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Abstract

One of the most common assumptions in the studies of neutron star models and their
oscillations is that the pressure is isotopic but there are arguments that this may not be
correct. Thus in the present paper we make a first step towards studying the non-radial
oscillations of neutron stars with an anisotropic pressure. We adopt the so-called Cowling
approximation where the spacetime metric is kept fixed and the oscillation spectrum for the
first few fluid modes is obtained. The effect of the anisotropy on the frequencies is apparent,
although with the present results it might be hard to distinguish it from the changes in the
frequencies caused by different equations of state.
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1 Introduction

The discovery of gravitational waves is one of the most important goals of the astrophysics
nowadays. A lot of efforts are devoted to this problem worldwide. Ground based experi-
ments [1]– [4] as well as space missions [5] are planned and some of them are expected to
be able to give results in the near future. Parallel to these efforts the first steps towards
a third generation gravitational wave telescope (the so called Einstein telescope) which is
supposed to have much higher sensitivity are undertaken [6]. The reason why the gravita-
tional waves are so difficult to be detected is that they are extremely weak which requires
detectors with very high sensitivity and also accurate waveforms of the signal emitted from
the astrophysical objects.

One of the promising sources of gravitational waves is the oscillations of neutron stars [7].
A lot of efforts were spent in studying the gravitational wave emission of these objects but
still there are a lot of important open questions. The gravitational wave emission by neutron
stars is ultimately connected to their interior structure. In order to predict accurately
enough the characteristics of the gravitation waves we need adequate relativistic models
of the neutron star interior. However, at present little is known about the properties and
the behaviour of matter at very high densities and pressures. So, in modeling the neutron
star interior we are forced to make certain assumptions about the properties of the neutron
star matter. Some of these assumptions seem to be natural from a physical point of view,
however, there are always uncertainties and suspicions that the assumptions may be not
fully correct. As the science history shows there are surprises sometimes – Nature does
not always share our notions for “natural”. That is why the alternatives should also be
investigated.

One of the widely accepted assumptions in studying the equilibrium configurations of
neutron stars and their oscillations is that the pressure of the neutron star matter is isotropic.
There are however arguments that the pressure could be anisotropic† [8]. Some theoretical
investigations [9,10] show that the nuclear matter may be anisotropic at very high densities
where the nuclear interactions must be treated relativistically. Anisotropy in the fluid
pressure can be caused by many other factors. Anisotropy can be yielded by the existence
of a solid core or by the presence of superfluid [11]– [13], by pion condensation [14], by
different kind of phase transitions [16], by the presence of strong magnetic field [17] or by
other factors [8]. From a formal point of view the mixture of two fluids is mathematically
equivalent to an anisotropic fluid [8], [18].

During the last decades, starting with the pioneering work [19] there have been many
papers studying anisotropic spherically symmetric static configurations within general rel-
ativity [20]– [43]. These studies show that the anisotropy may have non-negligible effects
on the neutron star structure and properties. For example the anisotropy may influence
notably the maximal equilibrium mass, maximum redshift and maximum compactness of
the stars [20], [35]. It is worth noting also that even for stable configurations the anisotropy
can support outwardly increasing energy density in the star core [42].

†Generally speaking the anisotropic fluid has pressures which can differ among the spacial directions.
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The fact that the anisotropy can affect seriously the interior structure and the proper-
ties of the stellar configurations makes us think that the anisotropy may also have serious
influence on the gravitational wave emission and more precisely on the gravitational wave
spectrum of the stellar configurations. Therefore, in the context of the current efforts to
detect the gravitational waves, it is important to study the gravitational wave spectrum of
the anisotropic neutron stars. Such study is twofold. On the one hand it can reveal the
basic characteristics of the gravitational wave spectrum of the anisotropic stars and the dif-
ferences with the spectrum of the isotropic stars. On the other hand, such a study provides
us with a tool to study the reverse problem – to put constraints on the amount of neutron
star anisotropy using the observed gravitational wave spectrum in the future.

