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We present a new scheme for the general computation of cosmic propagators that allow to interpo-
late between standard perturbative results at low-k and their expected large-k resummed behavior.
This scheme is applicable to any multi-point propagator and allows the matching of perturbative
low-k calculations to any number of loops to their large-k behavior, and can potentially be applied
in case of non-standard cosmological scenarios such as those with non-Gaussian initial conditions.
The validity of our proposal is checked against previous prescriptions and measurements in numer-
ical simulations showing a remarkably good agreement. Such a generic prescription for multi-point
propagators provides the necessary building blocks for the computation of polyspectra in the context
of the so-called Γ-expansion introduced by Bernardeau et al. (2008). As a concrete application we
present a consistent calculation of the matter bispectrum at one-loop order.

I. INTRODUCTION

The large-scale structure of the universe that we observe today is thought to emerge from gravitational instabilities
out of primordial metric perturbations, therefore precise observations of the large-scale structure of the local uni-
verse can be used to put constraints on cosmological models. The connection between cosmological parameters and
observations are however only straightforward when they correspond to the linear regime, i.e. when the observables
can be computed as a linear transform of the primordial metric perturbations; this connection is less trivial when
nonlinearities, due in a large part to the gravitational dynamics itself, are present. Those nonlinearities arise during
the late stage of the gravitational instabilities. This is an epoch during which the universe can be safely assumed to
be matter dominated (at least in the context of the standard model of cosmology where the dark energy component
forms an homogeneous fluid.)
According to the cosmological principle cosmic fields are statically homogeneous and isotropic. In the context

we are interested in, two degrees of freedom are then relevant (see [1] for details): the local density contrast, δ(x)
and the velocity divergence, θ(x) = ∂iui(x). It is then very fruitful to introduce the Fourier modes of the cosmic
fields δ(k) and θ(k), which evolve independently of one another in the linear regime. One can then introduce the
doublet Ψa(k) = {δ(k),−θ(k)/H}, where H is the conformal expansion rate with its time evolution described by the
Friedmann equation, to write down the equations of motion in compact form and facilitate the implementation of
resummation techniques.
In this context, the goal of the theoretical and numerical calculations is a precise description, beyond the linear

regime, of the statistical properties of Ψa. We are particularly interested in the multi-component power spectra Pab(k)
defined as,

〈

Ψa(k)Ψb(k
′)
〉

= δD(k + k′)Pab(k) (1)

where the Latin indices a and b vary from 1 to 2, which are implicitly or explicitly measured in observations such as
galaxy surveys, and higher-order spectra such as bispectra,

〈

Ψa(k1)Ψb(k2)Ψc(k3)
〉

= δD(k1 + k2 + k3)Babc(k1,k2). (2)

This problem is in general very complicated if one wants to solve it from first principles. It can be made slightly
easier to address in the context of the standard cosmological model where the primordial metric perturbations are
expected to follow Gaussian or near Gaussian statistics. In that case the primordial properties of the fields are entirely
determined by the initial power spectra, P init.

ab (k). The question is then to uncover the functional dependence of Pab(k)
as time evolves with P init.

ab (k).
In the last few years attempts have been made to present perturbative schemes in the context of the growth of

structure. The standard perturbation theory is unambiguously defined but leads to uncontrollable results [1]. On the
other hand alternative approaches have been proposed which produce more robust results, such as the Renormalized
Perturbation Theory (RPT) in [2], the Time Renormalization Group (TRG) approach in [3], the closure theory in
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[4, 5], or with the help of perturbation theory expansion expressed in Lagrangian variables [6–9], etc. One of such
approaches, advocated in [10], is based on what has been called the Γ-expansion. This method exploits the following
relation,

〈

Ψa(k)Ψb(k
′)
〉

=
∑

p

1

p!

∫

d3q1 . . .d
3qp

〈

δΨa(k)

δΦa1
(q1) . . . δΦap

(qp)

〉

P init.
a1b1 (q1) . . . P

init.
apbp(qp)

〈

δΨb(k
′)

δΦb1(q1) . . . δΦbp(qp)

〉

(3)
where the standard Einstein convention (repeated indices are summed over) is used and where Φa(k) is the value of
Ψa(k) at the initial time. This relation expresses the fact that ensemble average over primordial fluctuations can be
reorganized in an alternative way to that in standard perturbation theory [1]. It exhibits the multi-point propagators
defined as the ensemble average of the infinitesimal variation of the cosmic fields with respect to the initial conditions.
More precisely the multi-point propagators1 Γ(p)(q1, . . . ,qp) are defined as

1

p!

〈

δΨa(k)

δΦa1
(q1) . . . δΦap

(qp)

〉

≡ δD

(

k−

p
∑

r=1

qr

)

Γ(p)(q1, . . . ,qp). (4)

The relation (3) is valid for Gaussian initial conditions but can be extended for non-Gaussian initial conditions [11]. It
clearly shows that the propagators are key ingredients for calculating nonlinear power spectra. They are the building
blocks of the Γ−expansion approach [10] and the focus of this paper.
The second reason why these quantities appear to be important ingredients in perturbation theory calculations is

that their asymptotic properties, e.g. how they behave for large wave-numbers, can be computed beyond perturbation
expansions. This has been pioneered in [2, 12] and recently revised in [13] with the so-called eikonal approximation.
More specifically it has been shown that in the high-k limit the multi-point propagators are damped by a function that
depends on the displacement field alone, irrespectively of the dynamics responsible of this displacement. Predictions
on the behavior of those objects are then robust and can be computed in various approximations.
This motivates their use as the building blocks of a perturbation theory scheme. To achieve this end, one must

have a description of multi-point propagators at all scales, matching the perturbative calculations at low-k to the
resummed asymptotic behavior at high-k. As resummed propagators also contain information on loop contributions,
both regimes can only be matched if a consistent interpolation schemes can be built. Furthermore, it is arguably this
interpolation regime the most important for the prediction of loop corrections to (equal-time) correlation functions,
as e.g. the power spectrum: while the low-k limit can be safely computed using standard perturbation theory, the
high-k limit only adds a (time-dependent) phase-shift to Fourier modes and thus does not contribute to the power
spectrum or bispectrum.
This problem has been solved for the two-point propagator in [12] with the help of an exponentiation scheme that

interpolates between the one-loop results and its high-k behavior. However, this prescription is somewhat ad-hoc in
that is specific to matching one-loop to resummed behavior of the two-point propagator but it is not clear a priori how
it can be extended to incorporate higher-loop information at low-k or its generalization to multi-point propagators.
The aim of this paper is to revisit this problem and propose a consistent solution which would be valid for any
propagators and incorporate perturbative information to any loop order.
This paper is organized as follows. In the section II we recall the basic equations of motion, define our notation

including the diagrammatic description and present the Γ-expansion of power spectra and bispectra in terms of
multi-point propagators. In section III we review the expected properties of the propagators. In section IV the
proposed interpolation scheme is presented in detail, while a comparison of our theoretical predictions for the tree-
point propagator to numerical simulations is presented in section V. The implications of our results are illustrated
with a bispectrum computation in the section VI. Lastly section VII contains our conclusions.

II. EQUATIONS OF MOTION AND THE Γ-EXPANSION

A. The equations of motion

We are interested here in the early stages of the development of cosmological instabilities in a cosmological dust
fluid. In general the dynamical evolution of such a fluid can be described with the Vlasov equation for which one

1 It is important to note that in this paper we call the Γ(p) functions the (p + 1)-propagators – because it connects p + 1 lines – but
alternative conventions can be found in the literature where Γ(p) is called the p-point propagator.
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further assumes that multi-flow regions play a negligible role (see e.g. [14–17] for recent discussion on going beyond
this). In the single flow limit, the equations of motion then takes the form of a set of three coupled equations relating
the local density contrast, the peculiar velocity field and the gravitational potential (see [1]).
At linear order these equations can easily be solved for an arbitrary background cosmology. One generically finds

a growing solution and a decaying solution. Let us denote D+(τ) the growing mode solution for the density contrast,
with τ the conformal time, and f+(τ) its logarithmic derivative with respect to the scale factor so that,

δ(k, η) = D+(η)δ0(k), θ(k, η)/H = −f+(η)D+(η)δ0(k) (5)

is the solution for the growing mode and similarly,

δ(k, η) = D−(η)δ0(k), θ(k, η)/H = −f−(η)D−(η)δ0(k) (6)

for the decaying mode.
Following [18], the equations of motion describing a pressureless fluid in the one-flow limit can be written in a

compact form with the use of the two component quantity Ψa(k, τ), defined as

Ψa(k, τ) ≡
{

δ(k, τ), −
1

f+(τ)H
θ(k, τ)

