prop-
agator of the theory, for a particular choice of the en-
tire function H(−�/Λ2), has exactly the same form of
the propagator we obtain starting from a theory of grav-
ity endowed with θ-Poincaré quantum groups of symme-
try. The right choice is much easier we could think, i.e.
H(−�/Λ2) = −�/Λ2. Any other entire function gives of
course a well defined super-renormalizable theory of grav-
ity (consistently with some particular properties [1, 2])
but is not compatible with the requirement of having
a non-trivial Hopf-algebra-like symmetry regulating the
super-renormalizability of the theory. In particular, the
Hopf-algebra underlying the super-renormalizable model
we discuss below is a quantum-group associated to an
associative non-commutative space-time. In particular,
this is the only quantum group of (space-time) symme-
try that can be accounted within the model presented in
[2], if we do not relax the associativity of the space-time
points’ coordinates. What emerges is therefore a new
symmetric structure underlying the theory.

II. THE THEORY

A simplified version of the theory is a nonlocal general-
ization of the Stelle quadratic action for gravity [29] and
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can be written in the following compact form,

Lg = −√−g

[

β

κ2
R+Rµν F (−�Λ)

µνρσRρσ

]

, (1)

where the tensor F (−�Λ) is a function of the covariant
D’Alembertian operator −�Λ := −�/Λ2, Λ is a physical
mass scale and κ2 = 32πG. To fix the notation we can
write more explicitly the tensor F (−�Λ) in terms of two
entire functions h2 and h0 that we are going to define in
this same section,

F (−�Λ)
µνρσ := −

(

β2 − h2(−�Λ)
)

gµρgνσ

+

(

β2

3
+ β0 − h0(−�Λ)−

h2(−�Λ)

3

)

gµνgρσ. (2)

The complete Lagrangian including also the gauge fixing
and ghost terms is

L = Lg + LGF,GH, (3)

where the gauge fixing and ghost Lagrangian terms are

LGF,GH = − 1

2ξ
Fµω(−�

η
Λ)Fµ + C̄µMµνC

ν . (4)

The operator �η
Λ encapsulates the D’Alembertian of the

flat fixed background, whereas Fµ is the gauge fixing
function with the weight functional ω. The two functions
h2 and h0 have not to be polynomial but “entire func-
tions without poles or essential singularities” to avoid
ghosts (states with negative norm) in the spectrum ω.
C̄µ, Cµ are the ghosts fields and M τ

α = F τ
µνD

µν
α . The

gauge fixing function F τ
µν and the operator D µν

α will be
defined shortly, in (6).
We calculate now the graviton propagator. For this

purpose we start by considering the quadratic expansion
of the Lagrangian (1) in the graviton field fluctuation
without specifying the explicit form of the functionals
h2 and h0 (if not necessary). Following the Stelle paper
[29], we expand around the Minkowski background ηµν

in power of the graviton field hµν defined in the following
way

√−ggµν = ηµν + κhµν . (5)

The form of the propagator depends not only on the
gauge choice but also on the definition of the gravita-
tional fluctuation [32]. The gauge choice is the familiar
“harmonic gauge” ∂νh

µν = 0 and in (4), F τ = F τ
µνh

µν

with F τ
µν = δτµ∂ν . D µν

α is the operator which gener-
ates the gauge transformations in the graviton fluctua-
tion hµν . Given the infinitesimal coordinates transfor-
mation xµ′ = xµ + κξµ, the graviton field transforms as
follows

δhµν = D µν
α ξα = ∂µξν + ∂νξµ − ηµν∂αξ

α

+κ(∂αξ
µhαν + ∂αξ

νhαµ − ξα∂αh
µν − ∂αξ

αhµν). (6)

We Taylor-expand now the gravitational part of the
action (1) to the second order in the gravitational pertur-
bation hµν(x) to obtain the graviton propagator. In the
momentum space, the action which is purely quadratic
in the gravitational field, reads

L(2) =
1

4
hµν(−k)Kµνρσhρσ(k) + LGF, (7)

where LGF is the gauge fixing Lagrangian at the second
order in the graviton field

LGF =
1

4ξ
hµν(−k)

(

ω(k2/Λ2)k2P (1)
µνρσ(k)

+2ω(k2/Λ2)k2}P (0−ω)
µνρσ (k)

)

hρσ(k). (8)

The kinetic operator Kµνρσ is defined by

Kµνρσ := −h̄2(z) k
2 P (2)

µνρσ(k) +
3

2
k2 h̄0(z)P

(0−ω)
µνρσ (k)

+
k2

2
h̄0(z) {P (0−s)

µνρσ (k) +
√
3[P (0−ωs)

µνρσ (k) + P (0−sω)
µνρσ (k)]},

and we have introduced the following notation

h̄2(z) := β − β2κ
2Λ2z + κ2Λ2z h2(z),

h̄0(z) := β − 6β0κ
2Λ2z + 6κ2Λ2z h0(z), (9)

where z := −�Λ. Notice that in (7) �Λ has to be iden-
tified with the D’Alembertian operator in flat spacetime
−�

η
Λ. We have used the gauge F τ = ∂µh

µτ and intro-

duced the projectors P (2), P (1), P (0−s), P (0−sω), P (0−ωs)

[45] (see also appendix B). Using the orthogonality prop-
erties of the projectors we can now invert the kinetic
matrix in (7) and obtain the graviton propagator. In the
following expression the graviton propagator is expressed
in the momentum space according to the quadratic La-
grangian (7),

Dµνρσ(k) = Dξ=0
µνρσ(k) +Dξ

µνρσ(k), (10)

where the propagator in the gauge ξ = 0 is

Dξ=0
µνρσ(k) =

−i

(2π)4
2

k2 + iǫ

(

P
(2)
µνρσ(k)

h̄2(k2/Λ2)
− 2P

(0−s)
µνρσ (k)

h̄0(k2/Λ2)

)

and Dξ
µνρσ(k) is the gauge dependent part of the propa-

gator.
We are now in the position to find an upper bound

to the divergences in quantum gravity. We consider a
particular theory in which the two general entire func-
tions hi(z) introduced in the action have the following
asymptotic exponential behavior,

h2(z) =
α(ez − 1) + α2z

κ2Λ2z
,

h0(z) =
α(ez − 1) + α0z

6κ2Λ2z
, (11)

for three general parameters α, α2 and α0.
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Given the ultraviolet exponential behavior of the two
functions hi(z), let us study the high energy behavior
of the quantum theory. The ultraviolet behavior of the
propagator in momentum space (actually we will see that
this is the correct scaling of the propagator at any energy
scale), omitting the tensorial structure, reads

D(k) ∼ e−k2/Λ2

k2
. (12)

But also the n-graviton interaction has the same scaling
in the momentum space, since it can be written in the
following schematic way

