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Gaussian processes provide a method for extracting cosmological information from observations
without assuming a cosmological model. We carry out cosmography – mapping the time evolution
of the cosmic expansion – in a model-independent manner using kinematic variables and a geometric
probe of cosmology. Using the state of the art supernova distance data from the Union2.1 compila-
tion, we constrain, without any assumptions about dark energy parametrization or matter density,
the Hubble parameter and deceleration parameter as a function of redshift. Extraction of these
relations is tested successfully against models with features on various coherence scales, subject to
certain statistical cautions.

I. INTRODUCTION

Cosmic acceleration is a fundamental mystery of great
interest and importance to understanding cosmology,
gravitation, and high energy physics. The cosmic ex-
pansion rate is slowed down by gravitationally attractive
matter and sped up by some other, unknown contribu-
tion to the dynamical equations. While great effort is
being put into identifying the source of this extra dark
energy contribution, the overall expansion behavior also
holds important clues to origin, evolution, and present
state of our universe.

Indeed, by studying the expansion as a whole one
sidesteps the issue of exactly how to divide the gravi-
tationally attractive (e.g. the imperfectly known matter
density) and the accelerating contributions, and whether
they are independent or have some interaction (see, e.g.,
[1–3]). By concentrating on the kinematic variables – the
expansion properties as a function of redshift z or scale
factor a = 1/(1 + z) – one does not need to know the in-
ternal structure of the field equations, i.e. the dynamics.
The clarity and focus on kinematics trades off against the
loss of information on the specific dynamics.

Another gain comes from using geometric measure-
ments – cosmic-distance variables that do not depend on
the particular forces and mass densities. The sensitiv-
ity of Type Ia supernova measurements of the distance-
redshift relation to the deceleration parameter was used
to discover the accelerated expansion [4, 5]. Other probes
such as gravitational lensing, galaxy-clustering statis-
tics, cluster-mass abundances, etc. provide valuable in-
formation, but are dependent on non-kinematic variables.
Some techniques, such as distances from baryon acoustic
oscillations and Sunyaev-Zel’dovich effects in clusters, are
on the fence, nominally geometric but having implicit de-
pendence on the gravitational interaction of matter and
so the force law dynamics.

Given distance and redshift measurements, the cosmic
expansion rate is related by a derivative of the data, and
the deceleration parameter by a further derivative. This
is problematic for data with real world noise, as the dif-
ferentiation further amplifies the noise. Various smooth-

ing procedures have been suggested, e.g. [6], but tend to
induce bias in the function reconstruction due to para-
metric restriction of the behavior or to have poor error
control. Using a general orthonormal basis or principal
component analysis is another approach, to describe the
distance-redshift relation (e.g. [7]) or the deceleration pa-
rameter [8], or using a correlated prior for smoothness on
the dark energy equation of state [9], but in practice a
finite (and small) number of modes is significant beyond
the prior, essentially reducing to a parametric approach.
Gaussian processes [10] offer an interesting possibility for
improving this situation.
Gaussian processes (GP) have been used recently [11–

13] in a dynamical reconstruction, going from a set of
realizations of the equation of state parameter w(z) of
the dark energy component forward to comparison of the
derived distance-relation to the distance data. The com-
parison was carried out through a Markov Chain Monte
Carlo (MCMC) assessment of likelihoods. Note that the
GP interpolation does not occur between data points but
rather on an arbitrary grid of some possibly unmeasured
quantity. This approach is intriguing, but relies on sep-
aration of the matter density from the dark energy be-
havior, i.e. it works within a dynamical framework.
The approach in this paper takes a fundamentally dif-