}

, (7)

where H ≡ d ln a/dτ is the conformal expansion rate with a(τ) the cosmological scale factor and where the index
a = 1, 2 selects the density or velocity components. Note that this definition of Ψa is slightly different than the one
used in the introduction and makes explicit use of the growing solution. The function f+ is unity for an Einstein-de
Sitter background only. At this stage one can also remark that the choice of this basis is somehow arbitrary: we could
have use any independent linear combinations of δ(k, τ) and −θ(k, τ)/f+(τ)H are our choice of doublet fields.
It is then convenient to rewrite the time dependence in terms of the growing solution and in the following we will

use the time variable η defined as

η = logD+(τ) (8)

assuming the growth factor is set to unity at initial time. Then the fully nonlinear equations of motion in Fourier
space (we henceforth use the convention that repeated Fourier arguments are integrated over) read [1],

∂

∂η
Ψa(k, η) + Ωab(η)Ψb(k, η) = γabc(k,k1,k2) Ψb(k1, η) Ψc(k2, η), (9)

where

Ωab(η) ≡

[

0 −1
− 3

2
Ωm

f2
+

3
2
Ωm

f2
+

− 1

]

, (10)

and the symmetrized vertex matrix γabc describes the non linear interactions between different Fourier modes. Its
components are given by

γ222(k,k1,k2) = δD(k− k1 − k2)
|k1 + k2|

2(k1 · k2)

2k21k
2
2

,

γ121(k,k1,k2) = δD(k− k1 − k2)
(k1 + k2) · k1

2k21
, (11)

γabc(k,ka,kb) = γacb(k,kb,ka), and γ = 0 otherwise, where δD denotes the Dirac delta distribution. The matrix γabc
is independent on time (and on the background evolution) and encodes all the non-linear couplings of the system.
The formal integral solution to Eq. (9) is given by (see [2, 18, 19] for a detailed derivation)

Ψa(k, η) = gab(η) Φb(k) +

∫ η

0

dη′ gab(η, η
′) γ

(s)
bcd(k,k1,k2)Ψc(k1, η

′)Ψd(k2, η
′), (12)

where Φa(k) ≡ Ψa(k, η = 0) denotes the initial conditions, set when the growth factor D+ = 1 and where gab(η) is
the linear propagator, i.e. the Green’s function of the linearized version of Eq. (9) and describes the standard linear
evolution of the density and velocity fields away from their initial values.
In the following calculations we will be using the value of the Ωab matrix to be that of the Einstein de Sitter

background thus assuming that f2
+ = Ωm. Effectively it assumes that D− scales like D

−3/2
+ . This is known to be a
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very good approximation even in the context of a ΛCDM universe. Within this approximation Ωab becomes effectively
time independent. It should be noticed that although the results presented below depend on this approximation, the
whole construction is not based upon it. Calculations in an arbitrary background would simply make the whole
presentation much more cumbersome, preventing the writing of explicit analytic forms. See Appendix A in [3] for
this.
The ensemble average of any quantity can then be built out of the statistical properties of the initial fields. They

are entirely defined from the initial power spectrum of density fluctuations Pab(k),

〈

Φa(k)Φb(k
′)
〉

= δD(k+ k′)Pab(k). (13)

In what follows most of the calculations and applications will be made assuming initial conditions in the growing
mode, for which Φa(k) = δ0(k)ua with ua = (1, 1), and therefore with P init.

ab (k) = P0(k)uaub.
The linear propagator gab(η) is one of the key ingredients and gives the variation of the mode amplitude as time

evolves. The idea at the heart of the RPT approach is to generalize this operator beyond linear theory [2, 12]. More
specifically the quantity δΨa(k, η)/δΦb(k

′) expresses the way Ψa(k, η) depends on Φb(k
′) as a function of time η.

This function however depends on the stochastic properties of the fields and one is led to define its ensemble average,
Gab(k, ηf , ηi), as

〈 δΨa(k)

δΦb(k′)

〉

= δD(k− k′)Gab(k, ηf , ηi), (14)

where we have re-introduced the initial time ηi. This quantity, known as the non-linear (two-point) propagator,
depends on the initial fluctuations through the mode couplings. The ensemble average is made precisely over these
modes. The Dirac-δ function is due, as usual, to the homogeneity of the underlying statistical process.
The expression for Gab can be computed order by order in perturbation theory. Such results can be obtained from

a formal expansion of Ψa(k, η) with respect to the initial field,

Ψa(k, η) =

∞
∑

n=1

Ψ(n)
a (k, η) (15)

with

Ψ(n)
a (k, η) = F

(n)
ab1b2...bn

(k1, . . . ,kn; η)Φb1 (k1) . . .Φbn(kn) (16)

where F (n) are fully symmetric functions of the wave-vectors. Note that these functions have in general a non-trivial
time dependence because they also include sub-leading terms in η. Their fastest growing term is of course given by
the well known {Fn, Gn} kernels in PT (assuming growing mode initial conditions),

F
(n)
ab1b2...bn

(k1, . . . ,kn; η)ub1 . . . ubn = δD(k− k1...n) exp(nη) {Fn(k1, ..,kn), Gn(k1, ..,kn)}

for a = 1, 2 (density or velocity divergence fields respectively).
The concept of higher-order propagators is a natural extension of the non-linear propagator Gab. Such functions,

that we denote Γ
(p)
ab1...bp

(k1, . . . ,kp), can be defined as,

1

2

〈 δ2Ψa(k)

δΦb(k1)δΦc(k2)

〉

= δD(k− k1 − k2)Γ
(2)
abc (k1,k2) (17)

for second order (or three points), and for an arbitrary order they read,

1

p!

〈 δpΨa(k)

δΦb1(k1) . . . δΦbp(kp)

〉

= δD(k − k1...p)Γ
(p)
ab1...bp

(k1, . . . ,kp) , (18)

where k1...p = k1 + . . . + kp. They can be viewed as the building blocks of the theory. Note that for the purposes
we consider here, we restricted our definition to derivatives with respect to the initial fields but a much more general
description could be adopted.

It is probably worth mentioning that Γ
(p)
ab1...bp

(k1, . . . ,kp) are real functions which, for parity reasons, obey

Γ
(p)
ab1...bp

(−k1, . . . ,−kp) = Γ
(p)
ab1...bp

(k1, . . . ,kp) . (19)
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g
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(η)
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(1)(k) =

ϕ
b

(k)

η

FIG. 1: Diagrammatic representation of the series expansion of Ψa(k) up to fourth order in the initial conditions Φ. Time
increases along each segment according to the arrow and each segment bears a factor gcd(ηf −ηi) if ηi is the initial time and ηf
is the final time. At each initial point and each vertex point there is a sum over the component indices; a sum over the incoming
wave modes is also implicit and, finally, the time coordinate of the vertex points is integrated from ηi = 0 to the final time ηf
according to the time ordering of each diagram. For instance, at fourth order there are two different possible topologies.

G
ab

(1-loop)(k, η2, η1) =

η1η2

×
η'

1η'
2

ϕ
b
(k)

gag(η2-η'2)

ϒedc 

gfe(η'2-η'1)

ϒghf 

gcb(η'1-η1)

gdi(η'1)ghj(η'2)

P
ij

(q)

FIG. 2: Representation of the one-loop correction to the two-point propagator. The value of this diagram is obtained by the
contraction of two incoming lines of Ψ(3) multiplied by the initial power spectrum value. The expression of G1−loop

ab is then
obtained after integration over the internal indices c, . . . , j, the momentum q and the times η′

1 and η′

2.

B. Diagrammatic representations

A detailed description of the procedure to draw diagrams and compute their values can be found in [2], we can
briefly summarize these rules here as follows. In Fig. 1 the open circles represent the initial conditions Φb(k), where
b = 1 (b = 2) corresponds to the density (velocity divergence) field, and the line emerging from it carries a wavenumber
k. Lines are time-oriented (with time direction represented by an arrow) and have different indices at both ends,
say a and b. Each line represents linear evolution described by the propagator gab(ηf − ηi) from time ηi to time ηf .
Each nonlinear interaction between modes is represented by a vertex, which due to quadratic nonlinearities in the
equations of motion is the convergence point of necessarily two incoming lines, with wavenumber say q1 and q2, and
one outgoing line with wavenumber q = q1 +q2. Each vertex in a diagram then represents the matrix γabc(q,q1,q2).
It is further understood in Fig. 1 that internal indices are summed over and interaction times are integrated over the
full interval [0, ηf ].
Loop diagrams appear once we calculate statistical averages such as correlators between fields. An example of

such calculation (corresponding to the one-loop correction to the linear propagator) is presented in Fig. 2, where the
average over initial conditions is encoded by the dependence on the initial power spectra P init.

ab (q), represented by the
symbol ⊗.
The previous construction can be extended to any number of loops. Note however that the explicit diagrams to

be used depend on the statistical properties of the initial fields. For instance, for Gaussian initial conditions the
two-loop diagrams contributing to Gab(k) are obtained from the contraction of 4 incoming lines in the expression of
Ψ(5). In case the initial bispectrum is non-vanishing a non-zero contribution can be obtained from the contraction of
3 incoming lines of Ψ(4).
These constructions can be pursued to higher-order propagators. A typical perturbation expansion of Γ(n) is
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×

Γ
(n)
(k,p1,...,pn)=

= + +...

p1

pn

k

p1

pn

k

p1

pn

k

FIG. 3: Representation of the first two terms of the multi-point propagator Γ(n) in a perturbative expansion. Γ(n) represents
the average value of the emerging nonlinear mode k given n initial modes in the linear regime. Here we show the first two
contributions: tree-level and one-loop. Note that each object represents a collection of (topologically) different diagrams : each
black dot represents a set of trees that connect respectively n+ 1 lines for the first term, n+ 2 for the second.

presented in Figure 3.

