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There is great interest in numerical relativity simulations involving matter due to the likelihood
that binary compact objects (BCOs) involving neutron stars will be detected by gravitational wave
observatories in the coming years, as well as to the possibility that BCO mergers could explain short-
duration gamma-ray bursts. We present a code designed for simulations of hydrodynamics coupled
to the Einstein field equations targeted toward such applications. This code has recently been used
to study eccentric mergers of black hole-neutron star binaries. We evolve the fluid conservatively
using high-resolution shock capturing methods, while the field equations are solved in the generalized
harmonic formulation with finite differences. In order to resolve the various scales that may arise,
we use adaptive mesh refinement (AMR) with grid hierarchies based on truncation error estimates.
A noteworthy feature of this code is the implementation of the flux correction algorithm of Berger
and Colella to ensure that the conservative nature of fluid advection is respected across AMR

boundaries. We present various tests to compare the performance of different limiters and flux
calculation methods, as well as to demonstrate the utility of AMR flux corrections.

I. INTRODUCTION

The interface between strong field gravity and mat-
ter dynamics promises to be one of the important fron-
tiers in the coming years. A new generation of gravita-
tional wave detectors (LIGO [1], GEO [2],TAMA [3], and
VIRGO [4]) are now operational, and within the next few
years are expected to reach sensitivities that will allow
observations of the universe in gravitational radiation for
the first time. The prime targets of these observations
are compact object (CO) binaries composed of combi-
nations of black holes (BHs) and neutron stars (NSs).
Modeling of such sources is a crucial ingredient to real-
ize the promise of gravitational wave astronomy. Even
if an event is detected with a high signal-to-noise ratio
(SNR), reconstructing the dynamics of the system that
produced the signal cannot be done directly but instead
will require template banks of theoretical waveforms in-
formed by numerical simulations.

Compact object mergers involving NSs are expected
to be significant sources of not only gravitational radia-
tion, but also possible progenitors for short-gamma ray
bursts (SGRBs) [5-7] and other electromagnetic and neu-
trino counterparts [8]. Efforts are already underway to
use potential gravitational wave sources as triggers for
searches for electromagnetic transients [9, 10]. Observa-
tions would help constrain evolutionary models for the
progenitor stars and their environments. Perhaps most
intriguingly, the observations would give clues to the
equation of state (EOS) of matter at nuclear densities (as
in NS interiors), which cannot be probed in laboratories
on Earth and is not fully understood at the theoretical
level (for a broad discussion see for example [11]). The
reason that the gravitational wave signature could con-
tain information about the matter EOS (and other details
about the internal structure of neutron stars) is that the
EOS in general has a significant effect on the bulk motion
of matter, and it is this bulk motion that is the mecha-
nism by which gravitational waves are produced. Several

studies to date have looked into this issue, suggesting the
imprint of the EOS on the gravitational waves will be
strong enough to detect [12-23] (though, in some cases,
the expected frequencies are higher than the range to
which the current generation of ground-based detectors
are most sensitive, thus limiting the information which
can be extracted). While CO binaries containing NSs
are a particularly interesting class of sources involving
general relativistic (GR) hydrodynamics, they are by no
means the only such systems. Examples of additional
systems that have already been considered include BH
accretion tori [24-27] and NS-white dwarf mergers [28].

Thoroughly modeling systems like those described
above would require evolution of the spacetime, the pho-
ton and neutrino radiation fields, and the magnetized,
relativistic fluid. Even a minimalistic treatment, with
the Einstein equations coupled to the equations of rela-
tivistic hydrodynamics, represents a complex, nonlinear
system of partial differential equations. Numerical simu-
lations are thus essential for exploring such strong field,
dynamical systems. There is a long history of adapting
successful techniques for simulating Newtonian hydrody-
namics to relativistic and general relativistic fluids which
we will not attempt to summarize (see [29] for a review
of general relativistic hydrodynamics). Instead, we will
briefly attempt to place the code described in the present
paper in the context of other recent codes developed for
fluids on evolving spacetimes. !

Several of these codes [32-36] solve the field equations
in the BSSN formulation [37, 38]. The remainder [39, 40]
use the generalized harmonic formulation [41, 42] which

1 Note that our focus is restricted to codes which handle dynam-
ically evolving gravitational fields. Such codes, however, fre-
quently owe much to earlier, fixed-background evolution codes
(see [29]). In addition, advancements such as GR-hydro with
multi-patch grids [30] and with GPUs [31] have recently been
made with fixed background codes.



we also employ; unlike our code, however, these groups
convert to a fully first order formulation [43]. Most
groups use finite difference methods for the metric evolu-
tion and a conservative, high-resolution shock-capturing
(HRSC) scheme for the hydro evolution; these unigrid
algorithms are then interfaced with some sort of adap-
tive mesh refinement (AMR). A notable exception for the
metric evolution is [39], which employs pseudo-spectral
methods for the metric and then interpolates to a finite
volume grid for the fluid.

Some groups have implemented the MHD equations
in full GR; since these codes all make use of conserva-
tive HRSC methods, they may be principally differenti-
ated by how they meet the challenge of preserving the
V-B = 0 constraint. (A straightforward finite-difference
evolution of the magnetic field would generically lead to
magnetic monopoles and, hence, un-physical behavior.)
WhiskyMHD employs constrained transport [34] for this
purpose, which preserves the constraint to machine ac-
curacy, whereas the code of [44] uses hyperbolic diver-
gence cleaning. Constrained transport, however, requires
special interpolation at refinement level boundaries in or-
der to preserve the constraint. The Illinois group found
that a vector-potential formulation of the MHD equa-
tions works well when coupled to AMR [45]. This is be-
cause the constraint is preserved by construction with the
vector potential, even with the restriction and prolonga-
tion operations of AMR (see also [46] for a thorough ex-
amination of the electromagnetic gauge condition). Stud-
ies indicate that magnetic fields do not significantly affect
the gravitational dynamics of CO mergers (see e.g. [44]),
but they could be critical for understanding EM counter-
parts including the possible formation of a SGRB engine.
A new method to treat the MHD equations was recently
presented in [47], where ideal MHD is used in high mat-
ter density regions (e.g. inside a NS), while the force-free
approximation is used elsewhere (e.g. the magnetosphere
of a NS). The authors applied the method to study the
collapse of magnetized hypermassive NSs (which could
be formed via binary NS mergers) and suggested that
intense EM outbursts could accompany such events.

Besides MHD, the other major advances in the phys-
ical model for numerical relativity codes have been in
the arena of microphysics. While the I' = 2 EOS was
the community standard for quite some time, most codes
now allow for a nuclear theory-based EOS [48, 49] and /or
use various parametrized, piecewise polytropic EOSs in-
spired by the range of plausible nuclear EOSs [50, 51].
These advances in EOS description primarily affect the
cold NS structure, but the group developing the SACRA
code has also begun to account for neutrino transport
via a simplified leakage scheme [12, 52]. The same group
has also made available a formulation for a more accurate
truncated moment scheme with a variable Eddington fac-
tor closure [53], which shows much promise for numerical
relativity simulations with neutrino physics beyond the
leakage approximation.

Another category of GR hydrodynamics codes employs

the conformal-flatness approximation, which is particu-
larly useful when supernova simulations are the target
application. An example is CoCoNuT/VERTEX, which
incorporates relativistic hydrodynamics, conformally flat
gravity, and ray-by-ray neutrino transport [54]. The code
of [55] employs a similar scheme for hydrodynamics and
gravity but adds a test magnetic field; this code has been
used to study the magnetorotational instability in super-
novae.

Newtonian (and semi-Newtonian) [56, 57], conformally
flat [58, 59], and fixed background [60] SPH codes rep-
resent an important, orthogonal approach to studying
CO interactions. SPH has an advantage over Eulerian
schemes when a large range of spatial scales is involved.
Such a situation may arise in CO mergers when material
is stripped from a star in a tidal interaction and forms
an extended tail. On the other hand, Eulerian codes are
the standard approach when strong shocks are present,
as would arise in binary NS mergers or disk circulariza-
tion. (Recent progress has been made, however, in ap-
plying SPH to situations with relativistic shocks [61].) In
addition, SPH has not (to our knowledge) yet been cou-
pled to a code which evolves the full Einstein equations.
Nonetheless, comparisons between Eulerian and SPH re-
sults could prove very useful on a problem-by-problem
basis to characterize the errors in both methods.