ferent path. We begin with the observations of supernova
distances and here consider only kinematic quantities.
Modeling the cosmic distance relation as a smooth kine-
matic function drawn from a GP, the value of the function
at any redshift is then predicted directly through testing
the GP model against the data. The cosmic expansion
can then be extracted from the means and covariance ma-
trices of the Gaussian process realizations (weighted by
a posterior) directly for quantities related linearly to the
original GP, even through derivatives. This allows us to
probe the rate and acceleration of the cosmic expansion
in a highly model-independent manner (at the price of
focusing on only this type of information). One can view
this as a top-down approach, complementary with the
bottom-up approach of starting with theoretical quanti-
ties and working toward the data, and then applying a
likelihood comparison.
In Sec. II we lay out the basics of the kinematic cos-
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mology quantities and the Gaussian process formalism.
Readers familiar with the method or eager for results
could go to Sec. III where we analyze the results of per-
forming the GP reconstruction, for both current and sim-
ulated data. We summarize the cosmological implica-
tions and discuss the prospects in Sec. IV. Appendices
present details of tests of the robustness of the statistical
techniques.

II. COSMOGRAPHIC RECONSTRUCTION

A. Expansion History

Homogeneity and isotropy determine the metric of the
universe to be of the Robertson-Walker form, which for
a spatially flat universe (from a theory or inflationary
prior) is

ds2 = −dt2 + a2(t)
[

dr2 + r2(dθ2 + sin2 θ dφ2)
]

, (1)

where t is a time coordinate and r the coordinate dis-
tance. The key quantity is the cosmic expansion or scale
factor a(t), or equivalently the redshift z = a−1 − 1.
Without using any field equations, such as the Fried-

mann equations (the Einstein equations specialized to the
above metric) – and hence in a purely kinematic way –
we can still define a conformal distance

η ≡

∫

dt

a
=

∫

dr , (2)

and build a luminosity distance dL(a) = a−1η(a), and an
angular diameter distance da(a) = aη if desired.
Flux and redshift measurements of a set of standard-

ized candles such as Type Ia supernovae deliver observa-
tional access to η(z). From this function directly comes
the inverse Hubble parameter

H−1(z) ≡

(

ȧ

a

)

−1

=
dη

dz
(3)

and the deceleration parameter

q(z) = −
aä

ȧ2
= −

1 + z

H−1

dH−1

dz
− 1 . (4)

This a top-down approach, starting with observable dis-
tances and proceeding to cosmological kinematic quanti-
ties.
We follow this top-down approach because of its use-

ful properties of direct relation to kinematics, avoidance
of reliance on a cosmological model or knowledge of the
matter density, and well defined and efficient error prop-
agation within the GP method.
An alternative approach with different characteristics

is bottom-up. There, one would either parametrize q(a)
(or perhaps a dark energy equation of state, or pressure
to density, ratio wde(a) = [2q(a) − 1]/[3Ωde(a)], which
involves the dimensionless dark energy density Ωde) or

choose realizations of q(a) from a statistical distribution.
Parametrizing q(a) allows straightforward error propa-
gation up to the distances, for comparison to the data;
however one must ensure that the parametrization does
not restrict or bias the results. Note that choosing a form
q(a) is an explicitly dynamical assumption, breaking the
kinematic nature of the analysis [14]. In terms of the
equation of state, the w0-wa form wde(a) = w0+wa(1−a)
is highly robust, reconstructing dL(a) to better than 0.1%
for a wide array of models [15] but does require a sepa-
ration into matter density and dark energy behavior.
If one uses statistical realizations of q(z), then the error

propagation necessary, including the covariances between
values i at different redshifts, is

Cov[Hi, Hj ] = HiHj×
∫ zi

0

dz′

1 + z′

∫ zj

0

dz′′

1 + z′′
Cov[qi, qj ]

Cov[di, dj ] = (1 + zi)(1 + zj)×
∫ zi

0

dz′

H(z′)

∫ zj

0

dz′′

H(z′′)
Cov[Hi, Hj] .

(5)

This can be slow numerically, especially in a MCMC like-
lihood evaluation.
However, for a GP the relation between the covariance

of a quantity and its derivative (as we use in the top-
down approach) is particularly simple and furthermore
one can avoid functional parametrizations or statistical
distributions of the cosmological variables.