C. The Γ-expansion

An important result rigorously shown in [10] and recalled in the introduction, is that the series expansion of the
power spectra can be rewritten in term of product of Γ(p) functions as,

〈

Ψa(k1)Ψb(k2)
〉

= δD(k1 + k2)
∑

p

p!

∫

d3q1 . . .d
3qpδD(k1 − q1...p)

×Γ(p)
aa1...ap

(q1, . . . ,qp) Γ
(p)
bb1...bp

(−q1, . . . ,−qp) P init.
a1b1 (q1) . . . P

init.
apbp(qp). (20)

A further important property of this form is found when primordial metric perturbations are of only adiabatic origin.
The initial power spectra then take the form P init.

ab (k) = Ta(k)Tb(k)P
adiab.(k) where P adiab.(k) is the primordial power

spectrum of the adiabatic modes2. In this case, using the parity property from Eq. (19), we have

〈

Ψa(k)Ψb(k
′)
〉

=
∑

p

1

p!

∫

d3q1 . . . d
3qp

[

Γ(p)
aa1...ap

(q1, . . . ,qp)Ta1
(q1)Tap

(qp)
]

×
[

Γ
(p)
bb1...bp

(q1, . . . ,qp)Tb1(q1)Tbp(qp)
]

P adiab.(q1) . . . P
adiab.(qp). (21)

In this case, for a = b, the power spectrum is a sum of squares, that is, of manifestly positive terms. As for the
RPT case, each of this term will correspond to a “bump” contributing to the final power spectra in a limited range
of wavemodes.
The resulting expressions depend on the primordial power spectrum and transfer functions. In this sense the result

is a priori model dependent. Here, in the context of the Γ-expansion approach we concentrate on the late time
behavior of the result thus keeping only the most growing terms. The linear transfer functions are then identical for
the 2 components, Ta(k) = uaT (k) with ua = (1, 1). We then simply have

P init.
ab (k) = uaubT

2(k)P adiab.(k) = uaubP0(k) (22)

and the expression (21) can be rewritten in,

〈

Ψa(k)Ψb(k
′)
〉

=
∑

p

1

p!

∫

d3q1 . . . d
3qp Γ(p)

a (q1, . . . ,qp) Γ
(p)
b (q1, . . . ,qp)P0(q1) . . . P0(qp), (23)

where Γ
(p)
a (q1, . . . ,qp) = Γ

(p)
aa1...ap (q1, . . . ,qp)ua1

. . . uap
. In the following we also assume that the structure of the

vertices is that of an Einstein de Sitter universe. As mentioned before, it does not significantly restrict the validity
range of these calculations.

2 The latter that can be indifferently expressed in terms of the gauge-free potential perturbation or matter density perturbations.
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k1

B(k1,k2,k3) = Σr,s,t
×

×

×

×

×

×

×

×

×

k2

k3

FIG. 4: Representation of the resummation rule given by Eq. (24). For Gaussian initial conditions, the bispectrum can be seen

as a sum of product of Γ(p) functions.

This reconstruction scheme for the power spectrum in terms of Γ-functions can be extended to higher order spectra.
For instance, generalizing Eq. (20) the bispectrum can be formally rewritten by the resummation,

〈

Ψa(k1)Ψb(k2)Ψc(k2)
〉

=
∑

r,s,t

(

r + s

r

)(

s+ t

s

)(

t+ r

t

)

r!s!t!

∫

d3q1 . . .d
3qr d3q′

1 . . .d
3q′

s d3q′′

1 . . . d
3q′′

t

×δD(k1 − q1...r − q′

1...s) δD(k2 + q′

1...s − q′′

1...t) δD(k3 + q′′

1...t + q1...r)

×Γ(r+s)
a (q1, . . . ,qr,q

′

1, . . . ,q
′

s) Γ
(s+t)
b (−q′

1, . . . ,−q′

s,q
′′

1 , . . . ,q
′′

t )

×Γ(t+r)
c (−q′′

1 , . . . ,−q′′

t ,−q1, . . . ,−qr)P0(q1) . . . P0(qr) P0(q
′

1) . . . P0(q
′

s) P0(q
′′

1 ) . . . P0(q
′′

t ).

(24)

This sum is diagrammatically represented in Fig. 4. We see that it runs over the number of lines that connect each
side of the diagram (with the constraint that at most one of the indices r, s or t is zero, otherwise we would have
a disconnected diagram). The leading order (tree) contribution is then obtained for r = s = 1, t = 0 (plus cyclic
permutations), up to one-loop corrections (in square brackets) we then have

B(k1, k2, k3) = 2Γ(2)(k1,k2) Γ
(1)(k1) Γ

(1)(k2)P0(k1)P0(k2) + cyc.

+
[

8

∫

d3q Γ(2)(k1 − q,q)Γ(2)(k2 + q,−q)Γ(2)(q− k1,−k2 − q)P0(|k1 − q|)P0(|k2 + q|)P0(q)

+ 6

∫

d3q Γ(3)(−k3,−k2 + q,−q)Γ(2)(k2 − q,q)Γ(1)(k3)P0(|k2 − q|)P0(q)P0(k3) + cyc.
]

. (25)

We will make use of this expression in section VI below.

III. PROPERTIES OF THE MULTI-POINT PROPAGATORS

A. The two-point propagator

The large-k behavior of the propagators can be addressed with the help of resummation techniques. This was
pioneered in [12], taking advantage that for CDM spectra there is a characteristic scale set by the rms displacement
(or velocity) field that sets the typical momenta inside loop diagrams, thus by large-k we mean specifically k larger
than this characteristic scale. This idea was put in a more general footing in [13] where the concept of the eikonal
approximation is introduced. In this context it is possible to compute the expression of the non-linear propagators
taking into account the full resummed contributions of modes q ≪ k.
The resulting expression of the propagator is then valid in the high k limit. More specifically one finds that

Gab(k, ηf , ηi) → gab(ηf − ηi) exp

(

−
k2σ2

displ.(ηf , ηi)

2

)

(26)
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k

FIG. 5: In all the diagrams contributing to Gab(k), as the one depicted here, there is a line connecting directly the initial time
to the final time. This is the principal line, drawn here with a straight thick solid line. The dominant loops contributing to the
resummed propagator are those drawn by dashed lines, while the sub-dominant loops are those in dotted lines.

where σdispl.(ηf , ηi) is the r.ms. of the one-point displacement field, d(ηf , ηi), from time ηi to time ηf . More precisely
the latter is given by

d(ηf , ηi) =

∫ ηf

ηi

dη

∫

d3q
q

q2
θ(q, η)

f+(η)H
(27)

assuming the velocity field is potential. The functional form (26) is valid assuming the large scale displacement
field obeys a Gaussian statistics. In that case the exponential damping is entirely determined by the variance of the
displacement along one direction,

σ2
displ.(ηf , ηi) =

1

3
〈d2(ηf , ηi)〉. (28)

In case the displacement is given by its linear expression and assuming it is dominated by the growing mode contri-
bution one then has,

σ2
displ.(ηf , ηi) = (eηf − eηi)2

∫

d3q

3q2
P0(q), (29)

where P0(q) is the initial linear power spectrum. This result was originally derived in [12] from the explicit contribution
of a large subset of diagrams - those that are directly connected to the principal line (see Fig. 5). The eikonal
approximation shows that this result is very general. It is valid in particular irrespectively of the time dependence
of the velocity field. As shown in [13], this construction amounts to compute the displacement field from its linear
expression. It is possible to include corrections to the displacement field statistical properties beyond linear theory.
This was noticed in [20] where 1-loop corrections to the variance of the displacement field are included in the calculation
of the propagator damping function. It should be noted however that whenever the displacement field is not Gaussian
distributed, the damping factor is not a function of its variance only. This can be naturally be taken into account in the
eikonal approximation. For instance, the standard results can be extended to models with primordial non-Gaussian
initial conditions for which one can recover both the resummation results and the Γ-expansion formulae (see [11] for
details). In this case the exponential factor is replaced by

exp

(

−
k2σ2

displ.(ηf , ηi)

2

)

→ exp

(

−

∞
∑

p=2

〈(d(ηf , ηi) · k)
p〉c

p!