Though current efforts in GR simulations involving
matter tend to focus on increasingly complex physical
models, there remain many unanswered questions in the
astrophysics of compact objects that can be addressed
with a code which solves the Einstein equations coupled
to perfect fluid hydrodynamics. We have thus focused our
code development on hydrodynamics in full GR, while
maintaining a flexible infrastructure to accommodate ad-
ditional physics modules in the future. We evolve the
field equations in the generalized harmonic formulation
using finite differences. The fluid is evolved conserva-
tively using one of several different shock capturing tech-
niques we test here. We have also implemented the hy-
drodynamical equations in a manner that is independent
of EOS. We make use of AMR by dynamically adapting
the mesh refinement hierarchy based on truncation er-
ror estimates of a select number of the evolved variables.
We also utilize Berger and Colella [62] style flux correc-
tions (also known as “re-fluxing”) in order to make the
use of AMR compatible with the conservative nature of
the hydrodynamic equations. Though AMR flux correc-
tions have been implemented in other astrophysical hy-
drodynamics codes (such as Athena [63], CASTRO [64],
Enzo [65], and FLASH [66]), to our knowledge this algo-
rithm has not been used previously for hydrodynamics
simulations in full general relativity.? A further notewor-

2 Note that “flux correction” here refers to the enforcement of
conservation at AMR boundaries, not the re-calculation of
fluxes with a more dissipative scheme to preserve stability as
in Athena [67].



thy feature of our implementation is that we store cor-
rections to the corresponding fluid quantity integrated in
the volume of a given cell instead of the flux, allowing
for easy implementation within a computational infras-
tructure that supports cell-centered but not face-centered
distributed data structures. The code described here has
recently been applied to studying BH-NS mergers with
eccentricity as may arise in dense stellar systems such as
galactic nuclear clusters and globular clusters [68, 69)].
In the remainder of this paper we outline our compu-
tational methodology for simulating hydrodynamics cou-
pled to the Einstein field equations and describe tests
of this methodology. In Sec. II we review the general-
ized harmonic approach to solving the field equations and
present our methods for conservatively evolving a perfect
fluid coupled to gravity, including our method for invert-
ing the conserved quantities to obtain the primitive fluid
variables and the implementation of flux corrections to
enforce the conservation of fluid quantities across AMR
boundaries. In Sec. III we present simulation results
which test these methods, highlight the strengths and
weaknesses of various shock capturing techniques, and
demonstrate the utility of the flux correction algorithm.

II. COMPUTATIONAL METHODOLOGY

In this section we begin by explaining the basic equa-
tions and variables we use to numerically evolve the Ein-
stein equations in Sec. IT A and then discuss the conserva-
tive formulation of the hydrodynamics equations that we
use in Sec. [T B. The evolution of conserved fluid variables
necessitates an algorithm for inverting these quantities to
obtain the primitive fluid variables which we present in
Sec. ITC. Finally in Sec. IID we present the details of
our algorithm for AMR with flux corrections.

A. Solution of the Einstein equations

We solve the field equations in the generalized-
harmonic formulation [41, 42] where we fix the coordi-
nate degrees of freedom by specifying the evolution of
the source functions H* := Oz®. In this form the evo-
lution equation for the metric, g.p, becomes manifestly
hyperbolic:

ngacadgab + abngacgad + aangacgbd
+2H (4 p) — 2HaT'%, + 2T, T,
= —87T(2Tab — gabT) (1)

where I'f, is the Christoffel symbol, T4 is the stress-
energy tensor, and T is its trace. We evolve the metric,
the source functions, and their respective time deriva-
tives using fourth order Runge-Kutta where the spa-
tial derivatives are calculated using fourth order accu-
rate finite difference (FD) techniques. In other words,
we have reduced the evolution equations to first order

in time so that there are 28 “fundamental” variables
{Gab, Ha, Ot gan, Ot Hy }, but we directly discretize all first
and second spatial gradients without the introduction of
additional auxiliary variables.

Analytically one can show [70] that if one begins with
initial data that satisfies the Hamiltonian and momen-
tum constraints, initially set H* = Oz, and then evolve
the metric according to (1) and the source functions ac-
cording to some specified differential equations, then the
constraint equation H* — Oz = 0 will be satisfied for
all time. Numerically this statement will only be true to
within truncation error, which can grow exponentially in
black hole space times; to prevent this we add constraint
damping terms as in [71, 72]. In practice, ensuring that
H®*—x* is converging to zero for a given numerical sim-
ulation run at different resolutions provides an excellent
check that the numerical solution is indeed converging to
a solution of the field equations.

As described in [42], the computational grid we use is
compactified so as to include spatial infinity. This way
we can impose boundary conditions on the metric simply
by requiring that it be Minkowski. However we evolve
the metric of the uncompactified coordinates since the
compactified metric is singular at spatial infinity.

B. Conservative Hydrodynamics

Coupled to gravity we consider a perfect fluid with
stress energy tensor

Tab — phuaub + gabP , (2)

where h := 1+ P/p+ € is the specific enthalpy and u® is
the four-velocity of the fluid element. The intrinsic fluid
quantities p, the rest mass density; P, the pressure; and
€, the specific energy are defined in the co-moving frame
of the fluid element. The equations of hydrodynamics are
then written in conservative form as follows [73]:

OxD + 0;(Dv") =0 (3)
, 1
01Sa + 0 (V=9T"a) = 5V=9T" Daghe (4)

where v is the coordinate velocity, g is the determinant of
the metric, and the index ¢ runs over spatial coordinates
only. Note that (4) explicitly contains the time derivative
of the metric for index a = t. The conserved variables D
and S, are defined as follows:

D = Vg (5)
Sa = /=gT", (6)

where D is simply the time component of the matter 4-
current?.

3 In some implementations of the GR (magneto)hydrodynamic
equations, see for e.g. [74], the analog of S in (6) that is evolved



In some situations we wish to perform axisymmetric
simulations where we use the symmetry to reduce the
computational domain to two dimensions. We do this
using a modification of the Cartoon method [75] as de-
scribed in [42], where we take the z-axis as the axis of
symmetry, and only evolve the z = 0 slice of the space-
time. For the hydrodynamics this means that effectively
each fluid cell becomes a cylindrical shell, and we use the
fact that the Lie derivative of the fluid fields with respect
to the axisymmetric killing vector are zero to rewrite the
coordinate divergences in the above equations as :

9i(Dv") = 0,(Dv®) + 20,2 (yDvY) (7)

and similarly for 9;(v/—g¢T",) for the t and 2 components.
For the y component there is an additional source term

Oi(V=gT"y) = 0.(vV=gT"y) + 20,2 (y/—gT) —
(S.v* ++/=gP/y). (8)

By writing the y flux contribution in terms of J,2 we
ensure that when we discretize our evolution will be con-
servative with respect to the cylindrical shell volume el-
ement. We choose a special form for the equation for
S.:

2
S, + 0. (vV—gT" ) + §8y2 (y2 V _gsz) =0, (9)

since in axisymmetry the quantity yS, is exactly con-
served (that is, it has no source term).

