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The second-order gravitational self-force on a small body is an important problem for
gravitational-wave astronomy of extreme mass-ratio inspirals. We give a first-principles deriva-
tion of a prescription for computing the first and second perturbed metric and motion of a small
body moving through a vacuum background spacetime. The procedure involves solving for a “regu-
lar field” with a specified (sufficiently smooth) “effective source”, and may be applied in any gauge
that produces a sufficiently smooth regular field.
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With the promise of gravitational-wave astronomy, the self-field corrections to the motion of a small body have left
the domain of pure theory to become a topic in astrophysics. The principle system of interest is a compact object
orbiting a supermassive black hole, or “extreme mass-ratio inspiral”. To obtain sufficiently accurate gravitational
waveforms for data analysis and parameter extraction, one must go beyond the geodesic approximation to include
deviations caused by the body’s finite mass (e.g., [1]). In fact, simple scaling arguments (e.g., [2]) suggest that even
the leading self-force correction is not enough, and to achieve the desired accuracy one must keep terms second order

in the mass ratio. While much theoretical and computational progress has been made on the first order problem, by
contrast very little is known about second-order gravitational self-force.

Our previous work [3] (hereafter paper I) established a rigorous and systematic approach to the motion of small
bodies in general relativity, based on a one-parameter-family of solutions to Einstein’s equation. Key elements are
a far-zone limit (associated with viewing the body from far away) where the body shrinks to zero size and perturbs
the external universe, and a near-zone limit (associated with viewing the body up close) where the body remains at
fixed size and is perturbed by the external universe. We developed the basic elements of the formalism to all orders
in perturbation theory, but derived an equation of motion only to first order in the size/mass of the body. The basic
approach was to first compute the far-zone metric perturbation in some gauge, and then to seek a smooth gauge
transformation such that the near-zone background metric becomes mass-centered (in that its mass dipole moment
vanishes). The value of the gauge vector on the background worldline then defines the perturbed position in the
original gauge. In paper I we derived an equation for the Lorenz gauge motion, while in a later paper [4] (hereafter
paper II) we derived an equation of motion holding in a larger class of gauges.

In the present work we identify a suitable notion of mass-centered at second order and define the second-order
motion in an analogous way. However, our derivation of an equation of motion proceeds in an entirely different
manner. One major change is that the approach is taken “in reverse”: instead of beginning with an expression for
a metric perturbation and seeking a gauge transformation to some mass-centered gauge, we instead begin with a
series expansion for the general metric perturbation in a particular mass-centered guage and consider the class of
all smoothly related gauges. This leads to a prescription (via an “effective source” method [5–7]) for computing
the metric perturbation in such gauges, as well as a simple description of the motion in terms of the “regular field”
employed in the effective source method. In the present paper we assume for convenience that the spin and higher
moments of the body are negligible, but there should be no obstacle of principle to relaxing these assumptions.

A treatment of second-order gravitational self-force was given previously in [2]. This approach is essentially ax-
iomatic in that a number of properties that the force “should” have are assumed (principally, a list of ingredients
from which it may be built1), and based on these assumptions a force expression is obtained. By contrast, our ap-
proach is fundamental in that we begin with Einstein’s equation for extended bodies in the limit of small size, and
proceed by defining perturbed position and computing an equation it satisfies. The approach of [2] also contains a
serious practical drawback in that it requires the first-order metric perturbation to be expressed in a gauge where the
(first-order) self-force is zero. Since a body will deviate secularly from its background motion as it loses energy to
gravitational-wave emission, this gauge can only remain useful for a limited time and is inappropriate for calculations
of inspiral (see discussion in section VII). By contrast, our equation of motion holds in a class of gauges encompassing
all possible motions. Finally, the approach of [2] encounters divergences of both the “infrared” (at spatial infinity)
and “ultraviolet” (at the particle) varieties; while the ultraviolet divergences are regularized, the infrared divergences
are left infinite. By contrast, our derivation and result are well-defined. A recent paper on second-order perturbation
theory [8] also involves regularizations, and concludes with an equation whose mathematical legitimacy is unclear.2

Very recently, Pound [10] has given an outline of a method to derive a prescription for computing the second order
motion and metric perturbation of a small body. The approach appears to contain many features similar to our own,
although insufficient detail was given in [10] to enable a proper comparison of his approach to ours.

Our conventions are as follows. We forgo the abstract index notation and work with coordinate components of
tensors throughout. We find this more convenient for discussing the perturbed position of the particle as well as for
considering non-smooth coordinate transformations. Greek indices label spacetime tensor components, while time
and space components are denoted by 0 and mid-alphabet Latin indices i, j, . . . , respectively. Our sign conventions
are those of Wald [11].

1 It is worth noting that one ingredient disallowed in [2], the angle-average, does appear in an expression for the force that holds in a
larger class of gauges [4].

2 Equation (26) of [8] contains both delta functions and a term written as the second-order Einstein tensor acting on the distribution
h1ret. Since products of distributions are not defined in general, it would require further analysis to give meaning to this term. Since
h1ret is sourced by a point particle delta function (within linearized theory), while point particle delta functions are not allowed in the
full theory [9], it would be surprising if the second-order Einstein tensor of h1ret were a valid distribution.
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II. FORMALISM AND OUTLINE

The basic approach of paper I is to consider a one-parameter-family of spacetimes containing a body that shrinks to
zero size and mass with the perturbation parameter, λ. We build an appropriately shrinking body into the family by
assuming the existence of a second limit that is designed to maintain any such body at fixed size (effectively “zooming
in” on it). More specifically, given a family of metrics gµν(λ) in coordinates (t, xi), we introduce a scaled metric
ḡµν ≡ λ−2gµν and, for some time t0, scaled coordinates t̄ ≡ λ−1(t − t0) and x̄i ≡ λ−1xi. Denoting the scaled metric
in scaled coordinates by ḡµ̄ν̄ , we then have the simple relationship

ḡµ̄ν̄(λ; t0; t̄, x̄
i) = gµν(λ; t = t0 + λt̄, xi = λx̄i), (1)

which relates components of the scaled metric in scaled coordinates to corresponding components of the original metric
in the original coordinates. One can construct perturbation series either off of the original metric or the scaled metric;

we define g
(n)
µν ≡ (1/n!)(∂λ)

ngµν |λ=0 and ḡ
(n)
µ̄ν̄ ≡ (1/n!)(∂λ)

nḡµ̄ν̄ |λ=0, where derivatives are taken at fixed original and
scaled coordinates, respectively. These series are referred to as the far-zone and near-zone series, respectively.
While we will always work with coordinate components in the original cartesian-like coordinates (t, xi), it is con-

venient to introduce spherical-like variables r =
√

δijxixj and ni = xi/r (denoted ~n when representing a direction
on the sphere). The assumptions of paper I (adopted identically here) give the curve r = λ = 0 (denoted γ) the
interpretation of the lowest-order motion of the particle, and imply that γ (assumed timelike) is in fact a geodesic.
This allows us to choose a coordinate system (such as Fermi normal coordinates) such that g(0) = η + O(r2). After
making such a choice, our assumptions give the form of the far-zone series (defined only for r > 0) to be

g(0) = η + 0 + a20r
2 + a30r

3 + O(r4)
g(1) = a01r

−1 + a11 + a21r + a31r
2 + O(r3)

g(2) = a02r
−2 + a12r

−1 + a22 + a32r + O(r2)
g(3) = a03r

−3 + a13r
−2 + a23r

−1 + a33 + O(r),

(2)

where the (aµν)nm (tensor component indices supressed above) are smooth functions of time and the two-sphere,
anm = anm(t, ~n). Using equation (1), one may obtain an expression for the near-zone series in terms of the (aµν)nm,

ḡ(0) = η + a01r̄
−1 + a02r̄

−2 + a03r̄
−3 +O(r̄−4)

ḡ(1) = a11 + a12r̄
−1 + a13r̄

−2 +O(r̄−3)

+ t̄(ȧ01r̄
−1 + ȧ02r̄

−2 + ȧ03r̄
−3 +O(r̄−4))

ḡ(2) = a20r̄
2 + a21r̄ + a22 + a23r̄

−1 +O(r̄−2) (3)

+ t̄(ȧ11 + ȧ12r̄
−1 + ȧ13r̄

−2 +O(r̄−3))

+
1

2
t̄2(ä01r̄

−1 + ä02r̄
−2 + ä03r̄

−3 +O(r̄−4))

ḡ(3) = a30r̄
3 + a31r̄

2 + a32r̄ + a33 +O(r̄−1) + . . . ,

where the t̄-dependence of ḡ(3) (which goes up to t̄3) is left unexpressed. In equation (3), tensor indices (scaled on
the LHS and unscaled on the RHS) have been suppressed, an overdot refers to a derivative with respect to the time
argument of the anm, and the anm are evaluated at t = t0. For example, in full notation the first line would read

ḡ
(0)
µ̄ν̄ = ηµν + (aµν)01(t0, ~n)r̄

−1 + . . . .
Notice that the “columns” of equation (2) correspond to near-zone perturbations in equation (3). For example,

the near-zone background ḡ(0) corresponds to the first column in equation (2), and the first near-zone perturbation
ḡ(1) is specified by the second column (stationary part) and the time derivative of the first column (part linear in t̄).
The alignment adopted in equation (2) is a helpful visualization tool for the relationship between the near-zone and
far-zone perturbation series.
Equation (3) shows that near-zone background metric ḡ(0) is stationary and asymptotically flat. Furthermore, the

metric is written in adapted coordinates (the components are t̄-indepedent and asymptotically Minkowskian), so that
the the mass dipole moment3 provides a measure of how “off center” the coordinates are. In paper I we showed
that a smooth first-order far-zone gauge transformation can always be made to eliminate the mass dipole moment