B. Gaussian Process Modeling

We begin with the assumption that the stochastic
data is described by a Gaussian process that corre-
sponds to the cosmological function η(z). The effec-
tive supernova magnitudes at peak brightness, m, and
their associated covariance are derived from light-curve
data [e.g. 16]. Those peak magnitudes transformed by
(1 + z)10m/5 represent measurements of the conformal
distance with a nuisance normalization factor, y(z) =

10M/5 (10pc)
−1

η(z) where M is the absolute supernova
magnitude.
Derivatives of Gaussian processes are themselves Gaus-

sian processes (with some ignorable pathological excep-
tions). This means that the estimator for the Hubble
length H−1(a) is also a GP (this does not hold for non-
flat universes). The deceleration parameter is not a GP
because of its nonlinear relation to H−1 but its mean
value and covariance can estimated analytically from the
two GP functions, dy/dz and d2y/dz2, that it depends
on. That is,

H−1(a) ∝
dy

dz
(6)

q(a) = −(1 + z)

(

dy

dz

)

−1
d2y

dz2
− 1 . (7)
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1. Gaussian Process of the Kinematic Function

The Gaussian processes serve as a regression tool to
infer directly from distance data the kinematic expansion
properties as a function of redshift z. This provides the
covariances between the values at different redshifts as
well, which one would expect a physical function to have.
A Gaussian process is defined as a collection of random

variables, any finite number of which have a joint Gaus-
sian distribution [10]. A GP f(z) is specified by a mean
functionm(z) and a covariance function or kernel k(z, z′).
For a finite set Z of z’s, values of the function are drawn
from a Normal distribution, f ∼ N (m(Z),K(Z,Z))
where the matrix element Kij = k(Zi, Zj).
The mean function m(z) is an initial guess for the func-

tion, in effect “pre-whitening” the data to reduce the
dynamic range over which the variations need to be fit.
Without sufficient care the results can in fact be influ-
enced by the mean function, so for example assuming
a ΛCDM concordance relation is not necessarily a good
choice. We discuss the issues in Appendix A where we
compare several approaches to choosing a mean function
and investigate their influence. In the main text we adopt
an iterated smoothings set for the mean function and ver-
ify that the final results are not influenced by this input.
For the covariance function we use a common form,

the squared exponential [27],

k(z, z′) = σ2
f exp

(

−
|z − z′|2

2l2

)

, (8)

where σf defines the overall amplitude of the correlation
(one can think of this as an offset or tilt of the recon-
structed function from the input mean function), and l
gives a measure of the coherence length of the correlation.
These effects are discussed and illustrated in Appendix B.
Any parameters for the mean function (such as fiducial

Ωm and w, which we do not use), and σ2
f and l, are

hyperparameters in the fit.

2. Gaussian Process of the Data

In addition to the regression variation represented by
the GP covariance function, in the data there is intrinsic
dispersion in the distance indicator and (possibly corre-
lated) measurement noise. The sum of all these gives the
GP of the measured data y, with covariance function

ky(zi, zj) = k(zi, zj) + σ2
I δij +N(µi, µj) , (9)

where σ2
I is the intrinsic dispersion and N(µi, µj) is the

measurement noise covariance matrix.

Note that because q(z) involves a ratio of distance
derivatives, it is immune to the absolute amplitude of
the distance, i.e. H0 or its combination with the abso-
lute supernova magnitude M. In using the smoothing
method to generate the mean functions for the GP (see
Appendix A) we fit out the absolute amplitude, making
the kinematics independent of these nuisance parameters.
Fitting for M is a key step that should not be neglected,
and its uncertainties must be propagated into the final
reconstruction uncertainties. Fixing it to a particular
value can also bias the results. The smoothing method
has been shown robust for including M in [25], and a
similar approach has been used in [17] in reconstruction
of the expansion history of the universe by combining a
smoothing method and Crossing Statistic [18, 19].

3. Inferring Kinematic Functions from Data

Given data y measured at a set of points Z we want a
faithful reconstruction of the distance η, as well as its
derivatives, at some other set of points Z1. Call the
reconstructed function f . In GP, the joint probability
distribution is given by

[

y

f

]

∼ N

([

m(Z)
m(Z1)

]

,

[

Ky(Z,Z) K(Z,Z1)
K(Z1, Z) K(Z1, Z1)

])

.