The conservative evolution system is solved numeri-
cally using HRSC schemes. We briefly summarize the dif-
ferent methods we have implemented and test in this pa-
per, though the references should be consulted for more
complete details. For calculating inter-cell fluxes we have
implemented HLL [76], the Roe solver [77], and the Mar-
quina flux [78] method. The HLL method is straight-
forward to implement since it does not require the spec-
tral decomposition of the flux Jacobian and is based on
estimates for the largest and smallest signal velocities.
The Roe solver works by solving the linearized Riemann
problem obtained using the flux Jacobian at each cell in-
terface (using the so called Roe average of the left and
right states). The Marquina flux method is an extension
of this idea that avoids the artificial intermediate state
and switches to a more viscous local Lax-Friedrich type
method from [79] when the characteristic speeds change

has the rest-mass density D subtracted off. This could provide
improved results in situations where the rest-mass density is or-
ders of magnitude larger than the internal or magnetic energy,
and accuracy in these latter quantities is important. Though
we have not explored this alternative, in the scenarios studied
here (in particular since we are not looking at the behavior of
magnetic fields) the added effect of a small amount of internal
relative to rest energy on the dynamics of the fluid or metric
will be negligible, and we expect either definition of S¢ to give
comparable accuracy results here.

sign across the interface. Since the latter two methods
require the spectral decomposition of the flux Jacobian,
we give it for our particular choice of conserved variables
in Appendix A. For reconstructing fluid primitive vari-
ables at cell faces we have implemented MC and min-
mod [80], PPM [81] 4, and WENO5 [83] °, all of which
may be used interchangeably with any flux method. MC
and minmod are both slope limiter methods that reduce
to linear reconstruction for smooth flows. Minmod is
the more diffusive of the two. In comparison, PPM and
WENO?b are higher order reconstruction methods. PPM
is based on parabolic reconstruction with modifications
to handle contact discontinuities, avoid spurious oscilla-
tions from shocks by reducing order, and impose mono-
tonicity. WENO5 combines three different three point
stencils with weights that are determined by a measure
of the smoothness of the quantity being reconstructed.
The specific fluid quantities that we reconstruct on the
cell faces are p, u, and WU?, where u := pe, W is the
Lorentz factor between the local fluid element and an ob-
server normal to the constant ¢ hypersurfaces, and U’ is
the Eulerian velocity (the explicit form of which is given
in the following section). We choose to reconstruct WU*
instead of simply U? since any finite value of this quantity
corresponds to a subluminal velocity.

The fluid is evolved in time using second-order Runge-
Kutta. Since the fluid is evolved in tandem with the
metric, the first and second substeps of the fluid Runge-
Kutta time step are chosen to coincide with the first and
third substeps of the metric time step. Since the spa-
tial discretization of the fluid equations that we use is
only second-order we choose to use second-order time
stepping for the hydrodynamics and we have not yet
experimented with higher order methods. We still use
fourth-order Runge-Kutta for non-vacuum metric evolu-
tion (even though for evolutions with matter the overall
convergence rate will be no greater than second-order)
both for convenience and because in vacuum dominated
regions we may expect some improvement in accuracy.
For general relativistic hydrodynamics we evolve the fluid
on a finite subset (though the majority) of the total grid
(which as mentioned extends to spatial infinity through
our use of compactified coordinates), and at the outer
boundary for the fluid we impose an outflow condition.

Finally, as is common practice for this method of sim-
ulating hydrodynamics, we require that the fluid density
never drop below a certain threshold, adding a so called
numerical atmosphere. We give this numerical atmo-
sphere a spatial dependence that makes it less dense ap-
proaching the boundaries® and choose a maximum value

4 In particular we use the reconstruction parameters presented
in [82].

5 Specifically, we perform reconstruction with the stencils and
weights presented in Section A2 of [84].

6 Specifically we let patm (Te, Yo, 2v) = ﬁcosz(xc) cosz(yc) cosz(zc)
where p is a constant, and (z¢, ye, z¢) are the compactified coor-
dinates which range from -1 to 1.



that makes it dynamically negligible (typically at least
ten orders of magnitude below the maximum density).
The atmosphere is initialized using a cold equation of
state (e.g. a polytropic equation of state).

C. Primitive Inversion

The set of hydrodynamical equations is closed by an
EOS of the form P = P(p,e). While the conserved vari-
ables S, and D are simply expressed in terms of fluid
primitive variables (p, P, ¢, and v*) and the metric, the
reverse is not true. This necessitates a numerical inver-
sion to obtain the primitive variables following each up-
date of the conserved variables. The method we use is
similar to the one used in [85] for spherical symmetry.
First, we decompose the 4-dimensional metric into the
usual ADM space plus time form

ds? = gabdxad:rb
= —a?dt* + v (dx’ + B'dt)(dx? + p7dt) (10)

where 7;; is the spatial metric, a the lapse function and
(* the shift vector. Then, from the metric and conserved
variables we construct two quantities:

5% :=~"8;S; = yH*W?*(W? — 1) (11)
E:=p'S; — Sy = /—g(HW? — P) , (12)

where H := ph and 7 is the determinant of the spatial
metric. We reduce the problem of calculating the prim-
itive fluid variables from the metric and conserved vari-
ables to a one-dimensional root problem, where we begin
with a guess for H and iteratively converge to the correct
value such that f(H) = 0 for some function. From (12)
we can choose

f(H)=E/\y/—g—HW?+ P. (13)

Note that given the metric and conserved variables, f(H)
is only a function of H, and can be computed as follows.
First, calculate W2 = (1 + /1 + 4A)/2 where

52

A= T W2 (W2 —1). (14)

Then compute p and € from
p=D/(VAW), (15)
and
e=-HW?*-1)/p+WE/(Da)—1,  (16)

respectively. Once p and € are known, P can be obtained
from the equation of state, and thence f(H) above. An
iterative procedure for solving f(H) = 0, where f(H)
is calculated as just described, thus gives the primitive
variables p, P, and e. The three-velocity can then be
computed from

_ 7S,
- AHW?

%

(17)

where the Eulerian velocity U’ is related to the grid
three velocity through U’ = (v + 8%) /. This inversion
scheme is implemented so as to allow any EOS of the
form P = P(p,¢); thus, I'-law, piecewise polytrope, and
tabular equations of state such as the finite-temperature
EOS of Shen et al. [86, 87] (for a given electron fraction
Y.), are all supported.

In practice we solve for f(H) = 0 numerically using
Brent’s method [88], which does not require knowledge of
derivatives and is guaranteed to converge for any continu-
ous equation of state as long as one begins with a bracket”
around the correct solution. This can be useful when
dealing with equations of state interpolated from tabu-
lated values. One can avoid losing accuracy in the ultra-
relativistic and non-relativistic limit by Taylor expanding
the above inversion formulae (see [85]), for example, in
1/A and A respectively. We have implemented such ex-
pansions in our primitive inversion algorithm, though we
have not yet made any significant study of the inversion
calculation in these regimes.

In some cases the conserved variables will, due to nu-
merical inaccuracies, evolve to a state that does not cor-
respond to any physical values for the primitive variables.
This causes the inversion procedure to fail. This can hap-
pen in very low density regions that are not dynamically
important but still must be addressed. We handle such
situations using a method similar to that of [73] by ig-
noring the value of S; and instead requiring the fluid to
satisfy a cold equation of state.

D. AMR with flux corrections

Many of the problems we are interested in applying
this code to involve a range of length scales, and in many
cases we expect the small length scale features not to be
volume filling, for example the individual compact ob-
jects in binary mergers. Such scenarios can be efficiently
resolved with Berger and Oliger style adaptive mesh re-
finement (AMR) [89]. A description of the variant of the
algorithm we use can be found in [90]; here we mention
some particulars to this implementation, and give a de-
tailed description of the extension to ensure conservation
across refinement boundaries.

The computational domain is decomposed into a hi-
erarchy of uniform meshes, where finer (child) meshes
are entirely contained within coarser (parent) meshes.
The hierarchy is constructed using (primarily) trunca-
tion error (TE) estimates, which are computed within

7 The initial bracket for the root finding is chosen by first checking
if [Ho/(1+6), Ho(1+ 0)], where Hg is the value of H computed
for the primitive variables at the previous time step and § > 0
is a parameter we take to be 0.4, is a valid bracket around the
zero of f(H). If it is not, as a failsafe we try successively larger
brackets with [Ho/(1 + )™, Ho(1 + 6)™] for n > 2.



the Berger and Oliger time subcycling procedure by com-
paring the solution obtained on adjacent levels of refine-
ment before the coarser levels are overwritten with the
solution from the finer level. Typically we only use the
TE of the metric variables, since fluid variables in general
develop discontinuities as well as turbulent features that
do not follow strict convergence. The layout of the AMR
hierarchy is then periodically adjusted in order to keep
the TE below some global threshold. In some situations
we also require that a region where the fluid density is
above a certain threshold always be covered by a mini-
mum amount of resolution. This can be used to ensure,
for example, that the resolution around a NS does not
temporarily drop below some level even if the TE of the
metric variables in the neighborhood of the star becomes
small.