L(n) ∼ hn
�ηh hi(−�Λ) �ηh

→ hn �ηh
e−�η

�η
�ηh+ . . . , (13)

in which “. . .” indicates other interaction terms coming
from the covariant D’Alembertian and �η = ηµν∂µ∂ν .
Placing an upper bound to the amplitude with L-loops,

we find

A(L) 6

∫

(d4p)L

(

e−p2/Λ2

p2

)I
(

ep
2/Λ2

p2
)V

=

∫

(dp)4L

(

e−p2/Λ2

p2

)I−V

=

∫

(dp)4L

(

e−p2/Λ2

p2

)L−1

. (14)

In the last step we used again the topological identity
I = V + L − 1. The L-loops amplitude is UV finite for
L > 1 and it diverges as “p4” for L = 1.
Thus only 1-loop divergences exist and the theory is

super-renormalizable1. In these SRQG theories the quan-
tities β, β2, β0 and eventually the cosmological constant
are renormalized, namely

LRen = L −
√
−g
{β(Z − 1)

κ2
R+ λ(Zλ − 1)

−β2(Z2 − 1)(RµνR
µν − 1

3
R2) + β0(Z0 − 1)R2

}

, (15)

in which all the coupling must be understood as renor-
malized at an energy scale µ. On the other hand, the
functions hi are not renormalized because the upper limit
A(L) 6 4 in (14).
We assume that the theory is renormalized at an en-

ergy scale scale µ0. If we want the bare propagator to
possess no other gauge-invariant pole than the transverse
physical graviton pole, we have to set

α = β(µ0) ,
α2

κ2Λ2
= β2(µ0) ,

α0

6κ2Λ2
= β0(µ0). (16)

1 A local super-renormalizable quantum gravity with a large num-
ber of metric derivatives was for the first time introduced in [46].

If the energy scale µ0 is taken as the renormalization
point, then h̄2 = h̄0 = β(µ0) exp(z), and only the physi-
cal massless spin-2 graviton pole occurs in the bare prop-
agator. In the gauge ξ = 0 the propagator in (10) reads

Dµνρσ(k) =
−i

(2π)4
e−k2/Λ2)

α (k2 + iǫ)

(

2P (2)
µνρσ(k)− 4P (0−s)

µνρσ (k)
)

.

If we choose another renormalization scale µ, then the
bare propagator acquires poles; however, these poles can-
cel in the dressed physical propagator because the renor-
malization group invariance preserves unitarity in the
dressed physical propagator at any energy scale and no
other physical pole emerges at any other scale.

III. NONCOMMUTATIVE SPACETIME &

QUANTUM GROUPS

We unveil in this section the link between one of the
SRQG theories analyzed above and the quantum-group
structure of spacetime-symmetries proper to noncommu-
ative space-times. The key point is that the two-point
function of the super-renormalizable theory can be re-
expresed in such a way to exhibit the hidden quantum-
group-like structure in the momentum space through the
Fourier transform of h̄i(−�Λ) (i = 0, 2). We present
in particular two procedures accounting for this result
and leading to a particularly simple example of non-
commuativity that is well known and has been studied
mathematically in depth, namely the θ-Minkowski space-
time with its associated θ-Poincaré Hopf algebra of sym-
metries. We then move to scrutinize possible generaliza-
tions within the framework of spacetimes with noncom-
mutativity of the type

[X̂µ, X̂ν ] = iθµν(X̂α)

and conclude with the theorem that, focusing on associa-
tive space-time algebras, there is only one possible choice
of h̄n(�Λ) compatible with a non-trivial Hopf-algebra
structure of space-time symmetries.

A. Emergence of the quantum θ-structure

Starting from the expression of the two-point function
(10), we easily obtain, within an appropriate choice of the
gauge, the scalar structure for the graviton propagator to
be

Dξ=0
µνρσ(k) ∼

−i

(2π)4
e−H(k2/Λ2)

k2 + iǫ
× TS , (17)

where we start considering h̄2(z) = h̄0(z) := expH(z)
as to be as general as possible and where H(k2/Λ2) is
an entire function of the argument. TS means “tensorial
structure”. In order to make explicit the mechanism un-
derlying the result we are going to show, we focus in this
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first part of the section on a Euclidean 2D space-time and
then consider a phase-space non-commutativity involving
X̂i space-coordinates operators and P̂j momentum oper-
ators characterized by the following Lie-brackets

[X̂ i, X̂j ] = iθij , [X̂ i, P̂j ] = iδij , [P̂i, P̂j ] = 0 , (18)

namely the Heisemberg non-commutativity between con-
jugated variables and the Moyal-plane noncommutativ-
ity between space-coordinates. It has been shown in
Refs. [31, 33] that for a particular choice of θij involving
noncommutativity in two of the space-coordinates (e.g.
say θ3i = −θi3 = 0 and θab = θ ǫab with a, b = 1, 2) it
is possible to cast the space-noncommutativity on the
2D plane in terms of Ladder operators and coherent
states digonalizing these latter. For instance, assum-
ing θab = θ ǫab one can define

√
2Ẑ = X̂1 + iX̂2 and√

2Ẑ† = X̂1 − iX̂2. These new operators fulfill the alge-
bra [Ẑ, Ẑ†] = θ, and their eigenstates are labelled as |z〉
and are such that Ẑ|z〉 = z|z〉 and 〈z|Ẑ† = 〈z|z̄, namely

|z〉 = exp(−zz̄

θ
) exp(−z

θ
Ẑ†)|0〉 . (19)

These coherent states of the non-commutative plane sat-
isfy the completeness relation

∫

dzdz̄|z〉〈z| = πθ. In
quantum field theory the basic non-commutative vari-
ables are fields and their conjugated momenta. Coor-
dinates are represented as labels and are commutative.
Differently, for a quantum filed theory grounded on (18)
we must consider the expectation value of fields over co-
herent states (19) encoding space non-commutativity, in
order to relate quantization results to standard commu-
tative quantum field theory. Indeed, within the context
of (18), non-commutativity emerges already at the level
of classical fields not subjected to the canonical quantiza-
tion of the symplectic phase-space. In order to make con-
tact with classical fields, we must therefore recur to the
procedure of extracting the expectation value over semi-
classical coherent states, which we called here |z〉, follow-
ing the lines of Refs. [31] and [33]. Non-commuting co-
ordinates, which may be treated as operators within the
scheme of (18), are evaluated on the coherent states (19),
as we show explicitly in the forthcoming relation, equa-
tion (20). We should now consider that non-commutative
functions can be Fourier expanded using complex expo-
nential bases, such as

exp(i
∑

j

pjX̂
j) or

∏

j

exp(ipjX̂
j).