(10)
Here the subscript y is just to clearly indicate the GP of
the input data. The conditional distribution of f given
the data is described by

f = m(Z1) +K(Z1, Z)K−1
y (Z,Z)y (11)

Cov (f) = K(Z1, Z1)−K(Z1, Z)K−1
y (Z,Z)K(Z,Z1) .

(12)

The probability distribution functions (PDFs) of the
reconstructed functions (see Eq. A1 for details) are inte-
grated over the hyperparameter space, weighted by the
hyperparameter posterior distribution. For each point in
hyperparameter space the PDF of the GP function and
its derivatives (e.g. the distance, Hubble length, and sec-
ond derivative entering the deceleration parameter) can
be written analytically:







y

f

f ′

f ′′






∼ N













m(Z)
m(Z1)
m′(Z1)
m′′(Z1)






,







Σ00(Z,Z) Σ00(Z,Z1) Σ01(Z,Z1) Σ02(Z,Z1)
Σ00(Z1, Z) Σ00(Z1, Z1) Σ01(Z1, Z1) Σ02(Z1, Z1)
Σ10(Z1, Z) Σ10(Z1, Z1) Σ11(Z1, Z1) Σ12(Z1, Z1)
Σ20(Z1, Z) Σ20(Z1, Z1) Σ21(Z1, Z1) Σ22(Z1, Z1)












, (13)
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where

Σαβ =
d(α+β)K

dzαi dz
β
j

, (14)

and a prime indicates d/dz.
The inferred mean and covariance of the derivatives

are given by





f

f ′

f ′′



 =





m(Z1)
m′(Z1)
m′′(Z1)



+





Σ00(Z1, Z)
Σ10(Z1, Z)
Σ20(Z1, Z)



Σ−1
00 (Z,Z)y

(15)

Cov









f

f ′

f ′′







 =





Σ00(Z1, Z1) Σ01(Z1, Z1) Σ02(Z1, Z1)
Σ10(Z1, Z1) Σ11(Z1, Z1) Σ12(Z1, Z1)
Σ20(Z1, Z1) Σ21(Z1, Z1) Σ22(Z1, Z1)



−





Σ00(Z1, Z)
Σ10(Z1, Z)
Σ20(Z1, Z)



Σ−1
00 (Z,Z) [Σ00(Z,Z1),Σ01(Z,Z1),Σ02(Z,Z1)] .

(16)

For q(z), which is not a GP, the mean is given by Eq. (7)
and its variance is

Var[q(z)] = (q + 1)2
[

Var[y′(z)]

y′2(z)

+
Var[y′′(z)]

y′′2(z)
− 2

Cov[y′(z), y′′(z)]

y′(z)y′′(z)

]

.

(17)

To integrate over the hyperparameter space (with its
non-Gaussian posterior) we can either perform a Monte
Carlo integration or do grid sampling. Since we only have
two hyperparameters, σ2

f and l, we use grid sampling,

equispaced in logarithm with priors of 10−5 ≤ σ2
f ≤ 1

and 10−2 ≤ l ≤ 100.2 = 1.6. The final reconstructed
results are weighted averages from the posterior based
on results from all points in the sampled hyperparameter
space. See Appendix B for further details.

C. Data and Simulations

To test the robustness of the reconstruction we perform
cosmographic fits to simulated data, and then we also
perform fits to actual current data. For current data we
use the Union2.1 supernova compilation, including full
error covariance matrix, consisting of 580 distances from
z = 0.02− 1.4. The simulated data consists of the same
number over the same range, realizing distances using a
random intrinsic dispersion of 6% in distance, for various
input cosmologies.
These different cosmologies are intended both to test

the robustness of the GP reconstruction and to explore
the discriminatory power of the reconstruction. They
are summarized in Table I and all have dimensionless
present matter density Ωm = 0.27. One is a ΛCDM cos-
mology. Another is a member of the family of mirage
models [20], which match the distance to CMB last scat-
tering of ΛCDM, using the relation for the dark energy
equation of state wa = −3.63(1 + w0). In the limit that
w0 = −1 this family reduces to ΛCDM. Note their phan-
tom crossing of w = −1 can give unusual features in q(z)

that are useful for testing the GP reconstruction. The
last model is a rapidly evolving dark energy cosmology
with a sharp transition between a high redshift value of
the dark energy equation of state parameter w = −0.5
and a low redshift value w = −1. The specific w(z)
is given by the CCL or “kink” form [21] with the same
parameters used in [12]. This is a much more rapid tran-
sition, and at a lower redshift, than expected in general
from dark energy, and so also poses a challenging test of
reconstruction.