In the present paper we undertake the first step towards the study of the gravitational
wave spectrum of anisotropic neutron stars. More precisely we investigate the spectrum of
the non-radial oscillations of anisotropic neutron stars in Cowling approximation. The paper
is organized as follows. In section 2 we numerically construct equilibrium configurations
describing anisotropic stars. Section 3 is devoted to the derivation of the perturbation
equations of the anisotropic neutron stars in Cowling approximation and the formulation
of the boundary value problem for the oscillation spectrum. In section 4 we present the
numerical results for the oscillation frequencies. The paper ends with conclusions.

2 Equilibrium anisotropic configurations of neutron

stars

In the spherically symmetric case‡ which we will consider in the present paper, the fluid
anisotropy means that the radial pressure p differs from the transverse pressure q. The
mathematical description of an anisotropic fluid in spherical symmetry is given by the
following energy-momentum tensor

Tµν = ρuµuν + pkµkν + q (gµν + uµuν − kµkν) , (1)

where gµν is the spacetime metric, uµ is the fluid 4-velocity, ρ is the fluid energy density
and kµ is the unit radial vector (kµk

µ = 1) with uµkµ = 0. Note that gµν + uµuν − kµkν is
the projection tensor onto the 2-surfaces orthogonal to both uµ and kµ. At the center of
symmetry the anisotropic pressure must vanish since kµ is not defined there.

For spherically symmetric spacetimes the metric can be written in the well-known form

ds2 = −e2Φdt2 + e2Λdr2 + r2dθ2 + r2 sin2 θdφ2. (2)

‡The assumption of spherical symmetry is applicable to the static case of matter sources with an energy
momentum tensor satisfying |T θ

θ − T
φ
φ | << T

θ
θ . So the assumption of spherical symmetry is applicable for

example to the cases when the anisotropy is yielded by the existence of a solid core, by the presence of
superfluid or by the presence of pion condensation. Also the spherical symmetry can be used when the
anisotropy is yielded by weak enough magnetic field. However if the magnetic field is very strong, as in the
case of magnetars, the spherical symmetry assumption may not be a good approximation [17].
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The Einstein field equations

Rµν −
1

2
gµνR = 8πTµν (3)

then reduce to

2Λ′

r
e−2Λ +

1

r2
(

1− e−2Λ
)

= 8πρ, (4)

2Φ′

r
e−2Λ − 1

r2
(

1− e−2Λ
)

= 8πp, (5)

while the contracted Bianchi identity

∇µTµν = 0 (6)

gives

p′ = −(ρ+ p)Φ′ − 2σ

r
, (7)

where σ = p − q. Introducing the local mass m(r) = r
2

(

1− e−2Λ
)

and expressing Φ′ from
(5) we can write the dimensionally reduced equations in the Tolman-Oppenheimer-Volkoff
form

m′ = 4πρr2, (8)

p ′ = −(ρ+ p)
4πpr3 +m

r (r − 2m)
− 2σ

r
. (9)

In order to close our system we should specify the equations of state for p and for σ.
For the radial pressure we will consider a barotropic equation of state and more precisely

ρ = p0

(

p

Kp0

)1/Γ

+
p

Γ− 1
, (10)

where p0 = 1.67 × 1014 g/cm3 in units where c = 1 and we have chosen Γ = 2.34 and
K = 0.0195 obtained when fitting the tabulated data for EOS II [44]. The results are
qualitatively the same for other values of K and Γ.

As explained in [42] we can not just take σ = σ(ρ) because this equation of state is
too restrictive. Instead we should consider quasi-local equation of state σ = σ(p, µ) where
µ denotes a quasi-local variable. In principle the equation of state σ = σ(ρ, µ) should
be determined by the microscopic theory. Unfortunately, at present we do not have a
good enough microscopic theory to allow us to find the explicit form of the dependence
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σ = σ(ρ, µ). A drawback of the available microscopic models is the fact that the models
are developed in flat spacetime and then the results are transferred to curved spacetime
which is not completely satisfactory [12]. Within the framework of this type of microscopic
models it is impossible to find the influence of the curved geometry on the equation of state.
That is why our approach in the present paper is phenomenological. Following [42] for the

quasi-local variable we take the local compactness µ = 2m(r)
r

= 1 − e−2Λ and we consider
the following equation of state

σ = λpµ, (11)

where λ is a parameter. Since the local compactness is zero at the center, this guarantees
that σ(0) = 0. In order to roughly estimate the range of the parameter λ we use the results
of [15] where the anisotropy is caused by a pion condensation. In [15] it is found that
0 ≤ σ/p ≤ 1 and therefore we could expect that the maximum value of λ is of order of 1.
In the present paper we adopt the range λ ∈ [−2, 2].