3 By mass dipole moment of ḡ(0) we mean the the 1/r̄2, ℓ = 1 part of (1/2)ḡ
(0)
00 . Note that the mass dipole moment is contained in a02,

which is located at second order in the far-zone.
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of the near-zone background. Since the new coordinates are then mass-centered, the new perturbed motion should
vanish, suggesting that the old perturbed motion be defined to be the value of the gauge vector on the worldline.
This defines the first-order motion (in any allowed gauge4) in terms of a far-zone gauge tranformation to make the
near-zone metric mass-centered at zeroth order.
We would similarly like to define the second order motion in terms of a far-zone gauge transformation that makes

the near-zone metric mass-centered through first order. However, our lowest-order notion of mass-centered (vanishing
mass dipole) was sensible only because the metric components of ḡ(0) are always t̄-independent and asymptotically
Minkowskian. It is clear from equation (3) that the perturbed metric ḡ(0) + λḡ(1) will not necessarily satisfy these
criteria. However, if a gauge can be found where ḡ(0)+λḡ(1) is in fact t̄-independent and asymptotically Minkowskian
and furthermore has no mass dipole, then we may regard this gauge as mass-centered. We show below that such
gauges do in fact exist, which defines the motion in these and smoothly related gauges. However, unlike in the lower
order case, we do not show that all allowed gauges are smoothly related to a mass-centered gauge. Instead, we simply
find a mass-centered gauge and develop a prescription for working in any of the (large) class of smoothly related
gauges.
The remainder of this paper is organized as follows. In section III, we explicitly solve Einstein’s equation in series

in r and λ to determine the general solution compatible with our assumptions (to the relevant orders in r and λ) up
to coordinate freedom. In particular, this establishes a convenient local inertial coordinate system for the far-zone
background metric (named RWZ coordinates), and a convenient mass-centered gauge choice5 (named P gauge) for
the metric perturbations. We use our P gauge solution in two important ways. First, in section IV we use the
explicit singular form of the P gauge solution to identify appropriate “singular fields” for use in an effective source
prescription for computing the global metric perturbation in smoothly related gauges (P -smooth gauges). Second,
in section V we use the mass-centered property of the P gauge to deduce a simple prescription for determining the
motion in P -smooth gauges. We do not ascribe any fundamental status to our particular class of P -smooth gauges,
and in section VI we discuss how the paper could have proceeded (identically) if an alternative class of gauges were
used. In section VII we discuss incorporating our results into a formalism for long-term waveform generation. Finally
in section VIII we summarize our prescription for computing the second-order motion and metric perturbation of a
small body.

III. LOCAL METRIC IN P-GAUGE

We now explicitly construct a gauge that is mass centered in the sense discussed in section II, i.e., a gauge in
which the near-zone metric is t̄-independent and asymptotically Minkowskiian and through first order in λ. We will
call this gauge the P gauge, where the P stands for “particular”, in order to emphasize that other mass-centered
gauges could have been chosen. (We discuss this freedom in more detail section VI.) We perform our computations
using the near-zone perturbation series. While it is necessary to proceed only to first order in λ to establish that a
gauge is mass-centered, the mass-centered coordinate choice influences the form of terms at higher order in near-zone
perturbation theory, many of which will be neeeded for the later analysis of the paper. In performing our near-zone
calculations, we will in fact have to proceed through third order in λ.
We begin our computations with the background near-zone metric. Since this metric is stationary and asymptoti-

cally flat, it is characterized by multipole moments [12]. We treat a body with negligible spin and higher moments,
and therefore take the spin and higher moments of this metric to vanish. Thus the near-zone background metric is
simply the Schwarzschild (exterior) metric6 for all time t0. While in principle the mass may depend on time t0, in
paper I it was shown to be constant. We label the mass by M and choose Cartesian isotropic coordinates for ḡ(0) (at
all time t0).
Since the metric components of ḡ(0) are then independent of t0, by (3) the near-zone perturbation ḡ(1) must be

independent of time t̄. Furthermore, equation (3) shows that the perturbation is asymptotically constant. Standard
Schwarzschild perturbation rusults [13, 14] then imply that its only physical effect can be to perturb the multipole
moments of ḡ(0). In line with our choice to consider a body with no spin and higher moments, we set the perturbed
spin and higher moments to zero. While in principle there could be a perturbation to the mass, it was shown in paper
II that the perturbed mass does not evolve with time. Therefore this quantity may as well be “renormalized” into the

4 Since the metric perturbations are singular, non-smooth gauge transformations are allowed, the definition of motion in one gauge does
not automatically define the motion in all other gauges.

5 We refer to finite-λ coordinate transformations that preserve the metric components of the background metric as “gauge transformations”.
6 While for convenience we will make statements about an “entire” metric, it should be borne in mind that we only require that
such statements hold to the orders explicitly displayed in the paper. (These orders have been carefully chosen for consistency with all
statements made.) For example, in this case we say that the metric is Schwarzschild, but in fact we only require it to match Schwarzschild
to O(r̄−3) (see equation (3)). Thus we in fact only assume that the spin and quadrupole moments vanish—the effects of higher moments
are automatically negligible at the present level of approximation (that is, these moments do not appear at the orders in λ pursued in
this paper).
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background mass, or equally acceptably simply set to zero. We will set the perturbed mass (and higher moments) to
zero. With these physical choices the first near-zone perturbation is pure gauge, and we choose it to vanish.
With the above choices the near-zone metric agrees with the ordinary (mass-centered) Schwarzschild metric in

Cartesian isotropic coordinates through first order in λ, and therefore fits our notion of being mass-centered. Explicitly,
the perturbation series (3) is now given by

ḡ(0) = η +M(1)r̄−1 +M(2)r̄−2 +M(3)r̄−3 +O(r̄−4) (4)

ḡ(1) = O(r̄−3) + t̄O(r̄−4) (5)

ḡ(2) = a20r̄
2 + a21r̄ + a22 +O(r̄−1)

+ t̄O(r̄−3) + t̄2O(r̄−4) (6)

ḡ(3) = a30r̄
3 + a31r̄

2 + a32r̄ +O(r̄0))

+ t̄(ȧ20r̄
2 + ȧ21r̄ + ȧ22 +O(r̄−1))

+ t̄2O(r̄−3) + t̄3O(r̄−4), (7)

where M(n) is the nth-order term of the Schwarzschild metric in Cartesian isotropic coordinates.

M(1)
µν = 2M (ηµν + 2tµtν) (8)

M(2)
µν = M2

(

3

2
ηµν −

1

2
tµtν

)

(9)

M(3)
µν = M3

(

1

2
ηµν + 2tµtν

)

. (10)

with tµ = (−1, 0, 0, 0).

We now consider the second-order near-zone metric perturbation, ḡ(2). Since the first near-zone perturbation
vanishes, the second perturbation satisfies the linearized Einstein equation off of the Schwarzschild background.
Equation (6) shows that our perturbation is t̄-independent to the relevant order, so that we may restrict consideration
to stationary solutions. We use the Regge-Wheeler-Zerilli (RWZ) formalism [13, 14], where one decomposes the
perturbation into a sum of (tensor) spherical harmonic modes labelled by azimuthal number ℓ. For ℓ = 0 and ℓ = 1
modes, the general stationary solution (up to gauge) has r̄ → ∞ asymptotic behavior of r̄−(ℓ+1), while for ℓ > 1
the general stationary solution (up to gauge) is given by a linear combination of functions behaving as r̄−(ℓ+1) and
r̄ℓ. From these considerations, comparison with equation (6) shows that the general solution (up to gauge) for ḡ(2)

of our form is pure ℓ = 2 to the displayed orders. This solution is characterized by ten constants (one for each
m-mode of each parity), which are conveniently represented as two constant symmetric trace-free (STF) tensors in
three-dimensional Euclidean space. (Excellent reviews of the STF approach to spherical harmonic decompositions are
found in [15, 16].) In our computations we employ the RWZ formalism as presented in [18–20], translating the results
into Cartesian isotropic coordinates and STF language. We use the closed-form expressions for the stationary master
functions given in [21]. We find that the general solution (in Regge-Wheeler gauge) for our ḡ(2) may be written in
terms of two arbitrary STF tensors Eij and Bij by

ḡ
(2)
00 = Eijn

inj(−r̄2 + 2Mr̄ +
3

2
M2) +O(r̄−1) (11)

ḡ
(2)
i0 = ǫijkn

jBk
ln

l(
2

3
r̄2 +

2

3
Mr̄ −

1

6
M2) +O(r̄−1) (12)

ḡ
(2)
ij = Ekln

knl
[

δij(−r̄2 − 4Mr̄ − 5M2)

+ ninj(2Mr̄ − 4M2)
]

+O(r̄−1), (13)

where ǫijk is the Cartesian Levi-Civita symbol. The STF tensors Eij and Bij may depend on the time t0 at which
the near-zone limit is taken, but are independent of the near-zone background coordinates t̄, x̄i. Equations (11)-(13)
determine the uknown functions a20,a21,a22 in a particular gauge.
We now turn to the third order near-zone perturbation, ḡ(3). This perturbation also satisfies the linearized Einstein

equation off of the Schwarzschild background (on account of the vanishing of the first perturbation). We use the RWZ
formalism to find the general solution for ḡ(3) consistent with equation (7). From general considerations of the sort
discussed for the second-order perturbation, above, this solution contains only ℓ = 2 and ℓ = 3 modes (up to gauge).
The t̄-dependence of the perturbation is fixed entirely by ḡ(2) (see equation (7)). For the part independent of t̄, the
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RWZ formalism yields

ḡ
(3)
00 |t̄=0 = Eijkn

injnk(−
1

3
r̄3 +

2

3
Mr̄2 +

7

12
M2r̄)

+ δEijn
inj(−r̄2 + 2Mr̄) +O(r̄0) (14)

ḡ
(3)
i0 |t̄=0 = ǫijkn

jBk
lmnlnm(

2

3
r̄3 +

4

9
Mr̄2 −

2

9
M2r̄)

+ niĖkln
knl(−

2

3
r̄3 −

7

3
Mr̄2 −

5

3
M2r̄)

+ ǫijkn
jδBk

ln
l(
2

3
r̄2 +

2

3
Mr̄) +O(r̄0) (15)

ḡ
(3)
ij |t̄=0 = Eklmnknlnm

[

δij(−
1

3
r̄3 −Mr̄2 −

13

12
M2r̄)

+ ninj(
1

3
Mr̄2 −

2

3
M2r̄)

]

+ n(iǫj)kln
kḂl

mnm(
1

3
r̄3 + 2Mr̄2 −

67

12
M2r̄)

δEkln
knl

[

δij(−r̄2 − 4Mr̄) + 2Mr̄ninj

]

+O(r̄0), (16)

where we have introduced STF tensors Eijk, Bijk, δEij , and δBij , and the overdot indicates a derivative with respect
to t0. Equations (14)-(16) determine the unknown functions a30,a31,a32 in a mass-centered gauge. We have therefore
constructed the perturbation series in a particular gauge to the relevant orders.