)

. (30)

In this expression the variance of the 1D displacement field along k has been replaced by the whole cumulant series of
the 1D displacement field. Note this form can be extracted from another route, based on the use of Lagrangian space
variables [6, 9]. In this case, however, that it corresponds to the leading behavior in the high-k limit is ambiguous.
On the other hand, as stressed in the introduction, the nonlinear expression of Gab can be approached with a

perturbative series expansion. Formally one can write Gab as,

Gab(k, ηf , ηi) = gab(ηf − ηi) + δG1−loop
ab (k, ηf , ηi) + δG2−loop

ab (k, ηf , ηi) + . . . (31)

where successive loop corrections are included. It is known that G1−loop
ab (k, ηf , ηi) behaves like −k2σ2

displ.(ηf , ηi)/2,

etc., when k is large so that the perturbative expansion of (26) and (31) agree when k is large. And this is expected
to be true at all order in perturbation theory. This is actually the meaning one can give to the limit written in (26).
Note that sub-leading terms of (26) are obviously expected to be present in the expression of Gab(k, ηf , ηi). If they
appear within the exponential they would change the normalization factor.
In all cases what we expect is that (26) captures the large k behavior of the propagator whereas the expansion (31)

is expected to be a precise description of its low k behavior. One of the objectives of this paper is explore how these
two limit behaviors can be matched together.
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B. The RPT interpolation scheme for the two-point propagator

The one-loop expressions of the two-point propagator have been explicitly calculated in [12]. We summarize them in
this section, and their interpolation to the resummed high-k limit, as it will be useful to compare to our new proposal
in section IV.
The computation of the one-loop contribution involves in general different time-dependent functions. They are all

of the form aν where ν is an integer or a half-integer. This is a consequence of the structure of the time dependence
of the linear propagator and of the fact that we assume Ωab to be time independent. For each time dependence,

each component G1−loop
ab has a specific k dependence that can be computed. But although there are 6 different aν

functions that intervene in the expression of the one-loop diagram, the whole result can be collected into only 4
different k-dependent functions [12]. We recall here the explicit expressions of those results. One obtains,

δG1−loop
11 (k, a) =

3

5
α(a) f(k)−

3

5
β(a) i(k)−

2

5
γ(a) h(k) +

2

5
δ(a) g(k),

δG1−loop
12 (k, a) =

2

5
α(a) f(k)−

2

5
β(a) h(k) +

2

5
γ(a) h(k)−

2

5
δ(a) f(k),

δG1−loop
21 (k, a) =

3

5
α(a) g(k)−

3

5
β(a) i(k) +

3

5
γ(a) i(k)−

3

5
δ(a) g(k),

δG1−loop
22 (k, a) =

2

5
α(a) g(k)−

2

5
β(a) h(k)−

3

5
γ(a) i(k) +

3

5
δ(a) f(k), (32)

with

α(a) = a3 −
7

5
a2 +

2

5
a−1/2, β(a) =

3

5
a2 − a+

2

5
a−1/2, γ(a) =

2

5
a2 − a1/2 +

3

5
a−1/2, δ(a) =

2

5
a2 −

7

5
a−1/2 + a−3/2.

and

f(k) =

∫

1

504k3q5

[

6k7q − 79k5q3 + 50q5k3 − 21kq7 +
3

4
(k2 − q2)3(2k2 + 7q2) ln

|k − q|2

|k + q|2

]

P0(q) d
3q,

g(k) =

∫

1

168k3q5

[

6k7q − 41k5q3 + 2k3q5 − 3kq7 +
3

4
(k2 − q2)3(2k2 + q2) ln

|k − q|2

|k + q|2

]

P0(q) d
3q,

h(k) =

∫

1

24k3q5

[

6k7q + k5q3 + 9kq7 +
3

4
(k2 − q2)2(2k4 + 5k2q2 + 3q4) ln

|k − q|2

|k + q|2

]

P0(q) d
3q,

i(k) =

∫

−1

72k3 q5

[

6k7q + 29k5q3 − 18k3q5 + 27kq7 +
3

4
(k2 − q2)2(2k4 + 9k2q2 + 9q4) ln

|k − q|2

|k + q|2

]

P0(q) d
3q,

(33)

We can notice that all these functions satisfy [12]

f(k), g(k), h(k), i(k) → −
k2

2

∫

d3q

3q2
P0(q) (34)

when k is large. The time dependent functions also obey remarkable properties,

α(a) − β(a) = a(a− 1)2, (35)

δ(a)− γ(a) = a−3/2(a− 1)2, (36)

so that, in the high k limit we indeed have

δG1−loop
ab (k, ηf , ηi) → −

1

2
k2σ2

displ.(ηf , ηi) gab(ηf , ηi). (37)

One can also remark that α(a) is the most rapidly growing function and is therefore expected to dominate at late
times. In this case only the functions f(k) and g(k) play a role in the expression of the propagators. Irrespectively
of this limit, the proposed exponentiation scheme in [12] is the following. It is based on the exponentiation of terms
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FIG. 6: Example of dominant loop contributions for the three-point propagator Γ
(2)
abc(k1,k2,k3). The final expression is obtained

by the sum of an infinite number of such loops and over all possible interaction times.

either identified as the growing modes or the decaying modes,

g11 + δG
(1)
11 → G11(k, a) =

3

5
a e(αg(a)f(k)−βg(a)i(k)) +

2

5
a−3/2 e(δd(a)g(k)−γd(a)h(k)),

g12 + δG
(1)
12 → G12(k, a) =

2

5
a e(αg(a)f(k)−βg(a)h(k)) −

2

5
a−3/2 e(δd(a)f(k)−γd(a)h(k)),

g21 + δG
(1)
21 → G21(k, a) =

3

5
a e(αg(a)g(k)+γg(a)h(k)) −

3

5
a−3/2 e(δd(a)g(k)+βd(a)i(k)),

g22 + δG
(1)
22 → G22(k, a) =

2

5
a e(αg(a)g(k)−(3/2)γg(a)i(k)) +

3

5
a−3/2 e(δd(a)f(k)−(2/3)βd(a)h(k)). (38)

where we have redefined the α – γ functions in Eq. (33) through aαg(a) = α(a), a βg(a) = a−3/2βd(a) = β(a),

a γg(a) = a−3/2γd(a) = γ(a) and a−3/2 δd(a) = δ(a). At one-loop order these forms agree with the results (32).
They also agree with the limit form (26) because of the properties (34-36). These forms also present a number of
key properties: they are decaying functions of time and of k. This is ensured in particular by the fact that the
terms under the exponential is always negative. Note that there are no free parameters in this construction: given
an initial spectrum and cosmological parameters those form fully predict Gab(k, η). These forms are the nonlinear
propagator used in the RPT formalism. They have been successfully tested against N-body simulations so alternative
interpolation schemes cannot significantly depart from them.
It should be remarked however that those constructions do not necessarily represent the unique possible interpolation

scheme. In particular if one allows the possibility of adding more than two exponentials, then one would obtain a
whole set of alternative formulations. Before we move on to the formulation we propose in this paper let us first
describe the multi-point propagator results.

C. The multi-point propagators

Let us continue with the diagrammatic approach, extended to multi-point propagators. The concept of principal
line can be extended to the multi-point propagators. One can then define a “principal tree” which corresponds to
the diagram when the propagator is taken at tree order (starting with order 4 there might be more than one possible
tree). The diagrams contributing to the high-k limit of the propagator are those that are directly connected to the
principal tree [10].
For a given tree shape (q) (for instance, one of the diagrams of Fig. 6), a careful resummation of all these diagrams

gives the following result (for Gaussian initial conditions),

Γ
(p−q)
ab1...bp

(k1, . . . ,kp, ηf , ηi, η
′

1, . . . , η
′

p−1) → exp

(

−
k21...pσ

2
displ.(ηf , ηi)

2

)

Γ
(p−q),tree
ab1...bp

(k1, . . . ,kp, ηf , ηi, η
′

1, . . . , η
′

p−1).