Cosmology Description
ΛCDM Ωm = 0.27, w = −1
Mirage Ωm = 0.27, w0 = −0.7, wa = −1.09
Kink Ωm = 0.27, w0 = −1, w(z ≫ 0.5) = −0.5

TABLE I: Input cosmologies used to generate simulated dis-
tance data from which the GP tries to reconstruct the appro-
priate kinematic cosmological quantities.

III. EXPANSION HISTORY RESULTS

From many realizations of the GP reconstruction we
reconstruct the kinematic functions η, H−1 = η′, and
q(η′, η′′), where prime denotes d/dz, and their PDFs. We
show error bands at every redshift defined such that 68%
of the realizations lie within this range. We emphasize
that the error band should be interpreted in a redshift by
redshift sense and the covariances are not visible in such
a plot; that is, the upper part of the band at one redshift
may be correlated with the lower part of the band at
another redshift.

A. Simulated Data

For each of the cosmologies in Table I we plot h−1 ∝
H−1(z) in Fig. 1 and q(z) in Fig. 2. The true relations are
given for each cosmology by the long, short, and medium
dashed curves (the same in all panels of a set). The GP
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reconstructions are shown using simulated data based on
each cosmology in turn, with 68% error bands. If the er-
ror bands fail to overlap the true relation, the GP recon-
struction would be inaccurate at 68% confidence level; if
the error bands fail to overlap the alternate cosmologies’
true relations, GP is successful at distinguishing these
models. (Note that these are conservative criteria since
even if error band overlaps a true relation this does not
necessarily mean agreement with that cosmology because
the redshift correlations are not visible.)
We see that each input cosmology is faithfully recon-

structed, and each alternate cosmology is properly ex-
cluded (at 68% confidence or greater). These results
demonstrate that GP can be a useful statistical tool for
model independent kinematic parameter estimation.
Agreement of the error band with the input model is

a necessary but not wholly sufficient condition for ac-
curate reconstruction. One needs to take into account
the correlations between the predictions at each redshift.
Rather than do a model by model, full likelihood com-
putation, we tested the influence of correlations between
redshifts through model independent, simple statistics.
The first used the Om function [22] of the Hubble pa-
rameter that serves as a straightforward consistency test
of ΛCDM, and the second example used the decelera-
tion parameter. Looking at the distribution of the dif-
ferences ∆Om(0.2, 0.9) ≡ Om(z = 0.2) − Om(z = 0.9)
and ∆q(0.2, 0.9), for example, we find agreement with
the error band results that the GP reconstructions accu-
rately reproduce the input cosmology values. Since our
analysis assumes no dynamics, we do not have to split
components into matter and dark energy, and so our re-
sults would apply to data generated with different input
Ωm (as we have tested) and even cases with coupling
between them.

B. Current Data

We now apply the model-independent constraints from
GP to the expansion history reconstructed from actual
current data. The Union2.1 compilation [23] carried out
a homogeneous, blind, systematics-oriented analysis of
supernova distance data. We use their full data covari-
ance matrix for the statistical plus systematics uncertain-
ties. The kinematic reconstruction results are presented
in Figs. 3 and 4.
The ΛCDM model with Ωm = 0.27 (now not an input

for the mock data, but a comparison to the fit) is found
to be in strong concordance with the Union2.1 data.
However, we cannot distinguish ΛCDM from the mi-

rage family of models, even one with as extreme time
variation as w0 = −0.7, wa = −1.09. Partly this
is due to the best fit from current data lying between
the two, roughly corresponding to a mirage model with
w0 = −0.85, wa = −0.54, and partly due to using the
full covariance matrix with systematics for current data,
which gives larger error bars than the simulated statisti-
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FIG. 1: GP reconstructions of the inverse Hubble parame-
ter h−1(z) ∝ H−1(z) are given for simulated data based on
the three different input cosmologies of Table I. The dashed
curves, the same in all panels, give the true relations. The
error band on each reconstruction represents the 68% confi-
dence level. The reconstruction in each case faithfully agrees
with the input cosmology.
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FIG. 2: As Fig. 1, but for the deceleration parameter q(z).

cal errors used in the previous plots.