We note that the strategy of using the RWZ formalism in the near-zone has been employed before, most notably
in [22, 23]. The main difference (besides the different coordinate choices) is that [22, 23] impose boudary conditions
of regularity at the horizon of a black hole. By contrast, we treat an arbitrary body and impose boundary conditions
only at infinity. Indeed, it is a result of our computations that no interior boundary conditions are necessary to fix
the form at the relevant orders, which corresponds (after the analysis of the paper) to the result that the motion of
the body is independent of its detailed composition at the perturbative orders considered.

A. Far Zone Expressions

Our formulae for the near-zone metric determine the displayed coefficients anm in equation (3). These coefficients
may then be used to reconstruct the far-zone series via equation (2). This gives the general far-zone solution to the
Einstein equation to the relevant orders in r and λ in a particular gauge. However, rather than using this gauge
as our P gauge, we instead first make a particular first-order (far-zone) gauge transformation, which is designed to
make the first-order metric perturbation satisfy the Lorenz condition, while preserving the mass-centered property.
Using this gauge as our P gauge ensures that the P-smooth class includes Lorenz gauges, which facilitates comparison
with previous work using Lorenz gauge, as well as allows Lorenz-gauge numerical results to be incorporated into
second-order calculations based on our prescription. However, we emphasize that (unlike in some previous work)
the Lorenz gauge plays no fundamental role in our anlaysis. Our choice to perform an additional Lorenz-motivated
gauge transformation (i.e., our Lorenz-motivated choice of P gauge) affects the details of many complicated formulae
throughout the paper, but has otherwise no influence on our prescription. We specifically discuss alternative choices
of P gauge in section VI.

0. Notation In the remainder of the paper we will refer to the far-zone background, first perturbation, second
perturbation, and third perturbation as g, h, j, and k, respectively. (That is, g = g(0), h = g(1) and j = g(2),
k = g(3).) This facilitates the introduction of many necessary new superscripts and other modifiers. In order to
avoid any potential ambiguity, the one-parameter-family of metrics will always be referred to with the λ-dependence
indiciated, g(λ).

1. Background. Reconstructing the background metric g from the near-zone solution gives

g = η + a20(t)r
2 + a30(t)r

3 +O(r4), (17)
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with

(a00)20 = −Eijn
inj (18)

(ai0)20 =
2

3
ǫijkn

jBk
ln

l (19)

(aij)20 = −δijEkln
knl (20)

(a00)30 = −
1

3
Eijkn

injnk (21)

(ai0)30 =
2

3
ǫijkn

jBk
lmnlnm −

2

3
niĖkln

knl (22)

(aij)30 = −
1

3
δijEklmnknlnm +

1

3
n(iǫj)kln

kḂl
mnm. (23)

We may now interpret the STF tensors Eij , Bij , Eijk and Bijk by computing the Riemann tensor of g. It is then
straightforward to see that

Eij = R0i0j |γ (24)

Bij = −
1

2
ǫkliR0jkl |γ (25)

Eijk = ∇(kR|0|i|0|j)|γ (26)

Bijk =
3

16
ǫlm(i∇jR|0|k)lm|γ . (27)

Thus our coordinate system for the background metric expresses an arbitrary vacuum metric in terms of the curvature
on an arbitrary timelike geodesic xi = 0. We refer to these coordinates as RWZ coordinates, after the use of the
Regge-Wheeler-Zerilli gauge in solving the near-zone equations. Our metric agrees with the Fermi normal coordanate
metric (e.g., [17]) to O(r) and with the Thorne-Hartle-Zhang metric [17, 23, 24] to O(r2). The form of the metric at
O(r3) appears to be new.

2. First Perturbation. Reconstructing the first far-zone perturbation gives a specific expression for h in terms of
Eij , Bij , Eijk, Bijk, δEij , and δBij . Instead of adopting this expression as our P gauge, however, we first make a
particular gauge transformation generated by the gauge vector

v0 = −
10

9
r3Ėijn

inj (28)

vi = r2
(

2Eijn
j − niEjkn

jnk
)

+ r3
(

1

2
Eijkn

jnk −
1

6
niEklmnknlnm −

2

3
ǫijkn

knlḂj
l

)

. (29)

This gauge transformation is designed to make hP satisfy the Lorenz condition, as may be checked by direct compu-
tation using the formulae below. As will be displayed explicitly in equation (53), below, the transformation does not
affect the mass-centered property of the coordinates. After performing the transformation we denote the resulting
perturbation by hP , which is given by

hP = M(1)r−1 + a21r + a31r
2 +O(r3) (30)

with

(a00)21 = 2MEijn
inj (31)

(ai0)21 =
2

3
MǫijkB

k
ln

l (32)

(aij)21 = −2M(δijEkln
knl + 2Eij) (33)
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and

(aµν)31 = (aSµν)31 + (aHµν)31 (34)

(aS00)31 =
2

3
MEijkn

injnk (35)

(aSi0)31 =
4

9
Mǫijkn

jBk
lmnlnm

−
2

9
M(Ėijn

j − niĖkln
knl) (36)

(aSij)31 = M

(

−
2

3
δijEklmnknlnm − 2Eijkn

k

)

+
2

3
M

(

n(iǫj)kln
kḂl

mnm − 2Ḃ l
(i ǫj)kln

k
)

(37)

(aH00)31 = −δEijn
inj (38)

(aHi0)31 =
2

3
ǫijkn

jδBk
ln

l (39)

(aHij )31 = −δijδEkln
knl. (40)

We have split a31 into S and H pieces in order to make a similar split hP = hS + hH +O(r3),

hS
µν = M(1)

µν r
−1 + (aµν)21r + (aSµν)31r

2 +O(r3) (41)

hH
µν = (aHµν)31r

2 +O(r3). (42)

The reason for this split will become clear when the “singular field” hS is employed in the following section as part of a
prescription for computing the metric perturbation. The guiding principle is that hS be determined by the background
metric (containing only Eij ,Bij , Eijk,Bijk, and not the unknown δEij and δBij) and that the remainder hH be C2.
There are many other choices besides ours that satisfy these properties, and we could equally well have made these
choices. Our choices also have the additional properties that hS and hH separately solve the field equations to the
displayed orders.7 For future use, we relate δEij and δBij to hH by computing the linearized Riemann tensor of hH ,
finding (cf. equations (24) and (25))

δEij = R
(1)
0i0j [h

H ]
∣

∣

∣

γ
(43)

δBij = −
1

2
ǫkli R

(1)
0jkl[h

H ]
∣

∣

∣

γ
. (44)

Here R
(1)
µνρσ [h] is defined as a function of a symmetric rank 2 tensor hµν by R

(1)
µνρσ [∂λg|λ=0] = ∂λRµνρσ(λ)|λ=0 for a

smooth one-parameter-family g(λ).

3. Second Perturbation. We reconstruct j from the near-zone solution and take into account the effects on j of the
first-order gauge transformation, equations (28)-(29). The second-order perturbation is given by

jP = M(2)r−2 + a22 + a32r +O(r2) (45)

7 This is most easily seen by checking that hH is a solution, a computation that requires only the leading order term g = η of the
background. Since the sum hP = hH + hS is by construction a solution for r > 0, it follows that hS is also a solution for r > 0.
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with

(a00)22 = −3M2Eijn
inj (46)

(ai0)22 =
10

3
M2ǫijkn

jnlBk
l (47)

(aij)22 = 8M2Eij −M2Ekln
knl (6δij + ninj) (48)

(a00)32 = −
5

3
Eijkn

injnk +
3

2
MδEijn

inj (49)

(ai0)32 =
2

3
ǫijkn

jBk
lmnlnm −

2

3
niĖkln

knl

−
1

6
Mǫijkn

jδBk
ln

l (50)

(aij)32 = −
1

3
δijEklmnknlnm +

1

3
n(iǫj)kln

kḂl
mnm

−MδijδEkln
knl. (51)

Note that we have not made a second-order gauge transformation, analogous to the transformation (28)-(29) made
at first order. The first-order gauge transformation was designed to make hP satisfy the Lorenz condition, which
was desirable because of the long history of use of Lorenz gauge in both theoretical and computational work at first
order. For second-order perturbation theory, the relevant previous work is [10, 17, 25], where the Lorenz condition
was imposed on the second-order metric perturbation.8 In the interest of comparison, we have investigated whether
this condition may be imposed within our formalism. We have found that it appears necessary to introduce r log r
terms in to the metric perturbation in order to impose this condition. This directly violates the metric form required
by our assumptions (equation (2)), and, if allowed, would lead to λ logλ terms in the near-zone series by equation
(1). Since a smooth near-zone perturbation series is an essential ingredient in our justification (see paper I) of the
relevance of our perturbation series to small (but extended) bodies, we take the viewpoint that such a far-zone gauge
is too singular to sensibly describe a small body, at least within our current approach.9

4. Third Perturbation. Reconstructing the third-order metric perturbation from the near-zone yields

kP = M(3)r−3 +O(r−1). (52)

While it would have been straightforward to compute the terms proportional to r−1 and r0 (i.e., a23 and a33) from
our near-zone expression (plus the effects of the first order gauge transformation, equations (28)-(29)), these terms are
not relevant for our analysis. Note that the first-order gauge transformation, equations (28)-(29), has had no effect
on the displayed orders. We now collect the results of this section in the form of equation (2),

g = η + 0 + a20r
2 + a30r

3 + O(r4)
hP = M(1)r−1 + 0 + a21r + a31r

2 + O(r3)
jP = M(2)r−2 + 0 + a22 + a32r + O(r2)
kP = M(3)r−3 + 0 + O(r−1),

(53)

where the anm are now given explicitly by the formulae in this section. In this form it is easily seen that the near-zone
background (first column) is Schwarzcshild and the first near-zone perturbation (second column) vanishes, so that the
P gauge is indeed mass-centered.
5. Summary of Results. Equation (53), together with the preceeding expressions for the anm, is the main result of

this section. This expression provides a series expansion in r for general zeroth, first, second, and third-order metric
perturbation subject to our assumptions, expressed in a particular mass-centered gauge, known as P -gauge. For use
in the following section, we have also isolated off a particular singular portion of hP , denoted hS . We have used the
tensor anlaysis package xTensor [26] for the software package Mathematica [27] to perform many of the computations
in this section. We have verified by direct computation (taking several hours on a personal computer) that the metric
g + λhP + λ2jP + λ3kP satisfies Einstein’s equation to the relevant orders in λ and r.