In order to obtain the background solutions which will be perturbed we solve the reduced
field equations (4),(5) and (7) with the appropriate boundary conditions

Λ(0) = 0, ρ(0) = ρ0, Φ(∞) = 0. (12)

The normalized density ρ, the radial p and the anisotropic σ pressure as functions of
the radial coordinate r are shown in Figs. 1 and 2 for several neutron star solutions. The
central energy density ρ0 is the same for all of the solutions presented in the figures and the
results for several values of the parameter λ, which controls the anisotropic pressure, are
shown. It is interesting to note that for large values of λ and for large masses, neutron star
solutions exist for which the density ρ is not a monotonic function of the radial coordinate
but has a maximum and these solutions are dynamically stable [42].

In Fig. 3 the mass M of the anisotropic neutron stars is shown as a function of the
central density ρ0 and of the radius R for several values of the parameter λ. As we can
see the properties of the star vary significantly when the anisotropic pressure is varied, i.e.
when we vary the parameter λ. The dynamical stability analysis shows that the solutions
are stable up to the maximum mass of the sequences [42].

3 Perturbation equations in Cowling approximation

In this section we derive the equations describing the non-radial perturbations of the
anisotropic stars in the so-called Cowling approximation [45], [46]. In Cowling approxima-
tion the spacetime metric is kept fixed. Despite of this simplification the Cowling formalism
turns out to be accurate enough and reproduces the oscillation spectrum with good accuracy.
In fact the comparison of the oscillation frequencies obtained by a fully general relativistic
numerical approach and by the Cowling approximation shows that the discrepancy is less
than 20% for the typical stellar models [47].
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Figure 1: The normalized energy density ρ as a function of the radial coordinate r.
The results for several neutron-star solutions with the same central energy density
ρ0 = 7.455 × 1014 g/cm3 and different values of the parameter λ are shown (this central
energy density gives neutron star with mass M = 1.4M⊙ in the case with zero anisotropic
pressure, i.e. when λ = 0).
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Figure 2: The radial p and the anisotropic pressure σ as functions of the radial coordinate
r, normalized to the value of the radial pressure at the center of the star p0. The results
are for the same solutions as in Fig. 1.
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Figure 3: The mass of the neutron stars as a function of the central density (left panel) and
of the radius (right panel) for several values the parameter λ.

The equations describing the perturbations in Cowling formalism are obtained by varying
the equations for the conservation of the energy-momentum tensor (6). Taking into account
that the metric is kept fixed, we find ∇νδT

ν
µ = 0 where

δT ν
µ = (δρ+ δq)uµu

ν + (ρ+ q) (uµδu
ν + δuµu

ν) + δqδ ν
µ + δσkνkµ + σδkνkµ + σkνδkµ. (13)

Projecting equation ∇νδT
ν
µ = 0 along the background 4-velocity uµ we have

uν∇νδρ+∇ν

{[

(ρ+ q)δνµ + σkνkµ
]

δuµ
}

+ (ρ+ q) aνδu
ν +∇νuµδ (σkνkµ) = 0. (14)

Projecting orthogonally to the background 4-velocity by using the operator Pν
µ = δνµ +

uνuµ, we obtain

(δρ+ δq) aµ + (ρ+ q) uν (∇νδuµ −∇µδuν) +∇µδq + uµu
ν∇νδq + Pν

µ∇αδ (σk
αkν) = 0, (15)

where aµ = uν∇νuµ is the background 4-acceleration.
At this stage we can express the perturbations of the 4-velocity via the Lagrangian

displacement vector ξi, namely

∂ξi

∂t
=

δui

ut
, (16)

where i = 1, 2, 3 = r, θ, φ.
Now let us consider eq.(15) for µ = θ and µ = φ. Since aθ = aφ = 0 and uµ = (ut, 0, 0, 0)

we find
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(ρ+ q)(ut)2∂2
t ξθ + ∂θδq = 0, (17)