When setting the values of the metric variables on the
AMR boundary of a given child level we interpolate from
the parent level using third order interpolation in time
and fourth order in space. For the cell-centered variables,
the outer two cells in each spatial direction (for a refine-
ment ratio of 2) on a child level are initially set using
second order interpolation in time and space from the
parent level. Following evolution of the child level and
flux correction applied to the parent level when they are
in sync as described below, but before the cell-centered
values on the child level are injected into the parent level,
the values in the child boundary cells are reset using first
order conservative (spatial) interpolation from the par-
ent level (i.e. the value in the child cell is set to be
the same as that of the parent cell in which the child
cell is contained). This ensures that the boundary cells
on the child level are consistent with the corresponding
flux-corrected cells on the parent level but does not af-
fect the order of convergence of the scheme since these
values are not used in the evolution step. During a regrid
when adding cells to the domain of a refined level we also
use first order conservative interpolation from the over-
lapping parent level to initialize the values of the fluid
variables at new cells (fourth order interpolation is used
for the metric variables). Note that the actual domain
that is refined is larger than the volume where the TE
estimate is above threshold by a given buffer in any direc-
tion. The buffer size and regridding interval are chosen so
that if change in the region of high TE is associated with
bulk motion of the solution (e.g. the NS moving through
the domain), this region will never move by more that
the size of the buffer between regrids. This insures that
new cells (for this kind of flow) are always interpolated
from regions of the parent that are below the maximum
TE threshold. Thus, though the interpolation operation
to initialize new cells is first order, we find the error it
introduces is negligible (i.e., below the maximum desired
TE).

AMR boundaries require special treatment in conser-
vative hydrodynamics codes however, since the fluxes
across the boundary of a fine grid region will not exactly
match the corresponding flux calculated on the coarse

grid due to differing truncation errors. To enforce con-
servation, we correct the adjacent coarse grid cells using
the fine grid fluxes according to the method of Berger and
Colella [62]. In the remainder of this section we review
the algorithm and outline our specific implementation.

We will concentrate on the evolution of D on a 3-
dimensional spatial grid, though the remaining conserved
fluid quantities are treated the same way, and modifica-
tion to different numbers of spatial dimensions is trivial.
Equation (3) is evolved numerically at a given resolution
as

n+1 __ n _
Dijr=Dijx

At[(FiH/Q,j,k - Fﬁl/zg‘,k)/Aw
+(Fi7{j+l/2,k - F;%j—l/Q,k)/Ay
(k)2 — iy re1/2)/ AZ] (18)

where D', is the volume average of D over the (i, j, k)
cell at time t = nAt; Fiﬁ-l/Z,j,k is the flux, F* = Dv”,
through the (i +1/2, 7, k) cell face; Az is the x length of
each cell; and so on for the y and z direction. In prac-
tice the flux values will be calculated with some HRSC
technique combined with Runge-Kutta, but the specifics
are not relevant here. Now consider a situation with two
sequential levels of refinement, L and L + 1, where level
L+1 has a higher resolution with spatial refinement ratio
of r in each direction, and its domain is a subset of level
L. (In practice, we always take r = 2.) Here we focus
the discussion on a left boundary in the z direction, as
illustrated in Fig. 1; boundaries along the right face and
other coordinate directions are treated in a like manner.

When evolving according to the Berger-Oliger algo-
rithm, after each timestep of length At is taken on level
L, r steps of length At/r are taken on level L + 1. Then
the results obtained on L + 1 are injected into level L
where the levels overlap i.e., the restriction operation is
performed conservatively by setting the value in the par-
ent cell to the (coordinate) volume-weighted average of
the child cells which make up the parent cell. Now on
level L, the change in D due to flux going through the
cell face (i, +1/2,j1,kr) on a timestep will be

Al
0DL = =5 F 12,0 e (tn)- (19)

On level L + 1, the change in D in one fine level time
step due to flux passing through one of the 72 cell faces
which make up this same interface is

At/r
5D g1 = — =T
L+1,5,k, Ax/r X
FizL+1+1/2,jL+1+j,7€L+1+k(t" + mAt/T‘)' (20)

for j, k, and m € {0,1,...,r — 1}. Now because
of truncation error, in general the change in the net
“mass” 8 M = 6DV within the coarse level cell

8 For the conserved fluid variable D which we focus on for speci-
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FIG. 1. A visualization of a refinement level boundary and its treatment in the flux correction algorithm. The top shows
cells in the x direction on refinement level L while the bottom shows equivalent cells for the L + 1 refinement level (here the
refinement ratio is 2). Fluxes are symbolized by arrows. On the bottom level the blue cells (“type B” in the discussion in the
text) and those to the left on level L+ 1 are boundary cells and will have their values set by interpolation from level L following
an evolution step on level L. Due to truncation error, subsequent evolution on level L + 1 will give a flux differing from that
computed on the parent level L. Consequently, when the new fine grid solution is injected back to the parent level (in cells to
the right of the red/dotted pattern cell), the solution about the boundary will no longer be consistent with the flux previously
computed there. The correct this, the fluid quantity in the red (dotted pattern) cell is adjusted to exactly compensate for the

difference in flux computed between the coarse and fine levels.

at (ir,jr,kr) computed with the coarse level fluxes
will not equal the corresponding quantity dMp.q, =
> ik ODL41,5,km Vi 41,j,6,m computed with the fine
level fluxes, where V7, is the coordinate volume of the
cell (ir,jr.kr) and Vi1 jkm is the coordinate volume
of the cell (ir41,jr+1+J, kr+1+ k). Thus, after the val-
ues of D on level L + 1 are injected into level L (in cells
(ir+1,jr, k1) and to the right in this example), the solu-
tion on level L will suffer a violation of mass conservation
proportional to My — dMp 1. To restore the conserva-
tive nature of the algorithm, the idea, described in detail
below, is to adjust the conservative variable D in the
cell (ir,jr,kr) post-injection by an amount to exactly
compensate for this truncation error induced difference.

The scheme originally proposed in [62] is to define
an array that keeps track of a correction to the fluxes
through cell faces on level L that make up the boundary
of the evolved cells on level L + 1. Consider the case
where (if,+1/2, j1, kr) is such a face. This face-centered

ficity, the value of the quantity integrated within the volume of
a cell in fact represents the rest mass in that cell. Through-
out this section we will therefore use the term ‘mass’ to refer to
the value of a conserved fluid variable volume integrated within
a cell, though for other conserved fluid variables this will not
correspond to a physical mass.

flux correction array, 0F, is initialized with the inverse
of the flux in (19), 0F = —F i 1/21 4k +ke and then
during the course of taking the r time steps on level L+ 1

receives corrections from the terms in (20)

1
OF = 0F+— S FE e tiknes ikt T mAL/T).
7,k,m

(21)
After the cell values on level L are overwritten by the
injected values on level L 4+ 1 where they overlap, the
cells on level L that abut level L + 1 though are not
themselves covered by level L + 1 cells are corrected with
the flux stored in 0 F.

The way we implement the flux correction algorithm
is slightly different from this. In particular we wish to
avoid the added computational complexity of implement-
ing face-centered grid functions, and therefore we keep
track of a cell centered correction. The correction is thus
also more naturally represented as a correction to the
fluid quantity integrated within the volume of the cell
(e.g. for D the rest mass) rather than a flux. Again
referring to Fig. 1, we define the first few cells at the
boundary of level L + 1 as buffer cells since the calcula-
tion of flux requires knowledge of the state on both sides
of the interface. These cells will have their values set
by interpolation from those in level L. The innermost
buffer cells for the boundary on level L + 1 we call type



B cells (blue cells in the lower half of the figure). These
are the cells where the level L + 1 contribution to the
mass correction will be stored. The cell on level L which
contains the type B cell we will refer to as a type A cell
(red/dotted pattern cell). Type A cells are the ones that
receive mass corrections in this algorithm. For each cell
on each refinement level we use a bitmask grid function
that indicates whether the cell is one of the above types
(A or B), and if so which of the six possible faces (4,
—x, +y, —y, +z, —z) abut the boundary. For simplicity
in the implementation we do not allow grid hierarchies
where a cell would be both type A and type B”.