Current data does point unambiguously to current ac-
celeration in this model independent reconstruction, with
q < 0 at low redshift with strong significance. However,
current kinematic data does not indicate when dark en-
ergy fades into the past, i.e. q > 0 is not required at z & 1
from this data.
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FIG. 3: GP reconstruction of the inverse Hubble parame-
ter h−1(z) ∝ H−1(z) using the Union2.1 data compilation is
given by the shaded error band representing the 68% confi-
dence level.

-1

-0.5

 0

 0.5

 1

 0.2  0.4  0.6  0.8  1  1.2  1.4

q(
z)

z

Reconstructed Results (Union 2.1 Data)
LCDM Model

Kink Model
Mirage Model

FIG. 4: As Fig. 3, but for the deceleration parameter q(z).

IV. CONCLUSIONS

Gaussian processes can be successfully used in a sub-
stantially nonparametric reconstruction of the kinematic
quantities characterizing the cosmic expansion. We sim-
ulated several cosmologies and found that GP chose the
correct one each time. GP also has the advantage of sim-
ple, well controlled propagation of errors and covariances
to derivatives (or integrals) of the function, allowing dis-
tance relations to be converted to the Hubble length or
second derivative (which can then be analytically propa-
gated to the deceleration parameter).
Key ingredients entering GP are the mean function and

covariance function, with their hyperparameters. We em-
phasized caution in adopting such functions that might
impose (hidden) restrictions on the reconstruction, e.g.
through the coherence length, possibly leading to results
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retaining memory of the starting point. Proper treat-
ment of hyperparameters through weighted integration
over their space and sufficiently wide priors is essential.
The combination of smoothing based on the data itself,
iteration to remove initial conditions, and a set of mean
functions to enable diversity in GP amplitudes and corre-
lations seems to deliver robust results based on our tests.
Future work aims at refining this approach further, in
particular studying the stability of results for a broad
range of input cosmologies.

Our reconstructions of H−1(z) and q(z) using current
data are consistent with ΛCDM, but also with cosmolo-
gies with substantial time variation. In particular, this
holds for the mirage class of models, which preserve the
distance to CMB last scattering and so the addition of
CMB data to the supernova data will not affect this con-
clusion. Dynamical probes, such as growth, in combi-
nation with the kinematic distance measurements used
can have further leverage, but mirage models also have
substantially similar growth to ΛCDM; for example our
extreme mirage model agrees in growth as a function of
redshift to within 1.5% with ΛCDM with the same mat-
ter density.

While mirage models cross w = −1, no conclusions
can be drawn from the data regarding the necessity for
such crossing to occur. Furthermore, until future data
accuracy constrains the time variation of the equation
of state to below wa . 0.5 (the current best fit mirage
value), crossing cannot be said to be tested significantly.

Current distance data has insufficient leverage on the
higher order kinematic quantities, such as the deceler-
ation parameter q(z). It does definitely show, by this
substantially nonparametric approach, that cosmic ac-
celeration is occurring at low redshift. The transition
from acceleration to deceleration, however, could have
happened at any redshift z & 0.7, or even not at all,
according to this current data. Future kinematic data
extending to redshifts z & 1 are necessary to resolve all
the issues of substantial time variation, phantom cross-
ing, and the onset of acceleration. Future applications
of GP include projection of such constraints from future
surveys, possibly allowing for spatial curvature, and tests
of modified gravity, say, through growth vs. expansion.
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Appendix A: GP Mean Function