(ρ+ q)(ut)2∂2
t ξφ + ∂φδq = 0. (18)

Taking into account that ρ, q and ut depend on r only, the integrability condition for the
above equations gives

∂θξφ = ∂φξθ. (19)

From this condition and the fact that the background is spherically symmetric we find that
ξθ and ξφ are of the form

ξθ = −
∑

lm

Vlm(r, t)∂θYlm(θ, φ), (20)

ξφ = −
∑

lm

Vlm(r, t)∂φYlm(θ, φ), (21)

where Ylm(θ, φ) are the spherical harmonics. From now on, in order to simplify the notations,
we will just write ξ = −V Ylm when we have expansion in spherical harmonics.

We proceed further with finding the expressions for the density and pressure perturba-
tions. From eq.(14) after some algebra we find

δρ = − 1√−g
∂i
{√−g

[

(ρ+ q)ξi + σ(kjξ
j)ki

]}

−
[

(ρ+ q)ξi + σ(kjξ
j)ki

]

∂i ln(u
t)− (ρ+ p)aiξ

i. (22)

It is convenient to express ξr in the form

ξr = e−ΛW

r2
Ylm (23)

and substituting in the above equations, after some algebra we find§

δρ = −(ρ+ p)

[

e−ΛW
′

r2
+

l(l + 1)

r2
V

]

Ylm − dρ

dr
e−ΛW

r2
Ylm +

2σ

r3
e−ΛWYlm + σ

l(l + 1)

r2
V Ylm,(24)

where in the last step we have taken into account that ar = Φ′ and eq. (7).

§The derivative with respect to the radial coordinate r will be denoted by prime or by the standard
symbol interchangeably.
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In order to find the perturbation of the radial pressure we first use the relation between
the Eulerian and Lagrangian variations, namely

δp = ∆p− ξr∂rp (25)

with ∆p being the Lagrangian variation. From the equation of state we have

∆p =
dp

dρ
∆ρ =

dp

dρ
(δρ+ ξr∂rρ) . (26)

In this way we obtain the following formula for the perturbation of the radial pressure

δp = −dp

dρ

{

(ρ+ p)

[

e−ΛW
′

r2
+

l(l + 1)

r2
V

]

− 2
σ

r3
e−ΛW − σ

l(l + 1)

r2
V

}

Ylm − dp

dr
e−ΛW

r2
Ylm.(27)

For the perturbation of the anisotropic pressure σ = σ(p, µ) we have

δσ =
∂σ

∂p
δp, (28)

where we have taken into account that δµ = 0.
The dynamical equations for W and V follow from eq. (15), namely

(ρ+ p)
eΛ−2Φ

r2
∂2
tW + ∂r δ̂p+ (δ̂ρ+ δ̂p)ar +

2

r
δ̂σ = 0, (29)

(ρ+ p− σ)e−2Φ∂2
t V − δ̂p+ δ̂σ = 0, (30)

where δ̂p are the coefficients in the expansion in the spherical harmonics Ylm, i.e δp = δ̂pYlm.
From now on we will assume for the perturbation functions a harmonic dependence on

time, i.e. W (r, t) = W (r)eiωt and V (r, t) = V (r)eiωt. Then the above equations become

−(ρ+ p)
eΛ−2Φ

r2
ω2W + ∂rδ̂p+ (δ̂ρ+ δ̂p)ar +

2

r
δ̂σ = 0, (31)

−(ρ+ p− σ)e−2Φω2V − δ̂p+ δ̂σ = 0. (32)

The system (31)–(32) can be considerably simplified by combining the equations in an
appropriate manner. Differentiating equation (32) and adding it to equation (31), and also
using eq.(7), we find

V ′ = 2V Φ′ −
(

1− ∂σ

∂p

)

ρ+ p

ρ+ p− σ

eΛ

r2
W (33)

+

[

σ′

ρ+ p− σ
+

dρ
dp

+ 1

ρ+ p− σ
σ

(

Φ′ +
2

r

)

− 2

r

∂σ

∂p
−
(

1− ∂σ

∂p

)−1(
∂2σ

∂p2
p′ +

∂2σ

∂p∂µ
µ′

)