(39)
where (q) labels a given topology and η′i are the time values at each vertex position. As this result is valid for any
topology and any time, after proper summation we simply have,

Γ
(p)
ab1...bp

(k1, . . . ,kp, ηf , ηi) → exp

(

−
k21...pσ

2
displ.(ηf , ηi)

2

)

Γ
(p),tree
ab1...bp

(k1, . . . ,kp, ηf , ηi). (40)
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FIG. 7: Large k, q1 regularization of the one-loop diagram of the two-point propagator by higher order loops corrections in
the high-k limit. The main loop (in dashed line) is to be computed when q is in the UV domain.

This result generalizes the one for the two-point propagator. Note that this result can also be derived in the context
of the eikonal approximation showing that σdispl.(ηf , ηi) does not need to be computed in the linear regime.
Similarly to the two-point propagator, it is possible to obtain the low-k behavior of the multi-point propagators by

perturbative series expansion,

Γ
(p)
ab1...bp

(k1, . . . ,kp, ηf , ηi) = Γ
(p),tree
ab1...bp

(k1, . . . ,kp, ηf , ηi) + Γ
(p),1−loop
ab1...bp

(k1, . . . ,kp, ηf , ηi)

+Γ
(p),2−loop
ab1...bp

(k1, . . . ,kp, ηf , ηi) + . . . (41)

Note that in this case, even for the late-time behavior of the one-loop corrections, the relative sign between the tree
term and the one-loop term is not fixed. It depends on both the geometry and the amplitude of the modes.
Again, the aim of this paper is to propose an interpolation scheme between the known large and small scale

asymptotic that fully respects these two limits.

IV. PROPOSED INTERPOLATION SCHEME

A. The case of the most growing mode

The construction of our matching scheme is based on the analysis of the structure of the multi-loop terms corrections.
To start with let us concentrate our presentation on the late time behavior of the propagator 3. In this limit it is
legitimate to assume that the initial fields are in growing mode only. We are then left with two independent quantities
for the propagator,

Ga+ = Ga1 +Ga2. (42)

Up to one-loop order the late time expression of Ga+ is,

Ga+ = eη + e3ηfa(k) (43)

where fa(k) is either f(k), for a = 1, or g(k) for a = 2. The large k limit of fa(k) is fa(k) → −k2σ2
displ./2. The RPT

expression of the propagator is then

Ga+(k, η) = eη exp[e2ηfa(k)]. (44)

The alternative prescription we propose is based on the following observation regarding the renormalization of the
one-loop result: let us consider the diagram on Fig. 7 where the intermediate times η′1 and η′2 are fixed and the value
of q1 is also fixed such that its norm is large. The crucial observation we now make is that this object is then nothing
but Γ(3)(q1,−q1,k, ηf , ηi), where the three incoming modes from the initial conditions correspond to the two dashed
lines (joined at the initial power spectrum, i.e. the ⊗ symbol) and the rightmost k-mode. But we now have a good

3 In the context of the Γ-expansion approach it is in practice needless to consider sub-dominant terms and furthermore the extension of
this construction to the general time does not introduce any new difficulty.
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understanding of its renormalization properties, given by Eq. (39). This equation tells us that we know how to resum
all its loop corrections (some of which are represented by dotted loops in Fig. 7) in the large q1 and k limit. Because
it corresponds to the effects of long wavemodes, let us call this the infra-red (IR) correction. The expression we find
is an application of the general result for multi-point propagator and it leads to a simple exp(−k2σ2

displ./2) factor.

It is important to note that it is independent of q1 (and intermediate times η1 and η2). We still have to perform
the integral η1 and η2 and then over q1. For the latter however we have to bear in mind that it cannot run over all
possible values: it has to avoid its IR part. We can then split this integral into 2 parts, one IR, for which this result
is not valid, and one UV for which it applies. Then the value of that set of diagrams would be

δGa+ = e3ηf (IR)
a (k) + e3ηf (UV )

a (k) exp
(

−k2σ2
displ./2

)

. (45)

We then note that the first term is simply the first (non trivial) term of the usual IR resummation of diagrams,
exp(−k2σ2

displ./2). We are then let to simply set

f (IR)
a (k) = −

1

2
k2σ2

displ.. (46)

f (UV )
a (k) = fa(k)− f (IR)

a (k). (47)

This identification leads to the following form,

Greg
a+ = eη + δGa+ = eη

(

1 + e2ηfa(k) + k2σ2
displ./2

)

exp
(

−k2σ2
displ./2

)

(48)

for a “regularized” propagator which compared to the expression (44) amounts to replacing

exp
(

e2ηfa(k) + k2σ2
displ./2

)

→ (1 + e2ηfa(k) + k2σ2
displ./2). (49)

Note that these quantities are both finite at large k. In Fig. 8, we compare these two prescriptions for the density
and velocity fields at z = 0 for a Λ-CDM cosmology. They are virtually indistinguishable when one considers the
propagator shape. They significantly depart from one another only for k ≃ 1 h−1Mpc, as shown on the right panel,
that is at scales where the exponential damping is already extremely strong.
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FIG. 8: Comparison of prescriptions for exponentiation schemes for the density (black upper lines) and velocity (brown lower
lines) fields. The thin solid lines correspond to the RPT prescription, the thick dashed lines to this work. The left panel shows
the propagators, the right corresponds to the propagator when they are divided by the global damping factor exp(−k2σ2

displ./2).
The computations are made for z = 0 and for a Λ-CDM cosmology (see Section V for details).

B. The general prescription

Since the resummation properties of the Γ functions preserve the topology and the intermediate time structure, the
whole procedure applies to the full time dependence of the one-loop term. The integral splitting can then be done
more generally and one gets,

Greg
ab (k, ηf , ηi) =

[

gab(ηf , ηi) + δG1−loop
ab (k, ηf , ηi) +

1

2
k2σ2

displ.(ηf , ηi)gab

]

exp

(

−
k2σ2

displ.(ηf , ηi)

2

)

. (50)
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The relation with the RPT proposed forms given by Eqs. (38) is here more complicated. It is clear however that both
propositions agree at the one-loop correction level and both propositions exhibit the same high-k behavior.
One important aspect of this construction, which will be exploited in the following, is that it can obviously be

extended to multipoint propagators,

Γreg
ab1...bp

(k1, . . . ,kp, ηf , ηi) =
[

Γtree
ab1...bp(k1, . . . ,kp, ηf , ηi) + δΓ1−loop

ab1...bp
(k1, . . . ,kp, ηf , ηi)+

+
1

2
k2σ2

displ.(ηf , ηi)Γ
tree
ab1...bp(k1, . . . ,kp, ηf , ηi)

]

exp

(

−
k2σ2

displ.(ηf , ηi)

2

)

(51)

where k = |k1 + · · · + kp|. By construction this form is such that it has both the correct one-loop correction and
the correct large-k behavior. One can also remark that, unlike the RPT interpolation proposal where the matching
is done in the “basis” given by density and velocity fields, the resulting form here is independent on the basis chosen
to represent the cosmic fluids. This may not be an important difference for the CDM-only case but could be of
importance when one wishes to extend the field content to other degrees of freedom (e.g. the case where one has in
addition baryons, massive neutrinos, extra fields in the context of modified gravity theories, etc.)
Finally, another important advantage of this construction is that it can be pursued to any order in loop corrections

in a rather straightforward way,

Γreg
ab1...bp

=

[

Γtree
ab1...bp + δΓ1−loop

ab1...bp
+

1

2
k2σ2

displ.Γ
tree
ab1...bp + δΓ2−loop

ab1...bp
+ c.t.

]

exp

(

−
k2σ2

displ.

2

)

(52)

where c.t. is a counter-term such that the 2-loop expression of the reg. expression is exact,

c.t. = −
1

2

(

k2σ2
displ.

2

)2

Γtree
ab1...bp +

k2σ2
displ.

2
δΓ1−loop

ab1...bp
(53)

Let us now illustrate this with some examples. The resulting interpolation scheme for Γ(2) for specific geometries
is shown in Fig. 9 for its late time behavior, showing that the interpolation is rather smooth. In particular it can
handle the fact that tree-order and one-loop corrections have different signs. This is the case illustrated in the lower
right panel in Fig. 9.

C. The case of Non-Gaussian initial conditions

The case of PNGs can similarly be taken into account. In this case the damping factor is changed in order to take
into account the higher order cumulants of the 1D displacement field as given in Eq. (30). Still it is possible to apply
the same regularization scheme except that the counter terms have to be recomputed.
Novel two-loop order terms, depicted on Fig. 10, are due to the primordial bispectrum. In the eikonal approximation

(e.g. when the vertex values are computed for qi ≪ k), these diagrams vanish however. They therefore do not have
counter terms in the regularization scheme we propose. Differences in the counter terms appear only at the three-
loop order. It corresponds to the fact that the damping factor given by Eq. (30) is not sensitive to the primordial
bispectrum, but it is to the primordial trispectrum.