The two bases that we are mentioning among many oth-
ers are equal on the standard commutative 2D space,
but differ among each other within the case specified by
(18), because of the underlying non-commutativity of X̂j

coordinates. This basic fact allows us to expand the ex-
pectation value over coherent states of non-commutative
fields on the expectation value 〈z| exp(ipjX̂j)|z〉 of the

Fourier basis elements exp(i
∑

j pjX̂
j), yielding the cru-

cial result [31] [33],

〈z| exp(ip1X̂1 + ip2X̂
2)|z〉 = (20)

= 〈z| exp(ip+Ẑ†) exp(ip−Ẑ) exp
(p−p+

2
[Ẑ†, Ẑ]

)

|z〉 ,

in which the Baker-Campbell-Hausdorff formula has been
used (see Appendix A) and the quantities

√
2p± = (p1 ±

ip2) have been defined. Notice also that shrinking to zero
the deformation parameter θ accounts for considering the
“classical limit” toward standard-commutative quantum
filed theory.
We can now generalize this procedure to a non-

commutative 4D space-time and find an energy-
momentum exponential-dumping behavior as in (17), but
only if H(k2/Λ2) ∼ k2. We start considering a phase-
space involving spacetime coordinates and conjugated
momenta of the type

[X̂µ, X̂ν] = iθµν , [X̂µ, P̂ν ] = iδµν , [P̂µ, P̂ν ] = 0 . (21)

We recall that for θµ0 6= 0, any Lorentzian theory con-
structed on (21) is non-unitary [34]. For the moment
we disregard this problem, perform a Wick rotation to
the Euclidean spacetime, and show that assuming the
only non-zero components θ03 = −θ30 ≡ ξ 6= 0 and
θ12 = −θ21 ≡ θ 6= 0 it is possible to give sense to a
graviton propagator whose scalar structure is expressed
by (17). Let us see here below how it is possible to
achieve this result. Together with the Ladder opera-
tors Ẑ and Ẑ†, we consider the choice of θµν specified
above and of another class of Ladder operators involving
X̂1 and X̂3 coordinates, namely

√
2T̂ = X̂0 + iX3 and√

2T̂ † = X̂0 − iX3. It follows that [T̂ , T̂ †] = ξ, and from
the type of space-time non-commutativity we assumed
above that [T̂ , Ẑ] = [T̂ , Ẑ†] = 0, i.e. the two sectors
of Ladder operators can be simultaneously diagonalized.
The coherent states for the T̂ -sector can be constructed
in the same way as for the Ẑ-sector, yielding eigenstates
|t〉 such that T̂ |t〉 = t|t〉 and 〈t|T̂ † = 〈t|t̄, namely

|t〉 = exp(− tt̄

θ
) exp(− t

θ
T̂ †)|0〉 , (22)

which is provided with the completeness relation
∫

dtdt̄|t〉〈t| = πθ. We can therefore consider the coherent
states |z, t〉 = |z〉 |t〉. The relevant formula for expanding
quantum fields on a Fourier basis is given by the manip-
ulation of 〈z, t| exp(ipµX̂µ)|z, t〉. This is the expectation
value over the coherent state |z, t〉 of wave-exponentials
entering the Fourier-modes expansion of quantum fields
on non-commutative space-time, and yields the crucial
result

〈z, t| exp(ipµX̂µ)|z, t〉 = (23)

= 〈z| exp(ip+Ẑ†) exp(ip−Ẑ) exp
(p−p+

2
[Ẑ†, Ẑ]

)

|z〉 ×

×〈t| exp(ip̃−T̂ †) exp(ip̃+T̂ ) exp

(

p̃−p̃+
2

[T̂ †, T̂ ]

)

|t〉 .
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In (23) we have introduced the quantities
√
2p̃± = (p0 ±

ip3) and used the Baker-Campbell-Hausdorff formula.
Once again we emphasize that, having performed a Wick
rotation, our analysis focuses on the Euclidean signature
sign(ηµν ) = (+,+,+,+), for which problems of unitarity
do not appear. Indeed, thanks to the analysis that has
been carefully developed in [34, 35] about unitarity being
preserved in the Lorentzian case once θ0i = 0, based on
the symmetry arguments we can convince ourselves that
the Euclidean theory will not suffer for the lack of uni-
tarity2. Among the super-renormalizable theories previ-
ously considered there exist one that can be recast when
ξ = θ as a theory over a non-commutative space-time,
with non-commutativity of the type

[X̂µ, X̂ν] = iθµν . (24)

Indeed, when ξ = θ = 1/Λ, the damping factor in
(17), specialized to the case H(z) = z, is automati-
cally recreated from the kinematical manipulations re-
viewed in (23). Moreover, the choice of ξ = θ preserves
Lorentz covariance when we Wick rotate back to the non-
commutative space-time with Lorentzian signature. It
is well known in literature that the algebra of symme-
tries for the non-commutative space-time in (24) is a
twisted Hopf algebra Pθ called θ-Poincaré Hopf algebra,
and that a theory with a covariant action gives rise in
this framework to conserved Noether charges (see e.g.

[37], which extends the work done in [38] for the case
of the κ-Poincaré Hopf algebra). Therefore θ-Poincaré
truly represents an external symmetry (Hopf) algebra,
and the same holds for its Lorentz sub-algebra. More-
over, we can construct a covariant theory under the ac-
tion of the generators of Pθ that has a new scale invari-
ant, i.e. θ. We will discuss later these implications. For
the moment, we want just to make clear the point that
the θ-Poincaré symmetry does not imply a breakdown or
a modification of the Poincaré symmetries in the alge-
braic sector, or better at the level of the Hilbert space of
the theory, but rather an enlargement of the Lie-algebra-
type Poincaré symmetry, which can be recast as a trivial
Hopf-algebra, to a non-trivial Hopf-algebra, precisely a
θ-Poincaré Hopf-algebra in our case. This latter reflects3

in the deformation of the trivial co-algebraic structure
of the Poincaré algebra (Leibnitz rule) to a twisted co-
product structure (non-cocommutativity or θ-deformed

2 The link we are exploring between SRQG theories and theories
of gravity on θ-Minkowski non-commutative space-time can be
recovered on a solid basis focusing on the Euclidean case, in
which a unitary and Lorentz covariant quantum field theory can
be constructed on θ-Minkowski. Nevertheless, thanks to the work
in [34, 35], we could easily reach in the Lorentzian case with
θ0i = 0 conclusions similar to the ones we have been discussing
in this letter. Anyway, we prefer to leave this task to further and
detailed investigations, in which also the delicate case θ0i = 0
will be treated.

3 We thank the Referee for suggesting us to clarify this point.

Leibnitz rule), leaving unchanged the algebraic structure
of the Hopf-algebra4. In other words, the enlargement
of the symmetry structure we are dealing with, will be
affect a modification of the Fock space of the theory (see
for instance the last reference of [38]), without chancing
the Hilbert space of the theory. This is also reflected in
the fact that the quantum groups structure emerges at
tree-level, though the evaluation of the graviton propa-
gator. We will come back later, in Sec. III D, to the issue
of the relation between the θ-Poincaré and the Poincaré
Hopf algebras.
We complete the discussion on the emergence of the

θ-Poincaré symmetry noticing that the tensorial struc-
ture in (10) does not affect the result of our analysis,
as indeed this can be made fully consistent with the θ-
Poincaré symmetry of this theory [39]. We emphasize
that this property relies on a remarkable feature of the
θ-Poincaré quantum groups, namely that the Lorentz
subalgebra and the whole Poincaré sector are unmod-
ified with respect to the θ-Poincaré Hopf-algebra, as
stated here above and as will be clarified in Sec. III D.
This property allows to define linear Lorentz transforma-
tion and conservation laws following the standard recipe.
From now on, we will mention the Lorentz sector, without
specifying that it belongs to the θ-Poincaré or Poincaré
algebra Hopf algebra.