]

V.
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This equation together with equation (31) solved for W ′, form a system which is equivalent
to (31)–(32) but much more tractable:

W ′ =
dρ

dp

[

ω2ρ+ p− σ

ρ+ p

(

1− ∂σ

∂p

)−1

eΛ−2Φr2V + Φ′W

]

− l(l + 1)eΛV (34)

+
σ

ρ+ p

[

2

r

(

1 +
dρ

dp

)

W + l(l + 1)eΛV

]

,

V ′ = 2V Φ′ −
(

1− ∂σ

∂p

)

ρ+ p

ρ+ p− σ

eΛ

r2
W (35)

+
[ σ ′

ρ+ p− σ
+

(

dρ

dp
+ 1

)

σ

ρ+ p− σ

(

Φ′ +
2

r

)

− 2

r

∂σ

∂p
−

(

1− ∂σ

∂p

)−1(
∂2σ

∂p2
p′ +

∂2σ

∂p∂µ
µ′

)

]

V.

The boundary condition at the star surface is that the Lagrangian perturbation of the
radial pressure vanishes

ω2ρ+ p− σ

ρ+ p

(

1− ∂σ

∂p

)−1

e−2ΦV +

(

Φ′ +
2

r

σ

ρ+ p

)

e−ΛW

r2
= 0. (36)

The boundary conditions at the star center can be obtained by examining the behaviour
in the vicinity of r = 0. For this purpose it is convenient to introduce the new functions W̃
and Ṽ defined by

W = W̃ rl+1, V = Ṽ rl. (37)

Then one can show that at r = 0 the following boundary condition is satisfied

W̃ = −lṼ . (38)

4 Oscillation spectrum of the anisotropic neutron stars

The oscillation spectrum of the anisotropic neutron stars in Cowling approximation can
be obtained by solving the differential equations (34)–(35) together with the boundary
conditions (36) and (38). We have calculated the frequencies of the f -modes and the higher
fluid modes p1 and p2. All of the presented dependences are shown up to the maximum
mass for the corresponding parameters where the solutions become unstable [42].
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Figure 4: The f -mode frequency as a function of the average density of the neutron star
√

M/R3. The results for several values of the parameter λ are shown.

An empirical dependence between the f -mode frequencies and the average density was
found in [48, 49] for the case of isotropic neutron stars and it is interesting to see if it
changes in our case. The f -mode oscillation frequencies as a function of the average density
are presented in Fig. 4 for several values of the parameter λ. The graph shows that the
dependence does not change significantly for small values of the average density. Only for
large values of the average density and for large absolute values of λ, the deviation from the
isotropic neutron stars (i.e. when λ = 0) is more significant. But still the uncertainties in
obtaining the coefficients in the empirical dependence in [48], which come from varying the
equation of state, are comparable with the deviation due to the anisotropic pressure.

The frequency f and the normalized frequency ω
√

R3/M as a function of the mass
are shown in Figs. 5 and 6 for the f and the p1 modes. Depending on the sign of λ the
frequencies can be larger or smaller than in the case of isotropic neutron stars. As we can
see the frequencies can change considerably when we increase the absolute value of λ. Also
for fixed value of λ the differences with the isotropic neutron stars are bigger for larger
masses because in this case the compactness µ, which enters the EOS for the anisotropic
pressure (11), is larger. Therefore for large absolute values of λ and for large masses the
oscillation frequencies can differ significantly from the isotropic neutron star case.

The normalized frequencies of the f , p1 and p2 modes as a function of λ are shown
in Fig. 7 where the mass M = 1.4M⊙ is the same for all the solutions. As we can see
the changes in the frequencies as we vary λ, are similar for all the modes. This behavior
is qualitatively different from some of the alternative models of neutron stars where the
oscillations frequencies vary more significantly as a function of the corresponding parameter,
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Figure 5: The frequency f as a function of the mass M (left panel) and the normalized
frequency ω as a function of M (right panel) for the f mode. The results for several values
of the parameter λ are shown.
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Figure 6: The results for the p1-mode of the same solutions as shown on figure 5.
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Figure 7: The normalized frequency ω as a function of λ for fixed value of the mass M =
1.4M⊙. The results for the f , p1 and p2 modes are shown.