8 Note that when specialized to a flat background spacetime, this differs from the harmonic gauge condition used in Post-Newtonian
theory by terms involving the first-order perturbation.

9 The appearance of log terms at second order in the Lorenz gauge was also found in the gauge-relaxed formalism of [25]. This has an
analogous singular effect on the near-zone metric; this effect is not discussed.
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IV. GLOBAL METRIC IN P -SMOOTH GAUGES

In the previous section the general solution for the metric g(λ) was determined in series in r and λ, subject to
particular coordinate choices. Since the motion is also known in these coordinates (it is given by the coordinates of
the background geodesic γ), we have at some level determined the general solution to our problem. Of course, this
general solution is of no use in practice, since it contains undetermined parameters (with no physical interpretation)
and gives the metric only locally near r = 0. Nevertheless, this analysis has revealed the structure of the general
solution near r = 0, which will allow us to develop a prescription for obtaining the global metric perturbation in a
P-smooth gauge in situations of physical interest, as described below.
Given our assumptions on the one-parameter-family, Einstein’s equation implies in the far-zone that

G(1)
µν [h] = 0 (for r > 0) (54)

G(1)
µν [j] +G(2)

µν [h] = 0 (for r > 0), (55)

where G(1) and G(2) are the first and second order Einstein operators, respectively. When combined with the assumed
form of the metric perturbations near r = 0 (equation (2)), these equations provide the complete description required
to compute h and j in a given situation of interest (i.e., once suitable initial and/or boundary conditions have been
prescribed). In practice, however, it may be difficult to ensure that a numerical solution have the correct divergent
behavior near r = 0. Furthermore, it is far from obvious how to ensure that the metric perturbation will be determined
in a gauge for which we define the motion.
A solution to both of these problems is to use our knowledge of the general P-gauge series solution near r = 0 to

“regularize” the differential equation. One simply subtracts off the known singular behavior and evolves the regular
remainder. This type of numerical technique was introduced into the field of self-force computation by [5, 6], and is
now generally known as the “effective source approach” [7]. At first order, our approach is equivalent to the standard
approach, except that we are not restricted to the Lorenz gauge, and instead allow the use of any gauge condition
that gives rise to a sufficiently regular “regular field”. Our presentation of the method differs in that we do not make
use of δ-function sources, instead working directly with our assumed form of the metric perturbation for r > 0.10

A. First Order

In the previous section we constructed the general solution for the first-order metric perturbation in series in r in
a particular gauge. We refer to this gauge as the P gauge and denote the perturbation by hP . In a general smoothly
related gauge, the metric perturbation is given by

h = hP − Lξg +O(r3) (56)

= hS + hH − Lξg +O(r3), (57)

where the split of hP into hS and hH was introduced in equation (41).11 Recall that hS = O(1/r) is a singular approx-
imate solution to the linearized Einstein equation specified by the background curvature tensors Eij ,Bij , Eijk,Bijk,
while hH = O(r2) is a C2 approximate solution given in terms of undetermined parameters δEij and δBij , which
encode its Riemann curvature via equations (43) and (44). The sum, hP , represents the general solution with a
particular gauge choice, up to O(r3) errors. We emphasize that our hP , hS, and hH are given only as approximate
solutions near r = 0; none of these quantities has a finite-r definition from which the series expansions emerge. This
is in contrast to the singular field of [29], which is defined in a normal neighborhood through the use of Hadamard
Green’s function techniques in the Lorenz gauge. We not checked if our hS agrees with a series expansion of the
Detweiler-Whiting singular field.12

Implementing the effective source approach requires choosing an (arbitrary) extension of hS to the entire manifold

(minus r = 0). We will distinguish extended quantities with a “hat”: Let ĥS denote an arbitrary function on the

manifold (minus r = 0) such that ĥS agrees with hS (equation (41)) to all displayed orders in r (i.e., to O(r2)). We

10 In paper I, we proved that our assumptions in fact imply a delta-function source for h (regarded as a distribution) at first order. From
the point of view of developing an effective source description from our assumptions, such a delta-function description would appear
only as an unnecessary intermediary.

11 The error terms in equations (56) and (57) are redundant with those in the definitions of hP , hS and hH , but we include the error terms
as a reminder of the local nature of hP , hS and hH .

12 In [23] a singular field was constructed in a manner similar to ours (but using different coordinate choices and notation). It was then
claimed that this singular field agrees with the Detweiler-Whiting singular field up to errors of O(r2). It seems likely that our singular
field agrees with that of [23] (and therefore with the Detweiler-Whiting singular field) at this order.



11

then define a global “regular field” ĥR in terms of the metric perturbation h by

ĥR = h− ĥS (58)

= hH − Lξg +O(r3). (59)

Plugging equation (58) into the linearized Einstein equation (54) gives

G(1)[ĥR] = −G(1)[ĥS ] (for r > 0). (60)

By construction we have that G(1)[ĥS ] is O(r), so that the right-hand side is in fact O(r). Thus the “source” −G(1)[ĥS ]
is C0, and we may in fact drop the requirement that r > 0. We may then write the first-order equation as simply

G(1)[ĥR] = S(1), (61)

where the C0 source S(1) is given throughout the manifold by

S(1) ≡ −G(1)[ĥS ]. (62)

The logic of the above agument has been that if one has a metric perturbation h satisfying equation (54) and in a
P -smooth gauge (equation (56)), then the effective source equation (61) holds. In practice, we want to proceed in the
reverse direction: we wish to solve equation (61) and thereby obtain an h satisfying equation (54) and in a P -smooth

gauge. Retracing the steps of the argument in reverse, it is clear this will hold provided the solution ĥR of equation

(61) is C2 at r = 0.13 Obtaining such an ĥR will depend on the initial and/or boundary conditions chosen, as well on
as the choice of gauge.
We first discuss the choice of initial and/or boundary conditions for hR. We view the specification of a “physical

situation of interest” as a choice of initial and/or boundary conditions for the metric peturbation h. In principle, one

would first determine such conditions in a P -smooth gauge and then infer the relevant conditions on ĥR = h− ĥS . In
practice, determining appropriate initial conditions for h is likely to prove difficult, even without the added requirement
of using a P -smooth gauge. Faced with difficulty determining appropriate initial data, the usual strategy is simply
to choose inappropriate initial data and evolve in the hopes that at a later time (after “spurious radiation” has
left the system) the solution will nevertheless resemble the desired physical situation. We suggest that one employ

this strategy at the level of the regular field ĥR, where one could simply choose trivial initial data (or a suitable
generalization should trivial initial data conflict with any gauge conditions used). Effective source calculations made
with the scalar wave equation [7] suggest that this strategy will prove effective in the gravitational case as well.

We next discuss the choice of gauge. Since ĥR is related to the metric perturbation h by addition of a fixed

quantity ĥS , the usual arguments that h and h + Lvg represent the same physical configuration imply that ĥR and

ĥR + Lvg represent the same physical configuration. In particular, any gauge condition that is “allowed” for h will

remain “allowed” for ĥR. For example, it is well known that one may impose the Lorenz condition on a smooth
perturbation h, ∇µHµν = 0 with capitalization denoting trace-reversal, Hµν = hµν − (1/2)gµνh. Similarly, one may

argue identically that it is always possible to impose the Lorenz condition on the regular field, ∇µĤR
µν = 0, where

capitalization denotes trace-reversal. In this case equation (61) becomes

Eµν [ĥ
R] = S(1), (63)

where Eµν is the Lorenz-gauge linearized Einstein tensor (a well-studied hyperbolic wave operator on g),

Eµν [h] = ∇γ∇γHµν − 2Rα β
µν Hαβ . (64)

where the capitalization of the arbitrary perturbation h represents trace-reversal. Since Eµν is a hyperbolic wave

operator, it is expected that the C0 source S(1) will give rise to a C2 solution ĥR,14 and therefore that the gauge

condition ∇µĤR
µν does in fact provide a metric perturbation h = ĥR + ĥS in a P -smooth gauge. Note, however, that

this gauge differs from “the Lorenz gauge”, which refers to the Lorenz condition on the full pertubation h, ∇µHµν = 0.

13 It is clear that C2 solutions exist by the existence of P -smooth gauges, proved by construction in the previous section.
14 While general theorems on wave operators (e.g., prop. 7.4.7 of [28]) would guarantee only weaker regularity of the solution, experience

with the effective source method for scalar wave operators [7] shows that sources of our type do in practice give rise to sufficiently regular
solutions.
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If one desires this condition to be satisfied, one instead needs to enforce ∇µĤR
µν = −∇µĤS

µν , in which case equation
(61) becomes

Eµν [h
R] = S(1)

µν +∇(µ∇
αĤS

ν)α, (65)

where capitalization denotes trace-reversal. We see that the failure of ĥS to satisfy the Lorenz condition appears as

an extra effective source for ĥR. We have chosen our hS to satisfy the Lorenz condition, ∇µHS
µν = O(r2), so that

the failure comes only from the choice of extension, and the the right-hand-side of (65) remains C0. In particular,

the solution ĥR should be C2, so that the Lorenz gauge is P -smooth. (Indeed, we chose the P gauge and hence
the P -smooth class precisely so that Lorenz gauges would be included.) However, we emphasize that while it may
be useful to use the Lorenz gauge to compare with previous work or to determine a first-order-accurate long-term
evolution via a particular proposed prescription (see discussion in section VII), for the purposes of determining h
there is no fundamental reason to prefer one gauge over another.
In implementing the effective source method, above, we have made a convenient choice of “singular field” hS .