The GP formalism gives a clear formulation for deriva-
tion of the kinematic functions and their derivatives using
the data, however there are some practical technical de-
tails that require care. One of the important issues is the
initial guess for the mean function. The final results turn
out not to be independent of this for an arbitrary choice,
but can in fact retain some memory of the initial choice,
biasing the results.
One reason for this is because of the multiscale na-

ture of the data for an arbitrary cosmology. With two
square-exponential-kernel hyperparameters, one for co-
herence length and one for the amplitude of deviations
from the mean function, there exists limited freedom for
the GP to track the deviations of the data from the in-
put mean function redshift by redshift. One solution is
to use more hyperparameters for the GP covariance func-
tion but this leads to a greater computational burden and
the possibility of fitting the noise in the data rather than
the cosmological signal.
The residuals of the data around different mean func-

tions can be quite different. Certainly there is little ex-
pectation that any of these residuals are perfectly de-
scribed by a Gaussian Process with a particular kernel.
It is therefore not unexpected for model predictions from
different mean functions to be statistically inconsistent.
To give another view on this, consider the GP likeli-

hood probability in more detail. It contains three parts:
the usual χ2, the determinant of the GP likelihood func-
tion penalizing overcomplexity, and a constant contribu-
tion involving the number of data points [10],

2 ln p(y|f) = −yTΣ00(Z,Z)−1y−ln detΣ00(Z,Z)−n ln(2π) ,
(A1)

GP tries to find the best combination of first and second
parts to get the highest likelihood. That is, it tries to
make f as close as possible to the data y by making
minimum changes to the given mean function to get a
reasonable χ2 and at the same time tries to keep the
results smooth enough to get a high likelihood from the
second term. Note the second term is independent of the
data and arises solely from the hyperparameters. (This
simplified explanation is somewhat complicated by the
weighted integration over the hyperparameter space, but
the basic flavor of it holds.)
The ultimate model-independent input mean function

is the zero mean function. Here, however, we need a
large σf to bring f close to y; to apply this “correction”
to zero input over a large redshift range, without merely
being a constant offset, requires a large coherence length
l. While one might then succeed in fitting f to y, this
comes at the price of smoothing away the features and
losing accurate reconstruction of y′ and y′′. Conversely,
if we choose an input mean function that gives f close to
y at several redshifts, then GP wants to keep σf small to
change the input function as little as possible. A small
σf effectively makes GP moot and so the reconstruction
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never strays far from the input function, with the results
retaining memory of the input.
We have verified these properties by investigating a

large variety of mean functions: 1) zero mean function, 2)
flat ΛCDM model with a fixed Ωm, 3) flat ΛCDM model
with Ωm as an added hyperparameter, 4) flat wCDM
model with Ωm and w as added hyperparameters. The
issues raised above show up clearly.
To get around these problems we want to use an input

mean function with little cosmology dependence (for ro-
bust results), sensitivity to multiple scales (for flexibility
in fitting y well enough that the derivatives are recon-
structed well), and few added hyperparameters (for com-
putational tractability). The solution we have adopted
after extensive testing is an iterated smoothing approach,
building on the method developed in [24–26].
We emphasize that the smoothing is only to generate

an initial mean function. The data is smoothed over a
scale ∆ in ln(1+z), after “pre-whitening” using an initial
guess dgL [26]:

ln dL(z,∆)s − ln dL(z)
g = N(z)× (A2)

∑

i

ln dL(zi)− ln dL(zi)
g

σ2
dL(zi)

exp



−
ln2

(

1+zi
1+z

)

2∆2



 ,

N(z)−1 =
∑

i

exp



−
ln2

(

1+zi
1+z

)

2∆2





1

σ2
dL(zi)

. (A3)