for the higher fluid modes [50]– [52].
It is interesting to compare the effects on the oscillation spectrum caused by varying the

anisotropic pressure and by changing the equation of state of the radial pressure. As we
said before the dependence between the f -mode frequencies and the average density does
not change much when we vary the equation of state. The same is true also when we vary
the anisotropic pressure. But the normalized frequency ω as a function of the mass changes
significantly when we vary λ and the equations of state. This can be seen on Fig. 8 where
the results for the f -mode oscillation frequencies are presented for two equations of state
of the radial pressure and for several values of λ. The EOS II is the standard polytropic
equation of state which we used up to now with Γ = 2.34 and K = 0.0195. The EOS A is
again a polytropic equation of state where the coefficients Γ = 2.46 and K = 0.00936 are
obtained when fitting the tabulated data for EOS A [53] and EOS II is stiffer than EOS A.
As we can see the presence of an anisotropic pressure changes the frequencies in a similar
way as changing the EOS, and more precisely positive values of λ lead to frequencies similar
to a softer EOS, and negative values of λ lead to frequencies similar to a stiffer EOS. Thus
the oscillation spectrum of neutron stars with anisotropic pressure can mimic to a certain
extent the oscillation spectrum of neutron stars with softer/stiffer equation of state. But
still if we consider strong anisotropic pressure the frequencies can change a lot which is
hard to be achieved by the standard nuclear equations of state. Thus observing more than
one fluid mode of a neutron star can help us to prove or at least set limits on the possible
existence of anisotropic pressure in the neutron stars.

12



1.0 1.5 2.0 2.5

1.1

1.2

1.3

1.4

1.5

f (R
3 /M

)1/
2

M [M
<

]

 EOS II, =2
 EOS II, =0
 EOS II, =-2
 EOS A, =2
 EOS A, =0
 EOS A, =-2

Figure 8: The normalized frequency ω as a function of M for the f mode. The results
for different values of λ and for two polytropic equations of state of the radial pressure are
shown – a soft equation of state EOS A and a stiff equation of state EOS II.

5 Conclusions

In the present paper we study how the possible existence of an anisotropic pressure inside a
neutron star can change the oscillation spectrum. As a first step we examine the oscillations
in Cowling approximation where the metric is kept fixed and within this approximation the
perturbation equations for the anisotropic neutron stars are derived.

The background solution are obtained numerically by solving the reduced field equations
where the equation of state for the radial pressure is polytropic and we use a quasi-local
equation of state for the anisotropic pressure [42]. The properties of the obtained solutions
can differ significantly from the isotropic neutron stars.

The oscillation spectrum of the anisotropic neutron stars is obtained when solving the
perturbation equations with the appropriate boundary condition and the results for the
f -mode and the higher fluid modes are obtained. It turns out that the dependence between
the f -mode frequencies and the average density which was obtained in [48] does not change
much in the presence of an anisotropic pressure. The effect of the anisotropy is more
evident on other dependences, for example the normalized frequency as a function of the
mass changes considerably for anisotropic stars. Thus the observation of more than one
fluid mode can serve as a test for the existence of an anisotropic pressure in the neutron
stars.

We have also compared the effect on the oscillation spectrum caused by the anisotropic
pressure and by changing the equation of state of the radial pressure. It turns out that for
negative values of the anisotropic pressure, i.e. for λ < 0, the changes in the frequencies are
similar to what we will obtain in the case of isotopic neutron star with a stiffer equation
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of state, and for λ > 0 the results are similar to the case of an isotopic neutron star with
a softer equation of state. A more detailed analysis, for example if we drop the Cowling
approximation or if we consider rotating solutions, may show more differences between the
oscillation spectrum of isotropic and anisotropic neutron stars and we plan to make such a
study in the future.

It would be also interesting to check how a change in the equation of state of the
anisotropic pressure influences the results because the choice of the quasi-local EOS (11) is
by no means the only possible one. Up to now, however, little is know about the EOS of the
anisotropic pressure and that is why further studies on the possible quasi-local equations of
state and their effect on the stellar structure and oscillations are needed.
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