B. A different philosophy to unveil Pθ

The emergence of the θ-Poincaré symmetry-structure
does not rely on the particular procedure we adopted
in the preceding subsection. For instance, we could have
chosen to adopt the “Weyl system” procedure [40], as
it has been done in [37] at the purpose of analyzing
the symmetry-structure of a scalar field theory on θ-
Minkowski spacetime. The “Weyl map” Ω associates to
any function f(x̂) of θ-Minkowski an auxiliary commu-
tative function f (c)(x). The easiest way of implement-

ing this map is to consider the Fourier transform f̃(p) of
f(x̂) and then apply on the Fourier modes the Weyl map,
namely

f(x̂) = Ω
(

f (c)(x)
)

≡ Ω

(
∫

d4pf̃(p)eipx
)

=

∫

d4pf̃(p) : eipx̂ : , (25)

in which “: · :” denotes an ordering of the non-
commutative coordinates associated to Ω. The inverse
of the Weyl map, namely Ω−1, is also well defined and
is called the Wigner map. Our Wigner map is expressed

4 Formally, both the θ-Poincaré quantum group and the Poincaré
algebra are Hopf algebra. But the latter one is usually re-
ferred to as “trivial” Hopf algebra, because of the standard co-
commutativity in the co-algebra sector [42].
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by the semi-classical limit of the measurement-procedure
involving coherent states |z, t〉, namely

Ω−1(· · ·) = 〈z, t| · · · |z, t〉 . (26)

This procedure also provides a physical picture in our
context of the Wigner and Weyl maps. As reminded
above, because of the peculiar features of spacetime non-
commutativity, a Weyl map selects a particular nor-
mal ordering for the spacetime coordinates. Suppose to
choose the “semiclassical-state” ordering, which is de-
fined in the x1 − x2 plane by the following action of the
Weyl map on the Fourier-modes basis elements

Ω|x−y(e
ip1x1+ip2x2) = Ω|x−y(e

ip+z̄+ip−z)

= eip+Ẑ†+ip−Ẑ = eip+Ẑ†

eip−Ẑ e
p−p+

2
[Ẑ†,Ẑ] . (27)

On the whole θ-Minkowski spacetime (24), in which θ03 =
θ12 = θ = −θ30 = −θ21 and θ13 = θ23 = θ01 = θ02 = 0,
we might consider the definition of “semiclassical-state”
ordering and the related Weyl map by adopting the co-
ordinates T̂ and T̂ †,

Ω
(

eipµx
µ
)

= eip+Ẑ†

eip−Ẑ e
p−p+

2
[Ẑ†,Ẑ] ×

× eip̃−T̂ †

eip̃+T̂ e
p̃−p̃+

2
[T̂ †,T̂ ] . (28)

Now define the integration map
∫

on the non-
commutative θ-Minkowski spacetime as the map such
that
∫

Ω(f(x))Ω(g(x)) =

∫

d4pf̃(p)g̃(−p) e−θ(pµp
µ)2 . (29)

A quantum theory of non commutative fields can now be
constructed following the same steps as in [41], namely
considering an expansion of the quantum field, fulfill-
ing a Lorentz covariant equation of motion, on a non-
commutative Fourier basis

Ψr(X̂) =

∫

dµp

[

ap Ω
(

e−ipµx
µ
)

+a†p Ω
(

eipµx
µ
)]

=

∫

d3~p

2p0

[

a~p Ω
(

e−ipµx
µ
)

+a†~p Ω
(

eipµx
µ
)]

, (30)

and then imposing braiding relations on the ladder oper-
ators by means of the bi-algebra twisting element

Fθ = exp(
1

2
θµνPµ ⊗ Pν).

Notice that in (30) we have introduced the notation
for the Lorentz invariant measure dµp = d4p δ(p2) =
d3~p/2p0. The requirement of compatibility of the covari-
ant action of symmetries on tensor product of states with
the tensor product of state on which symmetries have
already acted, yields indeed the braiding in the multi-
particle states. This peculiar feature of non-commutative
quantum field theory enjoying θ-Poincaré symmetries are
originated by the action of the twisting element, which we

define here by means of Fθ ⊲(|p〉⊗|q〉) = Fθ(p, q) |p〉⊗|q〉,
i.e. through

apaq = F−2
θ (q, p)aqap ,

apa
†
q = F−2

θ (−q, p)a†qap + 2p0δ
4(p− q) ,

a†pa
†
q = F−2

θ a†qa
†
p . (31)

The vacuum state of the Fock space is defined by ap|0〉 =
0, and states of the Hilbert by |p〉 = a†p|0〉. The sec-
ond quantization procedure hence defined can be applied
to the geometric two-tensor field, as defined in [39] and
perturbative-expanded as in [2]. The second relation in
(31) is what we need in order to compute the graviton
propagator in the non-commutative theory, namely

Dµνρσ(X̂
α−Ŷ α) =

∫

dµpdµk

{[

〈0|
(

apa
†
k Ω(e

−ipµx
µ

)Ω(eikµy
µ

)

+a†pakΩ(e
ipµx

µ

)Ω(e−ikµy
µ

)
)

|0〉 θ(X̂0 − Ŷ0)
]

+
[

X̂0 ↔ Ŷ0 and x ↔ y
]}

× TS

=

∫

dµp × TS× Ω
(

eipµ(x
µ−yµ)

)

× pole structure .

We emphasize that Dµνρσ(X̂
α− Ŷ α) is differs from the

expectation value (on the coherent states |z, t〉) of the
propagator of the quantum theory, namely Dµνρσ(x

α−
yα). We would have obtained Dµνρσ(x

α−yα) if we had
followed the same strategy as in Ref. [31, 33]. In our
notation, in terms of the Wigner map, this accounts for

Ω−1
(

Dµνρσ(X̂
α−Ŷ α)

)

= Dµνρσ(x
α−yα)

that leads to the graviton propagator

Dµνρσ(x
α − yα) =

∫

dµpdµk (32)

×
{

Ω−1
[

〈0|
(

apa
†
kΩ(e

−ipµx
µ

)× Ω(eikµy
µ

)

+a†pakΩ(e
ipµx

µ

)Ω(e−ikµy
µ

)
)

|0〉 θ(X̂0 − Ŷ0)
]

+

+Ω−1
[

x ↔ y
]}

×TS =

∫

d4p
e−p2/Λ2

p2
× TS .