However, we emphasize that many other choices could have been made, with equivalent results. In particular, one

may modify hS by the addition of any given smooth function f . In this case the effective source −G(1)[ĥS ] will remain
C0 (though it will no longer be O(r), since hS is no longer a solution to all orders considered), and the full metric

pertubation h = ĥR + ĥS will remain the same, provided the appropriate initial/boundary/gauge conditions for the

corresponding new ĥR (modified by −f) are chosen. However, while we delay a systematic discussion of the motion
until section V, we note here that an advantage of our particular choice of hS is that the first-order motion may be

described as geodesic in the peturbation ĥR (as in the original treatment of [29]). The basic point is that, as may

be seen from equation (59) with ξ = 0 and equation (42), we have ĥR = O(r2) in the P gauge, i.e., the regular field
and its first derivative vanish on the worldline. The statement that the perturbed motion vanishes (together with the
statement that the background motion is geodesic) may then be expressed equivalently as the statement of geodesic

motion in g + λĥR, which, as a covariant statement, will hold in any smoothly related gauge. This argument is given
more formally and explicitly in section V, below.

B. Determination of δEij, δBij , and ξµ.

Our next task is the identification of an appropriate singular field at second order. At first order, the singular field
was found by noting that the unknown tensors {δEij, δBij} appeared in the P -gauge perturbation only in a smooth
way, so that a singular part depending only on the known tensors {Eij ,Bij , Eijk,Bijk} could be chosen. Furthermore,
since smooth gauge transformations affect the metric perturbation only by addition of a smooth term, this choice
of singular field guarantees that h − hS is regular in all P -smooth gauges. At second order, however, the unknown
tensors {δEij , δBij} do appear as part of singular terms (see equation (45), where the ra32 terms are not differentiable).
Furthermore, an identification of a singular part, jS , of jP does not guarantee that j − jS is regular in all P -smooth
gauges, since smooth gauge transformations change the second-order metric perturbation by a singular term, Lξh

P

(see equation (A7) and recall that hP is singular). To correctly identify a singular part of j will therefore require
expressions for all of the unknown quantities {δEij , δBij , ξµ} that appear in the expression for the general P -smooth
metric perturbation, h = hP − Lξg.
The relevant question is the following: given a perturbation h in a P -smooth gauge (imagined, e.g., to have been

numerically computed by the prescription given in the previous section), how can we express this perturbation as
h = hP −Lξg for some {δEij, δBij , ξµ}? (We remind the reader that hP is constructed from δEij and δBij .) Below we
find find that there is precisely a ten-parameter freedom in the choice of {δEij , δBij , ξµ} that specifies a decomposition
of the form h = hP − Lξg, and give a prescription for computing these quantities in terms of an integration of
transport equations along γ. As shown therein, knowledge of ξ determines δEij and δBij , so that we may view the
ten-parameter freedom in the decomposition as a ten-parameter freedom in the choice of ξ. Since different such
choices lead to different second-order metric perturbations but (by construction) preserve the first-order perturbation
h, this freedom corresponds to the influence of first-order gauge freedom on the second-order metric perturbation.
The freedom in choice of δEij , δBij and ξ (at fixed h) is simply first-order gauge freedom that manifests only at second
order in the metric components.
Since hS is a specified function of known quantites, we may without loss of generality consider the smooth vacuum

perturbation hR = h− hS . (Since we will work with the regular field only locally near r = 0 in this section, we drop
the hat in its notation.) From equation (58) we have

hR = hH − Lξg +O(r3), (66)
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where we remind the reader that hH is a simple function of δEij and δBij , given by equation (42). To show that δEij
and δBij (and hence hH) are determined by ξ, we compute the linearized Riemann tensor of hR, yielding

R
(1)
αβγδ[h

R] = R
(1)
αβγδ[h

H ] + R
(1)
αβγδ[−Lξg] +O(r)

= R
(1)
αβγδ[h

H ]− LξRαβγδ +O(r). (67)

(The definition of R
(1)
µνρσ [h] is given below equation (44).) In the second line we have used the covariance propety

F (1)[Lξg] = LξF
(0), holding for any covariant function of the metric F [g]. Using equations (43) and (44) we then

have

δEij =
(

R
(1)
0i0j [h

R] + LξR0i0j

)∣

∣

∣

γ
(68)

δBij = −
1

2
ǫkli

(

R
(1)
0jkl[h

R] + LξR0jkl

)
∣

∣

∣

γ
, (69)

where our Lie derivative expressions refer to components of Lie derivatives of the (background) Riemann tensor (rather
than some kind of derivative of a component). Thus δEij and δBij (and hence hH) are determined by ξ and its first
derivative on the worldline. In particular, introducing tensors Aµ and Bµν defined along γ by

Aµ = ξµ|γ (70)

Bµν = (∇νξµ)|γ , (71)

we have

δEij =
1

2

(

−∂i∂jh
R
00 + 2∂0∂(ih

R
j)0 − ∂0∂0h

R
ij

)

+ hR
00Eij

+ 2Bk0ǫ
k
l(jB

l
i) +

2

3
Akǫ

k
l(jḂ

l
i) + 2Bk(iE

k
j)

−A0Ėij +AkE
k

ij (72)

δBij =
1

2
ǫ kl
i

(

∂j∂lh
R
0k − ∂k∂lh

R
0j

)

+ δklBklBij +
1

2
hR
00Bij

+ 2Bk[jB
k

i] −A0Ḃij +
8

3
AkB

k
ij − 2ǫkliE

l
j Bk0

− ǫklih
R
0kE

l
j +Bk0ǫijlE

kl −
2

3
Akǫ

k
liĖ

l
j +

1

3
AkǫijlĖ

kl (73)

(Note that while δBij is not given above in manifestly symmetric form, one may easily confirm its symmetry using
the fact that hR is a vacuum perturbation.)
We now regard equation (66) as an equation for ξ,

−2∇(µξν) = hR
µν − hH

µν +O(r3), (74)

where hH is constructed from ξ via equations (68)-(69) (equivalently (70)-(73)) and (42). Taking a derivative and
employing manipulations normally used for Killing’s equation (e.g., appendix C of [11]), we have

∇α∇βξγ +R δ
βγα ξδ = −Γ

(1)
γαβ[h

R − hH ] +O(r2), (75)

where Γ(1)[h] is the perturbed Christoffel symbol with a lowered index,

Γ
(1)
γαβ [h] =

1

2
(∇αhβγ +∇βhαγ −∇γhαβ) . (76)

Equation (75) shows that solutions to equation (74) are determined everywhere by a choice of ξ and ∇ξ at a single
point. Equation (74) restricts this choice to a ten-parameter-family (such as “Killing data” ξµ and ∇[µξν]). We now
show constructively that all such choices lead to solutions to equation (74).
Since Γ(1)[hH ] is O(r), equations (74) and (75) give for Aµ and Bµν that

B(µν) = −
1

2
hR
µν |γ (77)

uα∇αAµ = Bµαu
α (78)

uα∇αBµν = Rµναβu
αAβ − uαΓ(1)

µαν [h
R]|γ . (79)
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Equations (78)-(79) give transport rules for A and B along γ, while equation (77) gives a constraint (which is preserved
by the transport.) In the RWZ coordinates these may be written

Ȧ0 = −
1

2
hR
00 (80)

Ȧi = Bi0 (81)

Ḃi0 = −EijA
j − ∂0h

R
0i +

1

2
∂ih

R
00 (82)

Ḃ[ij] = ǫijlB
l
kA

k + ∂[ih
R
j]0, (83)

where the overdot denotes a t derivative and hR
µν and its derivatives are evaluated at xi = 0 (i.e., on γ). Equations

(80)-(83) (together with (77)) determine Aµ and Bµν given a choice of initial data for {Aµ, Bi0, B[ij]}. The reader
may recognize the last two terms of equation (82) as the self-force on the particle, here taking a “perturbed geodesic
equation” form. As discussed in more detail in our systematic treatment of the motion in section V below, our
definition of motion implies that Z(1)µ = ξµ|γ = Aµ, so that the transport equation for Aµ is in fact the first-order
equation of motion. However, in the present section we confine ourselves to the derivation of a prescription for
computing the first and second order metric perturbation, for which the interpretation of ξµ|γ as giving the motion
is entirely irrelevant.

Given a choice of {Aµ, Bi0, B[ij]} at some point along γ, equations (80)-(83) determine these quantities everywhere
on γ. We now imagine that a choice has been made, so that A and B are known along γ. This determines δEij and
δBij via equations (72)-(73) (equivalently (68)-(71)) and hence hH by equation (42). The right hand side of equation
(75) is then “known” in terms of the value and derivative of ξ on the worldline (i.e., in terms of A and B), so that
we may determine ξ to higher order in r by expanding the left hand side in r and equating orders in r. After some
effort we obtain

ξ0 = A0 −Bi0x
i − hR

0ix
i +

(

−
1

2
∂jh

R
0i +

1

4
∂0h

R
ij +A0Eij +AkǫkilBj

l

)

xixj +

(

−
1

6
Bj0E

j
i +

5

18
Aj Ė

j
i

)

xir2

+

(

−
1

6
∂j∂kh

R
0i +

1

12
∂0∂kh

R
ij +

2

3
Bljǫ

l
imBk

m +
8

9
Alǫlj

mBkim −
1

3
Bi0Ejk −

2

3
hR
0iEjk −

4

9
AiĖjk +

1

3
A0Eijk

)

xixjxk

+O(r4) (84)

ξi = Ai +Bijx
j −

(

1

2
∂kh

R
ij +

1

4
∂ih

R
jk −AiEjk −

2

3
A0ǫiklBj

l

)

xjxk +

(

niAjnkE
jk −

1

2
AjE

j
i

)

r2

+

(

1

12
∂j∂0h

R
0i +

1

12
∂i∂0h

R
0j −

1

12
∂i∂jh

R
00 −

1

12
∂0∂0h

R
ij +

1

6
hR
00Eij +

1

6
hR
ikE

k
j −

1

6
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xjxkxl +O(r4), (85)

where hR and its derivatives are evaluated on γ. We then check by direct computation that the above formula does
give a solution to equation (74) (and not just (75)), provided that A and B satisfy the transport equations (80)-(83)
and that hR is a vacuum perturbation. Thus equations (80)-(85) provide a ten-parameter-family of soultions for ξ to
equation (74) and hence (56). Since it was already shown that the general solution is at most a ten-parameter-family,
the general solution is in fact a ten-parameter family, and all solutions may be constructed this way.