In the following we outline the additional tasks rel-
ative to the basic Berger-Oliger algorithm that need to
be performed with our implementation of Berger-Colella.
Following the spirit of these algorithms, we break down
the tasks into those the AMR ‘driver’ code implements,
which do not require knowledge of the specific equations
being evolved nor what physical quantities the variables
represent, and conversely the ‘application’ steps that
would need to be implemented by a unigrid application
code plugging into the driver to become AMR-capable.
The driver tasks are:

e For the conserved fluid density D, allocate a storage
grid function to keep track of the associated mass
correction 6 M, i.e. the total correction to D within
the volume of a given cell.

e Upon initialization set all correction arrays éM to
zero, and compute the bitmask for the current re-
finement hierarchy.

e After any regrid, recompute the bitmask array for
the new hierarchy.

e During the stage when buffer cells are set for vari-
able D at interior boundaries on level L + 1 via
interpolation from level L, also interpolate the cor-
rection variable M, where the latter’s interpola-
tion operator simply sets dM in a child cell to be
1/r3 that of the parent cell (for a 3 dimensional
spatial grid).

e Following injection of arrays D and d M from level
L+1 tolevel L, where the injection operator for § M
is an algebraic sum over child cells (a) zero all type
B cells in M on level L+1, (b) call the application
routine (first item in the next list) to apply the mass
corrections to D stored in the injected dM to type
A cells on level L, (¢) zero all type A cells in §M
on level L.

9 In other words, an inner (non-physical) boundary on level L must
be at least one cell away from any inner boundary on level L — 1.
If the hierarchy is generated by truncation error which is suffi-
ciently smooth, inner boundaries will typically not be coincident.
Also, experience suggests it is often more challenging to get an
AMR evolution stable if inner boundaries are too close, so in all
this restriction is not particularly limiting.

The following are new tasks that the unigrid application
code needs to implement:

e A routine that will add the mass corrections stored
in 6M to D for all type A cells on a given grid (i.e.,
set Dy, — D, + 5M/VL)1O.

e When taking a single time step on a grid, for any
cell marked type A, set 6M to minus the change
in mass of the cell from fluxes through cell faces
indicated by the bitmask. For example, with the
case illustrated in Fig.1 and discussed above around
equations (19) and (20), set 6My = —V5.6Dy,.

e When taking a single time step on a grid, for any
cell marked type B, add to M the change in
mass of the cell from fluxes through cell faces in-
dicated by the bitmask. For example, with the
same example above, set Mpy1 jr = 0Mp41 556+
Vi41,5kemOD 41,5 ke m-

For the GR-hydro equations we have five conserved
fluid variables, D and S,. Though the latter do have
non-zero source terms — since gravity can be a source
(or sink) of energy-momentum — the above algorithm
ensures there will be no artificial loss/gain in the pres-
ence of AMR boundaries due to truncation error from
the advection terms.

IIT. TESTS

In this section we present a number of tests of the
methods presented above. We begin by demonstrating
the fourth order convergence of the evolution of the Ein-
stein equations for vacuum spacetimes before moving on
to a number of flat space, relativistic hydrodynamics tests
that probe the treatment of fluid discontinuities. We
conclude with several tests of hydrodynamics in curved
spacetimes.

A. Vacuum evolution

In [42, 91] several tests of convergence of an earlier
version of the code (without hydrodynamics) were pre-
sented. However, since then we have updated the evo-
lution of the Einstein equations to fourth order spatial

10 Since we consider D a density and 6M a mass, this requires
normalization by the volume element V7, which the application
knows. Note that in our code even though we have included
the uncompactified metric volume element \/—g in the definition
of the conservative variables and fluxes, compactification (and
in axisymmetry, the cylindrical shell volume element) effectively
makes the grid non-uniform and so the volume scaling is non-
trivial. An alternative implementation could move this correc-
tion step to the driver list of tasks, though then the application
would need to supply the driver with the array of local volume
elements.



differencing and fourth order Runge-Kutta time differ-
encing, so we first show two vacuum tests: a Brill wave
evolution [92, 93] and a boosted BH evolution.

1. Brill wave

For the Brill wave test we begin with initial data where
the spatial line element is given by

B, 2 2
d52 _ 1/}4 (edeer + € y/r;' z dy2 +
B _ 1 B_2 + 2
W(dydz + dzdy) + #dzz) (22)

where r = \/y2 + 22, B = 2Ar% exp(—(r/0,)?—(x/0,)?),
and the value of the conformal factor, ¥, is determined by
solving the Hamiltonian constraint. We choose A = 40,
o, = 0.16, and o, = 0.12. The initial data is chosen to be
time symmetric (4;; = 0) and maximally sliced (K = 0)
with the conformal lapse & := U~%x = 1. The remaining
metric components are chosen to satisfy the harmonic
gauge (Oa® = 0). This describes a gravitational wave
that initially collapses inward before dispersing. In Fig. 2
we show results from convergence tests in axisymmetry
at three resolutions where the medium and high runs
had respectively 1.5 and 2 times the resolution of the low
run. The constraint equations (H, — Oz, = 0) as well as
the metric components show the expected fourth order
convergence.

2. Boosted BH evolution

As an additional vacuum spacetime test we evolved a
boosted BH in three dimensions. We began with initial
data describing a BH in harmonic coordinates [94] with
boost parameter v = 0.25. As described in [42], during
the evolution we avoid the BH singularity by searching
for an apparent horizon and excising a region within.
To demonstrate convergence we performed this simula-
tion at three resolutions, the lowest of which has approx-
imately 30 points covering the diameter of the BH. The
medium (high) resolution has 1.5 (2.0) times the number
of points in each dimension, respectively. For all resolu-
tions we used the same AMR hierarchy, determined based
on truncation error estimates at the lowest resolution,
with 6 levels of 2:1 refinement. In Fig. 3 we demonstrate
that the constraint equations are converging to zero at
fourth order. When hydrodynamics is included the the-
oretical limiting convergence rate of our code will drop
to second order (in the absence of shocks). However in
vacuum dominated regions, for example the gravitational
wave zone, one can expect that for the finite resolutions
we can practically achieve the convergence will be some-
where between second and fourth order.

I —Low res.
9ol - --Med. res. x (1.5)4
““““ High res. x (2)4

In(lIClIM)
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< 0
_27
_4 I L L
0 50 100 150
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FIG. 2. Top: The natural log of the L? norm of the con-
straint violation, Cy := H, — Oz, for a Brill wave evolution

(i.e. matural log of /[ |Cal?d?z/ [ d?z). The three resolu-

tions shown are scaled assuming fourth order convergence.
Time is shown in units of M, the total ADM mass of the
spacetime, and the constraints are multiplied by M to make
them dimensionless. The lowest resolution has a grid spacing
of h = 1.56 M. Middle/Bottom: The value of the metric
component g evaluated at (z,y,z) = (0,50M,0) (middle)
and the difference in this quantity between low and medium
resolution, and medium and high resolution (bottom), the lat-
ter scaled so that the two curves should coincide for fourth
order convergence.

B. Relativistic hydrodynamic tests in flat
spacetime

We have performed a number of standard tests for rel-
ativistic, inviscid hydrodynamics that probe how well a
given numerical scheme handles the various discontinu-
ities that arise. The best combination of reconstruction
and flux calculation methods depends on the problem
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FIG. 3. The L?*-norm of the constraint violation (Cq =
H, — Oxq) in the equatorial plane for a boosted BH simu-
lation with v = 0.25. The three resolutions shown are scaled
assuming fourth order convergence. Time is shown in units
of Mgu, the ADM mass of the BH in its rest frame, and the
norm of the constraints is multiplied by Mgu so as to make
it dimensionless.

under consideration. We have thus implemented several
options and maintained a modular code infrastructure
so that they are readily interchangeable and upgradable.
While strong shocks such as the ones considered here are
not expected to play an important dynamical role in bi-
nary BH-NS mergers, they might be important in other
potential applications of interest (such as NS-NS grazing
impacts, or understanding EM emission from collisions).
Thus, the ability to tailor the reconstruction and flux
methods to the problem at hand may prove important
in the future. In this section, we closely follow the se-
quence of tests used in the development of the RAM code
of Zhang and MacFadyen [95], so that our results may
be compared with theirs. Though they focus on more so-
phisticated flux-reconstruction algorithms, their simpler
methods (labeled U-PPM and U-PLM, denoting recon-
struction of the unknowns with piecewise parabolic and
linear reconstruction, respectively) are comparable to the
ones we employ.