This procedure is then iterated, with the output of
one iteration serving as the initial guess of the succes-
sive iteration. The final reconstructed results have been
shown to be independent of the first initial guess [24–
26]. Because the final iteration is a smooth function,
we can take the derivatives of the mean functions as re-
quired for computing f ′ and f ′′. To incorporate many
scales we actually use a set of 5 initial guess mean func-
tions, iterating each one independently. The scatter in
the final mean functions or the appropriate derivatives
then is added, weighted by likelihood, as an additional
uncertainty, in the statistical sense of the mean squared
error known as risk: the quadratic sum of the mean dis-
persion and the dispersion in the mean. We find that
stopping the iteration procedure when the χ2 of each lies
within ∆χ2 = 2.3 of each other (equivalent to 1σ for 2
degrees of freedom, hence as much dispersion as from l
and σ2

f ) gives robust results, as seen from the accurate re-
constructions achieved for the ΛCDM, mirage, and kink
simulations. In order to capture the true data it is im-
portant to have inputs that can cross the true cosmol-
ogy over different redshift ranges, so the 5 initial guesses
cover a wide range of behaviors, ΛCDM cosmologies with
(Ωm,ΩΛ) = (1, 0), (0, 1), (0, 0), (0.3, 0.7), (0.5, 0.5). Note
that no additional hyperparameters are introduced.

This iterated smoothing set approach to the mean
function has the desired properties of not relying on
a specific cosmological form and having freedom from
memory of the initial guess, while allowing the GP for-
malism to balance the different terms in the likelihood
and give accurate reconstructions with well characterized
errors. The tests run for reconstruction of the different
cosmologies as shown in Figs. 1 and 2 demonstrate its
success.

Appendix B: Hyperparameter Distribution

The hyperparameters of the covariance function are
another ingredient for the GP reconstruction. Each set
of hyperparameters, in our case σ2

f and l, gives rise to

a particular likelihood by Eq. (A1), for each of the five
mean functions.

The posterior distribution is derived using Bayes’ the-
orem

P (i, σ2
f , l) =

L(i, σ2
f , l)p(i)p(σ

2
f )p(l)

∑5
i=1

∫

L(i, σ2
f , l)p(i)p(σ

2
f )p(l)d lnσ

2
fd ln l

,

(B1)
where i is the index for the five mean functions, p(i) =
1/5, and the other priors are flat in the logarithm for
10−5 ≤ σ2

f ≤ 1 and 10−2 ≤ l ≤ 1.6. The lower limit on

σ2
f and upper limit of l do impose non-trivial truncation

of the likelihood surface as discussed below. Note that
setting a minimum l = 10−2 is equivalent to imposing a
blurring on the square-exponential kernel, and prevents
fitting to merely noise in the data. Realizations of f ,
f ′, and f ′′ are drawn from the Gaussian Process models
represented by this posterior.

Figure 5 illustrates the role of σ2
f and l in the recon-

struction. Basically σf acts to set the amplitude for de-
viations from the mean function and l controls the wig-
gliness, or coherence scale.

As discussed in Appendix A, a small value of σ2
f repre-

sents little contribution of GP to the reconstruction pro-
cess, i.e. the result is basically just the mean function.
Large values of l smooth over features in the data and
basically give merely an offset that could be absorbed
in the amplitude. If we included arbitrarily small σ2

f or
large l in the hyperparameter ranges, these regions of
the space would give nearly identical likelihoods and di-
lute the overall probabilities, biasing the results toward
the mean function. To avoid this situation we impose
the lower limit log σ2

f ≥ −5 (i.e. ignoring models chang-

ing the mean function by less than 0.7%) and the upper
limit l ≤ 1.6 (i.e. the range of the data). We have checked
that the final best fits for the hyperparameters are not
significantly affected by small variations in the priors.
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FIG. 5: Schematic plot of the effects of σf and l on the re-
construction function f(z). The solid red curve has l = 0.1
and σ2

f = 0.001 and will serve as a reference. The two dark,
blue dotted lines show the impact of changing l, with l = 0.01
(wiggly line) and l = 1.0 (nearly smooth line), keeping σf

unchanged. The two light, green dashed lines show the im-
pact of changing σf , with σ2

f = 0.1 (increased amplitude of

deviations in f(z)) and σ2

f = 0.00001 (decreased amplitude),

keeping l at the reference value. For very small values of σ2

f ,
GP makes very little contribution (near zero modification at
all scales), while for high values of l possible features of the
data might be smoothed out.
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