The main results of this subsection are equations (72), (73), and (84)-(85), which give expressions for δEij , δBij

and ξµ in terms of an integration of the transport equations (80)-(83) for Aµ and Bµν . We have used the tensor
anlaysis package xTensor [26] for the software package Mathematica [27] to perform the extensive computations of
this subsection.
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C. Second Order Effective Source

Equation (45) gives the general second-order metric perturbation in series in r in a particular gauge (the “P gauge”).
In a smoothly related gauge, the second-order metric perturbation is given by (see equations (A3) and (A7))

j = jP − Lξh
P +

1

2
(LξLξg − LΞg) . (86)

Since a prescription for computing δEij , δBij , and ξ has now been given, the first two terms on the right-hand-side
may be considered “known”. Since the remaining terms are regular, an appropriate singular field is thus

jS = jP − Lξh
P . (87)

One may now straightforwardly combine equations (45), (30), (72)-(73), and (84)-(85) to produce an expression for
jS in terms of Eij , Bij , Eijk, Bijk, Aµ, and Bµν . This expression is given in equations (B4)-(B6) of appendix B. We
remind the reader that the choice of initial data for Aµ and Bµν constitutes a choice of first-order gauge freedom
that manifests only at second (and higher) order. In particular, Aµ represents the perturbed position of the particle,
and in this sense the second-order singular field—and hence effective source—“knows” about the first-order deviation
from geodesic motion.
Following the same logic as in the first-order case, one should compute jS to O(r) and then choose an arbitrary

extension, ĵS , to the entire manifold (minus γ). We then introduce a regular field ĵR by

ĵR = j − ĵS , (88)

and plug in to the second-order Einstein equation (55) to get

G(1)[ĵR] = −G(1)[ĵS ]−G(2)[h] (for r > 0). (89)

While each term on the right-hand-side of equation (89) blows up at r = 0, by construction the sum is O(1).15 Thus
the right-hand-side is in fact bounded (but not necessarily continuous) at r = 0. We may nevertheless drop the
requirement that r > 0 by interpreting (89) in a Sobalev (or distributional16) sense. We therefore write

G(1)[ĵR] = S(2) (90)

with

S(2) ≡ −G(1)[ĵS ]−G(2)[h] (91)

where the effective source is bounded but potentially discontinuous.
As at first order, one may determine the perturbation j in a P-smooth gauge by solving equation (90) with initial,

boundary, and/or gauge conditions such that ĵR is sufficiently regular (in this case C1), and it appears that the Lorenz

condition on the regular field, ∇µĴR
µν = 0, (where capitalization denotes trace-reversal) should be an appropriate gauge

choice.17

V. MOTION IN P-SMOOTH GAUGES

We have now developed a prescription for computing the global metric perturbation in P -smooth gauges, where
(by definition) the metric may be written

h = hP − Lξg (92)

j = jP − Lξh
P +

1

2
(LξLξg − LΞg) , (93)

15 To see this explicitly, note that equation (89) holds to O(r−1) if the hats are removed: G(1)[jR + jS + O(r2)] = −G(2)[h]. It then
follows that G(1)[jS] +G(2)[h] = −G(1)[jR] +O(1) = O(1).

16 To give a distributional interpretation we promote the entire right-hand-side of (89) to a distribution. We give no distributional
interpretation to each term separately.

17 Unlike at first order, however, it is not possible to impose the Lorenz condition on the full metric perturbation j by our effective source
method, since our second-order singular field violates the Lorenz condition by a singular amount. (The analog of equation (65) would
then contain a singular source term.) More discussion of this gauge condition can be found in the text below equation (51).
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for smooth ξ and Ξ. Since the motion is defined to vanish in P gauge, the motion in the above P -smooth gauge is
given by (see equation (A5))

Z(1)µ = ξµ|γ (94)

Z(2)µ = (Ξµ + ξν∂νξ
µ)|γ . (95)

Recall that we previously notated ξµ|γ by Aµ (see equation (70)). Thus our Aµ in fact gives the first-order motion,
and the analysis of section IVB has in fact produced the first-order equation of motion in equations (80)-(82). From
the point of view of the systematic calculations performed there, it comes as some surprise that the form of perturbed
geodesic equation emerges. We now use a simple (and trivial) argument to show why the form of the perturbed
geodesic equation must in fact occur. This argument also derives the second-order equation of motion in terms of a
second-perturbed geodesic form.
The argument proceeds as follows. In the P gauge, the description of motion is geodesic in the background metric

g (since the perturbed motions vanish). To determine the description in smoothly related gauges, use the P gauge

to promote the background metric to a finite-λ tensor, gBG
µν (λ) ≡ g

(0)
µν , where this equation holds only in in the P

gauge. Within the class of P-smooth gauges, one now has the invariant description of motion that Zµ(λ) is geodesic
in gBG

µν (λ) +O(λ3). Perturbatively, we have

gBG(λ) = g − λhBG + λ2jBG +O(λ3), (96)

with

hBG = −Lξg (97)

jBG =
1

2
(L2

ξg − LΞg), (98)

and it follows that the first and second perturbed positions Z(1) and Z(2) must satisfy the first and second perturbed
geodesic equation in first and second perturbations hBG and jBG. At first order, we have already found that the
motion is given by the perturbed geodesic equation in our regular field hR. But from (e.g.) equation (66) we have

hR = hH + hBG +O(r3) (99)

= hBG +O(r2), (100)

where the second line follows from the fact that hH = O(r2). Since the perturbed geodesic equation (equation (A9))
includes only first spatial derivatives of the perturbation, equation (100) shows that the statement of geodesic motion
in hR is equivalent to the statement of geodesic motion in hBG. This “explains” the appearance of the geodesic form
in equation (78), and suggests that the motion is more naturally regarded as geodesic in hBG (which happens to
coincide with our choice of hR to the relevant order). This viewpoint has fundamental appeal in that the motion,
which is pure gauge, is given in terms of a pure gauge metric perturbation.
To determine the second-order equation of motion, we could similarly proceed to directly “solve” equation (93) for

Ξ, as we did in section IVB to solve equation (92) for ξ (though our goal there was the formulation of a second-
order effective source). However, we may avoid this task by appealing to the above argument, which shows that the
second-perturbed description of motion is the second-perturbed geodesic equation in perturbations hBG and jBG.
From equations (93), (87) and (88), we have for our particular choice of jR that

jR = jBG +O(r2). (101)

Since the second-perturbed geodesic equation (equation (A10)) contains only first spatial derivatives of the second
perturbation, we may equally well use jR instead of jBG in determining the motion. However, the second-perturbed
geodesic equation also contains a term involving the second spatial derivative of the first perturbation, and for this
term the difference between hR and hBG is relevant, since these quantities agree only to O(r) (see equation (99)). To
solve for the second-order motion one must first determine hBG. This may be accomplished by subtracting hH from
hR (see equation (99)), where hH may be determined from equation (42) with (72)-(73). The motion is then given
by solving equation (A10) with g(1) → hBG and g(2) → jBG.
Note, however, that the term relevant for the difference between hR and hBG is simply (1/2)Z(1)j∂j∂ih

BG
00 (appearing

in the second line of the expression for Z̈
(2)

i in equation (A10)), and so it is in fact only necessary to consider the 00
component of hBG. In particular, we have

hBG
00 = hR

00 − hH
00 = hR

00 + δEijx
ixj +O(r3), (102)
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where δEij is given by equation (72).
Although we view the interpretation of geodesic motion in the BG fields as having more fundamental status, it is

the regular fields that will arise in practice, and we now explicitly present the final equations of motion in terms of the
regular fields. Using equations (99), (101) and (102) to relate {hBG, jBG} to {hR, jR}, the final equations of motion
(equations (A9)-(A10) with g(1) → hBG and g(2) → jBG) become

Z̈
(1)

0 = −
1

2
∂0h

R
00

Z̈
(1)

i = −∂0h
R
0i +

1

2
∂ih

R
00 − EijZ

(1)j (103)

and

Z̈
(2)
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2
∂0j

R
00 − hR

0νZ̈
(1)ν

+ Ż(1)γ∂γh
R
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1

2
Z(1)γ∂γ∂0h

R
00
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(1)iZ(1)j −

1

2
ĖijZ

(1)iZ(1)j,

Z̈
(2)

i = −∂0j
R
0i +

1

2
∂ij

R
00 − EijZ

(2)j + δEijZ
(1)j

− hR
iνZ̈

(1)ν + Z(1)γ∂γ(−∂0h
R
0i +

1

2
∂ih

R
00)

+ 2Ż(1)0Z̈(1)i − Ż(1)j
(

∂0h
R
ij + ∂jh

R
i0 − ∂ih

R
j0

)

− 2Ż(1)jZ(1)kǫijlB
l
k +

2

3
Z(1)kZ(1)lǫipkḂ

p
l

−
1

2
EijkZ

(1)jZ(1)k − ĖijZ
(1)0Z(1)j, (104)

where δEij is given by equation (72). In this form, the second-order equation of motion is seen to be geodesic in the
regular fields, up to a correction term (the term proportional to δEij) that accounts for the fact that the motion is in
fact only geodesic in the BG fields.18

VI. CHOICE OF P -GAUGE

The content of this paper has been the identification of a class of gauges for which the motion may be sensibly defined
and the development of a prescription for computing the metric and motion in such gauges. This class was chosen
by constructing a particular mass-centered gauge (called P gauge) and considering the class of all gauges related by
smooth first and second order gauge vectors (P -smooth gauges). In constructing the P gauge many particular choices
were made, and the reader may wonder the effect of making different choices, leading to a P ′ gauge and possibly
distinct class of P ′-smooth gauges.
Suppose that the content of section III were repeated, except that a different mass-centered gauge, called P ′ gauge,

were chosen. For concreteness, the reader may imagine that we chose Cartesian Schwarzschild coordinates rather than
Cartesian isotropic coordinates for the near-zone background metric, and did not make the additional first-order gauge
transformation, equations (28)-(29). This would produce a P ′ gauge that is related to our P gauge by a first-order
far-zone gauge vector of the form V i = ni + O(r) (as well as by analogous second and third order gauge vectors),
which modifies the metric perturbation by a singular amount (changing the structure of M(1) from isotropic-type to
Schwarzschild-type). After identifying an appropriate singular field (one option would be transforming the old singular
field by V µ), one could develop an effective source method to determine the metric perturbations in P ′-smooth gauges.
Since the P ′ gauge is mass-centered, the analysis of the motion will then proceed identically, leading to a prescription
for determining the motion, {Z ′(1), Z ′(2)}, in P ′-smooth gauges.
It is clear that the perturbations {h, j} and {h′, j′} in P -smooth and (respectively) P ′-smooth gauges thus con-

structed will differ by a (possibly singular) gauge transformation (provided that the initial data differ by a gauge