1. 1D Riemann problems

We first present a series of four relativistic, one-
dimensional Riemann problem tests for which the exact
solution is known (see sections 4.1-4.4 of [95]). In all
cases, the domain is = € [0, 1] and there are initially two
fluid states, a left and a right, initially separated by an
imaginary partition at * = 0.5. At ¢t = 0, the partition
is removed and the fluid evolves to some new state. A
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~v-law EOS is used for all the tests. In Table I we summa-
rize the initial states and adiabatic indices used for the
four tests, which we label as RT1 (Riemann Test 1), RT2,
RT3 and TVT (Transverse Velocity Test). We compare
the performance of the various combinations of recon-
struction schemes and flux methods to the exact solution
and summarize the errors and convergence rates in Ta-
ble II. Exact solutions to these four tests were generated
using a solver provided by B. Giacomazzo, which is de-
scribed in [96]. Taking HLL as our basic flux method,
we performed this series of Riemann problem tests with
four reconstruction methods: MC, minmod, WENO5,
and PPM. For MC and WENO5, we also explored the
effect of the flux method by running the tests with the
Roe solver and Marquina’s method. Most cases have a
Courant-Friedrichs-Lewy (CFL) factor of 0.5. However,
the Roe solver, when combined with WENOS5, does not
seem to work well for problems with very strong shocks,
such as RT2 and TVT. For a CFL factor of 0.5, we ob-
tain acceptable results with Roe only by using a more
diffusive limiter (like MC). For RT2 and TVT, we thus
use Roe combined with WENOb5 with a CFL factor of
0.1.

All of the methods we considered perform well on RT1,
which is a fairly easy test. The lowest overall error occurs
for WENO5 reconstruction (though the density profile
between the shock and the contact discontinuity seems
not to be as flat as in the other cases). The overall suc-
cess of WENOS may be due to the fact that the shock is
relatively mild and there is an extended rarefaction that
benefits from the high order reconstruction. In Fig. 4 we
compare the density profile obtained using HLL and var-
ious reconstruction methods to the exact solution. We
note that the tests which used the Roe or Marquina flux
calculation with WENQObS do not have the oscillation vis-
ible in the plot around x = 0.8 in the HLL-WENO5 case.

The second Riemann test (RT2) is more difficult than
the first, with the blast wave resulting in a very thin shell
of material bounded by a shock on the right and a contact
discontinuity on the left (see Fig. 5). The average con-
vergence rates for this test show a marked difference be-
tween the piecewise-linear and higher-order reconstruc-
tion methods. WENQOS5 seems to perform best, but there
is not much difference between HLL and Marquina or the
Roe solver (with diminished CFL factor) with WENO5.
As in RT1, the reconstruction method seems to be more
important to the solution than the flux scheme.

RT3 is a challenging problem in which the fluid on
the left collides with the initially stationary fluid on the
right, resulting in two shocks separated by a contact
discontinuity. Our numerical solutions suffer from sig-
nificant oscillations (particularly in the reverse shock)
for all reconstruction schemes except PPM, which was
specifically designed to suppress such post-shock oscilla-
tions (see Fig. 6). PPM also has the best convergence
properties (0.85-1.16), with an average rate close to the
expected value of unity. (Finite-volume hydrodynamic
schemes such as this should converge at first order to a
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Test T P, pr. vr Pr pr UR
RT1 5/3 13.33 10.0 0.0 1078 1.0 0.0
RT2 5/3 1000.0 1.0 0.0 1072 1.0 0.0
RT3 4/3 1.0 1.0 0.9 10.0 1.0 0.0

TVT 5/3 1000.0 1.0 0.0 1.0 1.0 (0.0,0.99)

TABLE I. The initial left and right states for the 1D Riemann problems.

¢ Adiabatic index of EOS

® In this case v,=0 but the transverse velocity, vy = 0.99, is nonzero.

Reconstruction Flux Method RT1 RT?2 RT3 TVT
Err® Conv® Err Conv Err Conv Err Conv
MC HLL 0.034 0.82 0.110 0.59 0.062 0.77 0.238 0.72
Roe 0.032 0.82 0.110 0.60 0.052 0.80 0.233 0.72
Marquina 0.036 0.82 0.127 0.59 0.056 0.79 0.227 0.76
Minmod HLL 0.061 0.86 0.169 0.42 0.054 0.71 0.395 0.76
WENO5 HLL 0.033 0.84 0.093 0.76 0.039 0.61 0.191 0.83
Roe 0.032 0.85 0.096 0.79 0.039 0.60 0.198 0.81
Marquina 0.036 0.85 0.093 0.76 0.038 0.66 0.183 0.82
PPM HLL 0.041 0.88 0.133 0.67 0.024 1.01 0.248 0.78

TABLE II. 1D Riemann test results.
“The L1 norm of the error for resolution N = 400.

®The average convergence rate between runs with N = 200, 400, 800, and 1600. The ideal rate is unity for problems such as

these containing discontinuities.

weak solution of the equations when discontinuities are
present.)

For the transverse velocity test (TVT), the initial data
are set up as in RT2, except that there is a transverse
velocity v¥ = 0.99 on the right side of the partition. The
strong shock propagates into the boosted fluid, and the
structure of the shock is altered, since the velocities in
all directions are coupled through the Lorentz factor [98].
Again, the reconstruction technique influences the result
more than the flux calculation. For WENOS5 reconstruc-
tion, the errors for HLL, Roe, and Marquina are all very
close in magnitude. WENOS5 and PPM yield the best
results overall. In Fig. 7 we show the density profile at
different resolutions for HLL combined with WENOS5.

2. 1D Shock heating problem

We next consider a one-dimensional shock-heating
problem as in [95], which tests a code’s conservation of
energy as well as the ability to handle strong shocks. For
this problem, the computational domain is z € [0, 1] with
a reflecting boundary at x = 1. The fluid moves toward
this boundary with an ultra-relativistic initial velocity
of v = 1 — 1071 The fluid has an initial density of
p = 1.0 and a very small amount of specific internal en-
ergy, € = 0.003. The EOS is a gamma-law with I' = 4/3.

When the relativistic fluid slams into the wall, its kinetic
energy is converted into internal energy behind a shock
which propagates to the left. Because the fluid is initially
cold, essentially all of the heat is generated through this
conversion. As explained in [95], the shock speed and
the compression ratio of the shock (or equivalently, the
post-shock density) is known analytically. We evaluate
our errors by calculating the L1 norm of the density er-
rors on the entire computational domain. The average
rate of convergence is also calculated using this measure
of error.

We performed this test using HLL with five different
reconstruction methods at four different resolutions (200,
400, 800, and 1600 zones). Results are shown in Ta-
ble III. We find that, due to the extremely strong shock,
there is a tendency for post-shock oscillations to form
with less diffusive reconstruction schemes (see Fig. 8).
The WENOb solution is afflicted with severe post-shock
oscillations and exhibits poor convergence to the exact
compression ratio. Very diffusive reconstruction schemes
(zero slope and minmod) are comparatively quite success-
ful and converge rapidly to the exact compression ratio.
PPM, with its flattening step, gives the best convergence
rate overall.
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FIG. 4. Density at ¢t = 0.4 for Riemann Test 1 (RT1) with
different reconstruction methods and the HLL flux scheme at
resolution N = 400. The inset shows the shock and contact
discontinuity. The exact solution was generated using the
code of [97].
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FIG. 5. Density at t = 0.4 for Riemann Test 2 (RT2) at dif-
ferent resolutions for HLL-WENOS5. The average convergence
rate in this case is 0.76. The thin shell of material between
the shock and the contact is particularly difficult to resolve.