The Fourier transform of the graviton propagator
sketched in (32) by using the ordering introduced in (28)
turns out to give the same value determined henceforth
at the beginning of this section, in (17).

The procedure incorporated in this second section is
more general than that one based on the expectation
value on coherent states and must be in general consid-
ered as distinct. Nevertheless, this reduces to the one
exposed in the preceding section whenever we consider
(26) as a concrete definition for the Wigner map.
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C. Uniqueness of the link between quantum groups

and SRQG and falsifiability of the theory

In this section we prove a simple theorem stating the
uniqueness of the link between quantum groups and
SRQG. Specifically, we prove that the only non trivial
Hopf algebra connected to SRQG is the θ-Poincaré Hopf
algebra, and that this latter selects only one among the
many possible theories (namely, the theory defined by
the choice h̄2(z) = h̄0(z) = exp z, with z = −�/Λ2) de-
scribed in [2]. Thus, in what follows we scrutinize the
possibility of generalizing results previously exposed to
a wider class of non-commutative spacetimes and prove
the impossibility of achieving this goal if we decide not
to relax the requirement of associativity for the non-
commutative space-time algebra.
The natural place in order to seek for the generaliza-

tion of previous results is represented by (20) and the im-
plementation within it of the Baker-Campbell-Hausdorff
formula and of its inverse formula, the Zassenhaus for-
mula. Suppose indeed to consider in (17) the integer
function to be H(k2/Λ2) = c1k

2/Λ2 + c2(k
2/Λ2)2. We

address the search for a suitable Lie algebra reproducing
this structure forH(−�/Λ2) in terms of generic functions

θ34, depending
5 on Ẑ and Ẑ†, and θ12 depending on T̂

and T̂ †. Commutation relations for the Ladder operators
now read

[Ẑ, Ẑ†] = θ34(Ẑ, Ẑ†) ,

[T̂ , T̂ †] = θ12(T̂ , T̂
†) . (33)

Maintaining unchanged the definition of Ẑ and T̂ , for-
mulas (33) yields a space-time non-commutativity of the
form

[X̂1, X̂2] = iθ̃12(X̂1 , ...X̂4) ,

[X̂3, X̂4] = iθ̃34(X̂1 , ...X̂4) . (34)

Notice that in general both the θ-Minkowski type and
κ-Minkowski [43] type of non-commutativity are present

in the expansion of the functions θ̃12 and θ̃34. Such a
co-presence of space-time non-commutativities has been
considered in literature [44] in light of its relation with
string-theory scenarios6. But (34) is not sufficient in or-

5 We recall that the BCH formula and its inverse have been devel-
oped considering only Lie-algebra cases. Thus θ34 and θ12 could
be rigorously expanded only up to linear order in the generators
of the algebra.

6 Expansion of formulae (34) make sense up to second order in
a scale κ having dimension of inverse energy. Following dimen-
sional arguments, for a spacetime non commutativity of the type

[X̂µ, X̂ν ] = iθµν(X̂α)

the only class of deformations of spacetime having classical limit
for κ → 0 are of the type

[X̂µ, X̂ν ] = iκ2 θ
µν
0 + iκ θ

µν

(1) ρ
X̂ρ + θ

µν

(1) ρσ
X̂ρX̂σ ,

der to ensure the desired behavior for the Fourier trans-
form of the integer function H(k2/Λ2) appearing in the
graviton propagator calculation. In other words, we can
not achieve the Fourer transform

H(k2/Λ2) = c1k
2/Λ2 + c2(k

2/Λ2)2 (35)

on a perturbed background of the form (5) if we still re-
quire the non-commutative algebra to be associative. We
can prove this theorem considering that two requirements
should be fulfilled as necessary conditions in order to add
a term like c2(k

2/Λ2)2 in (17). The first one reads

∂θ̃12

∂Ẑ
=

∂θ̃12

∂Ẑ†
=

∂θ̃34

∂T̂
=

∂θ̃34

∂T̂ †
= 0 (36)

and ensures that momenta are not redefined at linear
order in

√
θ, i.e. for linear Planck mass corrections. The

second condition is

∂2θ̃12

∂Ẑ∂Ẑ†
=

∂θ̃12

∂Ẑ†∂Ẑ
=

∂2θ̃34

∂T̂ †∂T̂
=

∂θ̃34

∂T̂∂T̂ †
= θ (37)

and ensures the existence of two terms summing in
H(p2/Λ2) within (17) that are θ(p21+p22)

2 from the T̂−T̂ †

sector and θ(p23 + p24)
2 from the Ẑ − Ẑ† sector. But once

summed, these contributions are not sufficient in recre-
ating a covariant (p2)2 term, which in stead would come
from the Fourier transform of �2 as it appears in the sec-
ond term of (35). Therefore we should consider now inter-

action between the two sectors, T̂− T̂ † and Ẑ−Ẑ†, which
would now determine the appearance of mixed terms in
p22 and p23, from one side, and p24 and p21 from the other
side. In the euclidean spacetime, we now label operators
within the Ẑ − Ẑ† sector as

Ẑ = Ẑ34 , Ẑ† = Ẑ†
34 , (38)

and momenta as

p+ = p34 , p− = p∗34 . (39)

In the T̂ − T̂ † sector, operators are now labeled as

T̂ = Ẑ12 , T̂ † = Ẑ†
12 , (40)

while momenta are labeled as follows

p̃+ = p12 , p̃− = p∗12 . (41)

We emphasize that, in order to obtain a dumping expo-
nential phase-term exp [−2θ2(p21+p22)(p

2
3+p24)] multiply-

ing the other dumping phase-term exp {−θ2 [(p21+p22)
2+

with θ
µν

(0)
and θ

µν

(1) ρ
and θ

µν

(1) ρσ
dimensionless quantities. Within

this class of deformations of spacetime, previous expansion de-
scribes (for open string first-quantized in D= 10) noncommuta-
tive coordinates on D-branes providing the localizations of the
ends of the strings
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(p23+p24)
2]}, and hence recreating a covariant exponential

dumping phase-factor exp−θ2(p2)2, new conditions must

be fulfilled about the non-commutativity in the X̂1 − X̂3

plane and in the X̂1−X̂4 plane, as well as in the X̂2−X̂3

and X̂2− X̂4 planes. These can be derived looking at the
exponential

exp i(X̂1p1 + X̂2p2 + X̂3p3 + X̂4p4)

= exp i(Ẑ†
34p

∗
34 + Ẑ34p34 + Ẑ†

12p
∗
12 + Ẑ12p12) , (42)

and at its decomposition by means of the Zassenhaus
formula, and then imposing that

ei(p1X̂1 + p2X̂2 +p3X̂3 +p4X̂4) (43)