18 Note that δEij does not represent the perturbed Riemann tensor of hR but rather that of hH , which is related to that of hR by equations
(67)-(69) (see also (102)). This accounts for the positive sign in front of the δEij term.
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transformation), and thus represent the “same physics”. The reader may further wonder whether {Z(1), Z(2)} and
{Z ′(1), Z ′(2)} thus constructed also represent the “same physics”. However, since the gauge transformation law for a
curve, equations (A4) and (A5), does not make sense in the presence of singular gauge vectors, we have no a priori
criterion with respect to which to check this type of gauge covariance property. Instead, we may view our defini-
tion of motion as (in principle) providing a generalized gauge transformation law for the motion that ensures that
{h, Z(1), j, Z(2)} and {h′, Z ′(1), j′, Z ′(2)} represent the “same physics”. For smooth gauge vectors, the law trivially
agrees with equations (A4) and (A5). For (non-smooth) gauge vectors that link a P -smooth gauge to a P ′-smooth
gauge (for particular known choices of P and P ′), it should be possible to derive such a law by writing the gauge
transformation as the composition of a smooth transformation with the singular (but mass-centered-preserving) trans-
formation that relates P gauge to P ′ gauge; the law is then simply be equations (A4) and (A5) using the smooth
transformation. For general gauges, the situation is clouded by the fact that the allowed form of the gauge trans-
formation is conjectured but not known [37], and further that (even restricting to the conjectured class) the class of
gauges smoothly connected to a mass-centered gauge (i.e., those for which we can define the motion) is not known
at second order. In the appendix of paper I (see also [37]) we obtained some results at first order;19 we have not
obtained analogous results at second order, where the situation is far more complicated. However, while such results
would certainly be of some theoretical interest, we see no practical drawback to simply working in a particular class
of gauges (such as our P -smooth class) for which the motion can be sensibly defined and computed.

VII. INSPIRAL

Our perturbation expansion describes asymptotically small departures from a fixed background metric g and back-
ground worldline γ. This should allow one to investigate local-in-time effects, such as second-order corrections to
quantities already investigated at first order, including gravitational redshift [30], stability of circular orbits [31],
periastron advance [32], loss of energy and angular momentum, and “snapshot” waveforms [33]. However, if the goal
is to produce waveforms reflecting an entire inspiral, it is clear that our expansion off of a fixed background geodesic
will eventually produce inaccurate results. In order to produce the waveform templates needed for gravitational-wave
data analysis, therefore, it will be necessary to go beyond a perturbation expansion off of a fixed background geodesic.
In principle, it seems clear that one should simply “patch together” a sequence of perturbation expansions off

of a sequence of background geodesics. However, the details of implementing such a procedure appear to be quite
problematic. For example, while it seems clear that the new background geodesic should be chosen tangent to the
old perturbed motion and that initial data for the new perturbed motion should be trivial, it is far from obvious how
to choose the initial data for the new metric perturbation, which satisfies a different field equation (with a different
effective source). The whole procedure is further complicated by the choice of gauge: both the metric perturbation
and the position perturbation are gauge-dependent, and one would require a way of ensuring that the new choices
are in the “same” gauge as the old. It is easy to see how carelessness in this matter can lead to unphysical results:
Since the choice of the next background geodesic depends on the choice of gauge, a naive proposal wherein one simply
chooses “no incoming radiation” with some gauge choice at each step would produce a final waveform that depends
on the gauge choices made.
These difficulties are well-known, and a number of approaches have been developed. In paper I, we used the

Hadamard form (e.g., [17]) of the Lorenz gauge retarded metric perturbation together with a point particle description
to argue that the “MiSaTaQuWa equation” [34]—a modified linearized Einstein equation sourced by a point particle
on a non-geodesic trajectory determined by an integrodifferential equation—should provide an accurate long-term
description. Unfortunately this argument has no natural generalization as it stands, since we have given no Hadamard
or point particle description at second order. A derivation of Pound [25] directly obtains the MiSaTaQuWa equation
by expanding in the acceleration of an unspecified worldline, and is a promising route toward obtaining a second-
order generalization. However, both of these approaches depend on the Lorenz gauge in an essential way (through its
“relaxation”), and it has not been investigated whether analogous prescriptions based on relaxing alternative gauge
conditions would produce the same physical waveform. Nevertheless, it seems likely that MiSaTaQuWa equation
provides a reliable—if computationally challenging—prescription for first-order-accurate long-term evolution.
An alternative, “adiabatic” approach to long-term evolution has been pursued by Mino [38] and Hinderer and

Flanagan [39]. Here, one considers bound orbits of a Kerr black hole and assumes adiabaticity in the sense that
the radiation reaction timescale is much longer than the orbital timescale. This assumption allows one to use self-
force results (such as would be provided at second-order by applying the prescription of this paper) to determine

19 More precisely, we showed that for first-order gauge vectors of the form ξµ = Fµ(t, ~n) + O(r) for smooth Fµ, the first-order motion
changes by δZ(1)i = (3/4π)〈njFjni〉, where the angle brackets denote an average over the sphere.
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an adiabatic evolution of the orbital parameters of the background geodesic. As in the non-adiabatic approaches,
above, the gauge dependence of the prescription has not yet been carefully analyzed. However, it has been suggested
(in both the Mino and the Hinderer-Flanagan approaches) that simple conditions reflecting “no secular growth over
short timescales” should lead to a gauge-invariant waveform. If the relevant condition on the gauge can be precisely
identified, it should be straightforward to choose such a gauge within our formalism, since we allow a wide class of
smoothly-related gauges. In particular, the Lorenz condition applied to the regular field is a locally defined gauge
condition and therefore should lead to perturbations that do not exhibit secular growth.20 Thus the combination of
our results with the work of [38, 39] appears to be a promising approach to producing second-order-accurate waveform
templates for gravitational-wave astronomy of extreme mass-ratio inspirals.

VIII. SUMMARY OF PRESCRIPTION

We conclude by summarizing the prescription for computing the first and second-order motion and metric. First,
choose a vacuum background spacetime g, such as Schwarzschild or Kerr. Next choose a timelike geodesic, γ, of that
spacetime (representing the lowest-order motion of the body), and choose and a point γ0 at which the perturbed
motion is taken to be coincident. Determine a coordinate transformation between a global coodinate system for g
and a local RWZ coordinate system about the geodesic, equation (17), which in particular determines STF curvature
tensors {Eij ,Bij , Eijk,Bijk}. Now compute hS to O(r2) in terms of these STF tensors from equations (B1)-(B3) and

choose an arbitrary extension, ĥS . Then compute the effective source, equation (62), and solve equation (61) for ĥR,

imposing a convenient gauge condition on ĥR such that ĥR is C2. The first-order metric perturbation h is then given

in a P -smooth gauge by h = ĥR + ĥS . If one is stopping at first order, one may now determine the first-order motion
Z(1) by integrating equation (103) with trivial initial data at γ0.
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If one is proceeding to second order, one should instead integrate equations (80)-(83) for Aµ and Bµν . (The

integration for Aµ is redundant with an integration for Z(1)µ = Aµ via equation (103).) The initial data for Aµ = Z
(1)

µ

and Bi0 = Ȧi = Ż
(1)

i should be trivial (consistent with the interpretation of the particle being initially conincident
with the background worldline), while the initial data for B[ij] is arbitrary (trivial being one allowed choice). Next

compute jS to O(r) from equations (B4)-(B6) and choose an arbitrary extension, ĵS . Then compute the second-order

effective source, equation (91), and solve equation (90) for ĵR, imposing a convenient gauge condition on ĵR (such as

the Lorenz condition) such that ĵR is C1. Finally, the second-order motion Z(2) is given by integrating equation (104)

with trivial initial data at γ0, and the second order metric perturbation j is given by j = ĵS + ĵR. The first-order

motion was previously calculated as Z
(1)

µ = Aµ, and the first-order metric perturbation was previously calculated as

h = ĥR + ĥS . Second-order observables may be constructed from the combination {h, Z(1), j, Z(2)}.
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Appendix A: The Perturbed Geodesic Equation

In this appendix we consider the perturbation expansion of a metric and worldline and discuss the gauge freedom
through second order. We then suppose that the worldline is geodesic and derive the perturbative description through
second order, expressing the results in the RWZ coordinate system (equation (17)) used throughout the paper.
Fix a coordinate system xµ on a manifold M . Consider a smooth one-parameter-family of metrics gµν(λ) along

with a smooth one-parameter-family of timelike curves Zµ(λ; τ). Taylor expanding the metric components gµν(λ;x)

20 By contrast, the approach of [2] requires one to work in a mass-centered gauge at first order, in which case the metric perturbation
should exhibit secular growth.