3. Emery step problem

Next we consider the two-dimensional Emery step
problem [81, 99], with the setup as in [95]. In this sce-
nario, a fluid flows through a wind-tunnel at relativistic
speed and hits a step, which is represented by a reflect-
ing boundary condition. The computational domain is
(z,y) € [0,3] x [0,1] — [0.6,3] x [0,0.2] where the sub-
tracted region represents the step. At the left boundary,

FIG. 6. Density at ¢ = 0.4 for Riemann Test 3 (RT3), a
collision problem, for different reconstruction methods with
HLL at resolution N = 400. The post-shock oscillations are
largest in the MC case and smallest for PPM.
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FIG. 7. Density at t = 0.4 for the transverse test (TVT) at
different resolutions for HLL-WENOb5. The average conver-
gence rate in this case is 0.83.

inflow conditions are enforced (as in the initial data),
while at the right, outflow conditions are enforced. All
remaining boundaries are reflecting. The fluid is initial-
ized with density p = 1.4, velocity v, = 0.999, and a
I' = 1.4 EOS. The pressure is set to 0.1534, giving a
Newtonian Mach number of 3.0.

Higher order reconstruction methods seem to be essen-
tial for this test problem. We find that the MC limiter
performs poorly, regardless of the flux method. Although
the MC simulation is stable, the bow shock formed as



Reconstruction Err® Conv®
ZERO 950 0.94
Minmod 801 0.92
MC 1500 0.85
PPM 824 0.96
WENO5 1670 0.53

TABLE III. Shock heating test results. For this test we also
compare to zero slope reconstruction, labeled “ZERO”.

@ The L1 norm of the error for resolution N = 400.

® The average convergence rate between runs with N = 200,
400, 800, and 1600.
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FIG. 8. Density at t = 2.0 for the shock heating test with
different reconstruction methods and the HLL flux scheme.
The inset focuses on the shock front.

the fluid reflects off the step is distorted by large am-
plitude post-shock oscillations. These propagate down-
stream, rolling up the boundaries between the different
solution regions. The higher resolution runs with MC
also have these features, but at shorter wavelengths and
lower amplitude. PPM and WENODS reconstruction per-
forms much better, and these results are shown at two
resolutions in Fig. 9. (This figure can be compared to
those of [95, 100].) The PPM results appear slightly bet-
ter than WENOS at a given resolution, likely because of
the deliberate oscillation suppression in the PPM algo-
rithm.

4. 2D Shock tube problem

As an additional test of these algorithms’ ability to
propagate strong, multi-dimensional shocks we consider
a two-dimensional shock tube test. The computational
domain, (z,y) € [0,1] x [0,1], is divided into four equal
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quadrants. The initial fluid states in the lower/upper,
left/right quadrants are:

(p, Pvs,v,) " = (0.5,1,0,0)

(p, P,vs,v,) " = (0.1,1,0,0.99)
(p, Pvs,v,)"" = (0.1,1,0.99,0)
(p, P,vs,v,)Y T = (0.1,0.01,0,0).

In this simulation the lower-right and upper-left quad-
rants converge on the upper-right quadrant creating a
pair of curved shocks. We use a I' = 5/3 EOS. In Fig. 10
we show results from simulations using HLL or the Mar-
quina flux method combined with WENOb5 or the MC
limiter. The first three panels are from runs with resolu-
tion of 400 x 400 and a CFL factor of 0.5 and are com-
parable to [95] and the references therein. Though the
main shock features are captured by all of the methods
we considered, oscillations arising from the curved shock
fronts are evident in varying degrees. The fourth panel is
similar to the first but contains a refined mesh in the cen-
ter that has the same resolution as the other three panels,
while the remainder of the domain has half the resolu-
tion. Though the majority of the flow is thus effectively
de-refined, the principal features remain the same. This
is despite the fact that the shocks must travel through
or along refinement boundaries, and the numerical shock
speeds differ slightly on either side of such boundaries
due to the different truncation errors.

C. Hydrodynamic tests in curved spacetime
1. Bondi accretion

As a first test of our code’s ability to simulate rela-
tivistic hydrodynamics in the strong field regime, we con-
sider Bondi flow. We set up our initial conditions with
a stationary solution to spherical accretion onto a black
hole [101]. We use Kerr-Schild coordinates for the black
hole metric. In order to test our code’s ability to converge
to the correct solution we measured how the conserved
density, D, differed from the exact solution as a function
of time for three resolutions. The lowest resolution has
a grid spacing of h = 0.078 M gy, while the medium and
high resolutions have twice and four times the resolution
respectively. As shown in Fig. 11, || D — Dexact|| converges
to zero at second order. For this test we tried both the
MC and WENOS limiters (with HLL for the flux calcula-
tion). Though both had similar levels of error and showed
the expected convergence, WENOb5 had larger errors at
low and medium resolutions. This is probably because,
at lower resolutions, the larger WENOb stencil extends
farther inside the black hole horizon where there is larger
truncation error.



14

FIG. 9. Density contours (30 equally spaced in the logarithm) for the Emery step problem. The upper (lower) two plots
show results for resolution 240 x 80 (480 x 160). For each resolution, the upper plot shows results for WENOS5 reconstruction,
and the lower for PPM. The respective minimum and maximum densities, (pmin, Pmax), are (1.0, 1.0 x 102)7 (0.55,1.1 x 102)7

(0.82,1.1 x 10%), and (6.8 x 1072, 1.1 x 10%).

2. Boosted NS

As an additional test of our evolution algorithm, we
considered a single TOV star with a boost of v = 0.5,
with astrophysically relevant EOS (the HB EOS of [14])
and mass (1.35 Mg). We performed a convergence study
at three resolutions, the lowest of which has approxi-
mately 50 points covering the diameter of the star. The
medium (high) resolution has two (three) times the num-
ber of points in each dimension, respectively. The AMR
hierarchy is identical in all cases, with 7 levels of 2:1
refinement, and was determined using truncation error
estimates from the low resolution run. Fig. 12 shows
that the constraint violations show the expected second-
order convergence to zero. We also compared the perfor-
mance of different reconstruction methods (though using
the HLL flux method throughout). In Fig. 13, we show
the maximum density of the NS as a function of time

for various reconstruction methods. Though the drifts
and oscillations in density converge away for all meth-
ods, we find that WENQOb5 gives the least density drift
compared to MC and PPM at a given resolution. The
drift in maximum density with PPM has to do with the
way this particular implementation enforces monotonic-
ity at extrema, which results in a loss of accuracy (see for
example [102]). Modifying the way the algorithm handles
smooth extrema can reduce this effect. We implemented
one such modification (eqns. (20-23) from [102]), the re-
sults of which are labeled ‘PPM alt.” in Fig. 13.

8. Boosted NS flux correction test

As a demonstration of the flux correction algorithm
(outlined in Sec. IID) to enforce conservation across
AMR boundaries, we perform an additional boosted NS
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FIG. 10. Density contours (30 equally spaced in the logarithm) for the 2D Riemann problem with, from left to right, top
to bottom: HLL and MC, HLL and WENO5, Marquina and MC, and HLL and MC with mesh refinement. The respective
minimum and maximum densities, (Pmin, Pmax), are (1.1 x 1072,7.0)7 (8.2 x 1073,8.1), (9.1 x 1073,7.1)7 and (7.6 x 1073, 7.0).
For the first three simulations a resolution of 400 x 400 was used. For the final simulation, a refinement region (red box) was
placed in the middle with equivalent resolution, while the remaining grid has half the resolution (i.e. this simulation has lower

resolution overall). A CFL factor of 0.5 was used throughout.
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FIG. 11. The L? norm of the difference between the numer-
ical and exact value of the fluid quantity D (divided by the
norm of the exact solution) for Bondi accretion with MC and
WENOS5. The low resolution was run with a grid spacing of
h = 0.078 Mg while the medium and high has twice and four
times the resolution respectively. The results are scaled for
second order convergence.

test. We use the same conditions as the low resolution
simulation outlined above in Sec. ITII C 2 but with a differ-
ent AMR hierarchy. In particular, we keep the hierarchy
fixed so that the boosted NS will move to areas of succes-
sively lower refinement. In Fig. 14, one sees that without
flux corrections there is a ~ 0.1% loss in fluid rest mass
as the NS moves off the highest refinement level, and a
~ 0.8% loss as the NS moves off the next to highest re-
finement level. This change in the conserved fluid rest
mass comes from the fact that there is a slight mismatch
in fluxes at the mesh refinement boundaries due to trun-
cation error. With the flux correction routine activated,
this error is eliminated, and the only change in the total
rest mass is due to the density floor criterion (i.e., the
numerical atmosphere). As an indication of how the use
of flux corrections affects energy and momentum we can
also compare the integrated matter energy and momen-
tum as seen by a set of Eulerian observers. The matter
energy density is given by T%n,n; and the momentum
density is given by p; = —T'n, where n, is the time-like
unit normal to the constant ¢ slices. These quantities in-
volve combinations of the conserved fluid variables and
the metric and are subject to truncation error, especially
since in this simulation the NS is allowed to move to
lower resolution. In addition, these quantities can vary
with time due to gauge effects (though in this case, the
variation due to gauge effects is sub-dominant to the vari-
ation mentioned below); so we use them as an indication
of the effect of flux corrections by comparing them for the
simulations with and without flux corrections to a simi-
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lar simulation where the AMR tracks the NS and there is
therefore essentially no flux across AMR boundaries. At
the end of the simulation the run without flux corrections
has 0.91% less energy compared to a similar simulation
where the AMR tracks the NS, while the run with flux
corrections has only 0.13% less energy. The run without
flux corrections has 4.0% less momentum (in the boost di-
rection) while with flux corrections the comparative loss
is 2.5%.