= ei(p1X̂1 + p2X̂2) ei(p3X̂3 +p4X̂4) ×
× e

1
2
Γ[p1, p2, p3, p4] e−

1
6
{2Φ[p1, p2, p3, p4]+Σ[p1, p2, p3, p4]} ×

× e−
1
24

{Ξ[p1, p2, p3, p4]+3Ψ[p1, p2, p3, p4]+3Θ[p1, p2, p3, p4]} ,

with

Γ[p1, p2, p3, p4] = [(p1X̂1 + p2X̂2) , (p3X̂3 + p4X̂4)] ,

Φ[p1, p2, p3, p4] = [(p3X̂3 + p4X̂4) , [(p1X̂1 + p2X̂2) ,

(p3X̂3 + p4X̂4)]] ,

Σ[p1, p2, p3, p4] = [(p1X̂1 + p2X̂2) , [(p1X̂1 + p2X̂2),

(p3X̂3 + p4X̂4)]] ,

Ξ[p1, p2, p3, p4] = [[[(p1X̂1 + p2X̂2) , (p3X̂3 + p4X̂4)] ,

(p1X̂1 + p2X̂2)] , (p1X̂1 + p2X̂2)] ,

Ψ[p1, p2, p3, p4] = [[[(p1X̂1 + p2X̂2) , (p3X̂3 + p4X̂4)] ,

(p1X̂1 + p2X̂2)] , (p3X̂3 + p4X̂4)] ,

Θ[p1, p2, p3, p4] = [[[(p1X̂1 + p2X̂2) , (p3X̂3 + p4X̂4)] ,

(p3X̂3 + p4X̂4)] , (p3X̂3 + p4X̂4)] .

For arbitrary values of pµ, the requirement on the
Lorentz-invariance of the algebraic sector (and thus on
the Lorentz-invariance of the Fourier space) implies from
enforcing Γ[p1, p2, p3, p4] = 0 that

[X̂1, X̂3] = [X̂1, X̂4] = [X̂2, X̂3] = [X̂2, X̂4] = 0 . (44)

Namely, Lorentz invariance requires that the only type
of affordable non-commutativity is the one we consid-
ered above on the X̂1 − X̂2 plane and on the X̂3 − X̂4

plane. We would have reached the same conclusion from
(44) by imposing Lorentz-invariance on the Fourier space
and hence the simultaneous vanishing of Φ[p1, p2, p3, p4]
and Σ[p1, p2, p3, p4]. Notice that also (36) and (37),

once expressed in terms of X̂µ operator, would lead to
the same type of inconsistencies. Finally, requirements
in (44) impose the vanishing of both Ξ[p1, p2, p3, p4],
Ψ[p1, p2, p3, p4] and Θ[p1, p2, p3, p4]. As a consequence,
it is manifest the impossibility of recovering a term which
goes like (k2/Λ)2 for H(k2/Λ2) in (17), if we start from a
Lie algebra type of non-commutativity. This result could
be in part anticipated. We know indeed that only the
twisted θ-Poincaré Hopf algebra at the same time pre-
serves Lorentz symmetry, at least in the algebraic sector

and in the Fourier space, and consistently realizes the
associativity in the module algebra (of space-time coor-
dinates functions).
Finally, the argument developed here above and based

on the choice of the particular SRQG theory defined by
(35), can be repeated for any entire function H(z), thus
for any generic SRQG theory. This ends our proof about
the uniqueness of the link between SRQG and non-trivial
Hopf algebra, specifically the θ-Poincaré quantum group.
It is not overwhelming to emphasize that the uniqueness,
i.e. having fixed H(z) to a unique function, traces back
to the definition of a unique theory of SRQG among the
many allowed in the framework of [2]. We also empha-
size that such a result relies on the construction of the
phase-space with Heisenberg-type of non-commutativity
between spacetime and momenta, thus it is consistent
with the associativity of the space-time coordinates con-
sidered in previous sections7. Extending the analysis to
deformed phase-space, and hence to a non-associative
spacetimes, would not have allowed us to conclude with
the same statement.

D. Poincaré and θ-Poincaré symmetries

In this section we want to recall some basic facts about
the Poincaré and the θ-Poincaré Hopf-algebras and show
explicitly their relation. We start by reviewing how the
Poincaré Lie-algebra can be recast as a Hopf-algebra. Be-
fore doing that, we remind the Lie-multiplication rules for
the Poincaré algebra P , whose elements are denoted as
Pµ (generators of translations) and Mµν (generators of
Lorentz transformations),

[Pµ, Pν ]=0 ,

[Mµν , Mαβ ]=−i(ηµαMνβ − ηµβMνα +

− ηναMµβ + ηνβMµα),

[Mµν , Pα]=−i (ηµαPν − ηναPµ) . (45)

The Poincaré Lie algebra P can be easily promoted to
a Hopf algebra if we introduce same basic definitions.
In particular, in order to deal with deformation of the
Leibnitz rule, it is convenient from an abstract algebraic
point of view to introduce the “coproduct” map ∆ as the
application from elements of the algebra P to elements
of the tensor product P ⊗P , namely ∆ : P → P ⊗P . If
the module space, i.e. the space on which generators of
the algebra act, is thought to be the space of functions
on commutative space, it is of immediate evidence that
∆(1) = 1⊗1, and ∆(Y ) = Y ⊗1+1⊗Y for each generator
Y = {Mµν, Pβ} of the Poincaré Lie algebra. This last
property, which plays a key role in allowing a description

7 A notable example of nonassociative spacetime is the Snyder
noncommutative space-time (see e.g. Ref. [51] and references
therein).
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of the symmetries at the simple Lie-algebraic level —
without any true need to resort to a full Hopf-algebra
description — is actually connected with the commu-
tativity of functions in Minkowski space-time M, and
thus fully reflects the Leibnitz rule. Consider in fact two
generic functions f and g. From f · g = g · f , one eas-
ily finds for each U ∈ U(P) that8 ∆ is symmetric, i.e.
U(1)⊗U(2) = U(2)⊗U(1) for all U . Adopting math jargon,
∆ is “cocommutative”. We say that a cocommutative
coproduct is, in some sense, “trivial” in order to empha-
size its simple structure with respect to the coproduct of
the generators of the symmetry-transformations in a non-
commutative space-time. These latter coproducts may
be in stead “non-cocommutative”.
The axiomatic definition of a Hopf-algebra requires

also the definition of a “co-unit” map ǫ : P → C,
such that for any function f(x) it results that the ac-
tion

∫

d4xU f(x) = ǫ(U)
∫

d4xf(x) can be defined. It is
straightforward to verify that ǫ(1) = 1 and ǫ(Y ) = 0. We
may also define the “unit map” η : C → P and the “mul-
tiplication map” m : P ⊗P → P . Another ingredient we
might add to this construction concerns how to construct
generators of inverse transformations. At this purpose,
we can define S(1) = 1, S(Y ) = −Y for each generator
Y ∈ P and S(UU ′) = S(U ′)S(U) for each element of the
corresponding enveloping algebra. We then obtain a map
satisfying U(1)S(U(2)) = S(U(1))U(2) = ǫ(U). The map S
so far introduced is called “antipode”. This makes P a
Hopf algebra provided that some axioms are satisfied9.
The universal enveloping algebra of a Lie algebra is

then equivalent to a Hopf algebra generated by the prim-
itive elements Y :

∆(Y ) = Y ⊗ 1 + 1⊗ Y, ǫ(Y ) = 0, S(Y ) = −Y .