V. COMPARISON WITH NUMERICAL SIMULATIONS

As the prescription we are advocating here does not give significant differences for the two-point propagator (already
studied in [12]) we focus our analysis in the three-point propagator.
As shown in the previous paragraph the prescriptions in Eqs. (51, 52) give non-trivial behaviors for the three-point

propagator. These prescriptions can be compared against measurements in numerical simulations provided one can
measure cross-bispectra between initial conditions δ0(k) and the final density fields δ(k, η). The estimator for the
three-point propagator was introduced in [10];

Γ
(2)
δ (k1, k2, k3) =

1

2P0(k1)P0(k2)

1

N

∑

kikj

∑

kl

δ(kl, s)× δ0(−ki)δ0(−ki), (54)
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FIG. 9: The shape of the Γ(2) propagator for “equilateral” (k1 = k2 = k3 = k, top left), “colinear” (k1 = k2 = k/2 ; k3 = k, top
right), “anti-colinear” (k1 = 2k ; k2 = k3 = k, bottom left) and “squeezed” (k1 = k2 = 4k ; k3 = k, bottom right). The long
dashed (blue) lines correspond to the simple exponential cut-off obtained in the high-k limit, Eq. (40), the short dashed (violet)
lines are the tree plus one-loop order results and the solid (brown) line correspond to the interpolation scheme proposed this
paper. These comparisons are made for a power spectrum corresponding to Λ−CDM model at z = 0.
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FIG. 10: Dominant complementary diagrams contributing to the one-point propagator in case of PNGs. They make intervene
the primordial bispectrum Babc(q1, q2, q3). For models of cosmological interest they are of the order of the 2-loop contributions.
When those diagrams are computed in the eikonal approximation, that is when the vertices are approximated by their high k
limit they all vanish for parity reasons. They do not so in general.

where the sum runs over Fourier modes ki in the |k1| bin, kj in the |k2| bin and kl in a bin |k3| such that |k1 −k2| ≤
|k3| ≤ k1 + k2, and N is the number of terms in the triple sum. Equation (54) is valid for initial conditions set in
growing mode for which the only measurable quantity is the contraction Γab1b2ub1ub2 with u = (1, 1) (and a = 1 = δ
in our case). In addition it assumes Gaussian initial conditions, see [11] otherwise. We note that a similar expression
holds for the velocity divergence propagator (i.e. a = 2), but its study is beyond the scope of this paper.
We used Eq. (54) to measure the three-point propagator in a set of 50 N-body simulations, each containing Npar =

6403 particles within a comoving box-size of side Lbox = 1280h−1Mpc. The total comoving volume of our simulations
is approximately 105 (h−1Gpc)3. Cosmological parameters were chosen as Ωm = 0.27, ΩΛ = 0.73, Ωb = 0.046 and
h = 0.72, together with scalar spectral index ns = 1 and normalization σ8 = 0.9. The simulations were run using
Gadget2 [21] with initial conditions set at zi = 49 using 2nd order Lagrangian Perturbation Theory (2LPT) [18, 22].
Before comparing theoretical predictions and numerical results it is important to account for binning effects since

correlations of modes within bins implicitly change the shape of the predicted high-order propagators. Hence we will
proceed by computing the predictions for binned modes. This is easily accomplished as follows. Let us denote by an
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FIG. 11: Comparison of the proposed interpolation scheme against measurements of the two-point density propagator in
numerical simulations at z = 0. Solid line is the prediction from Eq. (51) including the only most growing mode into Γ(2)tree

and δΓ(2)1−loop after it is corrected for binning as discussed in the text; the dashed line is when the binning is not taken into
account and the dotted line is the prediction when the one-loop correction is not taken into account. Symbols with error
bars are the corresponding measurements in 50 runs of Lbox = 1280h−1 Mpc each. Different panels corresponds to different
wave-vector configurations (or “triangle shapes”) as detailed in the y-axis labels (and main text). The results are plotted as a
function of k = k3.

overline the bin average, e.g.

Γ
(2)

(k1, k2, k3) =
1

NbinP (k1)P (k2)

∫

B1

d3q1

∫

B2

d3q2

∫

B3

d3q3 P (q1)P (q2) Γ
(2)(q1, q2, q3)δD(q3 − q1 − q2) (55)

where qi is in bin Bi = {ki − δk/2, ki + δk/2} and Nbin is the normalization

Nbin =

∫

B1

d3q1

∫

B2

d3q2

∫

B3

d3q3 δD(q3 − q1 − q2), (56)

and

P (ki) =

∫

Bi

d3qiP (qi)/

∫

Bi

d3qi. (57)

Then writing the Dirac δ-function as δD(k) =
∫

d3
u

(2π)3 exp(−ik.u) we finally have,

Γ
(2)

(k1, k2, k3) =
32π

Nbin

∫ ∞

0

u2du

∫

B1

q21 j0(q1u)dq1

∫

B2

q22 j0(q2u)dq2

∫

B3

q23 j0(q3u)dq3 Γ(2)(q1, q2, q3) (58)
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with Nbin ≈ 8π2k1k2k3(δk)
3. This expression, where Γ(2) is the model prediction from Eq. (51), is the one we use

to compare with measurements obtained in numerical simulations. Notice that we are now using three wave-modes
as arguments with k3 = k1 + k2 being the “outgoing” momenta. More precisely, in our computations we choose the
central bin value to be ki = 4 i × 2π/Lbox and the bin width to be fixed and given by δk = 4 × 2π/Lbox. Specific
geometries, i.e. ratio of wave modes, are then defined from the central values of the bins.
Those comparisons are shown in Fig. 11 for four different shapes, “almost squeezed” (k1 = k/4 ; k2 = k3 = k),

“elongated” (k1 = k/2 ; k2 = k3 = k), “equilateral” (where k1 = k2 = k3 = k) and “colinear” (k1 = k2 = k/2 ; k3 = k).
(Note that these configurations are not the same as in Fig. 9. This is due to the fact that the “anti-colinear” and
“almost squeezed” configurations presented there exhibited too large signal-to-noise ratios). Remarkably all measured
configurations show a very good agreement between the numerical results (points with error bars) and the proposed
prescription (solid lines). The dashed lines show the prediction before the binning corrections. The latter can be
quite large specifically at large scale (as expected) and furthermore in some configurations one-loop term corrections
significantly improves the predictions when compared to the numerical results. One can also note that the size of
the error bars change from configuration to configuration. This is due to the fact that, for a given k3 the number of
available modes in all three bins vary strongly.
Overall, these results indicate that the proposed interpolation scheme works remarkably well when compared to

measurements in simulations in an extended k-range, which in turns is a very important step towards the accurate
modeling of polyspectra.

VI. APPLICATION: CALCULATING THE BISPECTRUM

We are interested in the computation of Babc(k1,k2,k3), the bispectrum of the components a, b, c of the cosmic
fluids,

〈

Ψa(k1, η)Ψb(k2, η)Ψc(k3, η)
〉

= δD(k1 + k2 + k3)Babc(k1,k2,k3, η) (59)

Such bispectra can be computed from a resummation of product of Γ functions. This is an extension of (25) and this
is illustrated in Fig. 12. In particular if one wants to incorporate all one-loop effects one should include three types of
diagrams: the first one involves the one-loop correction of the propagators, the second, third and fourth correspond
to intrinsic one-loop contribution to the bispectra.
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FIG. 12: The contributions to the bispectrum up to one loop order. In the first diagram the expressions of Γ(2) and Γ(1) should
incorporate their own one loop correction ; they are computed using formulae (51) at one loop order. In the other 3 diagrams,
the propagators correspond to their regularized tree order expressions; they are computed using formulae (40) . There is thus

no need at this order to include their one-loop correction, in particular to Γ(3).

More precisely, for growing mode initial conditions, the bispectrum takes the form,

Babc(k1,k2,k3, η) = 2Γ
(2)1−loop
a++ (k2,k3, η)G

1−loop
b+ (k2, η)G

1−loop
c+ (k3, η)P0(k2)P0(k3) + sym. (2 terms)

+ 8 δD(k1 + q2 − q3) δD(k2 + q3 − q1) δD(k3 + q1 + q2)P0(q1)P0(q2)P0(q3)

×Γ
(2) tree
a++ (q3,−q2, η) Γ

(2) tree
b++ (q1,−q3, η) Γ

(2) tree
c++ (q2,−q1, η) + sym. (2 terms)

+ 12 Γ
(3) tree
a+++ (−k2 + q,−q,−k3, η) Γ

(2) tree
b++ (k2 − q,q, η)Gtree

c+ (k3, η)

×P0(|k2 − q|)P0(q)P0(k3) + sym. (2 terms) (60)

where all the propagators are computed using their regularized form, whether it is at tree order as in (40) or including
one-loop correction as in (51). Integrals over the wavevectors q1, q2 and q3 when present are implicit, and the
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symmetric terms are obtained by a simultaneous permutation of the indices abc and the wave modes k1, k2 and k3.
Note that in this formulation the Γ(p) functions are assumed to be symmetric functions of their arguments. Because
of that the last 2 diagrams that appear in Fig. 12 are automatically included.