21 If one is stopping at first order, one only requires that hR be C1 instead of C2. Correspondingly, one may choose to compute hS only
to O(r) when constructing the effective source.
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and worldline coordinate position Zµ(λ; τ) gives

gµν(λ;x) = g(0)µν (x) + λg(1)µν (x) + λ2g(2)µν (x) +O(λ3) (A1)

Zµ(λ; τ) = Z(0)µ(τ) + λZ(1)µ(τ) + λ2Z(2)µ(τ) +O(λ3), (A2)

where we have defined metric perturbations g
(n)
µν ≡ (1/n!)∂λgµν |λ=0 and coordinate position peturbations Z(n)µ ≡

(1/n!)∂λZ
µ|λ=0 in the usual way. These quantities depend on the choice of coordinates xµ. Under a change x′µ(λ;xν ),

the coordinate position Zµ(λ; τ) transforms by Z ′µ(λ; τ) = x′µ(λ; zµ(λ; τ)), while the metric components transform
via the tensor transformation law. Restricting to coordinate transformations that reduce to the identity at λ = 0
gives the “gauge freedom” within perturbation theory. Following [36] we write the coordinate transformation as

x′µ = xµ + λξµ +
1

2
λ2 (Ξµ + ξν∂νξ

µ) +O(λ3), (A3)

so that the smooth vector fields ξ and Ξ are the first and second-order generators of the diffeomorphism corresponding
to the coordinate transformation. The transformation laws for Zµ(λ) and gµν(λ) now give

Z ′(1)µ(τ) = Z(1)µ(τ) + ξµ|Z(0)(τ) (A4)

Z ′(2)µ(τ) = Z(2)µ(τ) + Ξµ|Z(0)(τ)

+
[(

Z(1)ν(τ) + ξν
)

∂νξ
ν
]
∣

∣

∣

Z(0)(τ)
(A5)

and

g′(1)µν = g(1)µν − Lξg
(0)
µν (A6)

g′(2)µν = g(2)µν −
1

2
LΞg

(0)
µν +

1

2
L2
ξg

(0)
µν − Lξg

(1)
µν , (A7)

where primed perturbations are defined via Taylor expansion (in λ) of components in the primed coordinate system.
Under a change of coordiantes for the background spacetime (i.e., a λ-independent change of coordinates for M), the
metric perturbations transform as tensors on M , while the coordinate position perturbations transform as vectors on
Z(0). Thus if we work exclusively within perturbation theory, we may remove λ from the description and view the
perturbations as tensor fields on the background spacetime that obey additional gauge transformation laws.

Now suppose that each curve Zµ(λ; τ) satisfies the affinely-parameterized geodesic equation in gµν(λ;x),

Z̈µ + Γµ
αβ

∣

∣

∣

Z(τ)
ŻαŻβ = 0, (A8)

where an overdot denotes an ordinary derivative with respect to τ (at fixed λ). In perturbing equation (A8) it is
convenient to choose RWZ coordinates (equation (17)) for the background metric, where Z(0)i = 0 and Z(0)0 = t = τ .
Plugging in the expansions (A1) and (A2) and collecting powers of λ yields

Z̈
(1)

0 = −
1

2
∂0g

(1)
00

Z̈
(1)

i = −∂0g
(1)
0i +

1

2
∂ig

(1)
00 − EijZ

(1)j (A9)
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and

Z̈
(2)

0 = −
1

2
∂0g

(2)
00 − g

(1)
0ν Z̈

(1)ν

+ Ż(1)γ∂γg
(1)
00 +

1

2
Z(1)γ∂γ∂0g

(1)
00

− 2EijŻ
(1)iZ(1)j −

1

2
ĖijZ

(1)iZ(1)j,

Z̈
(2)

i = −∂0g
(2)
0i +

1

2
∂ig

(2)
00 − EijZ

(2)j

− g
(1)
iν Z̈(1)ν + Z(1)γ∂γ(−∂0g

(1)
0i +

1

2
∂ig

(1)
00 )

+ 2Ż(1)0Z̈(1)i − Ż(1)j
(

∂0g
(1)
ij + ∂jg

(1)
i0 − ∂ig

(1)
j0

)

− 2Ż(1)jZ(1)kǫijlB
l

k +
2

3
Z(1)kZ(1)lǫipkḂ

p
l

−
1

2
EijkZ

(1)jZ(1)k − ĖijZ
(1)0Z(1)j, (A10)

where all quantities are evaluated on the background worldline γ and the background metric (equal to ηµν on γ) is
used to raise and lower indices.
We have left equations (A9) and (A10) in coordinate form, which is sufficient for practical purposes, since applying

the prescription of this paper will require constructing RWZ coordinates in any case. However, it is straightforward
in principle to convert these expressions into covariant language using the formulae for the STF curvature tensors,
equations (24)-(27), as well as the fact that the background four-velocity is given by Ż(0)α = (1, 0, 0, 0). For use in
comparing to previous work, we give the covariant version of (A9),

Z̈(1)
µ =

(

−∇αg
(1)
βµ +

1

2
∇µg

(1)
αβ −R

(0) γ

αµβ Z(1)
γ

)

Ż(0)αŻ(0)β. (A11)

Equation (A11) differs from other equations sometimes referred to as the “perturbed geodesic equation” in two ways.
The first difference is that we have no projection orthogonal to the background worldline. This corresponds to our
choice of an affine parameter in the perturbed spacetime, equation (A8), as opposed to a parameter such that the

perturbed tangent vector Ż(1)µ is normalized in the background metric.22 The second difference is that a “geodesic
deviation” term (involving the Riemann tensor of the background) appears in our equation. If one assumes a λ-
independent metric family, the definitions and calculations of this appendix reproduce standard derivations of the
geodesic deviation equation (and provide a second-order generalization). A version of the perturbed geodesic equation
without the geodesic deviation term would have to refer to a definition of the motion perturbation and/or metric
peturbation that differs from our straightforward Taylor expansion.

Appendix B: Expressions for the Singular fields

Here we display expressions for the first and second order singular fields in the RWZ coordinates for the background
metric (equation (17)). For convenience in displaying the results, we have let M → 1 (corresponding to a choice of
units adapted to the small body), so that explicit factors of M do not appear. Factors of M may be restored on
dimensional grounds, and explicit instructions are given below.
The first order singular field hS is given by equation (41) with equations (8), (31)-(33) and (35)-(37). Collecting

those equations together yields

hS
00 =

2

r
+ 2rEijn

inj +
2

3
r2Eijkn

injnk +O(r3) (B1)

hS
i0 =

2

3
rǫikln

jnkB l
j +

2

9
r2

(

2ǫ m
ij njnknlBklm + nj Ėij − nin

jnkĖjk

)

+O(r3) (B2)

hS
ij =

2

r
δij − 2r

(

2Eij + δijEkln
knl

)

+
1

3
r2

(

−4ǫkl(iḂ
l

j)n
k + 2n(iǫj)lmnknlḂ m

k − 6nkEijk − 2δijEklmnknlnm
)

+O(r3).

(B3)

22 Note that in paper I we effectively used the latter parameterization by demanding that our deviation vector be orthogonal to the
background worldline.
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In units where M 6= 1, an explicit factor of M would multiply the entire right-hand-sides of the expressions given
above. The second order singular field is given by jS = jP − Lξh

P (equation (87)), where jP is given by equations
(45), (9), (46)-(51) and (72)-(73), ξ is given by equations (84)-(85), and hP is given by equations (30), (8), (31)-(40)
and (72)-(73). Computing jS = jP − Lξh

P gives

jS00 =
−2

r2

[

1−Aini

]

−
1

r

[

2hR
00 + hR

ijn
inj

]

+
1

2

[

− 4∂ihR
00ni − ∂kh

R
ijn

injnk + 2AinjEij + ninjEij + 4Ainin
jnkEjk

]

+
1

12
r
[

− 4∂0∂
jhR

0ininj − 10∂i∂jh
R
00n

inj + 2∂0∂0h
R
ijn

inj − 2∂k∂lh
R
ijn

injnknl − 40Ȧiǫikln
jnkBj

l + 4Aiǫikln
jnkḂj

l

− 4hR
00n

injEij − 16hR
ijn

injnknlEkl + ninjnkEijk + 8Ainin
jnknlEjkl

]

+O(r2) (B4)

jSi0 =
−2

r

[

hR
0i + 2Ȧi

]

+
1

6

[

− 12∂ih
R
0jn

j + 12∂0h
R
ijn
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kBi

l + 8Ajǫikln
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l
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knlBk

m
]

+
1

9
r
[
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ijn
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i hR

lmnjnkBjl

− 6ǫ lm
k B[il]n

jnkBjm − 3ǫ lm
k hR

iln
jnkBjm − 3ǫ kp

i δlmhR
lmnjnkBjp + 6ǫ lm

i B[jl]n
jnkBkm + 3ǫlmi hR

jln
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− 3ǫimph
R
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jnknlnmBl
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]

+O(r2) (B5)

jSij =
1

2r2

[

3δij + 4Akδijnk

]

+
1

r

[

2hR
ij − δijh

R
kln

knl
]

+ 2∂kh
R
ijn

k −
1

2
δij∂mhR
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+ δijn
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R
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lBi
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0kn
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0kn
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lnmBl
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lnmBl
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kḂi
l

− 4Akǫklmnjn
lḂi
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m + 35ǫjlmnin
knlḂk
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lnmḂl

p
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lnmḂl
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knlEij − 96B[jk]E

k
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jkE
k

i + 16hR
00njn

kEik + 16hR
jkn

knlEil

− 96B[ik]E
k

j − 48hR
ikE

k
j + 16hR

00nin
kEjk + 16hR

ikn
knlEjl − 72δijh

R
00n

knlEkl − 16hR
ijn

knlEkl + 48hR
00ninjn

knlEkl

+ 96δijB[km]n
knlEm

l + 48δijh
R
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knlE m

l − 48hR
kmninjn
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l

+ 16δijh
R
kln

knlnmnpEmp − 96A0Ėij + 48A0δijn
knlĖkl − 48A0ninjn

knlĖkl + 48AkEijk − 96nkEijk + 48Aknkn
lEijl
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lnmnpElmp

]

+O(r2) (B6)

In units where M 6= 1, an explicit factor of M would multiply the terms involving hR, A and B, while an explicit
factor of M2 would multiply the remaining terms. In writing the above results we have used equations (77) and (81)

to express Bµν entirely in terms of hR
µν , Ȧ

i and B[ij]. Thus the second-order singular field depends on the quantities

{Aµ, B[ij], h
R
µν , Eij ,Bij , Eijk,Bijk}. We remind the reader that Aµ represents the first-order motion, Aµ = Z(1)µ, so that

the second-order singular field may be viewed as depending on the background metric (through {Eij ,Bij , Eijk,Bijk}),
the first-order metric (through the regular field hR = h − hS), as well as choices of initial data for the first-order
motion, Z(1)µ, and relative spatial coordinate alignment, B[ij].
Equations (B1)-(B6) for the first and second-order singular fields are the main computational results of this paper.

We have performed and verified the calculations leading to these expressions using the tensor analysis package xTensor
[26] for the software package Mathematica [27].
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