This algebraic structure is usually referred to as a “trivial
Hopf algebra”.

8 U(P) represents the universal enveloping algebra of the Poincaré
Lie-algebra P. The universal enveloping algebra U(A) of an
algebra A is the non-commutative algebra generated by 1 and
elements of A, modulo the relations that specify the Lie-
multiplication rules for the elements of A.

9 We refer to [42] for a detailed review of Hopf-algebras and of
the Hopf-algebra axioms that must be fulfilled. Here, we briefly
mention that for an algebra A, the axioms to be fulfilled are the
algebra axioms

m(m ⊗ 1) = m(1 ⊗m) (associativity),

m(1 ⊗ η) = m(η ⊗ 1) = 1 (unit),

and the co-algebra axioms

(∆⊗ 1)∆ = (1 ⊗∆)∆ (co − associativity),

(1 ⊗ ε)∆ = (ε⊗ 1)∆ = 1 (co − unit),

which together specify a bialgebra (A,m, η,∆, ε); and finally the
antipode axioms, which specify a Hopf-algebra, namely

m(S ⊗ 1)∆ = m(1 ⊗ S)∆ = η ◦ ε .

The new symmetry structure, whose emergence in the
framework of SRQG theories we are claiming, by looking
at the tree-level for the graviton propagator, is in stead
the θ-Poinacré algebra. This is a “non-triavial” Hopf-
algebra, in that the coproducts do not reflect anymore the
Leibnitz rule, i.e. the module space of the algebra is that
one of non-commutative functions on non-commutative
θ-Minkowski space-time. The algebra is still defined by
(45), but the co-algebra is now deformed in the tensor
θ. Far from deriving the deformation of the coproducts
in (46) and discussing the whole θ-Poncaré algebra, we
just mention few basic properties of Pθ. Coprodcuts ∆θ

are obtained by an element of the bialgebra P ⊗P called
twist element,

Fθ = e
i
2
θµνPµ⊗Pν , (46)

which satisfies

Fθ(∆0 ⊗ 1)Fθ = Fθ(1 ⊗∆0)Fθ . (47)

Given the generators Y ∈ P , the twist element F “mod-
ifies” the coproduct of U(P) in the following way [36]

∆0(Y ) 7→ ∆θ(Y ) = F∆0(Y )F−1 ,

∆0(Y ) denoting the “trivial” coproduct in (46). More-
over, in the limit θ → 0 the co-algebraic structure of P
is recovered from that one of Pθ, i.e. ∆θ(Y ) → ∆0(Y ).
Finally, being the generators of translations Pα com-

mutative among each others, it can be easily recovered
that their coproduct is not deformed (in the math jar-
gon, ∆θ = ∆0 is “primitive” or also the subalgebra of
translation is “co-commutative”):

∆θ(Pα) = ∆0(Pα) = Pα ⊗ 1 + 1⊗ Pα . (48)

Whilst it is more laborious but nevertheless easy to check
that

∆θ(Mµν) = Ad e
i
2
θαβPα⊗Pβ∆0(Mµν) =

= Mµν ⊗ 1 + 1⊗Mµν −
1

2
θαβ [(ηαµPν − ηανPµ)⊗ Pβ

+Pα ⊗ (ηβµPν − ηβνPµ)] , (49)

which shows the modification in θµν of the co-algebraic
structure of the θ-Poincaré Hopf-algebra, reflecting the
modification in θ of the Leibnitz rule.

E. SRQG and Non-commutative Gravity

In preparation for the conclusions, we want to address in
this section a brief comparison of the model above with
the theory of non-commutative geometry and gravity de-
veloped in [39], and with seminal works on the relation
between differential calculi over a given noncommutative
associative algebra and space-time metrics addressed in
[47, 48]. We first emphasize the differences between the
model presented in this letter and the works in [47–49]
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and [39], and then conclude with a list of points to be in-
vestigated in forthcoming works in order to gain a clearer
physical picture.
The most striking point we are confronted with is the

in-equivalence of our model with the ones addressed in
[47, 48] and [39]. This feature indeed is already evident
at the level of the linearized equation of motion for the
SRQG theories described in [1, 2]. A first heuristic anal-
ysis based on the work reported in references [52] reveals
indeed that linearized equation for the model here treated
would involve a non-local operator H ρσ

µν (∇α) acting on
the Ricci scalar R and the Ricci tensor Rµν in the form

Gµν + κ2H ρσ
µν (∇α)Rρσ = 0 , (50)

in which Gµν denotes the Einstein tensor and κ2=8πG in
natural units. In (50)H ρσ

µν (∇α) acts as a total derivative
only on the Ricci tensor and therefore the associativity
condition of an eventual star-produc would not be satis-
fied. Thus it would be completely meaningless even try to
make sense of H ρσ

µν (∇α) in terms of a star-product and
of an underlying non-commutative of space-time, even
in situation in which the background has been fixed and
gravity has been linearized at the first order, as for in-
stance when considering gµν = ηµν + κhµν . Moreover is
matter of fact that equation (50) differs from the equa-
tion of motion derived in the model studied in [39], where
the non-commutative Einstein equations read

Ric− 1

2
g ⋆R = 0 . (51)

In (51) the ⋆ product is defined in order to be consistent
with the twist element that modifies the diffeomorphism
algebra. The non-commutative metric tensor reads lo-
cally as g = θj ⊗⋆ θi ⋆ gij , with θi basis one-forms and
⊗⋆ the associative ⋆-tensor product associated to the de-
formed algebra of non-commutatve tensor fields. The
Ricci tensor Ric and the Ricci scalar R are derived as
the contraction of the Curvature tensor, that is defined
in terms of the ⋆-covariant derivative ∇⋆

u (along any vec-
tor field u of the module algebra). In brief, the equa-
tion (51) would read as a modification of the only Ein-
stein tensor, whilst the equation of motion of the SRQG
model we have studied involve higher derivatives applied
to the square of the curvature tensor and their contrac-
tions. However, as this heuristic argument does not pro-
vide a solid proof, in order to be confident about the
in-equivalence of the two models it would be appropriate
to analyze some particular symmetry-reduced solutions,
which we will do in the future providing accurate equa-
tion of motions in the general curved case.
Another point of difference we should single out is the

absence in our framework of a consistent interpretation
of the non-locality within the action (1) in terms of a
twisted star-product. Following for instance a common
procedure (see e.g. Ref. [50] and references therein), we
can express any field theory on non-commutative space-
time as a non-local field theory on a commutative space-
time, provided that non-locality is described in terms of