For its practical evaluation the non trivial part is the one-loop expression of the Γ
(2)
a++ propagators. Its properties

were discussed in [10]. We give in the appendix their actual values for both the density and the velocity fields. They
are the crucial ingredient to use to compute the bispectrum at one-loop order.
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FIG. 13: The shape of the density bispectrum, B111(k1, k2, k3), as a function of scale for different configurations of the
wavevectors. The (gray) dotted line is the standard tree order prediction for the bispectrum and the (gray) dot-dashed the
standard one-loop result; the (green) short dashed line corresponds to the first contribution in the diagrammatic expansion of
Fig. 12, the (red) long dashed line to the 2 others and the solid line the resulting reconstructed bispectrum. The first panel
shows k3B(k, k, k), e.g. equilateral configuration. The second corresponds to a lightly squeezed configuration, k3B(k/2, k, k),
and the last to a flatten configuration, k3B(2k, k, k). The predictions are made for z = 0.5.
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FIG. 14: The reduced bispectrum as a function of the relative angle between the wave-vectors θ for k1 = 0.1h/Mpc and
k2 = 0.2h/Mpc. Lines follow the same convention as in Fig. 13.

We present in Figs. 13 and 14 the resulting shape of the density bispectrum for a standard ΛCDM model at z = 0.5.
Figure 13 shows the scale dependence of the bispectrum (multiplied by k3 to make it less scale dependent). It makes
clear that the contribution of the first diagram and that of the 3 others correspond to different scales, each producing
one bump at different scales. This is reminiscent to what the RPT calculations give for the power spectrum [2].
In turn, Fig 14 explores the resulting angular dependence of the reduced bispectrum. Here we plot

Q(k1, k2, k3) =
1

P0(k1)P0(k2) + P0(k2)P0(k3) + P0(k3)P0(k1)
B111(k1,k2,k3) (61)

where the expression of the power spectrum is kept at linear order. The result is expressed for fixed values of
k1 = 0.1 h/Mpc and k2 = 0.2 h/Mpc and as a function of their relative angle, θ, so that k23 = k21 + k22 + 2k1k2 cos θ.
The plot compares the naked “tree” order result (dotted line) with our prediction or the perturbative calculations
(same convention as in Fig. 13). Detailed comparisons of such predictions with N -body results is left for future
studies.
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VII. CONCLUSIONS

In this paper we propose a systematic interpolation scheme that aims at describing the (multi-point) propagators
in such a way that their expressions interpolate between their perturbation theory forms - to any loop order - and
their large-k behavior obtained from non-perturbative re-summations. This scheme is based on a separation of scales
between the long wave-modes, whose effects are fully resumed and lead to the large-k behavior, and the short wave-
modes that are fully taken into account in the perturbation theory treatment. Our prescription is different from the
exponentiation scheme proposed in [12] but departs from it only very weakly. Our new prescription however is very
general and can be used for any loop order calculations and for any propagator. Furthermore, this construction is
totally unambiguous. We note that it can even be used in the context of primordial non-Gaussianities although new
terms arise only at two loop order.
As the construction proposed here has a very general range of application, it should in principle be tested for a large

variety of quantities, from two-point and multi-point propagators of the density field to the ones for the velocity field.
We proposed here some comparisons with N-body results for the quantities that are of most interest for the use of the
multi-point propagators in the context of the Γ-expansion applied to the calculation of the density power spectrum.
Because of the property we mentioned in the previous paragraph, this prescription for the two-point propagator is
found to give very accurate results for the two-point propagator. We leave for further studies the impact of two-loop
effects. In this work we further check the validity of our prescription against numerical results for the one-loop level of
the density three-point propagator. These comparisons are presented in Fig. 11. We found that it gives a satisfactory
form for a large range of configurations, i.e. interpolating the low-k one-loop result with the high-k exponential decay,
even when the signs of tree order and one-loop forms differ.
In the context of the Γ-expansion approach this construction therefore provides us with the necessary recipes for

constructing poly-spectra incorporating any order of perturbation theory results. In coming papers we will explicitly
compare predictions of the Γ-expansion for the power spectra with numerical simulations when higher order PT loop
corrections are included. These prescriptions provide a good opportunity for giving the explicit form of the bispectra in
the context of the Γ-expansion. The explicit mathematical forms are given in Section VI when bispectra are computed
up to one-loop order. Such expressions make use in particular of the three-point propagators at one-loop order whose
explicit forms are given in the appendix. We found in particular that the bispectra terms can be separated in a tree
order contribution and coupling terms contributions that contribute at different scales, i.e. in subsequent bumps, in
a similar way to the power spectrum. Comparison of the proposed forms for the bispectrum with N -body results is
however left for further studies.
We finally note that such a construction is restricted here to the case of a single pressure-less fluid. Whether it

could be used in cases the fluid content of the universe is richer (with extra degrees of freedom carried by baryons, see
[13, 23], massive neutrinos, dark energy components, see [24, 25], etc.) is still largely an open issue. Results obtained
in [13] however suggest that the effects of adiabatic long wavelength modes can be resummed and therefore could be
incorporated in a large variety of cases.
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Appendix A: Explicit expression of the one-loop Γ(2) propagators

We give here the explicit expressions of the late time component (most growing term) of the 1-loop expression of the
three-point propagator (for growing mode initial conditions). The final result is obtained by the explicit integration
over the wave mode q depending on the linear power spectrum P0(q),

Γ
(2)1−loop
1++ (k1, k2, k3) = 4πe4η

∫

q2dqΓ
(2)1−loop
1++ (k1, k2, k3, q)P0(q) (A1)

where the result is expressed in terms of the 3 norms, k1, k2, k3 so that k23 = k21 + k22 +2k1.k2. Note that these three
norms obey the triangular inequality.

Note that Γ
(2)1−loop
i++ (k1, k2, k3, q) obeys the following asymptotic behaviors,

Γ
(2)1−loop
i++ (k1, k2, k3, q) → −

k23
6q2

Γ
(2)tree
i++ (k1, k2, k3), (A2)

and q → 0. We also have

Γ
(2)1−loop
1++ (k1,k2) →

k1.k2

2k21
f(k2), (A3)

Γ
(2)1−loop
2++ (k1,k2) →

k1.k2

2k21
g(k2), (A4)

when k1 → 0 and where the functions f(k) and g(k) are defined in Eqs. (33). These 2 asymptotic regimes can be
used as internal checks.
The function Γ

(2)1−loop
1++ (k1, k2, k3, q) has been obtained after integration of the angular variable in the loop expres-

sions. The result can be expressed in terms of the functions

L (k1) = log
(k1 + q)2

(k1 − q)2
(A5)

W (k1, k2, k3) = log

(

−4k23q
2 − 2

(

k21 − q2
) (

k22 − q2
)

− 4k3q
√

(−k21 − k22 + k23) q
2 + k21k

2
2 + q4

−4k23q
2 − 2 (k21 − q2) (k22 − q2) + 4k3q

√

(−k21 − k22 + k23) q
2 + k21k

2
2 + q4

)

(A6)
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and it reads,

Γ
(2)1−loop
1++ (k1, k2, k3, q) =

k2
(

k21 − q2
)2 (

7k23q
2 + 2k43 − 9q4

)

29568 k21q
5
√

q2 (k22 − k23 + q2) + k21 (k
2
3 − q2)

W (k1, k3, k2) + sym. (k1 ↔ k2)

+
3k33

(

k21 − q2
)2 (

k22 − q2
)2

17248 k21k
2
2q

5
√

q2 (−k22 + k23 + q2) + k21 (k
2
2 − q2)

W (k1, k2, k3)

−

(

k21 − q2
)2

1655808 k91k
2
2q

5

[

165
(

k22 − k23
)3

q6 − k101
(

582k22 + 791k23 + 1947q2
)

+

+k61
(

−1113k23q
4 + 179k43q

2 − 3k42
(

211k23 + 2155q2
)

+ k22
(

758k23q
2 + 390k43 − 7284q4

)

+ 492k62 + 151k63 + 219q6
)

+k81
(

1787k23q
2 + k22

(

2120k23 + 6891q2
)

+ 51k42 + 601k43 + 1689q4
)

+k41q
2
(

405k23q
4 + k42

(

7269q2 − 1677k23
)