This test is somewhat artificial since we have deliber-
ately prevented the AMR algorithm from tracking the
NS. As long as the AMR algorithm can keep the bound-
aries away from areas of of non-negligible flux (as it does
when following the boosted NS in the test described in
Sec. ITI C 2) the effect of the flux correction algorithm is
small, at the level of the numerical atmosphere that gets
pulled along with the star. However, in astrophysical ap-
plications, situations may generically arise in which fluid
crosses AMR boundaries. For example, the tidal tails
formed by the disruption of a NS by a BH will cross
refinement boundaries, and likewise for the subsequent
accretion disk that forms, since it would be much too
costly to keep these entire structures on the finest mesh.
Of course, the hydrodynamic solution is still subject to
truncation error, which could in principle affect aspects
of the dynamics at the same order of magnitude as pu-
tative non-conservative effects. Though for certain prob-
lems, such as calculating the amount of unbound mate-
rial following a BH-NS merger, or studying the late time
accretion, it could be quite advantageous to ensure con-
servation within the hydrodynamic sector. It would be
an interesting computational science problem to system-
atically study the efficacy of AMR boundary flux conser-
vation in such scenarios.

Finally, we note that additional convergence test re-
sults from this code were presented in [69] for the partic-
ular BH-NS merger simulations discussed there.

IV. CONCLUSIONS

Numerous scenarios that fall within the purview
of general relativistic hydrodynamics are still mostly
unexplored—especially CO mergers involving neutron
stars. There is a rich parameter space, of which large
areas remain uncharted due to uncertainty or potential
variability in BH and NS masses, BH spin and align-
ment, the NS EOS, and other aspects. Beyond the pure
hydrodynamics problem, the roles of magnetic fields and
neutrino physics are just beginning to be explored by
various groups, and we expect to add support for such
physics to our code in the future. The potential appli-
cations of robust and flexible numerical algorithms for
evolving hydrodynamics together with the Einstein field
equations are manifold. With this in mind, we have im-
plemented methods for conservatively evolving arbitrary
EOSs, in particular for converting from conserved to
primitive variables without knowledge of derivatives; and
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FIG. 12. The L?-norm of the constraint violation (Coq := Ho—
Oz, ) in the equatorial plane for a boosted NS simulation with
v = 0.5 (using HLL flux calculation and WENQO5 limiter).
The three resolutions shown are scaled assuming second order
convergence. Time is shown in units of My, the ADM mass
of the NS in its rest frame, and the norm of the constraints is
multplied by My so as to make it dimensionless.

we have implemented numerous reconstruction and flux
calculation methods that can be used interchangeably to
meet problem specific requirements. Though accurate
treatment of shocks may not be crucial for BH-NS merg-
ers (where shocks are not expected to be dynamically
important), the same is not true of NS-NS binaries, espe-
cially eccentric ones where the stars may come into con-
tact during non-merger close encounters [103]. We have
also taken care to implement a flux correction algorithm
that preserves the conservative nature of hydrodynamical
advection across AMR boundaries. Though strict conser-
vation is not, strictly speaking, essential (since any non-
conservation would be at the level of truncation error),
it is an especially appealing property when studying, for
example, CO mergers as potential sSGRB progenitors. Af-
ter merger, material that did not fall into the black hole
— typically on the order of a few percent of the original
NS mass — will fill a large volume making up an ac-
cretion disk and potentially unbound material. Though
accurately tracking this material is not important for the
gravitational dynamics, it is critical for characterizing po-
tential EM counterparts to the merger.
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Appendix A: Spectral decomposition of the flux
Jacobian

Our conservative formulation of the hydrodynamical
equations (3,4) can be written in vector notation as d.q+
0;(F") = S where q is a five dimensional vector of the
conserved (in the absence of sources S) fluid variables
q = (D, S, 5.,8,,5.)T and the flux F* = (Dv', (S; —
V=gP)v', Sjv’ + 8iy/=gP)", where the index j in the
flux is shorthand for the 3 components (x,y,z). Some
flux calculation methods such as the Roe solver [77] and
the Marquina flux [78] require the spectral decomposition
of the Jacobian %—l:; which we give here. (See [104] for
the spectral decomposition for a similar formulation with

ry = (1, hW(U*By — {a(y" — U'U) + AB'}/B), AW (U, — §§A/B))T,

where A = [U'c?(1 —U?)Fbjg and B = 4% —U%(a+b)q,

vy = (W/(HW (s/p— &)U 0 U)) (A1)

12 = F AW Ve
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slightly different conserved variables.) The eigenvalues
are

As = aglatb) - § (A1)
and

A3 =aU" - 3 (A2)
(with multiplicity 3), where a = (1 — AU b =

eo /A= U1 =U%Z) —aUT], g = (1 - U%2) 1, c,
is the sound speed, and «, %, 7% are metric components
as in (10). Here and throughout we use ¢ € {z,y, z} to
refer to the direction of the flux in the Jacobian with
which we are concerned, %—1“:. In the following equations
we use the index j as a shorthand for the three spatial
components of the eigenvectors (that is, the components
associated with S, Sy, and S.). The indices I and m
are fixed by 7 and the indices n and p are fixed by j as
indicated below. The index k is the only index that is
summed over. A set of linearly independent right eigen-
vectors is given by

where xk = %—P, and,
€

T
v = (WU 20W2(URBE —a)Ui+hBi, Ay +2W2U;01) )
(A5)
where for ry, | = y,z,x for i = z,y, z respectively. The
expression for r; can be obtained simply by replacing [
with m, where m = z,x,y for i = x,y, z respectively,
in the above expression for ry. H and W are as defined
following (12).
We also give the corresponding left eigenvectors.
Component-wise, for 1. = (I2,1%,1%),

I = F[(K = D{=AU" + Ve (W2~ Ti)} + KWV /o

b=/ [(mwmp — YpYmn) {1 = KA = 2K = 1)VEU'} + 2K — D)VEEW?U7 | — 14

where | = y,z,x and m = z,z,y for i = z,y, 2z respec-
tively, and n = y, z,z and p = z,x,y for j = x,y, z re-
spectively and [, = Y Ymm — VimYim, 5 =T _’YUiUia
K =(1=cip/r)~" Ay = (axb)q, Ve = (U'—Ay)/ (7"~
U'Ay), A = (" =U'U")/(v" —U'A+), and

[ =2nWbgé(K —1)(v" = U'U") x

(A6)
(" = UML) (Y = U'A)]
Furthermore,
w > i_ @i
Iy = Cgpw—csp)(h, W/e, W(U7 = §/a)),  (AT)



and the components of 1, and 15 are

12 =0
1L = G (ahé) ™!
lj = [65U1Glm + 6f{7mm(1 - UlUl) + /YimUmUi}

=03 {2 (1 = UiU") + 7m0} | (h) ™!
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~B1; (A8)

where G = (Ymm Ui —YimUn) and for 1y, I = y, z, z and
m = z,x,y for i = z,y, z respectively. The expression for
I5 can be obtained from the above expression for 14 simply
by interchanging [ and m.
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