a star-product. Thus in principle we can ask whether
it is possible to do the converse in our framework, re-
covering a star-product. But we should also consider a
twist-element which leave undeformed the Lorentz sector
of the Poincaré algebra, because of the particular depen-
dence on the D’Alambertian covariant operator � in the
non-local function F . This feature represents a strong
constraint for the theories studied in [2]. A twist element
would naturally achieve this goal, but it is quite easy to
see that from the particular form of F we would not be
able to derive the associativity of the star-product, nei-
ther the normalization condition for it (see e.g. section
II of Ref. [39]), both of them necessary requirements to
recover a twist-element. Therefore we would be naturally
lead to search for a generalization of our framework, and
more in general of the theories presented in [2], in order
to account for a consistent twist-element. We empha-
size that in this latter theoretical framework we would
be able to address interesting conceptual questions. In-
deed, although in the seminal works in [47, 48] cases in
which non-commutativity singled out a preferred met-
ric were considered, in [39] any moving frame has been
treated on equal footing and it has been shown that there
are infinitely many metrics compatible with a given non-
commutative differential geometry. Moreover, as a con-
sequence of the bicovariant differential calculus and of
the framework single out in [39], torsion appears also in
the vacuum. This scheme hence implies a deformation
of the geodesic motion, and consequences for the equiva-
lence principle should be also investigated in detail. Con-
versely, the compatibility of the metric and the validity of
the equivalence principle are imposed from the beginning
in [1, 2] and not quested.

IV. CONCLUSIONS

Moving from the work in [2] defining a class of SRQG
theories, we have shown in this paper that is possible to
define a unique SRQG theory provided with a nontrivial
Hopf algebra of space-time symmetries. The associated
phase space is Heisenberg type, and associativity must
be preserved in the non-commutative theory. Specifi-
cally, the non-trivial Hopf algebra connected to SRQG
is the twisted algebra of θ-Poincaré, which shows as a
remarkable feature that one of having a Poincaré alge-
bra, and thus a Lorentz subalgebra, that are unmodi-
fied in the dimension-full parameter θ. For θ-Poincaré,
deformation emerges in the co-algebra structure and in
the other mathematical structures defining the concept
of Hopf-algebra, which is a bi-algebra fulfilling certain
consistency relations [42]. Therefore, Lorentz transfor-
mation and Lorentz covariance is defined in the stan-
dard way in this quantum-group symmetric SRQG the-
ory, and locally it makes still sense to say that the
Lorentzian theory is invariant under action of the gen-
erators of so(3, 1). And we emphasize that the analysis
we have developed at tree-level for the graviton propa-
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gator must be developed at high order in the perturba-
tion theory and generalized to n-point functions in the
quantum theory, in order to show a fully correspondence
between the non-commutative field theory and the model
of SRQG here investigated. Furthermore, the analysis of
the non-commutative quantum theory provided with in-
teractions, which can be achieved by following the lines
of [31, 53–55], and the development of possible intriguing
features of the multi-particle states in the Fock-space of
the quantum theory are points strictly intertwined that
may have a relation to the model we have focused on.
Indeed, one might argue that the θ ∼ 1/Λ2 modifica-
tions to the co-algebraic sector induces a θ modification
to the many-particle states at the quantum level, and es-
tablishing firmly this point would open the path to the
study of entanglement effects, as studied in the last one of
Refs. [38] for the case of the κ-Poincaré algebra. Finally, a
clear understanding of the non-commutative space-time
reformulation of the models studied in may be derived
through a comparison of the interacting terms contained
in the SRQG theory at the perturbative level with an ap-
propriate expansion of a selected non-commutative the-
ory of gravity, which may be described by [39] or some
other model. Nevertheless, at the present stage of de-
velopment of the theory, the only knowledge of the two
point function is sufficient to derive an appropriate phys-
ical description at least of the gravitational potential.
The one listed here above are all suggestive questions,

which can be addressed only at the level of a full quan-
tized non-commutative theory; we leave therefore them
for future developments.

Appendix A: BCH formulae

We summarize in this appendix some useful formulae
that we have used in the above sections. We first consider
a linear operator A, which is defined by means of

expA :=

∞
∑

k=0

1

k!
Ak. (A1)

As a consequence, ∂τe
τA = AeτA = eτAA. Let us

consider another linear operator B, and let be B(τ) =
eτABe−τA. The Sophus-Lie formula then provide us with
the following series representation for B(τ):

B(τ) =
∞
∑

m=0

τm

m!
Bm, (A2)

in which Bm = [A,B]m := [A, [A,B]m−1] and B0 :=
B. The Baker-Campbell-Hausdorff (BCH) formula is a
particular case of the Sophus-Lie formula. Setting τ = 1,
one obtains indeed

eA Be−A =

∞
∑

m=0

1

m!
Bm. (A3)

This latter expression can be re-manipulated in the form

[B, e−A] = e−A
(

[A,B] + [A, [A,B]]/2 + · · ·
)

, (A4)

or

[eA, B] =
(

[A,B] + [A, [A,B]]/2 + · · ·
)

eA. (A5)

Furthermore, in addition to the BCH formula, there is
another expression which is also referred to as BCH for-
mula, but which is due to Eugene Dynkin. This latter
expression provides us with the multiplication law for two
exponentials of linear operators within the assumptions
[A, [A,B]] = [B, [B,A]] = 0, corresponding to a central
algebra in our θ-Minkowski case. It follows that

eAeB = eA+Be
1
2
[A,B] , (A6)

and reshuffling this latter expression, one obtain the
Zassenhaus formula at the second order

eA+B = eA eB e−
1
2
[A,B] . (A7)

As for practical reasons we were mostly interested to the
Zassenhaus formula up to the fourth order, here below we
furnish it for completeness (see e.g. [56] and references
therein)

eA+B = eA eB e−
1
2
[A,B] e

1
3!
{2[B,[A,B]]+[A,[A,B]]} ×

×e−
1
4!
{[[[A,B],A],A]+3[[[A,B],A],Y ]+3[[[A,B],B],B]} . (A8)

We emphasize that the general BCH expansion is not a
special case of the Hadamard lemma. Indeed the Dynkin
formula is exact, but not closed, and in general there is
no explicit closed form for the BCH expansion, except in
the “degenerate cases”. Nevertheless, those latter cases
are the most interesting for the application to physics
[57].

Appendix B: P (2), P (1), P (0−s), P (0−sω)-Tensors

We furnish here below the expression for some quantities
introduced in Section II, namely

P (2)
µνρσ(k) =

1

2
(θµρθνσ + θµσθνρ)−

1

3
θµνθρσ ,

P (1)
µνρσ(k) =

1

2
(θµρωνσ + θµσωνρ + θνρωµσ + θνσωµρ) ,

P (0−s)
µνρσ (k) =

1

3
θµνθρσ , P (0−ω)

µνρσ (k) = ωµνωρσ,

P (0−sω)
µνρσ =

1√
3
θµνωρσ, P (0−ωs)

µνρσ =
1√
3
ωµνθρσ,

θµν = ηµν − kµkν
k2

, ωµν =
kµkν
k2

. (B1)
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