− 321k43q
2 + k22

(

−4376k23q
2 + 391k43 + 471q4

)

+ 1017k62 + 269k63
)

−3
(

k22 − k23
)

k21q
4
(

k22
(

285q2 − 473k23
)

− 17
(

9k23q
2 + 5k43

)

+ 558k42
)

+ 39k121
]

L (k1) + sym. (k1 ↔ k2)

+

(

7k23q
2 + 2k43 − 9q4

)

236544 k21k
2
2k

5
3q

5

[

−12
(

k21 − k22
)2

q6 − 3
(

k21 − k22
)2 (

k21 + k22
)

q4

−2k103 − 15
(

k21 + k22
)

k83 + k63

(

46
(

k21 + k22
)

q2 + 16
(

k21 − k22
)2

− 2q4
)

+k43
(

−47
(

k21 + k22
)

q4 − 8
(

7k41 − 17k22k
2
1 + 7k42

)

q2 +
(

k21 + k22
) (

k41 − 10k22k
2
1 + k42

)

+ 4q6
)

+k23

(

8
(

k21 + k22
)

q6 +
(

52k41 − 96k22k
2
1 + 52k42

)

q4 + 2
(

k21 − k22
)2 (

k21 + k22
)

q2
)]

L (k3)

+
1

6209280 q4k81k
8
2k

4
3

{

420k61k
6
2k

12
3

+
[

−2475
(

k61 + k62
)

q8 + 300k21k
2
2

(

k41 + k42
)

q6 + 9090k41k
4
2

(

k21 + k22
)

q4

−68910k61k
6
2q

2 + 5415k61k
6
2

(

k21 + k22
)]

k103

+
[

135
(

55k81 − 51k22k
6
1 − 51k62k

2
1 + 55k82

)

q8 − 45k21k
2
2

(

k21 + k22
) (

663k41 − 811k22k
2
1 + 663k42

)

q6

+
(

38925k42k
8
1 + 9532k62k

6
1 + 38925k82k

4
1
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q4 − 120370k61k
6
2

(

k21 + k22
)

q2

+15k61k
6
2

(

377k41 + 940k22k
2
1 + 377k42
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k83

+
[

−135
(

k21 + k22
) (

55k81 − 201k22k
6
1 + 156k42k

4
1 − 201k62k

2
1 + 55k82

)

q8

+30k21k
2
2

(

1959k81 − 3283k22k
6
1 − 1907k42k

4
1 − 3283k62k

2
1 + 1959k82

)

q6

−2k41k
4
2

(

k21 + k22
) (

53220k41 − 178337k22k
2
1 + 53220k42

)

q4

+10k61k
6
2

(

22261k41 − 45566k22k
2
1 + 22261k42

)

q2 − 15k61k
6
2

(

k21 + k22
) (

805k41 − 2306k22k
2
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k63

+
[

45
(

55k121 − 285k22k
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8
1 + 230k62k

6
1 + 157k82k
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q8

−15k21k
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2
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k21 + k22
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1949k81 − 10643k22k
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19475k81 − 139742k22k
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1 + 246974k42k
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−30k61k
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)

2
(

13k41 − 4k22k
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1 + 13k42
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k43
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[

7560k61k
6
2

(

k21 + k22
)

q8 + 1260k61k
6
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(

43k41 − 80k22k
2
1 + 43k42

)

q6 + 3150k61k
6
2

(

k21 − k22
)2 (

k21 + k22
)

q4
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k23

−11340q8k61k
6
2

(
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6
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}

. (A7)

It can be noted that the final expression is symmetric in k1 and k2. The velocity component can be similarly
constructed,
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Γ
(2)1−loop
2++ (k1, k2, k3, q) =

k2
(

k21 − q2
)2 (

−5k23q
2 + 8k43 − 3q4

)

29568 k21q
5
√

q2 (k22 − k23 + q2) + k21 (k
2
3 − q2)

W (k1, k3, k2) + sym. (k1 ↔ k2)

+
3k33

(

k21 − q2
)2 (

k22 − q2
)2

4312 k21k
2
2q

5
√

q2 (−k22 + k23 + q2) + k21 (k
2
2 − q2)

W (k1, k2, k3)

−

(

k21 − q2
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1655808 k91k
2
2q

5

[

55
(

k22 − k23
)

3q6 − k101
(

194k22 + 1921k23 + 649q2
)

+ 13k121

+k61
(

25k23q
4 − 1759k43q

2 + k42
(

801k23 − 2155q2
)

+ k22
(

−3414k23q
2 + 306k43 − 2428q4

)

+ 164k62 + 329k63 + 73q6
)

+k81
(

2913k23q
2 + k22

(

1176k23 + 2297q2
)

+ 17k42 + 1579k43 + 563q4
)

+k41q
2
(

135k23q
4 + k42

(

321k23 + 2423q2
)

+ 333k43q
2 + k22

(

−784k23q
2 − 1307k43 + 157q4

)

+ 339k62 + 647k63
)

−3
(

k22 − k23
)

k21q
4
(

k22
(

121k23 + 95q2
)

− 51k23q
2 + 186k42 − 307k43

)]

L (k1) + sym. (k1 ↔ k2)

+

(

−5k23q
2 + 8k43 − 3q4

)

236544 k21k
2
2k

5
3q

5

[

−12
(

k21 − k22
)2

q6 − 3
(

k21 − k22
)2 (

k21 + k22
)

q4

−2k103 − 15
(

k21 + k22
)

k83 + k63

(

46
(

k21 + k22
)

q2 + 16
(

k21 − k22
)2

− 2q4
)

+k43
(

−47
(

k21 + k22
)

q4 − 8
(

7k41 − 17k22k
2
1 + 7k42

)

q2 +
(

k21 + k22
) (

k41 − 10k22k
2
1 + k42

)

+ 4q6
)

+k23

(

8
(

k21 + k22
)

q6 +
(

52k41 − 96k22k
2
1 + 52k42

)

q4 + 2
(

k21 − k22
)2 (

k21 + k22
)

q2
)]

L (k3)

+
1

6209280 q4k81k
8
2k

4
3

{

1680k61k
6
2k

12
3

+
(

−825
(

k61 + k62
)

q8 − 12440k21k
2
2

(

k41 + k42
)

q6 + 32290k41k
4
2

(

k21 + k22
)

q4

−133850k61k
6
2q

2 + 17535k61k
6
2

(

k21 + k22
))

k103

+
(

45
(

55k81 − 51k22k
6
1 − 51k62k

2
1 + 55k82

)

q8 + 15k21k
2
2

(

k21 + k22
) (

1009k41 − 421k22k
2
1 + 1009k42

)

q6

−k41k
4
2

(

50385k41 + 92816k22k
2
1 + 50385k42

)

q4 − 81190k61k
6
2

(

k21 + k22
)

q2

+15k61k
6
2

(

683k41 + 1252k22k
2
1 + 683k42

))

k83

+
(

−45
(

k21 + k22
) (

55k81 − 201k22k
6
1 + 156k42k

4
1 − 201k62k

2
1 + 55k82

)

q8

+30k21k
2
2

(

235k81 − 757k22k
6
1 − 137k42k

4
1 − 757k62k

2
1 + 235k82

)

q6

−4k41k
4
2

(

k21 + k22
) (

345k41 + 628k22k
2
1 + 345k42

)

q4

+10k61k
6
2

(

24507k41 − 50506k22k
2
1 + 24507k42

)

q2 − 15k61k
6
2

(

k21 + k22
) (

1977k41 − 4010k22k
2
1 + 1977k42

))

k63

+
(

15
(

55k121 − 285k22k
10
1 + 157k42k

8
1 + 230k62k

6
1 + 157k82k

4
1 − 285k102 k21 + 55k122

)

q8

−5k21k
2
2

(

k21 + k22
) (

1949k81 − 10643k22k
6
1 + 19341k42k

4
1 − 10643k62k

2
1 + 1949k82

)

q6

+k41k
4
2

(

19475k81 − 93542k22k
6
1 + 160734k42k

4
1 − 93542k62k

2
1 + 19475k82

)

q4

−90k61k
6
2

(

k21 + k22
) (

67k41 − 106k22k
2
1 + 67k42

)

q2 + 15k61k
6
2

(

k21 − k22
)

2
(

13k41 − 4k22k
2
1 + 13k42

))

k43

+
(

2520k61k
6
2

(

k21 + k22
)

q8 + 1260k61k
6
2

(

7k41 − 12k22k
2
1 + 7k42

)

q6 − 1260k61k
6
2

(

k21 − k22
)

2
(

k21 + k22
)

q4
)

k23

−3780q8k61k
6
2

(

k21 − k22
)

2 − 945q6k61k
6
2

(

k21 − k22
)

2
(

k21 + k22
)}
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